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"In his youth Albert Einstein spent a year loafing aimlessly. You don’t get anywhere by not ‘wasting’ time", explains
Carlo Rovelli in his sensation Seven Brief Lessons of Physics, "It is thus that serious scientists are made" [1].

No physicist can accomplish truly productive work without relaxing from time to time; physicists need, too, an
occasional Friday night with friends and, no question, some pizza. However, being the physicists that they are, even
on the Fridays while eating pizza, they cannot help but wonder the mathematically logical way for them to eat the

(often many) slices.

challenges.

As it turns out, geometry poses restrictions
on the way in which shapes can change. This
can be understood through the study of curva-
ture for curves and surfaces. Not only can this
become important in countless examples of the
every-day life, but topology presents intricacies
that are key in many contemporary scientific

‘Why does my slice bend down if I grab it
flat by the crust, but not if I care to bend it into
a U-shape? Is it following some rule? What sort
of strange geometrical object is in my hands?’.

1. Curves - What are those?

1.1 Describing curves

In order to be able to understand the topological prop-
erties of surfaces, it merits to start from the more basic
concept: curves.

A mathematical description of a curve in R?, named a
plane curve, can be given in terms of its Cartesian equa-
tion [2]

f(.f, y) =c, (1)
where f is a function of x and y, and ¢ is a constant. We
can describe curves in R?, or space curves, in this way, too,
by using two Cartesian equations [2]

filz,y,2) = c1, @
f2($71117z) = C2.

However, it’s often easier to use a different approach
to describe curves. This consists of imagining it as a single
point that moves along a ‘path’. Say ~ is the position of
the point at time ¢. Then the function ~(¢) describes the

curve. We call these parametrized curves, from the idea
that the variables in its Cartesian equation are re-written
in terms of a scalar parameter, ¢. Note that + is a point in
space, so it takes vector values [2].

The reason why this is more useful is that we can ap-
ply concepts to do with motion, which are normally intu-
itive to us, to the problem. We can use vectors to interpret
derivatives, and algebraic concepts become geometrical.

1.2 Unit-speed parametrization

For a parametrised curve ~, we call 7, its first deriva-
tive, the tangent vector. Since we have chosen for the
curve to be a moving point, 4 will be equivalent to the
point’s velocity vector, and |§(¢)]| to its speed.

There are (infinitely) many equivalent parametriza-
tions for each curve. We say that a parametrized curve is
unit-speed if 4 is a unit vector V¢ (in the interval in which
the curve is defined) [2].

Note that the curve being unit-speed allows for us to
interpret its second derivative, ¥, as a vector perpendicu-
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lar to the tangent vector, hence normal to the curve. This
can be understood if we think of % as the acceleration vec-
tor. Since the speed is always unitary, we know 4 never
changes ~’s modulus, but only its direction. This means %
must be perpendicular to +.

2. Curvature of a Plane Curve

2.1 The mathematics

From the word itself, curvature becomes an intuitive
concept: it tells us, indeed, just how much a curve curves.
We will say that curvature, x, measures "the extent to
which a curve is not contained in a straight line" [2]; that
is, to measure « at point v(¢) of the curve, we look at its
deviation from the tangent line at ¢, and this deviation
will be proportional to the curvature.

Let us define a normal unit vector, n, as a unit vec-
tor perpendicular to the tangent vector . Figure 1 shows
how one can use n to find that the deviation of the curve
from its tangent line at y(t), as ¢ changes to At, will be
equal to (y(t + At) —v(¢)) - n.

y(t + At)

Yt + At) — () (y(t+ At) —~(t)) *n

Fig. 1 - The deviation, shown in red, of a curve, in blue, from its tan-
gent line at v(t), obtained using a normal unit vector indicated as n.
Recreated from [2].

