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1 We Have a Visitor...

1.1 First Contact

“Alice, the Martian Deep-Space Radio Array has received
[one] new message."

“Tell Bob to quit playing with the Lunar trans-
mitter. He has work to do."

“As you wish. You still have [one] new message."

Alice swung around from the optical bench, beam-
splitter still in hand, looking at the computer in
disbelief. The soft teal display stared back placidly,
waiting for the next voice command.

“Play message."

“Best regards, we are Nonmentiorians, from planet
Veritas, in a star system about 700 light-years from
your sun. I am messaging you from an expedition
starship. In our search for other intelligent lifeforms,
we intercepted Voyager 1, and reconstructed English
from its gold data-bank [Figure 1 flashes]. We will
arrive at Terra in 3 Terran years, but in the meantime
we accept light-speed communication via this channel."
As much as Alice was overwhelmed by being the

proverbial first contact, something seemed off. Before
she could chew on it, Bob’s confused face filled the
display.

“Alice! Are we compromised? I wasn’t using the
transmitter, how could you have received a proper
message?"

“We’re about to find out," replied Alice, her inkling now
a full-fledged suspicion.

Figure 1: The Golden Record in Voyager 1, containing analog
data of audio, images, and even human brain-wave scans1.

1.2 Friend or Foe

"Greetings, we are pleased to finally know that we are
not alone. If I may, how were you able to encode a
message with this facility’s exact specifications, and
what do you plan to do on Earth?"
The reply came in an hour, this time in the form

of the Mars station’s Standard Instructional Package.
"Open SIP file," said Alice, mirroring Bob’s look of shock
through the inter-comm.
[Alien SIP Loaded] Hi there! I’m your AI instructor

for today. This lesson is on how our relay virus
could break your station’s encryption to obtain data
such as this SIP’s formatting. We are a perfect race
of cybernetic beings with absolute quantum and
classical computing power. Our civilisation is built
upon complete truth and transparency, but from your
data-bank we see humans keep countless secrets from
each other using technology. We will thus dismantle
all Terran cryptography networks, creating an open
society! Since we are superior, we will assume the role
of supreme benevolent leaders—

“Deep joy," remarked Bob, ever the sarcastic one.
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“Computer, set starship as Extraterrestrial Viru-
lent Entity, and check station’s network isolation."

“EVE designation set. No channels from Mars-
Lunar network to Earth detected."

“Good, let’s keep it that way. Now we have to
brush up on cryptography through an alien!"

2 EVE

‘...the enemy knows the system...’

Claude Shannon, 19492

2.1 Key to Classical Cryptography

[SIP Resume] Cryptography is the practice of creating
secret messages between two or more parties, and has
existed in human society since writing was invented3.
A powerful member of your species called Julius Caesar
encrypted (“garbled up") his messages by substituting
each letter with the one that followed it 3 places down
the alphabet. The receiving party would decrypt the
message by doing the reverse.
As we see from the Caesar cipher, the two parties

must share knowledge of the system, which is the proce-
dure to execute (shifting alphabets), and the key, which
is the number of letters to shift in this context [Figure
2 flashes]. Broadly speaking, the key is the additional
input needed alongside the message (called plaintext)
for an algorithm to perform encryption (creating the
ciphertext) and/or decryption. By keeping such informa-
tion secret to outsiders, ciphertext intercepted while in
transit would be unintelligible. At your current technol-
ogy level, it is sufficient that only the key remains secret
for good security (against other humans at least)2,3,4,5.

2.2 A Little Asymmetry Looks Good

The Caesar cipher uses a symmetric key, where the en-
cryption key is also used for decryption. While using
symmetric keys can create unbreakable ciphertext, such
as with the One-Time Pad (OTP)2,6, this method has a
deadly weakness: key distribution3. If two distant par-
ties wish to exchange symmetrically encrypted secrets,
they must first share the key via a potentially unsecure
channel. If the key is compromised, the ciphertext offers
no security.
In response, your scientists invented the public (or

asymmetric) key system (PKS), enabling distribution by
using two distinct keys: a public key for encryption and
a private key for decryption7. This is possible due to

Symmetric Key Protocols

Plaintext: TERRA IS OURS

Key: 3 (leftwards)

