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a b s t r a c t

The Markov chain Monte Carlo (MCMC) method, in conjunction with the Metropolis–
Hastings algorithm, is used to simulate the path integral for the Black–Scholes–Merton
model of option pricing. After a brief derivation of the path integral solution of this
model, we develop the MCMC method by discretizing the path integral on a time
lattice and evaluating this discretized form for various scenarios. Particular attention
is paid to the existence of autocorrelations, their decay with the number of sweeps, and
the resulting estimate of the corresponding errors. After testing our approach against
closed-form solutions, we demonstrate the utility and flexibility of our method with
applications to non-Gaussian models.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Options are among the most traded financial instruments in the world, with a gross market value of over-the-counter
erivatives rising to $15.5 trillion during the first half of 2020 [1]. For this reason, developing models and computational
ethods for option prices is crucial for understanding price movements, creating new financial instruments, and assessing

he risk associated with particular options. The best known approach to option pricing is based on the Black–Scholes–
erton (BSM) model [2–5]. Despite well-known deficiencies in some of its underlying assumptions, this model remains
idely used, due in large part to the availability of closed-form solutions [5–10] for the pricing of several types of options
nd derivatives.
The Black–Scholes model is based on the principle of hedging and eliminating risks associated with the volatility of

nderlying assets and stock options. This strategy leads to partial differential equations, known as Black–Scholes equations,
hose form depends on the particular financial instrument. In the simplest case of European put and call options, these
artial differential equations can be transformed into the (backwards) heat equation, from which analytic pricing formulas
re obtained [5]. For more exotic options, the partial differential equations do not have forms that are amenable to
implifying transformations, and the equations must be solved numerically using, for example, finite difference, finite
lement, or Monte Carlo methods [11–13].
An elegant alternative formulation of option pricing is based on path integrals, which were introduced into financial

odeling by Dash [14–16] and Linetsky [17]. Path integrals were developed for quantum mechanics by Feynman [18,19],
lthough Wiener [20] had earlier used an essentially equivalent development to study Brownian motion and the diffusion
quation. The basic formulation of the path integral is based on the probability amplitude between given initial and final
tates expressed as the integral of complex exponentials of the classical action for all the paths between these states. The
total amplitude is obtained from the usual rule for combining individual quantum mechanical amplitudes from each path.
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Path integrals have become a standard method in financial mathematics [16,21,22]. There are, broadly speaking, three
types of solutions that can be obtained from a path integral formulation of an option or derivative. (i) Exact or closed-form
solutions [23–26]. (ii) Perturbative [27] or approximate [28,29] solutions in particular parameter regimes. (iii) Numerical
evaluation of the path integral based on Monte Carlo methods [26,30,31]. In this paper, we use the Markov chain Monte
Carlo (MCMC) method, combined with the Metropolis–Hastings algorithm, to simulate the path integral for the BSM
model of option pricing. After testing our methodology against standard closed-form solutions, we describe applications
to non-Gaussian models. This approach can draw upon the extensive literature on applications of the MCMC method to
the numerical evaluation of path integrals in both classical and quantum mechanical settings [32–35].

The outline of our paper is as follows. In Section 2 we derive the path integral for solving the Black–Scholes equation
by constructing an analogy between the temporal evolution of option prices and that of quantum states. The numerical
methods used to evaluate the Black–Scholes path integral are developed in Section 3, with particular attention paid to the
autocorrelation of paths used for the Monte Carlo integration of the path integral, and the accuracy of our results with
decreasing lattice spacing. Non-Gaussian models are investigated in Section 4, and a summary and prospects for future
applications are provided in Section 5.

2. Theory

2.1. Financial options

A call option is a contract between two parties in which the buyer acquires the right, but not the obligation, to buy
an underlying asset at a predetermined ‘‘strike price’’. In a European call option, for example, buyers may exercise their
right only on the maturity date of the contract, which is agreed upon at signing. In other types of option, the right can
be exercised at any time until the expiration of the contract.

