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n 1994, at the Institute of Electrical and 
Electronics Engineers’ 35th Annual 
Symposium, Peter Shor announced his creation 

of a startling piece of mathematics. Known as 
‘Shor’s Algorithm’, it outlined how a quantum 
computer could quickly factorise a number into its 
two prime factors. Suddenly, the effectively 
unbreakable methods of most encryption systems 
were at the mercy of the development of these 
quantum computers.1  
   All encryption works on the basis of ‘keys’, which 
do something to systematically alter a message. For 
example, shifting the letters in a text by one letter in 
the alphabet would be a very basic example of an 
encryption key. In computing, all messages are 
numerical, so the keys take the form of 
mathematical functions. Since the late 1970s, almost 
all secure data transmissions via the Internet, such as 
instant messages, bank transactions or even login 
details, have been encrypted using a technique 
called RSA encryption.2, 3  
    RSA works by using two keys, a ‘private’ key and 
a ‘public’ key. If Alice wants to send a message to 
Bob, Bob’s computer will generate the two keys and 
send his public key to Alice, which anyone can 
access. However, his computer will keep hold of the 
private key, which is what will decrypt Alice’s 
message. 

RSA is powerful because the public key encrypts 
the message using a one-way mathematical function. 
This works by using the modulo, or remainder 
function. For example, the remainder of 8 divided 
by 3 is 2, but even if you know that the result is 2 
and the divisor is 3, it is impossible to recover the 
original number, 8. This means that Alice can 
encrypt her message using the public key, but if 
someone else also knows the public key and 
intercepts the encrypted message, then they can’t 
decrypt it. 

Both keys are made up of two numbers. The first 
number is an exponent, to which either the 
unencoded ‘plaintext’ message is raised in the case 
of the public key, or to which the encoded 
‘ciphertext’ is raised by the private key. The larger 

number is what the exponents are divided by, to find 
the remainder, and is shared between the two keys.  

For example, Bob could send Alice a public key 
consisting of the numbers (5, 14), and create a 
private key consisting of (11, 14). If Alice wanted to 
transmit the message ‘Hello’, represented by the  
number ‘2’, then the public key would first raise 25, 
which gives 32. The remainder of 32 divided by 14 
gives 4. Bob therefore receives the encrypted 
message of ‘4’. To decrypt it, he applies the same 
operations as Alice did to encrypt the message, just 
using the numbers in his key. 411 gives 4194304, 
and the remainder of 4194304 divided by 14 gives 2 
– the original message. Importantly, these steps 
could be attempted with any message, as long as it is 
an integer.  

 
In this example of RSA, the message ‘HELLO’ is 
represented by the number 2. The message is 
encrypted using the public key but can only be 
decrypted using the private key.4    

The larger number in the two keys is actually the 
multiple of two prime numbers, known as a 
semiprime. The two factors are what determine the 
first number in the public and private keys. If the 
factors are found, the first number in the private key 
can be found, and the message decrypted. In the 
example above, it is obvious what the two prime 
factors are, 2 and 7.  
   However, if you were asked to determine the 
prime factors of 701,111, you would struggle even 
with a calculator. Of course, there are algorithms for 
computers to find prime factors, which could tell 
you that the factors are 907 and 773 in a trivial 
amount of time.  

I 
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Because of this, RSA uses much larger numbers.5 
Modern RSA uses 2048 bit semiprimes, which 
correspond to 617 decimal digits. For comparison, 
in 2020, a 250 digit, 829 bit RSA semiprime was 
factorised by an international team, which took them 
approximately 2700 years of CPU time, running 
across tens of thousands of computers for a few 
months.6, 7 It turns out that the time required to 
factorise semiprimes increases at an almost 
exponential rate to the number of bits.8 Using a 2048 
bit semiprime therefore appears to be absolutely 
secure.  

 
A supercomputer at the CNRS institute in France, one of 
the institutes which participated in factorising the RSA-
250 semiprime. 9

 

Enter Shor’s Algorithm. This algorithm used 
quantum computing to take advantage of a special 
property of the factorisation process, called ‘period-
finding’.  