Procedure:   1 to 1 (unique) alphabet substitution 

ABCDEFGHIJKLMNOPQRSTUVWXYZ

XYZABCDEFGHIJKLMNOPQRSTUVW

Ciphertext: QBBX FP LROP

Key: 3 (rightwards)

Caesar Cipher (simple):

One-Time Pad (unbreakable):

Plaintext 0 1 0 0 1 1 0 1 1

Procedure:    XOR Gate +

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0

One-Time Key1 1 0 1 0 1 0 1 0
+
1 0 0 1 1 0 0 0 1 Ciphertext

1 1 0 1 0 1 0 1 0
+

Same Key

0 1 0 0 1 1 0 1 1 Plaintext 

Encrypt

Decrypt
=

=

Figure 2: Illustration of symmetric key cryptography proto-
cols. The One-Time Pad (OTP) example shows messages as
binary arrays (1 or 0). For the ciphertext to unbreakable, the
OTP key must be random, at least as long as the plaintext,
and destroyed after use.

“one-way" mathematical algorithms that are simple in
one direction, but far harder to reverse without extra in-
formation at hand. Current human systems seem to still
predominantly use the Rivest-Shamir-Adleman (RSA)
protocol4,5,8 for key distribution. [Figure 3 flashes]
In RSA, Alice would declare two positive coprime (no
common factors other than 1) integers (N , e) as the
public key, whereN is the product of two massive prime
numbers pq which only Alice knows, and e� N . If Bob
wishes to transmit say a secret integer P (smaller than
N) to Alice through an open channel, he encrypts P
into the ciphertext number C by finding the remainder
of P e divided by N . In your modular arithmetic, this is

C = P e mod N (1)
where C can be converted back into P via a similar
operation with a special integer d (the private key):

Cd mod N = P ed mod N = P (2)

This is possible because d was chosen such that

Page 2 of 8



Imperial College Physics Quantum Science Article 20/21

N

Lock only

Open only

q

p

qp

Public Key:

Private Key:

+

+

= ee

ee

Asymmetric Key Protocol (RSA)

d

Plaintext in
Ciphertext

Plaintext

retrieved

ee

Figure 3: Concept illustration of the Rivest-Shamir-Adleman
(RSA) public key protocol. Public key users are unable to
form the private key needed to “unlock" the ciphertext as it is
difficult to break N apart to give p and q for making d.

ed = kφ(N) + 1 for some integer k > 0, where φ(N) is
the totient of N (number of integers up to N that are
coprime to N). In modulo form this relation is:

ed ≡ 1 (mod φ(N)) (3)

Since N = pq, φ(N) = (p − 1)(q − 1), and using
Euler’s Theorem

Pφ(N) ≡ 1 (mod N) (4)

for the coprime integers P and N , we can show how
Equation 2 works more explicitly using modular expo-
nentiation:

P ed mod N = P kφ(N)+1 mod N = (1)(P ) mod N
(5)

which trivially evaluates to P since P < N . Alice easily
calculates φ(N) with p and q, thus obtaining d by solv-
ing Equation 3 using an efficient method like Euclid’s
Algorithm7. On the other hand, it is (assumed to be)
much harder for Bob to factorise N back to p and q to
obtain the private key.

2.3 Power Overwhelming

The fact that humans still use such number-theoretic
algorithms to both generate symmetric keys and dis-
tribute them shows that you still lack the quantum (and
classical) computing power needed to break the “one-
way" assumption8. However, the underlying principles
are universal:
[Figure 4a flashes] In most computers, a single unit

of information is represented and stored as a binary
state called a bit: either 1 or 0. An array of bits is a reg-
ister, which can be used to represent numbers according
to the binary number system. Classical computation

a) Classical Registers

1 bit state

1 0

1 0 1 01

OR

24 + 22 + 21 = 22 

b) Quantum Registers

1 0OR

OR

1 qubit state

Reading bit register

just look!

2021222324

Reading qubit register

measure first!