Working from a Taylor expansion of +(t + At) we can
find that

At + At — /(1) = 4(t) At

3
+%&(t)(At)2 + HOTs. ®

HOT stands for ‘Higher order term’. When multiplying this
expression by n, we can notice that 4 - n = 0, so the devi-
ation of ~ from its tangent line is

1

QW) -n(At)? + HOTs. 4
Since 4 is perpendicular to 4, it will be parallel to n.

Hence, the magnitude of the deviation, neglecting HOTs,
will be

Sl )

We discussed that x must be proportional to this, allow-
ing for the definition of curvature to become [2]

|kl = [5(8)]. Q)

Notice that a more complete definition requires for a
distinction between positive and negative curvatures. We
define the signed curvature, ks, with the same approach,
only making a choice that the normal vector used to de-
rive the expression is, by convention, obtained by rotating
4 anticlockwise by 7 /2 [2]. This will still be parallel to ¥,
and so there exists the scalar k, such that

¥ = Kgn. 7

Figure 2 shows an example of curves with positive and
negative curvatures.

rol

I

Fig. 2 - On the left, a curve with positive curvature; on the right, one
with negative curvature. Normal vector chosen as per convention. In-
spired from [2].

Thinking of 4 as the acceleration, the rate of change
of direction of «’s motion, it makes sense that it is directly
related to the curvature.

Briefly note that these definitions only hold for unit-
speed parametrized curves. Curvature can also be defined
for regular curves, but that derivation is not contained in
this article.

2.2 Hidden circles.

Consider the unit-speed parametrization ~(t) of a cir-
cle of radius R and centered around (g, yo) [2]

y(t) = (mo + Rcos% . Yo+ Rsiné) . (8)
From this, its curvature, obtained per Equation 6, is
. 1 t)° 1 t\* 1
()] = \/(—RcosR) + (—Rst> =& 9

The curvature of a circle is the reciprocal of its radius, in
accordance to sensible expectations; a smaller circle will
curve more rapidly than a big one.

With this in mind, it’s easy to see that a plane curve’s
curvature can be visualised by finding a circle that per-
fectly ‘hugs’ the curve (mathematically equivalent to
making their second derivatives match, i.e. making their
curvatures match!). An example of this is shown in Figure
3.
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Fig. 3 - A curve is shown in blue. In dark gray is its properly ‘hugging’
circle and in light gray, many circles that don’t fit appropriately. In red,
R is the radius of the fitting circle.

Of course, this isn’t necessarily always helpful when
computing the curvature, but it is very useful for visualis-
ing it. Moreover, it will become an intuitive tool later on,
when looking at surfaces.

3. Curvature of a Space Curve

3.1 Torsion is the new curvature

Curvature isn’t sufficient to uniquely describe a space
curve, because in three dimensions many curves may
have the same curvature without it being possible to re-
late them by an isometry of R? (a distance-preserving
transformation) [2]. One visual insight to why this is true
might be to think that the curve could be ‘rotating over it-
self’. If, per say, the curve had a diameter and we marked
a dot on it, it’s possible that this dot could move around
the diameter as if the curve was somehow being twisted
- as represented in Figure 4. This idea arises when we
realise that the curve is now in three-dimensional space
and so now it has the new possibility to turn over itself.

Fig. 4 - Explanatory diagram to show a space curve twisting.

Of course, the curve doesn’t actually have a diameter,
but the idea that it can twist remains. Another way to
picture this could be to see the curve as the path of an
airplane, like in Figure 5.

Fig. 5 - Explanatory diagram showing a different visual insight for a
space curve twisting. The aim is to show that the curve doesn’t need a
diameter to twist.

To fully describe the curve we must now somehow ac-
count for this ‘additional curvature’, denoted the torsion,
7. The approach to finding = will be similar to the one
seen for curvature previously, only considering a new, dif-
ferent normal unit vector. This vector must be perpendic-
ular to both 4 and n, and is therefore named the binormal

vector, b, and defined such that [2]
b =% xn. (10)

Figure 6 shows an example of this.

L
~—
— b
b b N/
n nl/ n\/
¥ 5 i

Fig. 6 - Vector analysis at different points on a space curve.