One of the most basic number sequences is the 
powers of 2:  

2, 4, 8, 16, 32, 64, 128, 256, 512, … 
If we divide each number in that series by a number 
composed of two prime factors, for example 15, and 
find the remainder, we get a new series: 
    2, 4, 8, 1, 2, 4, 8, 1, 2, 4, … 
This sequence is periodic, with a period of 4. If we 
choose a different divisor, for example 14, we get a 
different series: 

2, 4, 8, 2, 4, 8, 2, 4, 8, … 
This sequence has a period of 3.  
    
 
 

    It turns out that we can actually predict the period 
of the sequence. According to Scott Aaronson, 
Professor of Computer Science at the University of 
Texas: 

‘There’s a beautiful pattern discovered by Euler 
in the 1760s. Let N be a product of two prime 
numbers, p and q, and consider the sequence: 
x mod N, x2 mod N, x3 mod N, x4 mod N, … 
Then provided x is not divisible by p or q, the 
above sequence will repeat with some period that 
evenly divides (p-1)(q-1).’ 
 

    So when N is 15, (p-1)(q-1) is 8. The period of 
the sequence is 4, which is a divisor of 8. In the case 
where N is 14, (p-1)(q-1) is 6, and the period of the 
sequence is 3, which divides 6. If we were to try 
other values of x, we could find other divisors of (p-
1)(q-1), and put them together to find (p-1)(q-1), and 
ultimately find p and q.10 

    Unfortunately, when p and q are large, the period 
of the sequence can be almost as large as N. In fact, 
using classical computers, finding the period of the 
sequence is as difficult as factoring N itself!10, 11 

    This is where we can exploit the properties of 
quantum computing. Quantum computers use 
quantum bits, or qubits. These qubits, like a normal 
computer bit, represent a state ‘0’ or a state ‘1’. 
However, unlike normal bits, it is also possible to 
form a linear combination of states ψ = α(0) + β(1), 
where ψ represents the state of the qubit. α and β are 
complex numbers, so the state of a qubit can be 
thought of as a vector in a two-dimensional complex 
vector space. The states 0 and 1 form an 
orthonormal basis for this vector space.  

This linear combination of states is what is known 
as a superposition of states. However, a physical 
measurement cannot return a complex value, and 
when the state of a qubit is measured, the qubit can 
only return a state of either 0 or 1. The probability of 
measuring a state 0 is given by |α|2 and the 
probability of measuring a state 1 is |β|2. As the 
probabilities must sum to one, |α|2 + |β|2 = 1.12  

However, qubit states can be manipulated and 
transformed so the measurements observed depend 
on the state of the qubit, and these manipulations 
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and transformations lie at the heart of quantum 
computing.12 

To complete the factorisation of N, a 
superposition of every single xn mod N is created. 
One of the misconceptions about quantum 
computing is that once this superposition is 
complete, the computer can try and divide N by all 
of the different numbers at once, therefore speeding 
up the process. In fact, the quantum computer 
speeds up the calculation by analysing the properties 
of the superposition, and therefore the entire system, 
as a whole. It does this by performing a Quantum 
Fourier Transform (QFT) on the superposition. 
Much like how a Fourier Transform of an audio 
signal can convert a waveform with a certain period 
into a frequency spectrum of that waveform (and 
vice-versa), a QFT converts a ‘waveform’ (the 
superimposed qubit), which has a certain period of 
repetition into a signal showing the ‘frequencies’ 
making up that qubit. The peak ‘frequencies’ 
correspond to the period of the sequence, which can 
then be simply found and manipulated to find the 
factors of N.10, 11, 12 

It turns out that carrying out this superposition 
and QFT actually factorises semiprimes 
exponentially faster than any classical computer can, 
as it analyses the entire system at once rather than 
every number individually. A quantum computer 
could therefore crack RSA codes in a very 
manageable time, rendering most of the world’s 
cybersecurity utterly useless.10, 12  

Quantum computers have already used Shor’s 
algorithm to factorise semiprimes successfully; in 
2019, a team in the US used a seven qubit quantum 
computer built by IBM to factor 35, the largest 
semiprime number to be factored using Shor’s 
algorithm.13  While 35 is far too small to be used in 
an RSA key, this demonstrates that the algorithm is 
indeed something that can be put into practice, 
rather than purely a theoretical concept. The security 
of RSA therefore depends only on the progress of 
quantum computation. 