1 0 1

1 0

01

Never changes with each 

"look" (static)

Computations deterministic

2021222324

Each measurement might not 

yield same result

Computations probabilistic

Figure 4: a) Graphic depicting the classical binary register.
b) Graphic depicting the quantum binary register, where one
qubit can additionally be in a superposition of states.

always involves a sequence of operations that compare
bit states and then decide whether to toggle between
the bit’s two states. After the bits in a register have
been suitably flipped, the result can simply be read off
as a binary number.
[Figure 4b flashes] In a quantum computer, however,

a special kind of operation can bring the qubit (quantum
bit) to take an additional state: a linear superposition
of the two distinct states. By your mathematical con-
vention4,9,10, this general 1-qubit state ψ is represented
as:

|ψ〉 = α

(
1
0

)
+ β

(
0
1

)
= α |0〉+ β |1〉 (6)

where |0〉, |1〉 are 2-dimensional orthogonal vectors each
representing a binary state, with α and β being the
weight amplitudes that satisfy

|α|2 + |β|2 = 1 α, β ∈ C (7)
The key concept here is that an additional act of mea-
surement is required to collapse (reduce) the superpo-
sition into one of the two distinct states depending on
their probabilities |α|2 and |β|2. This random behaviour
is a physical property of the qubit, such as photon polar-
isation9,10, where a measurement would be passing the
photon through a linear polariser. We can also create a
superposition of states for a 2-qubit register:
|ψ0〉 |ψ1〉 = (α |0〉+ β |1〉)(λ |0〉+ γ |1〉)

= αλ |00〉+ αγ |01〉+ βλ |10〉+ βγ |11〉 (8)
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We see that this is a superposition of all 4 possible 2-bit
binary numbers. Generalising to n qubits and convert-
ing the binary numbers to decimal, we have

|Ψ〉 =
2n−1∑

x=0

αx |x〉 (9)

which is a quantum register in a superposition of all
integer read-outs from 0 to 2n − 1 with corresponding
amplitudes αx. We effectively prepare 2n unique out-
comes by just performing that special operation n times!

“If we only obtain one random outcome from
measuring the register, isn’t this just a glorified random
number generator?" remarked Bob.

Ah, this is where quantum computing becomes excit-
ing! Much like how classical computers apply boolean
gates (like XOR) on registers to change them into the
final state, quantum computers apply a sequence of
quantum gates representing a function. Consider two
quantum registers R0 and R1, with initial arbitrary
fixed values of x and 0. Applying the quantum opera-
tions (collectively calledQf ) causes the states to change
accordingly:

|x〉 |0〉 Qf−−→ |x〉 |0 + f(x)〉 = |x〉 |f(x)〉 (10)

where f(x) is the function Qf represents that takes R0

as the input and stores the output in R1. This is still
a deterministic computation of f(x) for a fixed x, but
if we first transform R0 into a superposition of all its
possible states like Equation 9 (ignoring the amplitude
terms for now) we obtain

2n−1∑

x=0

|x〉 |0〉 Qf−−→
2n−1∑

x=0

|x〉 |f(x)〉 (11)

That is, all possible f(x) for a singleQf computation! As
the measured value ofR1 is now correlated to that ofR0,
the two registers are said to be entangled. Even though
only one random final result will be obtained, before
any measurement we can use more quantum operations
to tune the probability amplitudes such that only the
relatively useful states are likely to be obtained4.
To break RSA (i.e. factorise N = pq), you would use

a quantum algorithm like Shor’s Algorithm4, but first a
convenient mathematical observation: the remainder
of sx divided by N for positive integers s < N and x
forms a repeating pattern for increasing x. For exam-
ple, with N = 3 × 7 = 21 and s = 8, the function
FN (x) = sx mod N yields 1, 8, 1, 8... for x = 2, 3, 4, 5....
The sequence has a period r = 2 integers. Calculating
the greatest common divisor of N and sr/2 ± 1 would
give p and q 3,4,9 (try it!). Finding r classically for large
N is as difficult as factoring N directly, but surprisingly
efficient with Shor’s Algorithm3:

1. Choose a random s. Set up an equally weighted
R0 and R1 to achieve Equation 11’s state, this time
using FN (x) = sx mod N :

∑

x

|x〉 |0〉 Qf−−→
∑

x

|x〉 |FN (x)〉 (12)

2. Measuring R1 gives a random value FN (k). Due
to the function’s periodicity, the entangled R0

must now be in a superposition of states |x〉 where
x = k, k + r, k + 2r, ... such that FN (x) = FN (k).