The fluctuating price P of the underlying asset may change vastly between the signature date t0 and the expiry date T
f the contract. If, at the expiry date of a European call option, the price of the stock is greater than the strike price K , the
alue V of the option is given by V (P(T ), T ) = P(T ) − K . Alternatively, if P(T ) < K , the option is not exercised, in which
ase V (P(T ), T ) = 0. Thus, the payoff of the option at expiry is given by

V (P(T ), T ) = max(P(T ) − K , 0) . (1)

he payoff of any path-independent option is expressed as

V (P(T ), T ) = F (P(T )) , (2)

here F is a specified function(al) of the final asset price. Beyond the break-even point (P(T ) = K ) of a European option,
he holder can enjoy arbitrarily large profits. However, P may also decrease and, if the option holder declines to exercise
their right, they will incur in the cost of having bought the option. The potential of unlimited profits countered by the
pre-defined and bounded nature of the potential losses render financial options a particularly popular financial instrument
for speculation and hedging.

The payoff of Asian options depends on the average price of the underlying asset over a certain period of time. These
options are structured with a European expiration, meaning that they can be exercised only at expiration. However, their
pay-off functional

F [P(t)] = max(exp(I(P)) − K , 0) , (3)

is path dependent because the pay-off depends on the average of the asset price over the lifetime of the contract [17]:

I(P) =
1
T

∫ T

0
P(t) dt . (4)

2.2. Elements of stochastic differential equations

A Wiener process W (t), or Brownian motion, over a time interval t0 ≤ t ≤ T is a stochastic process which is continuous
in t and has independent Gaussian increments, i.e. W (t ′+∆t)−W (t ′) follows the normal distribution N(0, ∆t), with mean
0 and variance ∆t and is independent of W (t ′) for all times t ′ ∈ [t0, T ]. Given the basic process W (t), we can define a
Brownian motion X(t) with drift m(t) and variance σ (t) as a Wiener process by the stochastic differential equation [5,36]

dX(t) = m(t)dt + σ (t)dW (t) . (5)

We refer to a specific realization {X(t)} of this process as a ‘‘path’’ in the state space of the process. The time is discretized
by dividing the domain [t0, T ] into N regular intervals [tk, tk + δt], where k = 0, 1, . . . ,N , δt = (T − t0)/N , with the
identification tN = T . Having discretized the time interval, we will use subscripts to indicate the time dependence on
discrete variables, e.g. X instead of X(t).
t
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The conditional probability p(XT , T |X0, t0) for the process to be in the state XT at time T given that it is in the state X0
at time t0 obeys the Chapman–Kolmogorov equation [37],

p
(
XT , T

⏐⏐X0, t0
)

=

N−1∏
i=1

∫
Ω(Xi)

dXi

N∏
j=1

p
(
Xj, tj

⏐⏐Xj−1, tj−1
)
, (6)

with Ω(Xi) being the domain of Xi. This equation recasts the problem of determining the full propagator p(XT , T |X0, t0)
into that of calculating the short-time propagators, p(Xj+1, tj+1|Xj, tj). The full propagator encodes all information about a
stochastic process.

2.3. The Black–Scholes model and path integrals

In the celebrated Black–Scholes model, ln P is a Brownian process of the type in (5) [17]:

dP = mPdt + σPdW . (7)

The option premium V then follows the Black–Scholes equation

∂V
∂t

+
σ 2P2

2
∂2V
∂P2 + rP

∂V
∂P

− rVt = 0 , (8)

where r is the (fixed) growth rate of an instantaneously riskless portfolio.
The solution to a partial differential equation of the form of (8) is obtained from the Feynman–Kac formula [17],

V (P(t), t) = E(F (P)|P0, t0) , (9)

where E(F (P)|P0, t0) denotes the expectation value of the pay-off functional F (P) given an initial state P0 at time t0. Like
a standard expectation value, this can be obtained from the propagator p(PT , T |P0, t0) for the stochastic process of the
underlying asset. We can therefore translate the problem of pricing options into that of constructing the short-time
propagator p(Pj+1, tj+1|Pj, tj) of the underlying stochastic process, which is then assembled into the full propagator to
find the expectation value in (9).

We begin by introducing X = ln P into (8) to obtain

∂V
∂t

= ĤBSV , (10)

here the Hamiltonian is [14,16,17,21,23]

ĤBS = −
1
2
σ 2 ∂2

∂X2 +

(
1
2
σ 2

− r
)

∂

∂X
+ r . (11)

his transformation reveals that the Black–Scholes equation can be mapped into the time-dependent Schrödinger equation
or the temporal evolution of quantum states with a Wick rotation t → −it .