We can look at b which, using the product rule, is

b=4Xxn+4xn=74xn, (11)
because 4 x n = xn x n = 0. Note that b is perpendicular
to 4, and also to b, so it must be parallel to n. Then there

is a scalar, say 7, such that

b= —7n. (12)

This closely resembles the description of . The negative
sign is added conventionally [2].

Note, again, that this applies for unit-speed
parametrized curves only. The torsion definition for reg-
ular curves is not contained here.
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4. Curvature of a Surface

4.1 The fancier space curves

A surface is, like a space curve, an object of R3. It
"looks like a piece of R? in the vicinity of any given point"
[2] - if a curve is a curved line, a surface is a curved plane.

Having understood the ways in which space curves
curve helps us understand curvature for surfaces, al-
though the final idea is not the same.

Suppose we had a space curve laying on a surface,
even have it casually twist in the same way that the sur-
face does, and analyse b, 4 and n for it. See Figure 7.

Fig. 7 - Vector analysis for a space curve that is coincident with a sur-
face.

The need to account for b and torsion applies for sur-
faces, with one key difference. Notice that b is not normal
to the surface, as it was to the curve, but is, in fact, tan-
gent to it. Notice also that we can find infinitely many tan-
gent vectors like this, which could even create a tangent
plane. The curvature of a surface measures how much the
surface is not contained in the tangent plane [2].

Even if it’s still not apparent how we calculate the final
curvature, it should be instinctive by analogy with space
curves that, to get a value for the curvature of a space
shape, we could look at 2D curvatures of two different
plane ‘projections’ or sections of it. It might even be logi-
cal, by now, to expect that these two sections might better
be perpendicular.

4.2 Principal curvatures

Let us now think of the normal plane, one that con-
tains n and a tangent vector [3]. Since there are infinite
tangent vectors, there are also infinite normal planes.

Each of these planes will intersect the surface and cre-
ate a cross-section, named normal section. A normal sec-
tion is a plane curve, and so it has a curvature . We could
construct infinitely many normal sections, but we will be
interested in two particular ones; the ones with maxi-
mum and minimum curvatures, Kmqe, and Km,i,. These
curvatures are called the principal curvatures [3].

Funnily enough, principal curvatures always corre-
spond to planes that are perpendicular to each other (un-
less Kyae = Kmin N Which case k is the same for all nor-
mal sections and it doesn’t really matter).

It should be acknowledged that there exists a more
formal definition for the principal curvatures, based upon
the introduction of new concepts like the first and second
fundamental forms and the Weingarten map [2]. How-
ever, these are subtleties that become important in other
types of problems and are not necessary for this study.

4.3 We prefer circles

To find out k.4, and Ky, We can look at their appro-
priately fitting circles (recall section 2.2). Hence, for sur-
faces, the curvature at a point can be calculated by find-
ing two circles, the biggest and smallest possible, which
‘hug’ the surface. An example is shown in Figure 8.
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Fig. 8 - Analysis of the principal curvatures for a surface using circles.
Recreated from [4].

This idea is useful because it makes curvature visually
intuitive.

The problem now is that, even if we can find these two
circles (i.e. the principal curvatures), we still haven’t dis-
covered a way to calculate a final, single, relevant value
for the curvature of a surface. Here is where the famously
called ‘prince of mathematics’[1] comes in; as often in
mathematics, Carl Friedrich Gauss gave us the key to the
solution.

4.4 Gauss, the knight in shining armour

We define the Gaussian curvature, K, as the product
of the principal curvatures

(13)

K= Rmax * Kmin

and the mean curvature, H, as the average of them [2]

1
H = 7(KJmaI + Kmin)- (14)

2

These together have incredible power in describing sur-
faces.

Gaussian curvature tells us information about the type
of point upon examination. In fact, it helps us classify
points [5]:
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e Elliptical points exist where both principal curva-
tures have the same sign; that is, K > 0.

