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Introduction 
The term “music theory” would suggest a body of knowledge which can be used to explain musical 
phenomena1. Let us examine this hypothesis by considering a passage taken from The AB Guide to 
Music Theory [1]: 

“Virtually all pieces of music written before the early 20th century do not use all the black and white 
notes but only a selection of them … the most common scale of all can be found by playing just the white 
notes on the keyboard …” (p. 11) 

There are various problems with this to us physicists. Why do we play just the white notes? Why is 
the major scale so common? Why are the black and white notes a complete collection of notes? The 
book, and virtually all music theory textbooks, does not seek to answer these kinds of questions for us. 

Unfortunately, music theory is not an adequate scientific theory of anything. Rather, it is a set of tools 
that musicians use to write and deconstruct “nice” sounding music with. How the ancient musicians 
came up with these—the basis of music theory—is deeply connected to acoustics, the branch of physics 
dealing with sound. There clearly is a need for some better theory of music which derives these sets of 
tools from first principles. This is what we will do here: we will explore how to obtain the basic Western 
scales, chords, and tuning systems, and through this we will seek to answer the questions posed. 
Furthermore, we will explore the cause and implications of a variety of musical phenomena: for example, 
sound timbre, the feelings associated with major/minor chords, or the impracticality of piano tuning. 

The Nature of Pitched Sound 
We begin by considering the most basic device in music: a taut string. The equation of motion for the 
displacement 𝜓 of a string of length 𝐿 at the origin, is the one-dimension wave equation, with speed 
𝑐 = ఄ𝑇 𝜌⁄ , where 𝑇  is the tension and 𝜌 the linear density. Its solutions, given the boundary conditions 
that the ends must be fixed, can be obtained by separation of variables as [2]: 

𝜓(𝑥, 𝑡) = ௽ 𝐴։ sin ॼ
𝑛𝜋𝑥
𝐿

ॽ sin ॼ
𝑛𝜋𝑐𝑡
𝐿

+ 𝜙։ॽ
�

։=φ
 , 

where the 𝐴։ and 𝜙։ are constants which depend completely on the initial conditions (how the string 
is plucked) and may be obtained by Fourier analysis. 

The important thing to note, from these solutions, is that the string vibrates with a linear sum of 
discrete frequencies 𝑓։ = ։ఄյ ᇊ⁄

ϵխ . The sinusoidal waves with these frequencies are known as the 𝑛th 
harmonics; the first harmonic is given a special name: the fundamental. The infinite sum of all such 
harmonics is known as the harmonic series 2 . Vibration of the string at these frequencies cause 
disturbances in ambient air pressure near the string, which evolves in time matching the string vibration. 
These air pressure variations are perceived as sound, which is distinctively pitched [3]. 

 

                                                           
1 Or, if you’re a classical musician, music theory would probably correlate to the few months of forced dreary studying that 
eventually leads to an exam that one must pass, to progress onto Grade 6 and beyond on their instrument. I think it’s safe to 
say that it is mostly due to this disturbing experience, that music theory is unanimously hated amongst amateur musicians. 

2 Actually, the harmonic series is defined as ∑ 1 𝑛⁄։ , which is the sum of all normalised discrete wavelengths 𝜆։. We will not use 
this definition here as sound waves are almost always characterised by frequencies, rather than by wavelengths. 
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Instruments that use strings to produce sound are called chordophones. It can be further shown [4] that 
for aerophones, instruments that produce sound by a vibrating column of air in a tube, open–open 
boundary conditions yield the same harmonic series solutions, whilst closed–open boundary conditions 
yield 𝑓։ = (ϵ։−φ)վ

Κխ , which can be interpreted as a harmonic series with missing even harmonics. It turns 
out that most common Western pitched instruments are chordophones or aerophones. Furthermore, 
pitched acoustic instruments that produce sound which does not contain harmonics are very rare. An 
example is whistling, which produces sound that is approximately sinusoidal [5]. 