We introduce the momentum operator p̂ as the infinitesimal generator of translations δXj = Xj+1 − Xj, with the
Hamiltonian (11) generating time translations δtj = tj+1 − tj [38]. In this Wick-rotated framework, the unitary operator
generating both translations is

Û(δtj, δXj) = exp(ip̂δXj − ĤBSδtj) = 1̂I + ip̂δXj − ĤBSδtj + O(δ2) , (12)

here 1̂I is the unit operator and we have used the fact that Û is the Hilbert space representation of a Lie group of
ransformations, which therefore, can be expanded in a neighborhood of the identity [39]. In quantum mechanics, there
ould be a factor of i/h̄ along with ĤBS; however, the imaginary unit transforms into the real unit under Wick rotations,
nd we set h̄ = 1. In this formalism, the short time propagator can be written as

p(Xj+1, tj+1|Xj, tj) = ⟨Xj|Û(δtj, δXj)|Xj⟩ =

∫
∞

−∞

dp
2π

⟨Xj|Û(δtj, δXj)|p⟩⟨p|Xj⟩ , (13)

n which we have inserted a complete set of momentum states. By recasting the Hamiltonian (11) in terms of momentum
perators,

ĤBS =
1
2
σ 2p̂2 +

(
1
2
σ 2

− r
)
ip̂ + r 1̂I , (14)
3
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ubstituting into the right-hand side of (13), using ⟨Xj|p⟩⟨p|Xj⟩ = 1, and performing the integration over the eigenvalues
p of p̂, we arrive at

p(Xj+1, tj+1|Xj, tj) = exp

{
−

[
Ẋj −

(
σ 2

2
− r

)]2
δtj
2σ 2

}
exp(−rδtj)√

2πσ 2δtj
, (15)

here we have identified Ẋj = δXj/δtj.
Equipped with the short-time propagator, we follow the prescription in (6) to construct the full propagator. Simulta-

eously, we take the continuum limit N → ∞ (or, equivalently, δtj → 0) to obtain [14,16,17,21,23]

p
(
XT , T

⏐⏐X0, t0
)

= e−rτ
∫ X(T )=XT

X(t0)=X0

D[X(t)] exp
(

−

∫ T

t0

dt L
)

, (16)

where τ = T − t0 is the lifetime of the contract, and

L =

[
Ẋt −

( 1
2σ

2
− r

)]2
2σ 2 (17)

s the Onsager–Machlup Lagrangian [40,41], and the integral over paths,∫ X(T )=XT

X(t0)=X0

D[Xt ] ≡ lim
N→∞

[
N−1∏
k=1

∫
∞

−∞

dXk√
2πσ 2δtk

]
(18)

s the limit as the sequence of finite-dimensional multiple integrals becomes infinite.
Having obtained the full propagator, we are now able to evaluate the expectation value of any path-dependent

unction(al). In particular, by integrating over all possible final states, (9) becomes [14,16,17,21,23],

V (X0, t0) = e−rτ
∫

∞

−∞

dXT

∫ X(T )=XT

X(t0)=X0

D[X(t)]F [X(t)]e−SBS , (19)

here

SBS =

∫ T

t0

dt L (20)

s the Black–Scholes action. Eq. (19) is our desired result: an expression for the price of an option given its defining pay-off
unction.

. Numerical methods and results

By definition, the path integral is an infinite product of integrals. Equivalently, it can be seen as a single integral in
nfinite dimensions. Deterministic integration algorithms in d-dimensions have an error of order O(N−α/d), where N is
he number of samples and α is a constant that depends on the specific method (α = 2 for trapezium method and
= 4 for Simpson’s method, for instance). However, the error in Monte Carlo methods scales as N−1/2, independent of

he dimensionality of the problem [42]. The path integral requires as many dimensions as possible to approximate the
nalytic result with increasing precision, making Monte Carlo methods the most suitable choice for a numerical evaluation
f the Feynman–Kac formula.
The algorithm presented here is based on the Metropolis–Hasting (MH) scheme [43,44]. The MH method is a Markov

hain Monte Carlo process [34,35] which generates samples (in our case option price paths) following a desired probability
istribution. This method is ideally suited to the problem of option pricing due to the fact that, in (19), F [X(t)] is a
unctional and exp{−SBS[x(t ′)]} can be interpreted as a probability density functional.

