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1. Overview
1.1 Complexity/disorder and structure/order 
1.2 Self-organisation



1.1 Complexity/disorder (turbulence)
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1.1 Complexity/disorder (turbulence)
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Order/Structure (shear, zonal flows)

Jovian zonal winds

Solar differential rotation

Zonal
flows



Reduction in turbulent mixing by shear flow

Turbulence enhances mixing but shear flow eats up 
turbulence, reducing turbulent mixing rate. 
[Kim & Dubrulle 01,02; Kim 04,05,06,07; Kim et al 03,04,05,06; Leprovost & Kim 07,08,09,11; Numerical: 
Newton & Kim 08,09,11; Courvousier & Kim 09; Sood, Hollerbach & Kim 16, etc.]
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Shear flow grows 
from turbulence

Turbulence grows 
from instability

Less turbulence

Less shear flow

More turbulence
More shear flow
Less turbulence
Less shear flow

Shear flow eats up 
turbulence

Rabbits grow by 
eating grasses

Lions grow by 
eating rabbits

Less rabbits

Less Lions

More rabbits
More lions
Less rabbits
Less lions

Lions eat up
rabbits
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Predator:
Lion (zonal flow)

Prey:
Rabbit (turbulence)

Prey-Predator



2. The Low-to-High confinement (L-H) transition
2.1 Deterministic model
2.2 Stochastic model



2. Low-to-high confinement (L-H) transition
Spontaneous formation of shear flow
Improvement of confinement!

Radial profile of flow energy/particle loss

r

U

t

before transition

after transition

Transition from low-to-high 
confinemnt

transition from low to high
confinement
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JET: Andrew et al, 2006, PPCF 48, 479

DII-D: Schmitz et al, 2017, Nuclear Fusion 57, 025005
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2.1 Deterministic model (Kim & Diamond, PRL 2003)

N: Temperature/density gradient (rabbit food: grasses)
Q: External heating (water/sunlight)
ℰ: Turbulence (prey: rabbits)
VZF: zonal flows (predator: lions)
V = dN2: mean flows (super predator)
ai, bi, ci, d: constant model parameters
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From Kim & Diamond PRL 03

L oscillation H
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Specifically, we introduce two independent (delta-corrected) Gaussian stochastic noises ⇠

and ⌘ [37] and extend Eqs. (5)-(6) to

dx

dt
= f(x, v) + ⇠,

dv

dt
= g(x, v) + ⌘. (9)

Here, v = VZF , x = ±
p
E , f(x, v) = 1

2 [N � a1x
2 � a2V

2 � a3v
2] x and g(x, v) = b1

x2v
1+b2V 2 �

b3v; N is given by Eq. (8);

h⇠(t)⇠(t0)i = 2D�(t� t
0), h⌘(t)⌘(t0)i = 2Dz�(t� t

0),

h⇠(t)⌘(t0)i = 0, h⇠i = h⌘i = 0. (10)

Here, the angular brackets denote the average over ⇠ and ⌘. D and Dz are the amplitude of

the stochastic noise ⇠ and ⌘, respectively. It is worth noting that we work with x = ±
p
E

instead of ✏ to implement the boundary conditions that a PDF vanishes as ✏ ! 1 and

|v| ! 1 (not at ✏ = 0 nor at v = 0).

It is possible to calculate a PDF by simulating Eqs. (9)-(10), e.g. by using 4th order

stochastic Runge-Kutta method [22], but this would require a proper handling of noisy data,

e.g. by choosing an optimal bin size and ensembles, to obtain PDFs. Thus, we calculate n

an exact PDF by solving the following Fokker-Planck equation [37] for a PDF p = p(x, v, t)

corresponding to Eqs. (9)-(10):

@p

@t
= � @

@v
[g(x, v)p]� @

@x
[f(x, v)p] +D

@
2
p

@x2
+Dz

@
2
p

@v2
. (11)

Note that x 2 (�1,1) and v 2 (�1,1) and p(x, v, t) ! 0 as x, v ! ±1.