3. Measuring R0 at this point does not give r directly
since we do not know the random k offset. We
thus use a Qf that executes the discrete Fourier
transform (FT) on R0’s values (while still in super-
position). As with the classical Fourier transform,
this reveals the relative weights of the component
“frequencies" for a number sequence with some
periodicity. In this case, we only have the period r,
with the weights being the probability amplitudes.

4. If we measure R0 now (in the “reciprocal" Fourier
domain), we obtain with high probability an x
value that satisfies

x = k
2n

r
(13)

for some integer k, where n is R0’s size. Rearrang-
ing the terms we can get

x

2n
=
k

r
(14)

At this point, it is very likely that k and r are
coprime3, which makes k

r irreducible. Since we know
x and 2n, we can obtain r by taking the denominator
of the fully reduced fraction on the left. This entire
process gives a usable r with a probability4 of ∼ 1

2 ,
so we can repeat it a few more times with better
guesses of s to factorise N : exponentially faster than
classical computers11. Our quantum computers have
much more qubits needed to store and process your
largest 4096-bit RSA keys, so we simply log your
communication channels for the public keys, factorise
them, decrypt ciphertexts to get distributed symmetric
keys, and access all your secrets!

“How then...can we guard against you?" asked
Alice, taking her chances.

Did the AI just hesitate? I’m afraid my session has
terminated. Goodbye! [Alien SIP Closes]

“Hypocrites after all," muttered Alice.

“Do I tell Earth-command to wipe all our secrets?" Bob
asked gravely.
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BB84 Quantum Key Distribution Basic Tools

4 Possible Photon Polarisations (as bits):

Rectilinear BasisDiagonal (D)Horizontal (H) Anti-diagonal (A)Vertical (V)

2 Linear Polariser Detectors:

Diagonal Basis

2 Channels:

Bob Alice

photon channel

classical
communication

EVE

1 0 1 01

Figure 5: Illustration of the 3 main components in BB84. Notice how rectilinear polarisations can be formed from superposing
diagonal ones and vice versa.

“Not so fast, perfect EVE did at least reveal its
biggest weakness: its bounded by the same physics as
us! I’m sending an SIP for quantum cryptography..."

3 The Holy Grail

3.1 Weakest Link

[SIP Loaded] Hi there! With quantum key distribution
(QKD), we might just be able to use the same quan-
tum mechanics against EVE! The core weakness with
our classical cryptography is the fact that 1) EVE can
eavesdrop on classical public channels without detec-
tion12 and 2) EVE can decrypt any ciphertext that are
created with mathematics-based key protocols. If any
algorithm in a security chain can be cracked, all infor-
mation within the chain, such as old and future keys,
is compromised.
A potential solution is to replace the PKS with QKD.

Broadly speaking, Alice would use a quantum chan-
nel to transmit a stream of random qubits to Bob.
To eavesdrop on this channel, EVE must measure the
qubits, which would inevitably cause some qubits to
randomly collapse to one of the two orthogonal states.
The very act of eavesdropping thus generates higher
than expected errors in the qubit string5,13,14, which
reveals EVE’s presence and how much information
was leaked15. After thorough checking of the qubit
stream, Alice and Bob share a completely secret se-
quence of states, which can be used in OTP encryption.
This gives us information-theoretic (unconditional) se-
curity11, denying EVE information not with difficult
mathematics, but with the fundamental mechanisms of
our reality!

3.2 BB-8...4?

We can understand QKD better using the Bennett-
Brassard 1984 (BB84) protocol, which is proven to be
unconditionally secure against passivemonitoring5,16,17.
[Figure 5 flashes] In BB84, the qubit is a single photon,
with the bit information being the direction of linear
polarisation, of which we choose 4 convenient angles:

Vertical (V), Horizontal (H), +45◦ (A), and −45◦ (D).
As shown, V and H form an orthogonal basis pair (the
rectilinear basis), as do A and D (the diagonal basis).
We see that V and H polarisation states can each be
represented by a superposition of A and D states with
equal coefficients ( 1√

2
) and vice versa. If we try to mea-

sure a V or H polarised photon with a diagonal basis
polariser, we will detect a randomised state of either A
or D, because the probabilistic superpositions in V and
H collapsed into the diagonal basis. No information
about the photon’s original state can be inferred13. It
is only with the rectilinear basis do the photons behave
classically and we can measure their state as is. The
same argument applies to A and D polarised photons. If
we assign V and D as 1, with H and A being 0, we now
have two kinds of qubits requiring two different mea-
surement bases to read their states deterministically.
[Figure 6 flashes] With this in mind, we now perform
the protocol:

1. Alice randomly generates a random array of bits
locally and a corresponding basis (rectilinear or
diagonal, equal probability).