We first discretize the time between t0 and T into a lattice of N points. We then generate a path – a specification
f the asset price P at every lattice point. The path is created in a ‘‘hot state’’, that is, the price at every lattice site is
hosen randomly, with the exception of the first point, which is set to the current asset price P0. The Black–Scholes
ction is calculated for this initial path. A large number of sweeps is then performed across the lattice, large enough to
inimize the inherent autocorrelations between sweeps (see below). In each sweep, N random perturbations are applied

o a random selection of the N lattice points, meaning not all points are necessarily perturbed in every sweep. Clearly,
he initial price P0 is known, so the first lattice site is held fixed throughout. ‘ Each set of N perturbations gives rise to a
roposed new path, which is approved or rejected according to the selection structure of the MH algorithm. The change
n action δS0 resulting from each perturbation is then evaluated. If δS0 ≤ 0, i.e. if the action of the new path is less than
r equal to that of the previous path, the perturbation is always accepted, that is, the algorithm selects the proposed
ath as the trajectory from which to begin the following iteration. If instead δS0 > 0, the new path is accepted with
robability exp(−δS0). For each accepted path, its payoff is evaluated and added to the running total. After the last sweep
s performed, the running total is divided by the number of approved samples and multiplied by exp(−rτ ) to obtain the
esult of the path integral.
4
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Fig. 1. Minimization of the (normalized) BS action for a hot state during the initialization of the simulation for different cooling schedules. The
mixed schedule corresponds to a logarithmic cooling up to 15000 iterations, when a more aggressive exponential cooling is turned on.

Following a large number of such sweeps, we are left with a path that is arbitrarily close to the classical path, the
ath minimizing the action. We are interested in the classical path, as well as nearby paths in action space, because
hese give the dominant contributions to the path integral in (19). For this reason, every Monte Carlo algorithm must
ccount for ‘‘burn-in’’: the sample paths that are generated prior to convergence towards the classical path are generally
ot representative of the solution and, if used for evaluating the path integral, can distort the result. If the algorithm
pawns a state far away from the classical path, many sweeps will be required to reach the region of action space in
hich paths have a large enough weight to provide a significant contribution to the integral. An example of this is the

‘hot state’’ initialization, in which the first path is just a random collection of points. While we could let the algorithm run
nd discard an appropriate number of initial samples (the ones before thermalization), this would be highly inefficient
nd would bias the result if the number of sweeps is not large enough. A better route would be to initialize the system
n a ‘‘semi-cold state’’, i.e. a path similar to the classical path, if known, up to some random perturbations. For the BSM
odel, the classical path is just a straight line with slope µ, so is trivially achievable.

3.1. Simulated annealing

In the interest of possible future applications, we investigate the method of simulated annealing to optimally
prepare the calculation. Simulated annealing [45] consists of a small modification to the Metropolis algorithm presented
previously. In particular, we introduce a parameter T in the exponential factor:

exp(−δS0) → exp
(

−
δS0
T

)
. (21)

he choice of the notation T highlights the similar role that this parameter plays to the physical temperature of a system.
t first, the temperature is set to T = 1, so that variations that increase the action have a reasonable probability of being

accepted. The objective is for the chain to jump around, and avoid getting stuck in a local minimum of the action space.
The parameter T is then lowered after each sweep using a ‘‘cooling scheme’’, which eventually forces the algorithm to
almost only accept perturbations which lower the path’s action until the trajectory becomes frozen around the classical
path. After the minimization of the action is complete, the temperature is raised back to T = 1, and we begin evaluating
he integral. The choice of the cooling scheme depends strongly on the problem at hand. To let the chain initially sample
he function space of the paths extensively, we opt for a logarithmic decrease of N , which is followed by a more aggressive
xponential decay. We find this combination to be very efficient, more than the soft or aggressive cooling schemes alone.
n particular, while one might naively expect the exponential cooling to be faster, this scheme will actually freeze before
eaching the classical path if the initial state is not close enough (Fig. 1).

