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Goals

In a molecular dynamics (MD) simulation there are 2 parts:
• A method for calculating the force on each particle
• An integrator which progresses the system in time
To increase the amount of data generated one must either
optimize the force calculation or improve the integrator. We
choose to focus on optimizing the integrator as there is
more physics involved in choosing an efficient integrator
(one which allows for a large timestep).

Velocity-Verlet

Non-Newtonian Calculus

Geometric Calculus

Bigeometric Calculus

Traditionally, the velocity-Verlet has been used in MD
simulations. It is defined as:

𝑟𝑟 𝑡𝑡 + ∆𝑡𝑡 = 𝑟𝑟 𝑡𝑡 + 𝑣𝑣 𝑡𝑡 ∆𝑡𝑡 + 𝑎𝑎 𝑡𝑡 ∆𝑡𝑡2/2
𝑣𝑣(𝑡𝑡 + ∆𝑡𝑡) = 𝑣𝑣 𝑡𝑡 + (𝑎𝑎 𝑡𝑡 + 𝑎𝑎 𝑡𝑡 + ∆𝑡𝑡 )∆𝑡𝑡/2

Non-Newtonian calculus (NNC) was first formalized in the
1970s by Michael Grossman and Robert Katz. NNCs share
key properties such as having a Fundamental theorem of
calculus, but differ in the type of change they consider.
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The geometric derivative:

𝑓𝑓∗ 𝑥𝑥 = lim
ℎ→0

𝑓𝑓(𝑥𝑥 + ℎ)
𝑓𝑓(𝑥𝑥)

1/ℎ

Geometric calculus deals with a function’s fractional change
in response to an additive change to it’s argument. This
leads to the property which has made geometric calculus
the most used NNC:
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The integral of a product is the product of the integrals.
So can we form a geometric calculus based velocity-Verlet?
Yes, but it has been shown to be only a marginal
improvement over the linear velocity-Verlet and only for
specific values of r(t). These values are determined by
regions in which a geometric approximation well
characterizes the potential.

As you can see in the diagram, the linear velocity-Verlet
involves updating velocity by a half timestep, position by a
full timestep, and then velocity by another half timestep.
The velocity-Verlet is perhaps the most common integrator
due to a number of beneficial properties:
• It is self-starting, i.e. it relies only on properties at time t.
• It is time reversible, causing it to conserve energy
• It is stable, errors are of the order ∆𝑡𝑡3

To optimize the velocity-Verlet for MD simulations we look
to increase ∆𝑡𝑡 while maintaining a similar error term. For the
linear Verlet, error is a result of the potential deviating from
the linear approximation made when only considering
acceleration. Non-Newtonian Calculus is a natural method
for approximating a function geometrically. A graph demonstrating energy conservation over time for the velocity-Verlet. 

Fluctuations in energy can be made arbitrarily small by decreasing step size.

• Quantitively verifying the performance of the geometric
Verlet in 1D. This involves investigating energy
fluctuations as a function of step size and taking 1D data
for the linear velocity-Verlet.

• Euler-Lagrange equations in bigeometric calculus.
• Predicting performance for a variable timestep Verlet.
• Developing an intuitive understanding for what the

bigeometric derivative represents.
• Developing a method to choose each timestep which

does not break time reversibility.

Bigeometric calculus considers a fractional change in both
a function’s value and its argument.

𝑓𝑓𝜋𝜋 𝑥𝑥 = lim
ℎ→0

𝑓𝑓(𝑥𝑥 1 + ℎ )
𝑓𝑓(𝑥𝑥)

1/ℎ

Bigeometric calculus is inherently scale free.
A geometric progression in time is not useful for MD, so we
consider varying ∆𝑡𝑡 and consider ∆𝑟𝑟 ∆𝑡𝑡
This yields:

∆𝑟𝑟𝜋𝜋 ∆𝑡𝑡 = exp
1

1 − 𝛾𝛾
, γ =

𝑎𝑎(𝑡𝑡)∆𝑡𝑡
2 𝑣𝑣 𝑡𝑡 + 𝑎𝑎(𝑡𝑡)∆𝑡𝑡

While its already known that rescaling ∆𝑡𝑡 (with constraints)
can maintain energy conservation and improve accuracy,
little is quantitively understood about this improvement.

Current Work

Summary of Results
• MD simulation framework with 25 particles in the

Lennard-Jones potential.
• Demonstrated the velocity-Verlet’s energy conservation.
• Measured energy fluctuation as a function of timestep for

the linear velocity-Verlet.
• Derived the geometric velocity-Verlet.
• Derived basic results for a bigeometrically informed

velocity-Verlet.
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