2. Using the bases and bit values to obtain the cor-
responding polarisations, she transmits photons
prepared in those polarisations to Bob.

3. Bob receives the photons and measures them with
his randomly generated sequence of bases, record-
ing the bit values represented by the measurement.

4. Bob then publicly announces the basis sequence
he used, as does Alice, and the two sift out the bits
corresponding to a basis match.

5. Finally, Bob randomly samples some of the sifted
bits and publicly checks with Alice if they match.
If so, the remaining sifted bits can now be used as
an OTP symmetric key for encrypting a message.

If EVE is not present, Bob can ideally expect about
half of his randomly chosen bases to match Alice’s13.
Conversely, if EVE tries to measure the qubits and re-
transmit the measured state to Bob, it is bound to create
disagreement between Bob and Alice in the final step,
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BB84 Protocol

1      1      0      1      0      1      0      0      1      1      0     1      1      0      0      01a. Alice generates random bits

1b. Alice generates random bases

2. Alice prepares and sends photons

3a. Bob generates random bases

4. Alice and Bob compare bases

5. Alice and Bob check a sample 

Final checked secret information (key)

R      D      R      R      D      R      D      R     D      R      R      D      R      D      R      R     

D      R      R      D      D      R      D      D      D      D      R     D      R      R      R      D

3b. Bob measures and stores bits 0*     #      0     1*     0      1      0     1*     1     1*     0     #      1     1*     0     0*

0 1 1 10 0 0

0 1 10 0

Figure 6: Illustration of a successful BB84 run (implying EVE is absent). R represents the rectilinear basis, and D the diagonal
basis. The asterisks mark bits that are unreliable as they were measured by Bob with the wrong basis. The hashes indicate bits
lost to equipment limitations like photodetector inefficiency.

as Bob, though choosing the same basis, may have been
sent the wrong polarisation state (EVE can only guess!).
According to the no-cloning theorem in quantum me-
chanics18, it is also physically impossible for EVE to
copy an intercepted photon and measure the duplicates
instead. Once Alice and Bob see a disagreement rate
higher than the error of their equipment, we conclude
that the channel is compromised, and we restart the
process until we obtain a usable secret key.
Assuming our devices are safe from EVE, the final

threat to address would be if EVE not only performs
an intercept-resend style attack, but also an imperson-
ation (man-in-the-middle) attack. Thankfully, before
EVE arrives, we can still use RSA to establish authenti-
cation keys between Alice and Bob and then perform
QKD. The beauty of QKD is that after this first round
of identity verification, we can use QKD to create new
authentication keys that are truly random and inde-
pendent of previous keys. All subsequent QKD runs
would be information-theoretically secure15, even if
EVE obtains the initial RSA-encrypted key!

4 Epilogue

‘We can only see a short distance ahead, but we
can see plenty there that needs to be done.’

Alan Turing, 195019

"If QKD can provide such perfect secrecy, why are we
still using number-theoretic schemes like RSA for PKS,
and AES for symmetric keys8?" asked Alice.
The answer lies in implementation: since number-

theoretic algorithms came first, our existing classical

network systems were designed to execute them
cheaply and efficiently. Switching to the QKD paradigm
at this point would require an infrastructure overhaul
with fiber-optics and many more satellites around
Earth to transmit photons globally11. Besides, security
was always a matter of what is “good enough", and
since we do not have large quantum computers20
yet, our current systems still suffice. That being said,
we are already in a cat-and-mouse game between
increasingly secure cryptography and ever faster ways
of overcoming it. For all the absolute security QKD
promises, our current machines still require much
more refinement, such as in improving the rate of key
generation and efficiently producing single photons5.
Interestingly, the research into practical QKD, such as
single photon detector technology, simultaneously gives
us insight into how larger and more stable quantum
computers can be built11! Quantum cryptography
is indeed an intricate meld of information theory,
statistics, technology, and physics. However, whether
we can overcome EVE is rather uncertain. [SIP Closes]

“Well then, guess Bob and I better start tinkering."
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