It is exactly the distribution of the amplitudes of the harmonics that describes the timbre of sound, 
which explains why instruments sound different, even when playing the same note. Timbre may change 
across an instrument with pitch or amplitude of the fundamental, typically due to nonlinear behaviour 
of the sound production system [4, 6]. The piano is relatively uniform in timbre with pitch across a 
given short range of frequencies, but not with loudness. This explains why transposition, the act of 
shifting all notes’ frequencies by a (small) constant ratio in a piece of music, works particularly well on 
the piano. However, playing “very loudly” will make a distinctively harsh sound, which can still be 
heard even if the music is recorded and its amplitude reduced. 

 

 

 

 

 

 

Figure 1: the frequency spectra of a flute, and a clarinet, respectively, playing A4 = 440 Hz [11, 12]. The flute’s frequency 
spectrum contains relatively rounded peaks at the harmonics, which decays exponentially after the second, whilst the clarinet, 
an instrument well-approximated as a closed–open tube, contains sharp peaks that most notably lack the second harmonic. 
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Consonance and Dissonance 
Before we go on to derive basic melody and harmony, we need to introduce the acoustical phenomenon 
of beating. Consider the sum of two sinusoidal sound waves with the same amplitude A, and slightly 
different angular frequencies 𝜔φ = 2𝜋𝑓φ and 𝜔ϵ = 2𝜋𝑓ϵ. It can be shown [2] that 

𝐴 sin 𝜔φ𝑡 + 𝐴 sin 𝜔ϵ𝑡 = 2𝐴 sin ॼ
𝜔φ + 𝜔ϵ

2
𝑡ॽ cos ॼ

𝜔φ − 𝜔ϵ
2

𝑡ॽ . 

The effect is therefore hearing sound at the frequency average (𝑓φ + 𝑓ϵ)/2 which varies in amplitude at 
the frequency difference (𝑓φ − 𝑓ϵ). If the waves had different amplitudes, it can be shown [7] that an 
amplitude envelope corresponding to the beat frequency (𝑓φ − 𝑓ϵ) remains present. The resulting sound, 
with its modulating amplitude, is not particularly pleasant. Roughly speaking, beats become 
unnoticeable if (𝑓φ − 𝑓ϵ) > 20 Hz [4]. 

Beating forms part of the theory of dissonance. The other part of the theory lies in roughness felt 
between notes of similar frequencies [4]. Roughness is a different phenomenon from beating and can 
simultaneously occur with beating. The part of our ear which allows us to distinguish frequencies is the 
basilar membrane, which vibrates at different locations dependent on the frequency of incoming sound. 
The points on the basilar membrane can be thought of as bandpass filters with a characteristic width, 
called the critical bandwidth. Experiments show that a good approximation for the critical bandwidth 
is slightly less than 20% of the centre frequency. If two notes were simultaneously played with a 
frequency difference such that their critical bandwidths overlapped, then the vibration at the region of 
overlap in the basilar membrane, which can be thought of as unwanted noise, becomes reinforced. We 
feel this as a sensation of roughness. 

The Octave, the Major Triad and the Major Scale 

Armed with this knowledge, let us consider the question: given a single note with a specific frequency, 
how do we select other notes to use? This will allow us to construct a collection of notes, so we can 
write harmony (notes sounding together) and melody (notes sounding successively in time). 

 

Figure 2: the frequency spectra of a piano playing C4 ≈ 262 Hz, firstly at ff (fortissimo: “very loudly”), then at pp 
(pianissimo: “very quietly”) [6]. 
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Let us call the given note C. To avoid dissonance and have consonance (which we define as the lack of 
dissonance), between C and another note when played together, we must consider the effect of beating 
and roughness between C, the other note, and their harmonics. We know this because we showed that 
pitched sound, in general, contains many harmonics. So, which notes are completely consonant with C? 
Well, any note which has double the frequency, or any integer multiple thereof, satisfies the criteria. 
The doubling of frequency is known as an octave (up). The criteria are satisfied, because all harmonics 
of the octave line up exactly with the even harmonics of C. 