— Elliptical points can be umbilic, when K4, =
Kmin+ If Kmaz = Kmin 7 0, the point is said to

be spherical.
Elliptical Spherical

Fig. 9 - Examples of elliptical and spherical surfaces. Recreated
from [5].

e Parabolic points exist where one of the principal cur-
vatures is zero, and so K = 0, too.

— If Kmae = Kmin = 0, the point is planar, or a
flat umbilic. This is the only umbilic that is not

elliptical.
Parabolic Planar

Fig. 10 - Examples of parabolic and planar surfaces. Recreated
from [5].

e Hyperbolic points exist where the principal curva-
tures have opposite signs, so K < 0.

Hyperbolic

Fig. 11 - Example of a hyperbolic surface. Recreated from [5].

5. Theorema Egregium

5.1 The ‘remarkable theorem’

Not only did Gauss define K, but he also explained
one of its most interesting utilities, which he, indeed,
named Theorema Egregium, latin for ‘remarkable theo-
rem’ [2]:

"The Gaussian curvature of a surface is preserved by local
isometries".

This means that if we bend a surface without doing any-
thing tricky like stretching, shrinking, tearing or wrin-
kling it, its K must remain the same. A proof of this can
be found in W. Ballman (2018) [6], by considering more
formal definitions of k,,4, and K,in.

The important thing about this is not just that the cur-
vature itself won’t change - we don’t often care about the
exact value of K. What we do care about is what this im-
plies about the surface; that is, there exist constraints to
the way in which it can naturally change shape. If it is
restricted to a certain K, there are alterations that will be
allowed, and others that will be forbidden.

See Figure 12 as an example. You can easily turn a
piece of flat paper into a cylinder without wrinkling it,
but not into a sphere. Think about having to wrap some-
thing spherical - you just cannot get it right [7].

A

Fig. 12 - Explanatory diagram showing how a sheet of paper can be
rolled into a cylinder, but will not be able to naturally become a sphere.

Alternatively, you can’t create a flat surface from a
curved one either, in the same way that you can’t make
a mandarin’s skin flat without tearing it. This is actually
the reason that we cannot create an accurate map of the
Earth; you either get its angles right, or its areas, but
never both at the same time [2]. This is because, per The-
orema Egregium, there is no direct isometry from one to
the other, and so distances aren’t preserved.

Following from this, surfaces are usually classified
into two types. The first is developable surfaces, with
K = 0, which essentially are Euclidean shapes (this in-
cludes shapes like planes, cylinders, cones, and more).
The second type are called intrinsically curved surfaces,
with K # 0, which are non-Euclidean shapes [8].

5.2 Flat means flat

I know, I know - you’re probably wondering what any
of this has to do with pizza. Theorema Egregium is ac-
tually the self-contained answer to our original question:
why is it that a slice of pizza doesn’t bend down as usu-
ally when we hold its crust like a U? To understand this,
see Figure 13.

The pizza was completely flat when it was on the
plate, so its Gaussian curvature is, for sure, zero. When
we hold the crust flat, we’re making one of the principal
curvatures zero, and giving the slice permission to curve
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Fig. 13 - Diagram shows a slice of pizza bent in three different ways.
Principal curvatures for each of them are shown with arrows. Red ar-
rows indicate principal curvatures that are equal to zero.

in another direction. But if, instead, we take control
and curve the crust, we ensure for there to be another
normal section with x = 0 - we forbid it to bend in the
downwards direction.

This concept is actually incredibly powerful for many
real-life applications. Take, for example, the structure of
cardboard - this is represented in Figure 14. Because
the wrinkles have curvature in one direction, this forbids
them to bend in the other direction, giving the structure
an incredible strength, even being made of really thin pa-
per. This type of structure is called a ‘corrugated material’,
and its design is common in architecture, too [7].

——
3 4 1 4 L 4 4 4 3

Sy V.V.V.V.VV.V.VW

S V.V.V.V.V.V.V.V. W
Fig. 14 - Above, a diagram showing the inner structure of cardboard.