C. Information length

For our model, we have the two variables x1 = x and x2 = v. Thus, from p(x, v, t) we

calculate the marginal PDFs p(x, t) and p(v, t) as

p(x, t) =

Z
dv p(x, v, t), p(v, t) =

Z
dx p(x, v, t). (12)
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2.2 Stochastic model (Kim & Hollerbach, PRL submitted)

N: Temperature  (rabbit food: grasses)
Q: External heating (water/sunlight)
ℰ=x2: Turbulence (prey: rabbits)
v= VZF : zonal flows (predator: lions)
V = dN2: mean flows (super predator)
ai, bi, ci, d: constant model parameters

", $
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! and " are two independent Gaussian noise
with a short correla2on 2me

Fokker-Planck equation for p(x,v,t)
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p(x, t) = 1
2πσ

exp −
| x −µ |2

2σ 2

⎛

⎝
⎜

⎞

⎠
⎟=

β
π
exp −β | x −µ |2( )

λ i = (σ ,µ) parameter
µ  = mean value
σ = standard deviation

β  = 1
2σ 2

= inverse temperature

Recall: Gaussian PDF
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x: solid line (turbulence)
v: dashed line (zonal flow)

<x>: mean value of x
<v>: mean value of v
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x: turbulence, v: zonal flow
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p(x,v,t) in the plane of x and v
x

v



Information length
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Q: Quantify similarity among PDFs by number (distance): 
Smaller distance for similar PDFs

Larger distance for disparate PDFs



Unit of distance = width of PDF (variance σ) 
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Control experiment: 
Reducing x by constant σ
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Information length L(t): dimensionless total number of different 
statistical states that a system evolves through in time (0,t)

Time-dependent PDF 
[Kim 18; Nicholson & Kim 15,16; Heseltine & Kim 16; Kim & Hollerbach 20]

L(t) = dL
0

t
∫ =

dt1
τ (t1)0

t

∫ = dt1 dx p(x, t1)
∂ ln p(x, t1)

∂t1
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⎝
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x: red  
v: blue 

Information length vs time1/!" vs  5me
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3. Other examples: 
3.1 Music
3.2 Global circulations
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3.1 Music: can we see music?
[Nicholson & Kim Entropy 2016]
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Tchaikovsky 1812 Overtune

Mozart Violin Concerto No 3

Beethoven 9th Symphony 2nd

Vivaldi Summer
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Vivaldi Summer Mozart Violin Concerto No 3

Tchaikovsky 1812 Overtune Beethoven 9th Symphony 2nd
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• Data from WACCM 

• A few points around the 
middle of each sphere and 
pause

• Time dependent PDF from 
using data at these points, 
all longitude and latitude

• Information length L(t)

3.2 Global circulation model
[Kim, Liu & Heseltine 2020]
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Mean and Standard deviation: zonal & meridional flows

Zonal flows Meridional flows
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Informa(on length and PDFs: Zonal flows
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Information length and PDFs: meridional flows
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Information length and PDFs: Temperature 
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Temperature Zonal flows Meridional 
flows



4. Conclusions
§ Much scope for research on the L-H transition
§ Limitation of mean value, standard deviation, Gaussian PDF
§ Information length: the number of statistically different 

states that a system evolves through in time. 
§ It is dimensionless and invariant under (time-independent) 

change of variable.
§ Useful to understand correlation in self-organising process.
§ Applicability to different processes.
§ Useful index to classify a growing number of data. 
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• Supported Summer Internships at Coventry

• Funded PhD studentship on turbulent plasmas
https://www.findaphd.com/phds/project/turbulent-plasma-in-
laboratory-and-space/?p118985
or
https://warwick.ac.uk/fac/sci/physics/prospective/postgraduate/pgi
ntro/resourcesforapplicants

Contact: Prof Eun-jin Kim at ejk92122@gmail.com42
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https://warwick.ac.uk/fac/sci/physics/prospective/postgraduate/pgintro/resourcesforapplicants
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