 

It is precisely because of this, that the octave is interpreted by the brain as really being the exact same 
note as C, but higher. When we’re asked to sing back some melody that’s perhaps too low for us, what 
we’re really doing is singing the same melody, transposed an octave up. This phenomenon is known as 
octave equivalence [4]. The human hearing range is approximately 20 Hz to 20 kHz, implying we can 
obtain at least nine full octaves for use3. ISO defines A4 [8] as any note with the fundamental at exactly 
440 Hz (for historical reasons), where the subscript 𝑛 indicates the 𝑛th octave. The note A3 would 
correspond to an octave down, or 220 Hz, for example. 

                                                           
3 The human sight range, in contrast, is far more restricted, being just short of one octave at approximately 405 to 790 THz [4]. 
It may be tempting to use this to explain why red seems to join up with violet, but since light doesn’t really contain harmonics, 
it implies this explanation is incorrect. 

 

Figure 3: a sketch of the bandwidth of the basilar membrane as a function of centre frequency [4]. The dashed line 
represents a whole tone/major second, which is 12.5% of the centre frequency. 

 

Figure 4: a frequency spectrum of two notes of frequencies 220 Hz and 445 Hz [4], which are related by slightly more than 
an octave. The harmonics of the two notes are clearly dissonant. 
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So, we have nine notes to work with. Can we do better than that? By the octave equivalence principle, 
we can normalise notes we want to further obtain, by multiplying or dividing their frequencies by integer 
powers of two, such that they lie within the range of the octave. To go further, we would have to insist 
on having some dissonance due to roughness. Which notes are the least dissonant? Let us consider the 
two closest higher harmonics which do not repeat by octaves [4, 9]. The third harmonic has a normalised 
frequency ratio to the fundamental of 3/2. This frequency ratio is known as the perfect fifth, and the 
perfect fifth up from C is G. The fifth harmonic similarly gives a frequency ratio of 5/4, which is the 
major third, or E. We stop here and do not consider the seventh harmonic or above because we know 
the harmonics’ amplitudes decay, sometimes very rapidly on certain instruments, so these do not 
contribute significantly to dissonance [9]. 

Now consider playing C, E, and G simultaneously to form a chord. This specific combination of 
frequency ratios (4:5:6) is known as the major triad, “I”. The sound is very pleasant, due to fact the 
three notes are the lowest parts of the same harmonic series: their harmonics do not produce strong 
beats and cause minimal roughness. We can then build two further major triads based on different notes: 
one which has the bottom note as G (“V”: G–B–D), and one which has the top note as C (“IV”: F–A–
C) [4], such that we can repeatedly build chords symmetrically in both directions, should we want to. 
This means the chord I remains at the centre. Thereby we obtain seven notes in an octave, not including 
the octave itself. This collection of notes is known as the major scale. The white keys of a (justly 
tuned) piano keyboard correspond to exactly this scale. 

 

The Chromatic Scale 

Taking the base two logarithm (as the octave correspond to a multiplication by two) of the frequency 
ratios in the major scale reveals that there are five large gaps and two small gaps between adjacent 
notes [9]. We can fill in these large gaps with five notes of appropriate frequency ratios. There are 
various ways this can be done [4], but the ratios, like notes from the major scale, must be of small 
integers. The black keys of a (justly tuned) piano keyboard would correspond to these five extra notes. 

 

These twelve notes together form the chromatic scale, which is now a complete collection of notes. 
The implication of this is that any further scales we derive will be a specific collection of notes taken 
from the chromatic scale, and that melody writing will be limited to the notes of the chromatic scale. 

Note C D E F G A B C+1 

Frequency 
Ratio 

1 9/8 5/4 4/3 3/2 5/3 15/8 2 

Equivalent 
Decimal 

1.000 1.125 1.250 1.333… 1.500 1.666… 1.875 2.000 

Table 1: Frequency ratios between notes of the (just) major scale [4]. 

 

Figure 5: a plot of log2 of the frequency ratios in the major scale, rounded to the nearest 0.02. [9]. 
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More Scales, Chords, and Their Uses 

There exist further commonly used chords and scales beyond those already introduced, but their 
construction can be traced back to the theory we presented so far. The minor triad “i”, for example, is 
the chord I with its pairwise frequency ratios reversed [9]. The minor scales are identical the major scale 
but constructed instead from i, with either iv and/or v instead of IV and V. Notice that the middle 
notes of these chords form three of the five extra notes in the chromatic scale above. Whilst the major 
triad and scales sound distinctively “happy”, their minor equivalents sound “sad”, because the minor 
triad contains additional dissonance due the interference between the fifth harmonic of the bottom note 
and the fourth harmonic of the middle note. Based on I, IV, and V, we can also build triads on every 
note of the major/minor scales, by selecting the note, its third, and fifth note up in that scale. This 
gives us seven chords to work with per major/minor scale. 