Another device we implement to facilitate the convergence of the algorithm is an adaptive step size. If too many
aths are approved, the size of the proposed perturbations is gradually increased, and vice versa, at least within a certain
perative range. The algorithm tries to keep the average acceptance rate near 0.8, the conventional choice for such
imulations [34,35].

.2. Autocorrelation

Monte Carlo integration requires samples to be randomly chosen over the domain in order to evaluate an integral. Two
actors can negatively affect the quality of the samples: the period of the random number generator and the correlation
etween the paths. To address the first issue, we employ a Mersenne Twister pseudorandom number generator [46]. The
eriod of the Mersenne twister is a Mersenne prime number, which has the form 2p−1, where p is also a prime number.
5
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Fig. 2. The autocorrelation function as a function of Monte Carlo time (the number of sweeps) for paths generated for different lattice spacings with
P = £14, τ = 6 yrs, r = 4.5 yrs−1 , and σ = 0.1.

or the standard implementation of the Mersenne twister p = 19937. The second problem arises because the Metropolis
lgorithm generates a chain of paths in such a way that every path initiated relies on the previous one. Therefore, the
aths are correlated, which creates a bias in the samples that needs to be accounted for. Note that autocorrelation is not
ependent on the type of option; rather, it is an intrinsic property of the path generation scheme.
To mitigate the effects of autocorrelation, we first determine the Monte Carlo time θ (i.e. the number of sweeps) it

takes for the chain to ‘‘forget’’ its initial state. We use the normalized autocorrelation function R(θ ) to quantify these
correlations:

R(θ ) =
c(θ )
c(0)

(22)

ith

c(θ ) =
1

N − θ

N−θ∑
n=1

(fn − ⟨f ⟩)(fn+θ − ⟨f ⟩). (23)

(θ ) takes values between 0 (corresponding to no correlation) and 1 (complete correlation). In this analysis, we choose
he action of a path as the observable, since the paths are generated by minimizing SBS.

Fig. 2 shows the calculated autocorrelation function for three lattices with the same lifetimes τ , but different spacing.
In all three cases, there is an initial, rapid drop in R which then plateaus at |R|< 10−1. Subsequently, we can consider the
elements of the chain to be uncorrelated to the first chain. In general, we can approximate the autocorrelation function
for small θ as a multi-modal exponential decay of the form

R(θ ) = a1e−θ/τ1 + a2e−θ/τ2 + · · · , (24)

which is usually truncated at the second term [35].
There are various definitions of the autocorrelation time τcorr; for the sake of this discussion, we calculate τcorr as the

maximum of τ1 and τ2. We then estimate τcorr by fitting a double exponential decay, as illustrated in Fig. 3(a). The analysis
is quite sensitive to the set we choose for the fitting, but is useful for obtaining an order of magnitude estimate. As shown
in Fig. 3(b), increasing the number of lattice sites extends the correlation time and therefore the computational burden,
meaning sparser paths lose their correlation with the preceding paths more quickly. This explains the different decaying
slopes in Fig. 2. In order to mitigate the effects of autocorrelation, we use only one of every τcorr paths for the evaluation
of the integral, discarding all the intermediate paths. In what follows, we take τcorr = 120 yrs, keeping in mind that the
typical size of our lattice is N ≈ 100.

3.3. Accuracy and precision

The variables that most affect the precision and stability of the calculation are the number of lattice points and the
number sweeps. Fig. 4 illustrates the performance of the method for a range of these variables when pricing an Asian
option. The error bars in all our plots will show an uncertainty of σ on the data points. This is estimated by averaging
ver 5 statistically independent samples and extracting the standard deviation.
Fig. 4(a) clearly shows that the lattice spacing controls the accuracy of the method. Indeed, reducing δt , the temporal

eparation between neighboring points of a price path, has a crucial effect. A less coarse-grained lattice brings us closer to
he continuum limit, increasing the number of nodes of the path and allowing us to sample a more complete path space.
e have found that δt ≈ 10−3 yrs is more than adequate for satisfactory results, even if for European options this can
6