Below, a diagram showing the utility of this structure; that it provides a
strong stiffness in a certain direction. Inspired from [7].

Actually, the utility of Theorema Egregium extends
further than to just flat surfaces. Notice that, as hard
as it is to crash developed surfaces in certain directions,
it’s even harder to crash an intrinsically curved surface.
When K = 0, all the normal sections can curve in any
way as long as just one of them stays flat. But for curved
surfaces, K will be a very specific number that only a
smaller set of principal curvatures can satisfy, and so the
surface will be much more resistant to change, especially
if the aim is to make it completely flat. This idea is also
used in architecture! [7]

Further interesting examples of uses of flat and curved
shapes for creation or even of the ways in which these ap-
pear in nature can be read in Bhatia A. (2014) [7].

5.3 What about reversing surfaces?

Imagine that we made a bowl-shaped pizza. Isn’t it al-
lowed for a slice to bend down like in Figure 16, as long
as it bends down in both directions and the final curva-
ture is the same?

Fig. 15 - On the left an example of a slice of pizza, if this pizza was
prepared in the shape of a bowl. On the right, a reversed version of this
slice, with principle curvatures equal but opposite to the previous slice.

The answer is no, because, although intuitively it may
seem like the surfaces are similar, the curved-up slice
bending down would require for it to be flat at some point
along the way, which is forbidden! This is the same as try-
ing to turn a sphere inside-out. Of course, the final shapes
would be the same and one might think it’s possible to go
from one to another - but it isn’t, because we can’t carry
out the process of reversing it without stretching the sur-
face. So there’s another way to eat your pizza right if one
has time to kill at home.

5.4 Could use a man on the inside

Leaving pizza aside, Theorema Egregium is a very im-
portant statement because it implies that Gaussian curva-
ture is an intrinsic property [2]. It is something inherent
to the surface, because of how it is and not because of its
circumstantial situation or state. It tells us information
about the nature of the surface.

This is different for mean curvature [8]. Mean curva-
ture is useful if we want to know about the condition of
a surface, because it is sensitive to the way it’s bent or
modified.

One of the most phenomenal implications of K be-
ing an intrinsic property is that it can be measured from
within the surface [2]. For example, if an ant was to live
on, per say, a cylinder, it wouldn’t be able to tell the differ-
ence between this and a plane, because both have K = 0.
The ant might as well think that it’s living on a flat sur-
face, because it is, in fact, living on a flat surface!

On the other hand, if the ant was living on a sphere, it
could recognize through some calculation (this is a very
clever ant) that the curvature of the surface where it lives
is positive. Take the Earth as an example. If someone were
to travel from the North Pole to the Equator, turn 90° to
either side and walk a quarter of the Earth’s radius, only
to turn 90° to the same direction as before and walk some
more, they would find that they end right back where
they started. These were three straight lines, so the path
must have been a triangle. But it ‘swiped’ more than 180°,
which is impossible within a triangle. How can this be?
The answer is that the geometry upon inspection is non-
Euclidean; it is, as we saw before, intrinsically curved,
and so angles and distances aren’t preserved in the same
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way as they are in flat surfaces. This effect would happen
in the opposite way if instead of living on the Earth we
lived on some sort of massive Pringle potato chip, how-
ever that might work. All of this is represented in Figure
16.

Fig. 16 - Diagram to show the angles in a triangular path within posi-
tively and negatively curved surfaces.
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Stunningly, this property is what allows us to study
things like the curvature of the universe from the inside
of it [7].

The Gaussian curvature idea was also extended by
his student, Riemann, a work which Einstein used in his
study of space-time curvature [1].

Only the crust left to eat

From margherita to manifolds, differential geometry
has proven itself fruitful in explaining the most intuitive
every-day tricks just as well as the most subtle topologi-
cal intricacies. It is no wonder a fascinating, far-reaching
subject that - just like pizza - doesn’t lack its own very
personal charm and charisma.
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