Almost all Western music use either the major or minor scale for harmony writing (due to the 
importance of I, IV, V, and their minor equivalents) and occasionally draws additional notes from the 
chromatic scale for melodic decoration. How do we use these chords and scales to write music? A valid 
approach is to firstly write a melody using notes from a major/minor scale, then harmonise it: any given 
note in the melody would be accompanied by one of the three possible chords containing that note, or 
an exotic chord, such as the diminished seventh. In reality, more rules would apply regarding the melody 
and chord progressions, which are beyond the scope of this article. 

 

Tuning and Temperament 
The combination of specific frequency ratios in the chromatic scale we have derived so far is named 
just intonation [10]. The name is given as we have shown that this is the best way to form a scale 
with consonant chords I, IV, V, and their minor equivalents, which are the most important chords in 
the scale. Despite its consonance, problems quickly arise when we consider its practicality for use on 
the piano, where we assign twelve discrete notes to the octave. This leads us to derive an alternative 
way to tune the chromatic scale. 

Note C C# D E♭ E F F# G A♭ A B♭ B C+1 

Interval 
Name 

Unison Minor 
Second 

Major 
Second 

Minor 
Third 

Major 
Third 

Perfect 
Fourth 

Tritone Perfect 
Fifth 

Minor 
Sixth 

Major 
Sixth 

Minor 
Seventh 

Major 
Seventh 

Octave 

Frequency 
Ratio 

1 25/24 9/8 6/5 5/4 4/3 45/32 3/2 8/5 5/3 9/5 15/8 2 

Equivalent 
Decimal 

1.000 1.042… 1.125 1.200 1.250 1.333… 1.406… 1.500 1.600 1.666… 1.800 1.875 2.000 

Table 2: One possible configuration of frequency ratios between notes of the (just) chromatic scale [10]. 

 

Figure 6: a piano keyboard [9], with C clearly marked. The white notes of the keyboard correspond to the major scale 
based on C, repeating by octaves. The black notes, in order (from C), are C#, E♭, F#, A♭, and B♭, respectively. 

C 
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We have so far tuned our chromatic scale based on C: all other notes have frequency ratios relative to 
it. If we do tune our piano in C, we can play a piece of music based, for example, on the B major scale, 
which is identical to only using the chromatic notes immediately to the left of the C major scale. This 
means we use the notes B, E, and the five black keys. A comparison between the C and B major scales 
shows that most notes in B major are quite badly out of tune, because the frequency ratios, now relative 
to B, are heavily distorted from the justly tuned C major scale. It can be shown [9] that several other 
major and minor scales are also unusable due to this distortion, some more so than others. 

 

How do we fix this issue? One approach is to own twelve pianos, each justly tuned to the notes of the 
chromatic scale. However, given the price of a grand piano, this is just about the least practical way to 
deal with the problem. Furthermore, Western music after the 18th century frequently change the 
major/minor scale a piece of music is based on, within the piece of music. The result of this, if we insist 
on using a piano that is justly tuned to the correct note at the start of the piece, is that the music will 
sound increasingly out of tune as time passes. 

A far more practical solution is to abandon just intonation altogether. If we desire twelve notes, each 
with a constant frequency ratio that also preserves the octave, then the only solution is to tune adjacent 
notes using the ratio 2φ/φϵ. Since the frequency ratio between any two notes that are 𝑛 notes apart in 
the chromatic scale is 2։/φϵ, we see that the twelve major/minor scales are equivalent, with each being 
a simple transposition of the others. 

