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Novel data pipelineThe CP symmetry of the Higgs Boson has its first ever model independent measurement in July 2020

by the CMS Collaboration. The CP mixing angle is found to be 4±17° [1], which is consistent with the

Standard Model prediction of a CP mixing angle of 0°.

Our project aims to:

• Develop a novel data pipeline to extract and calculate additional features

• Optimise machine learning architecture for the CP Higgs problem

• Reconstruct CP sensitive information from neutrinos

• Develop a machine learning algorithm to be able to discriminate against CP-even/CP-odd Higgs

CP sensitive variables known as acoplanarity angles can be constructed [2], however, to further

constrain the current measurement, we aim to use deep learning techniques on ‘low-level’ particle

decay data. We focused on a binary classification problem – classifying Higgs as either CP-even or

CP-odd. The project focuses on the H→ 𝜏𝜏 decay, particularly on 𝜌 − 𝜌, 𝜌 − 𝑎1, 𝑎1 − 𝑎1 (3pr) decay

channel

The data pipeline is built in Tensorflow and Keras. The two main machine learning techniques

used are neural networks and XGBoost [3].
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We construct acoplanarity angles between all

combinations of intermediate decay products,

which all have some degree of CP sensitivity. An

example of the sensitivity of an acoplanarity

angle is given in Fig 1.

Using additional detector information, we

improved current methods of reconstructing

neutrinos by adding the polarimetric vector

method and other mass constraints. This

information is then fed into the pipeline.

Fig. 1. Distribution of acoplanarity angle 1. This

variable is highly CP sensitive, which means

we have a difference in the pseudoscalar and

standard model distributions.

Conclusions

There are many hyperparameters in our model, e.g., the

number of neurons in each layer, the number of layers,

the learning rate, and so on for a neural network. For

optimising these, we used the hyperopt package.

Fig. 2. Example of neural

network architecture after tuning. This

architecture includes 3 densely

connected hidden layers
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Key results:

1. Able to produce discrimination against CP states with deep learning (Table 1.).

2. Neural network consistently outperforms XGBoost.

3. Problem is heavily architecture reliant.

4. Reconstructed neutrinos can provide some discrimination.

AUC score (higher = better)

Decay channel Gen level (3.s.f) Reco level (3.s.f)

ρ− ρ 0.679 0.596

ρ − a1 0.633 0.570

a1 − a1(3pr) 0.576 0.542

Table 1. Our best AUC scores from the 

neural net. AUC stands for area under the 

curve, which is an important performance 

metric of binary classification.
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We found that deep learning techniques, particularly neural networks are able discriminate against

CP-even and CP-odd Higgs Bosons.

We have developed a novel data pipeline able to extract and calculate new features for this problem.

Neutrino reconstruction was able to add some CP sensitivity in the algorithm, however we found that

performance was highly dependent on network architecture

The next stage of the project is to identify which smeared features are most important to the analysis.

Fig. 3. Importance of features obtained from XGBoost model. The

acoplanarity angle is by far the most important feature, but other

features do give more information