P. Capuozzo, E. Panella, T. Schettini Gherardini et al. Physica A 581 (2021) 126231

e
s
f

w
t

Fig. 3. (a) Autocorrelation function as a function of Monte Carlo time (the number of sweeps) for N = 100 lattice points with a fit to double
xponential decay (24) with τ1 = 8.6 yrs and τ2 = 115.4 yrs, giving an estimate for τcorr = 115.4 yrs. (b) Autocorrelation times for different lattice
pacings. Autocorrelation functions calculated with P = £14, τ = 6 yrs, r = 4.5 yrs−1 , σ = 0.1. Error bars show uncertainty of σ on τcorr obtained
rom the covariance matrix of the double exponential fit.

Fig. 4. Analysis of the precision and accuracy of Asian option pricing. (a) Increasing the number of lattice points improves accuracy, making the
numerical result approach the theoretical prediction (indicated by the broken line), which corresponds to the continuum limit. (b) Increasing the
number of sweeps enhances precision. The theoretical prediction is again indicated by the broken line.

be much longer. But δt is not the only key parameter. If the number of points is sufficiently large (N ≈ 120) the method
is accurate even for τ = 15 yrs.

Fig. 4(b) shows how the number of iterations influences the precision of the method. In particular, to get an uncertainty
as low as 5% we must perform at least 1 million sweeps (counting paths excluded to correct for autocorrelation). This
can change significantly when δt is reduced. A more finely spaced lattice can accept only smaller perturbations, or the
change in action of those variation would be too big and be rejected by the Metropolis algorithm. This implies that the
chain moves slower and the computational burden is increased. In general, if N = 120, 2.5 million iterations are found
to be more than adequate. These will be the parameters for all the calculations presented in the next sections, unless
otherwise stated.

3.4. Performance in the BSM model

We first check that the paths generated with the Metropolis algorithm do indeed follow the required distribution. The
easiest way to accomplish this is by examining the ‘‘kernel’’, i.e. the transition probability density between the initial
and final state. Effectively, we replace the payoff in (19) with unity, and evaluate the path integral. We can then check
this with the analytical result for this Gaussian path integral. In particular, the BSM model requires the logarithm of final
prices to be distributed normally around the value that the asset would achieve at τ with constant drift [17]:

Vµ(X0, t0) =
1

√
2πσ 2τ

exp
[
−

(XT − X0 − µτ )2

2σ 2τ

]
, (25)

here, from (11), µ = r −
1
2σ

2. Fig. 5 shows that the distribution of final prices agrees with the analytic solution. Note
hat, for European options, only the kernel is important, since the distribution of final points determines the derivative.
7
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Fig. 5. Kernel for paths generated by the Metropolis algorithm with P = £6, σ = 0.4, r = 0.1 and τ = 0.5 yrs for N = 30 final points, shown as a
istogram, compared with the analytic result (25), shown as a solid curve.

Fig. 6. Price as a function of interest rate for an Asian option with strike price K = £6 for different times to expiry. As r → ∞ the value of the
option tends to zero. The parameters of the simulation are P = £14 and σ = 0.1. Solid lines are the theoretical results.

ence, we can be confident that the calculations for vanilla options will be correct. This is not sufficient for the more
nteresting path-dependent Asian options, but the fact that the final prices are correctly distributed strongly suggests that
he paths are generated correctly.

Before moving on to non-Gaussian models, we can use options in the BSM model as proof of principle of our method,
xploiting known analytical solutions. As a simple example, we consider the behavior of Asian option prices as a function
f the interest rate r for different expiry times τ (Fig. 6). The results produced by our algorithm are in agreement with the
vailable analytical results, with almost all data points lying well within one standard deviation of the analytical curves.
ll curves eventually vanish. This is likely due to the fact that the pay-off is related to the mean of the asset price, rather
han the asset price itself; this grows at a slower rate – modulo stochastic fluctuations – leading to the dominance of
he discounting factor exp(−rτ ) at large r . We see more extreme behavior for larger values of τ . This is explained by the
ifferences in the asset price due to a larger or smaller r accumulating in time and thus becoming more noticeable at
arger τ .