 
The IBM Q System One Quantum Computer, the ‘first 
fully-integrated commercial quantum computer’, used to 
factorise 35 using Shor’s Algorithm.14 

Back in the 1970s, even before RSA was 
invented, scientists were investigating how to use 
quantum physics to encrypt information.15, 16 By 
1991, three years before Shor published his 
algorithm, a protocol for a quantum encryption 
technique was released. Known as quantum key 
distribution, or QKD, it harnesses a strange property 
of quantum physics – quantum entanglement.17 

In 1927, Werner Heisenberg discovered a 
fundamental result of quantum mechanics. This, 
known as Heisenberg’s Uncertainty Principle, states 
that it is impossible for the position and momentum 
of any system to be measured with complete 
precision. The more precisely the position of a 
system is determined, the less precisely can its 
momentum be predicted.18 In fact, quantum systems 
can be described mathematically using a 
‘wavefunction’. This wavefunction represents the 
‘probability amplitudes’ of the state of a system. 
Most commonly, this wavefunction uses a position 
basis, so the wavefunction predicts the probability of 
where the particle is in space, although this can be 
changed to other bases, such as the momentum 
basis. Finally, another cornerstone of quantum 
mechanics is that measuring the property of a 
particle fundamentally changes the state of that 
particle.  

For example, say the wavefunction, or probability 
amplitude, of the position of an electron was a 
Gaussian centred around x = 0, with a standard 
deviation of 1. If the particle is measured to be at x 
= 2 (which will have a low probability), then the 
state of the particle will change, to a Gaussian 
centred around 2. This makes sense: it has just been 
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measured to be there, so of course it’s now most 
likely to be found at x = 2! But according to the 
Uncertainty Principle, there will be an uncertainty in 
the measurement, which determines the width of the 
new Gaussian. After measuring the particle, there 
will be no way to tell what the previous 
wavefunction was, so some information will be lost. 
This process is known as ‘wavefunction collapse’. 
So to sum up: quantum mechanical processes are 
inherently probabilistic, and if a system is measured 
then its state will change. 

One of the consequences of the probabilistic 
nature of quantum mechanics is that most 
probabilities are not independent, but dependent. If 
two particles interact with each other, their 
wavefunctions will change, and they will change 
based on the other’s wavefunction. This dependance 
is known as ‘entanglement’.12, 19   

The most drastic form of entanglement is the 
forming of what is known as an Einstein-Podolsky-
Rosen, or EPR pair.20 EPR pairs are special, because 
the state (in the case of a qubit, whether it is a 0 or a 
1) is copied to both, so that both are, and remain, in 
the same state. Importantly, the state which they are 
in cannot be known before measuring them, but 
once one is measured, the state of the other can be 
determined with complete certainty to be the same 
state as the first one. This is true no matter how far 
apart they travel, as long as they do not interact with 
another particle before the measurements occur.12  

Now, if Alice wants to send a message to Bob, 
she could create a large set of entangled qubit pairs. 
If she sends one of each pair in order to Bob and 
keeps the other of the pairs in the same order, Alice 
and Bob will have the same qubit string. Alice and 
Bob can then both measure those qubits, which by 
definition will be the same, as they were entangled. 
Alice can then encrypt her message using that key, 
and Bob can decrypt it using the same key.12 What 
makes it so useful, and so much better than RSA, is 
that it is completely secure from outside 
observation, providing the laws of physics as they 
are currently known are true.16  

