

Medical Physics and Nuclear Medicine

Tamar Willson Nuclear Medicine Physicist

Outline

- Nuclear Medicine: what we do
- Nuclear medicine physics: what I do
- My path into medical physics
- The NHS Scientist Training Programme
- Alternative routes

- Diagnosis
 - Imaging
 - Non-imaging
- Therapy

- "The use of radioactive material in the diagnosis and treatment of illness"
- Take chemicals that will go to particular places in the body
- Attach a radioactive atom
- Inject it into the patient (or instead: ingested, inhaled...)
- Allow it to travel to the right place

NHS Foundation Trust

- Imaging: detect radiation being emitted by the radionuclide, built up a picture of the radiotracer location
- Non-Imaging: detect how the radiotracer is cleared from the body e.g. via blood samples.
 Calculate measures of organ function
- Therapy: the radiotracer is localised to the target (e.g. cancer). The radiation damages the target cells.

- Radiotracers are useful and versatile
- There are a large variety of different procedures (hundreds) to investigate and treat a large range of diseases

Radiotracer production

 Radiopharmacy staff perform the reactions to make up the tracers required for the day

- Patient arrives in the department
- Nuclear Medicine Technologist:
 - Talks to patient about the procedure
 - draws up the required activity of 99m-Technetium methylene diphosphonate (MDP)

- After the injection, need to wait ~3h
- MDP is absorbed at sites of new bone formation, with uptake proportional to metabolic activity
- Tc-99m emits gamma rays
- Patient returns to the department for their scan on the gamma camera

world class expertise 🔷 local care

How a gamma camera works

Collimator

Sodium iodide crystal

How a gamma camera works

Photomultiplier tubes

Photomultiplier tube Nuclear Medicine Physics Photomultiplier tube

How a gamma camera works

Nuclear Medicine Physics

Pulse arithmetic

$$E = W_E \sum_i V_i$$

Position

$$x = \frac{\sum_{i} x_{i} V_{i}}{\sum_{i} V_{i}}$$

$$y = \frac{\sum_{i} y_{i} V_{i}}{\sum_{i} V_{i}}$$

Bone Scan

- Hot spots may indicate trauma, bone metastasies etc. or just normal growth.
- Cold spots could be due to avascular bone or bone destruction.
- A nuclear medicine bone scan is used to study function, not structure

SPECT

SPECT-CT

Posterior

_eft

Other examples

 The same principles can be used to look at a large variety of conditions

Renogram

Renogram

Lungs

Lungs

Our favourite radionuclide

- 99mTechnetium is a great radionuclide for nuclear medicine
 - Half life 6 hours
 - High branching ratio gamma ray emission, at 140 keV
 - Simple chemistry
 - Generator system improves availability
- We do use other radionuclides too

Positron Emission Tomography

- Similar principle, but use positron emitting radionuclides.
- When each positron annihilates in the patient, two photons are emitted at ~180 degrees
- Detect both >annihilation occurred on the line between them

Positron Emission Tomography

Instrumentation

PET tracers: typically cyclotron produced

Positron Emission Tomography

Positron Emission Tomography

Nuclear Medicine in therapy

- 131 lodine for thyroid cancer
- ¹⁷⁷Lu-DOTATATE for neuroendocrine tumours
- Several others

But what does a Physicist actually do?

Providing a Service

- Talk to patients about radiation
 - Radiation risk
 - Radiation protection considerations
 - Contact restrictions (therapies)
- Verify imaging and testing
- Manage equipment
- Radiation Protection
- Research

Managing Equipment

- Procurement
- Commissioning
- Optimising the use of new technology
- Quality Assurance
- Troubleshooting

Managing Equipment

Cameras, technical equipment, workstations and software all need attention

Radiation Protection

- Risk Assessments
- Local Rules
- How to manage care of radioactive patients in a safe way
- Monitoring of staff and patient doses
- Dosimetry following incidents

Research and Innovation

- Adapting techniques for unusual cases/ local needs
- Optimising image quality/ patient dose
- Improving accuracy
- New techniques
- New equipment

Paths into medical physics

My path into medical physics

- 2009-2012 BSc Physics
- 2012: Health Care Assistant
- 2013-2014 Lab technician in Vascular Ultrasound
- 2014-2017: Scientist Training Programme (including MSc Medical Physics)
- 2017-present: Nuclear Medicine Physicist

The Scientist Training Programme

- 3 year graduate training scheme
- MSc + hospital training
- Rotate through four areas of medical physics
 - Imaging with ionising radiation
 - Imaging with non-ionising radiation
 - Radiation Safety
 - Radiotherapy
- Then specialise for last 18 months
- At completion, can apply to be a HCPC registered 'Clinical Scientist'

The Scientist Training Programme

- Paid NHS Band 6 throughout training (starting salary £31,365, +20% if your work is based in London)
- MSc tuition costs also covered
- Entry can be competitive
- 2:1 or 1st, (2:2 may be considered if you also have a relevant higher degree)
- Application process opens January 2021 for September 2021 start

The Scientist Training Programme

Further information:

https://nshcs.hee.nhs.uk/programmes/stp/

https://www.healthcareers.nhs.uk/careerplanning/study-and-training/graduate-trainingopportunities/nhs-scientist-training-programme

Alternative routes

- If already employed by an NHS trust willing to train you:
 - Can apply to the STP 'in service', or
 - Can submit a portfolio of evidence to show you have the required competencies ("route 2")
 - These options are sometimes used by candidates already holding a PhD

Thank you for listening Any questions?

Bonus slides (in case of questions)

Radioisotope production

 ⁹⁹Molybdenum produced inside a specialist nuclear reactor

Radioisotope production

- Extracted and processed, formed into a 'generator' which hospitals buy
- The ⁹⁹Molybdenum decays into ^{99m}Technetium, with a half-life of 2.7 days
- 99mTechnetium is chemically extracted from the generator, on the hospital site