. Non-Gaussian dynamics

Due to the Gaussian nature of its increments, the geometric Brownian motion that underlies the Black–Scholes model
esults in a normal distribution of the price paths. Despite its simplicity, this model captures several features observed in
eal markets. It fails, however, to properly take into account or predict features such as the observed leptokurtosis of real
tock price curves, market crashes, and large price fluctuations [47,48].
Both leptokurtic and Gaussian distributions belong to the family of Lévy α-stable distributions. This category includes

ll functions that can be written as

f (x) =
1

∫
dt exp (itµ − |ct|α(1 − iβ sgn(t) Φ) ) , (26)
2π
8
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Fig. 7. (a) Kernel for paths generated with the modified Lagrangian for p = 1.3, γ = 0.3, P = £14, σ = 0.1, r = 0.1 and τ = 0.5 yrs. The
istribution of final points deviates significantly from the best Gaussian fit (black line), showing a narrower peak and fatter tails as required by a
évy distribution. Note that XT can be negative, since it is the logarithm of the price and not the price itself. (b) The same data, now shown against
semilogarithmic scale, highlights the deviation between the Gaussian fit and the actual distribution of final points.

here

Φ =

⎧⎪⎨⎪⎩
tan

(πα

2

)
if α ̸= 1;

−
2
π

log|t| if α = 1.
(27)

he parameters µ and c control the shift and scale of the distribution, respectively, while β and α define the shape.
For α = 2 a Gaussian profile with variance 2c2 and mean µ is recovered (β has no effect in this case); any other

value results in a leptokurtic distribution. Such distributions have sharper peaks and fatter, Paretian tails, thus allowing
for a wider variety of stock price behaviors. For instance, the larger non-zero probability at the distribution’s tails can
be used to reproduce market crashes and surges. However, the fact that exact analytical definitions that do not involve
Fourier integrals are in general not available for such stable distributions makes their use in stochastic models somewhat
problematic.

Nevertheless, Paolinelli and Arioli [26] suggested that a simple redefinition of the Black–Scholes action SBS in (20)
results in a quasi-Lévy distribution of paths. Accordingly, we define the generalized action

SL =
1

2σ p

{∫ T

t0

dt
[
Ẋk −

(
1
2
σ 2

− r
)]p}γ

, (28)

here p ∈ [1, 2] and γ ∈ [0, 1] are parameters of the distribution, so that (19) becomes,

V (X0, t0) = e−rτ
∫

∞

−∞

dXT

∫ X(T )=XT

X(t0)=X0

D[X(t)] F [X(t)] e−SL . (29)

his action recovers the Black–Scholes model for p = 2 and γ = 1. This simple redefinition of the action is fully compatible
ith our earlier theoretical considerations and can be easily implemented with the algorithm described above.
The distribution of final points for p = 1.3 and γ = 0.3 is shown in Fig. 7. The best Gaussian fit clearly does not follow

he envelope of the histogram. However, the Pearson fit, which is designed for non-normal functions, perfectly matches
he leptokurtic behavior of the data. As p and γ get closer to 2 and 1, respectively, the distribution more closely follows
Gaussian function. Conversely, very small values of p and γ produce distributions of final points that are too wide to
e sampled in reasonable times for the available computational resources, due to the fat tails. Figs. 8 and 9 show a more
uantitative study of how option pricing changes in this model with respect to the Black–Scholes case. The parameters
or these simulations where chosen according to the investigation of [26], which is based on real market data. The results
ere obtained using lattices of 120 points and performing 3 million sweeps. We expect the precision to improve with
reater numbers of iterations and lattice points, as evidenced in Fig. 4 and Section 3.2. As noted earlier, the large error
ars are a result of the distributions being very wide and thus difficult to sample properly.
We notice that distributions with narrower tails correspond to more precise results. Furthermore, for both sets of

uropean options, we notice a slight but systematic offset of the data points towards higher prices compared to the
lack–Scholes results. This means that, while no data point by itself allows us to confidently reject the null hypothesis
that the leptokurtic data follows the Black–Scholes model), the data set as a whole does provide important evidence that a
eviation occurs. As a quantitative approximation, we can assume that each result is independent of the others and follows
Gaussian distribution. Under these assumptions, we obtain a likelihood on the order of 10−7 that a data set randomly
ampled from the Black–Scholes model would show the systematic offset seen in Fig. 8. While this is not a rigorous
9
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Fig. 8. Price as a function of initial asset price for a European option with strike price K = £6 in an approximated Lévy model. Blue data points are
isplaced on x-axis by 0.2 for reasons of clarity. The parameters of the simulations are P = £14, σ = 0.1, r = 0.1, τ = 2 yrs.

