B-anomalies at the LHCb detector hinting at New Physics?

Kunal Jadhav & Peter Mlkvik, supervised by Mitesh Patel[†]

[†]High Energy Physics Group, Blackett Laboratory, Imperial College London, UK

1. Background

Rare decays of b quarks have presented a challenge in reconciling experiment with theory. Several measurements made by the LHCb, BaBar, and Belle experiments indicate **deviations from the Standard model** (SM) predictions in observables (Fig. 1) involving these decays suggesting **Lepton Flavour Universality** (LFU) violation and therefore hinting towards **New Physics** beyond the SM [1, 2].

Fig. 1 LFU violation hints in key observables R(D) and $R(D^*)$ on the left [3], R_{K*} on the right [1].

2. $B_s \rightarrow \Phi_3 \tau \tau \text{ decay}$

Beyond the SM theories suggest the **Leptoquark** as a possible explanation for these anomalies [4]. This new gauge boson would couple to quarks and leptons at a single vertex **hierarchically** and would imply significant LFU violating effects with b quark decays into τ 's [5]. However, τ 's decay at very short distances into muons and neutrinos and are hence **difficult to reconstruct**.

Fig. 2 The B_s decay tree, key particles in black, particles shown in red (grey) are (not) detected [6].

3. Aims

- Use **ensemble models** to identify τ decays through geometrical quantities with the key assumption that τ 's are produced at rest
- Use LHCb reconstruction software to obtain data χ^2 values and get greater resolving power
- Obtain **better resolution** for $Br(B_S \to \Phi_3 \tau \tau)$

4. Implementation

LHCb reconstruction software **Bender** is used to calculate the key distance quantities (Fig. 3);

- Impact Parameter (IP) between Φ_3 and μ
- Flight Distance (FD) of τ
- Closest Distance of Approach (CDA) between μ and τ same as B_s line of flight (LoF)

Fig. 3 Diagram of the key geometrical quantities in the decay.

We then compare these Bender results to analytic calculations (Fig. 4) and the **data significance** values χ^2 are extracted. These are the key descriptive features in boosted decision trees (BDTs).

Fig. 4 Plot of IP, FD, and CDA analytic and Bender values. The strong linearity indicates complete agreement.

5. Analysis

London

Imperial College

Feature Importance

After a selection on the data focusing on filtering out the J/ψ resonance, an **ensemble of decision trees** is trained with **extreme gradient boosting** to classify events of interest. The best classifier is chosen after repeated cross-validation (CV) and predictions are made. A previous study [6] clearly labels **CDA**, **IP**, and **FD** as the most discerning features (Fig. 5) and hence the inclusion of χ^2 allows for more informed predictions.

6. Future outlook

Eventually, an improvement in the estimate for the ratio $\text{Br}(B_s \to \Phi_3 \, \tau \tau)/\text{Br}(B_s \to \Phi_3 \, \mu\mu)$ can be obtained. Possible extensions could be probing **higher** Φ_3 masses and pruning the decision trees to **prevent overfitting**.

References

- [1] LHCb collaboration, Aaij, R. et al. Test of lepton universality with $B^0 \to K^* l^+ l^-$ decays. J. High Energ. Phys., (2017).
- [2] LHCb collaboration, Aaij, R. et al. Search for Lepton-Universality Violation in $B^+ \to K^+ l^+ l^-$ Decays. Phys. Rev. Lett. 122, (2019).
- [3] HFLAV collaboration, Amhis Y. S. et al. Averages of b-hadron, c-hadron, and τ -lepton properties as of 2018 (2019). hflav.web.cern.ch/.
- [4] D'Amico, G. et al. Flavour anomalies after the R_{K*} measurement. J. High Energ. Phys., (2017).
- [5] Capdevila B. et al. Searching for New Physics with $b \to s\tau^+\tau^-$ Processes. Phys. Rev. Lett. 120, (2018).
- [6] Panella E. et al. Searching for $b \to s\tau^+\tau^-$ decays. In prep. (2020).