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Motivation for the Project
It is now largely believed that entanglement entropy provides a
better understanding of quantum gravity. One of the approaches
to the latter, Causal Set Theory (CST), has seen a recent growth
in interest. While the entanglement entropy for a causal set was
expected to match its continuum analogue, instead of the contin-
uum area law, a spacetime-volume law was obtained. To resolve
this discrepancy, an ultraviolet (UV) cutoff has to be imposed,
which is naturally provided in CST contrarily to most other ap-
proaches.

Causal Set Theory
CST is founded upon two key concepts: causal order, and the
discreteness of spacetime. A locally finite partially ordered set,
C, is formed by the discrete elements and the ordering relation
defined by the causal structure. The causal set (or causet) is the
pair (C,�), where � is the partial order relation, and satisfies:
• Reflexivity: for all u ∈ C, u � u.
• Antisymmetry: for all u, v ∈ C, u � v � u implies u = v.
• Transitivity: for all u, v, w ∈ C, u � v � w implies u � w.
• Local finiteness: for all u, v ∈ C, |[u, v]| <∞, where

[u, v] := {w ∈ C |u � w � v} is a causal interval and |A|
denotes the cardinality of a set A.

A causal set can then be represented by the causal matrix, C,
with matrix elements given by [1]:

Cxy =
{

1 for x ≺ y
0 otherwise. (1)

or diagrammatically by a Hasse diagram, where elements of C
correspond to points and if two elements u and v are related as
u � v, then u is positioned below v with a line connecting them
as shown below in Fig. 1.
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Figure 1:An example of a Hasse diagram and the corresponding causal matrix.

Continuum Entanglement Entropy
The Von Neumann entropy is given by

S = Trρ lnρ−1 (2)

with ρ being the density matrix for a Cauchy hypersurface Σ. By
dividing Σ into two complementary subregions A and B as shown
in Fig. 2, one can obtain the reduced density matrix for A

ρA = TrBρ. (3)

By then substituting (3) into (2), the entropy associated with A
is:

SA = −TrρA lnρA =
∑
λ

λ ln|λ| (4)

where λ are the eigenvalues of the reduced density matrix in the
continuum. This would be the entanglement entropy between A
and B had there been a pure initial ρ [1]. One would obtain
the same result by starting with subregion B instead of A and
calculating SB [2].

Figure 2:Causet diamond nested within larger diamond of 2000 elements gen-
erated via a Poisson sprinkling. L and l correspond to the half-lengths of the
large diamond and the small diamond respectively.

From [3], the entropy in a massless scalar field and a massive scalar
field is expected to scale with the UV cutoff, a, the subregion half-
length, l, and the mass, m, as:

S ∼ 1
3
ln
( l
a

)
(5)

and
S ∼ −1

3
ln
(
ma) (6)

respectively.

CST Entanglement Entropy
To compute entanglement entropy in causets, an equivalent of
(4) must be found. Using the Sorkin-Johnston prescription, the
Wightman function W (corresponding to a pure state) is first
found by taking the positive part of the Pauli-Jordan function,
defined as in the continuum by:

∆(x, y) = GR(x, y)−GR(y, x) (7)

and whose spectrum in the CST is shown in Fig. 3 whereGR(x, y)
is the retarded Green function. From [1], GR for a scalar field in
a 1+1d causal set is:

GR(x, y) = 1
2
C
(
I + m2

2ρ
C
)−1

(8)

where C is the causal matrix given in (1) [1].
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Figure 3:Collapse of the spectra of the Pauli-Jordan function (used to find
the entropy) for different densities with a being the cutoff and n labelling the
eigenvalues.

The entanglement entropy is then found by substituting λ in (4)
by the eigenvalues of ∆−1W . If one applies this calculation with-
out any restriction, the entanglement entropy obeys a spacetime-
volume law – it grows linearly with N . This result does not
match the area law continuum expectation of (5). Furthermore,
calculated in this way, the causal set entanglement entropy is also
found to be two orders of magnitude larger than the continuum
equivalent [2]. These two issues suggest the need for a truncation.

Covariant Truncation Scheme
A vital part of getting physical results from (4) is to exclude func-
tions in the kernel of i∆ for which the eigenvalues are undefined.
Unfortunately, this operation is much harder in causets than in
the continuum due to the presence of numerous small eigenvalues
as seen in Fig. 3. In fact, if the smallest eigenvalue retained has
magnitude λ̃min ∼

√
N and a truncation is performed in both the

larger and the smaller diamond, then the continuum logarithmic
behaviour is obtained.

Results and Headway
The entropy scalings obtained are shown below in Fig. 4 for a
massless scalar field and Fig. 5 for a massive scalar field with the
coefficients 0.335±0.007 and −0.333±0.012 being in close agree-
ment with the continuum expectations of 1

3 and −1
3 respectively.
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Figure 4:Fit of S = 0.335 log (l/a)+0.165 for sprinklings of up to 19000 points
massless causal sets with a cutoff of λmin
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Figure 5:Fit of S = −0.333 log (ma) + 1.993 for sprinklings of 20000 points
massive causal sets with a cutoff of λmin and masses ranging from 5 to 13.

One of the major findings of the project was that instead of the
continuum entropy area law, a spacetime-volume law was ob-
tained for causal sets. This discrepancy was related to the small
but finite parts of the spectrum of i∆. The expected continuum
area law was recovered after truncation. Keeping the above dis-
coveries in mind, one can start to see the light and comprehend
entanglement entropy in CST. This raises questions concerning
the entropy related to black hole horizons and whether the latter
is partially or even wholly entanglement entropy.
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