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1. Quantum Optimal Control

Optimal quantum control is fundamental for any quantum system to
have a practical application. It presents itself as an optimisation task
to maximise fidelity, the probability that a desired target state has
been achieved, with respect to a set of control parameters. The vari-
ation of fidelity with a set of control parameters 6 is known as the con-
trol landscape f(6). Our aim is to find a control solution to achieve
the GHZ state, a maximally entangled state, given by
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4. Method

Our ensemble consists of five networks, whose individual predictions
and uncertainties are combined into one. The maximum of the surro-
gate model estimate and uncertainty is found and is explored during
the next iteration. This allows the algorithm to efficiently explore un-
certain areas of the control landscape until it converges on a optimal
control solution. This process is displayed with respect to a GHZ
control problem, in Figure 3, which is a benchmark for the imple-
mentation of our control algorithm.

Optimisation Routine

Figure 3: A quantum circuit to achieve a GHZ state from the ground state, inte-
grated with the optimisation routine. Based on FIG. 3 from Sauvage and Mintert,
2020 and FIG. 1 from Pitchford et al., 2020.

Where Ry (8), R, (0) refer to single qubit gates and two CNOT gates
are also represented diagrammatically.

2. Research Objectives

Improve the scalability of an optimal quantum control solution with
ensembles of neural networks and therefore make it applicable to
more complex quantum systems.

3. Ensembles of Neural Networks

Bayesian optimisation provides efficient high quality solutions with
poor quality data (Sauvage and Mintert, 2020). A surrogate model is
used to approximate the underlying objective function, as shown in
Figure 1.
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Figure 1: An example control landscape with discrete samples (white), the true
objective function (white) and a surrogate model prediction (blue). Based on FIG.
| from Sauvage and Mintert, 2020.

Gaussian processes, used to generate surrogate models, are cubic
in complexity. Using a neural network ensemble instead would scale
linearly (Snoek et al., 2015), to produce a control solution faster than
a manual experiment for even more complex quantum systems. The
neural network architecture shown in Figure 2 allows for both the
prediction and the corresponding uncertainty of the surrogate model
to be trainable.
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Figure 2: A neural network architecture which incorporates the prediction y and
uncertainty o of the surrogate models. Based on Zychlinski, 2018.

6. Future Enhancements

Other enhancements include investigating the variation of perfor-
mance with ensemble hyperparameters and exploring more complex
quantum systems.

5. Preliminary Results

Measurements of a quantum system can take one of two values and
with increasing repetitions, the recorded fidelity begins to reflect the
true control landscape. 'Single-shot’ (N = 1) data presents itself as
the most complex task for surrogate model estimation and our results
are shown in Figure 4 for a one-dimensional control problem.
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Figure 4: The estimated control landscape produced by the ensemble for single-
shot data.

We can see that the routine has identified the global maximum and
the surrogate model with its uncertainty encompasses the true land-
scape, shown in the first subplot of Figure 4. We can also see how
the routine picks the next point to explore by combining the prediction
and uncertainty, indicated by the second subplot. The next stage of
our investigation is to join our optimisation routine with the output of
our GHZ simulation.
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