
How does one take the determinant of a differential operator on a Riemann surface? Recall that the determinant of a (1,1)-tensor is defined as the product of its 
eigenvalues. The eigenfunctions of a differential operator L on a Riemann surface form an infinite-dimensional Hilbert space i.e., there are a (countably) infinite number 
of eigenvalues. The infinite product will look like

String loop corrections in bosonic string path integrals Brett Oertel, Omar Shahpo

Why do String Theory?
ෑ

𝑖=1

∞

𝜆𝑖

and it will not be well defined. To deal with this we define the zeta function 

which is well defined for large s. We then formally define the determinant of the operator of interest as

where the zeta function is defined at zero by analytic continuation. This definition can be motivated within pure mathematics e.g in Ray and Singer [3], and was first 
used in theoretical physics by Hawking [4]. 

These determinants are either extremely difficult or impossible to compute for two main reasons:
• The eigenfunctions of an operator are impossible to compute unless the Riemann surface is highly symmetric (i.e. a rectangle or sphere)
• The analytic continuation of arbitrary zeta functions is very difficult.

Defining the Measure 
Measure

The Path Integral

Fig 1. The compact Riemann surfaces can be topologically classified into the sphere, torus, double-torus, triple-torus etc [5].

We evaluated the partition function for the case where the world sheet has no boundary and the topology of a torus. We did this in a novel manner, and obtained the 
same result as first obtained by Polchinksi [6]: 

Here, 𝜏 is a complex number which parametrizes the moduli space of the torus. It is related to Teichmuller deformations of metric which cannot be induced by 
conformal rescalings or diffeomorphisms connected to the identity. The integral is taken over a fundamental region. Lastly, 𝜂 is the Dedekind eta function, defined as

Having redefined the measure, we compute the Jacobian factor J and the path integral reduces to: 

This is the Weil-Petersson measure (the measure on the Teichmuller space of the surface).

Here everything is evaluated after having reduced the metric h to a conformally flat metric g. The integral is now 
reduced to a finite-dimensional integral over the Teichmuller space of the surface. The relevant factors are: 

We performed in a novel manner a calculation of the partition function where the world sheet is bound by a circular Wilson loop and has the topology of an annulus. 
We assume Dirichlet boundary conditions on the circular Wilson loop, and Neumann on the ‘dynamical’ inner boundary of the annulus. The determinant of the 
Laplacian on the annulus was computed in a new manner, using a contour integral method to sum eigenvalues [7] and agrees with calculations obtained by a different 
method [8]. Our final result is 

This is the determinant of an elliptic operator, which is equivalent to the Laplacian 
operator if g is conformally flat. 

This is the determinant of the Laplacian operator on the surface, the most 
defining feature of the path integral. 

Now the moduli space is parametrized by a single real number 𝜏. We have again used the Dedekind eta function, whilst the function denoted by ෨𝛽 is defined as 
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Here, we integrate over all surfaces embedded in 26-dimensional 
Euclidean space carrying a metric h. 

S(h,X) is the Polyakov action, defined by [2]: 

Many configurations (h,X) we integrate over correspond to an 
equivalent action S(h,X) due to symmetry. We must get rid of this 
degeneracy by defining the measure properly! 

The partition function corresponding to a Wilson loop C in string 
theory is defined by the path integral [1]:
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We redefine the integration over the metrics h by breaking it up: 

where Teichmuller deformations are all metric deformations 
which are not diffeomorphic nor conformal.

This allows us to rewrite the measure as: 

Where J is a Jacobian corresponding to the breaking up of the 
measure, and N  is a normalisation constant. 

Interaction potentials in gauge theories (such as the quark 
confinement potential in the Standard Model) are governed by a 
class of quantum operators called Wilson loops. 

These are incredibly difficult to compute. However, the gauge-
string duality (an example of which is the famous AdS-CFT 
conjecture) says that these can be represented by partition 
functions in string theory.

Our particular research has focused on calculations which are 
directly relevant to tests of this conjecture. Furthermore, the bulk 
of the work has been calculating functional determinants which 
are endemic to high energy physics.
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