Fig. 9. Price as a function of initial asset price for an Asian option with strike price K = £6 in an approximated Lévy model. Blue data points are
isplaced on x-axis by 0.2 for reasons of clarity. The parameters of the simulations are P = £14, σ = 0.1, r = 0.1, τ = 2 yrs.

stimate, it does suggest that the leptokurtic distribution results in larger option prices compared to the Black–Scholes
odel. This feature is less evident in the case of Asian options, which seem compatible with Black–Scholes dynamics for
oth p = 1.65 and p = 1.75, as shown in Fig. 9(a). It is only for p = 1.55 (Fig. 9(b)) that the data hint at a possible
eviation; again, the option prices within the non-Gaussian model seem to be higher. This is expected: larger jumps in
he paths render a very high pay-off at expiry more likely, which must be reflected in a larger value of the financial
erivative. The behavior also agrees with the knowledge that the BSM model underprices options ‘‘deep in the money’’,
.e. with S ≫ K [49].

. Conclusions

We have described a computational method that uses the path integral machinery developed in quantum mechanics
o the pricing of options. Our approach is to generate a chain of paths with the Metropolis–Hastings algorithm (simulating
he Brownian motion of the price of an asset in time) to statistically evaluate path integrals. After having outlined the
heoretical fundamentals of the BSM model and of the path integral, we have analyzed the performance and limitations
f the numerical method.
We first introduced the issue of autocorrelation and presented the steps taken to reduce its effects on the computational

esults. These consist of the estimation of the Monte Carlo autocorrelation time τcorr by a double exponential fit and the
election of only one every τcorr paths generated for the evaluation of the integral. We found that a denser lattice of the
imulation implies a larger τcorr, and suggested choosing τcorr ≈ 120 for a lattice of size N ≈ 100. We then analyzed the
erformance of the method, sampling the parameter space of the simulation. We observed that the lattice spacing ∆t
ffects mainly the accuracy of the result, while its precision is affected mainly by the number of iterations performed.
Secondly, we evaluated option prices within the BSM model as a proof of principle of our approach. By looking at the

istribution of final prices for the paths generated, we demonstrated that the computational method we adopt does indeed
roduce a log-normal distribution, which is the typical feature of the BSM framework. We then evaluated Asian (path
ependent) option prices for a set of different parameters, showing that our results agree with the analytical predictions.
10



P. Capuozzo, E. Panella, T. Schettini Gherardini et al. Physica A 581 (2021) 126231

M
F
S

D

a

R

Having demonstrated the validity of our approach, we adapted the method to price options outside the BSM model.
In particular, by suitably changing the action in the path integral formulation of the problem, we managed to reproduce
a final distribution of prices which is log-leptokurtic instead of log-normal. These non-Gaussian models are known for
modeling market movements more accurately, but have the draw-back of not having closed-form solutions. The possibility
of extending the method to such frameworks shows its generality and flexibility. We then evaluated Asian and European
option prices in these non-Gaussian regimes, finding that the more leptokurtic the final distribution of prices, the more
our computational results differ from the BSM predictions. Nonetheless, as the tails in the kernel become fatter, our
computational method converges more slowly, causing a large uncertainty in any calculation that is done in a reasonably
short amount of time.

Further work should be done to reduce the autocorrelation time of the Markov chain, since it can have a very large
effect on computational efficiency. In this direction, possible solutions to test could be over-relaxation [35] and generative
adversarial networks [50]. If we do manage to improve the efficiency of the method, the model could be viable even for
very log-leptokurtic models. It would also allow us to extend our method on stochastic volatility models. This would
require a modification in order to generate a second collection of paths with the Metropolis algorithm, representing the
Brownian motion of the volatility of the option in time. However, this would also heavily increase the computational
burden, making the optimization of the method our first priority.
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