This tuning system is known as equal temperament [10], because we temper with certain notes to 
make their frequency ratios deviate from just intonation or Pythagorean tuning, which is yet another 
tuning system which preserves the octave and eleven out of twelve just perfect fifths [10]. Equal 
temperament was not widely adopted until the early 19th century, where it remains the overwhelmingly 
universal tuning system today, in all genres of Western music. One of the first musical works which 
advocated towards equal temperament was J. S. Bach’s (1685-1750) The Well-Tempered Clavier4. 

                                                           
4 In my opinion, this is the greatest composition in musical history. The dominant tuning system in Bach’s time was meantone 
temperament, which is identical to Pythagorean temperament, but constructed from stacks of perfect fifths with a frequency ratio 
slightly less than an equal tempered perfect fifth, such that we obtain either eleven justly tuned major (5/4) or minor (6/5) thirds, 
rather than justly tuned perfect fifths as in Pythagorean temperament. Strictly speaking, well temperament is not quite equal 
temperament, but a very close approximation to it, otherwise the work would have been called The Equal-Tempered Clavier, 
which sounds completely terrible. 

Note B C# D# (E♭) E F# G# (A♭) A# (B♭) B+1 

Frequency 
Ratio 

1.000 1.111… 1.280 1.333… 1.500 1.706… 1.920 2.000 

Just 
Intonation 

Ratio 

1.000 1.125 1.250 1.333… 1.500 1.666… 1.875 2.000 

Difference 
from Just 
Intonation 

0% −1.2% +2.4% 0% 0% +2.4% +2.4% 0% 

Table 3: comparison between the B major scale to the C major scale, in just intonation tuned on C. Note that the chord V 
in B major: F#, A# and C#, now has a different frequency relationship between the three notes, compared to I or IV. 
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Equal temperament is our best compromise on instruments with discrete notes (besides the piano, this 
covers virtually all woodwind instruments) because every scale is as equally usable as the others, but 
also just as out of tune as the others; since we see that most notes in equal temperament deviates only 
slightly from just intonation, we will be able to hear beats in the harmonics when we play chords. This 
unfortunately means that the most practical solution to our problem leads us to produce music that 
can never quite be “perfect”. One of the more difficult and dedicate tasks for a professional orchestra is 
for it to carefully deviate from equal temperament at certain points within a piece of music, so the 
consonance provided by the other two tuning systems can be exploited. 

Conclusion 
The existence and common usage of the chords, scales, and temperament we have derived are beyond 
reasonable doubt. However, we only present one of the many ways in which these could be derived, by 
defining dissonance as beating and roughness. This is based on the work by Helmholtz (1821–1894), 
further improved by experiments in the twentieth century on the basilar membrane, which seems to be 
the most popular theory amongst scientists. Other theories, such as those based on treating the brain 
as a computational system [9], exist and they provide alternative explanations for the musical constructs. 
This “better theory of music” remains an active area of research, and although its followers are small 
in numbers, it nonetheless gives Western music a firm, scientific grounding, which, having been a 
musician for half my life, I find absolutely mesmerizing. 

Acknowledgements 
I would like to thank Liz Anya, Scott Chegg and Toby Larone for their suggestion of ideas for the 
article, and their generous donation of sustenance. Without their help I surely would have had to endure 
starvation over the New Year. 

  

Note C C# D E♭ E F F# G A♭ A B♭ B C+1 

Just 
Intonation 

Ratio 

1 = 
1.000 

25/24 = 
1.042… 

9/8 = 
1.125 

6/5 = 
1.200 

5/4 = 
1.250 

4/3 = 
1.333… 

45/32 = 
1.406… 

3/2 = 
1.500 

8/5 = 
1.600 

5/3 = 
1.666… 

9/5 = 
1.800 

15/8 = 
1.875 

2 = 
2.000 

Equal 
Temp. 
Ratio 

1.000 1.059… 1.122… 1.189… 1.260… 1.335… 1.414… 1.498… 1.587… 1.682… 1.782… 1.888… 2.000 

Difference 
from Just 
Intonation 

0% +1.7% −0.2% −0.9% +0.8% +0.1% +0.6% −0.1% −0.8% +0.9% −1.0% +0.7% 0% 

Table 4: comparison between just intonation and equal temperament. Note that whilst the perfect fourth and fifth are 
very close to being in tune, the major and minor thirds are not. 
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