The only way an attacker could determine the key 
is by measuring the qubits. But in doing so, the state 

of the qubit will be altered! By the time it gets to 
Bob, the qubit will be in a different state to the state 
that Alice’s is in, so his key won’t work. In fact, 
Alice could add random digits at random intervals 
into the key she is transmitting. Once Bob has 
received the key, Alice could announce the location 
and value of those random numbers; if Bob has a 
different number at that point, then the key has been 
breached and someone is intercepting the 
transmission. Alice and Bob would have to create 
another key, but the breach would be detected 
before any message is sent.12, 15 

In reality, the qubits are usually encoded in the 
form of polarised photons. For instance, a vertically 
polarised photon could represent a ‘1’, and a 
horizontally polarised photon could represent a ‘0’. 
However, if an attacker placed a polariser angled 
exactly the right way, so that a vertically polarised 
photon was guaranteed to pass through and a 
horizontally polarised one was guaranteed not to, 
then the attacker could still gain information about 
the key, as he hasn’t changed the number of vertical 
photons arriving at Bob’s polariser.  

To counter this, both Alice and Bob use a second 
basis of polarity, where ‘1’ is represented by a 45º 
angle and ‘0’ is represented by a -45º angle. The 
attacker is limited to one polariser, as once light has 
gone through a polariser it has no memory of its 
previous polarisation; if a vertically polarised beam 
of light falls upon a polariser at 45º to it, the light 
that passes through will be polarised at 45º.  

Therefore, Alice randomly changes her bases and 
Bob randomly changes his bases during the 
transmission, and at the end of the transmission 
Alice publishes the bases she used.  

 
An example of how Alice and Bob could change bases to 
create a key using quantum key distribution.14 
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For the sake of argument, consider that the 
attacker is using a vertical basis for his polariser. In 
this case, there are three possibilities. If Alice is 
using the vertical basis and Bob is using the vertical 
basis, then the attacker can determine the polarity of 
the photon without either Alice or Bob knowing. If 
Alice and Bob use different bases, then that photon 
will be discarded.  They know they used different 
bases so Bob’s measurement will be random and 
useless. If Alice uses the angled basis and Bob uses 
the angled basis, then the vertical polariser will 
allow 50% of both the ‘0’ state and the ‘1’ state 
photons to pass through. If Alice and Bob then 
compare the random numbers Alice added to the 
key, some of these will differ, and they will know 
that they have been attacked. Alice then won’t 
transmit the secret message at all, as they have 
discovered that the key has been breached. There is 
therefore no way an attacker could decrypt a secret 
message encoded by a quantum key. 12, 15  

 
Like Shor’s Algorithm, QKD proof-of-concepts 

have been succesfully implemented. In 2004, a 
Chinese team achieved a QKD transmission through 
a 404 km long coiled fiberoptical wire, and in 2019, 
another team managed to transmit a QKD signal 
between ground stations 1120 km apart.21, 22 
However, this required a specially built quantum 
satellite, and QKD transmission using more 
conventional, and significantly cheaper fiberoptic 
cable between two different ground stations has only 
been achieved across a distance of 144 km.23 

Quantum cryptography is becoming reality. The 
complete security of QKD will become necessary 
once quantum computers have developed to a point 
where they can crack RSA encryption. The 
technology is being constantly developed; the 
European Commission has created its Quantum 
Flagship program which launched a QKD testbed in 
2019, bringing it closer to becoming a commercial 
success.15 

Quantum computing is also expected to develop 
rapidly. According to John Preskill, Professor of 
Theoretical Physics and Director of the Institute for 
Quantum Information and Matter at Caltech, we are 

nearing the creation of 50-100 qubit quantum 
computers. While he warns us that these ‘will not 
change the world right away’, he suggests that they 
may ‘surpass the capabilities of today’s classical 
digital computers…we should regard it as a 
significant step toward the more powerful quantum 
technologies of the future’.24 
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