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It is very difficult to predict – especially the future. 
Niels Bohr 

 

Few topic areas within the field of computer science 
have captured the imagination of the wider public like 
artificial intelligence (AI). Indeed, such is the topic’s 
prevalence in popular culture that its mere mention 
within a conversation will almost undoubtedly spark 
quips of a dystopian future where us humans are 
ruled by some robotic overlord.  In recent years, we 
have also seen an almost unparalleled adoption of 
such technologies within industry, with everything 
from Apple’s voice-assistant ‘Siri’ to Samsung’s smart 
fridge ‘Family Hub’ making use of AI [1]. 

As a result, the power and effectiveness of artificial 
intelligence is more or less unquestioned. However, 
an understanding of exactly how such technologies 
are built or their applications outside of consumer 
products is far less commonplace. This article aims to 
begin to bridge this gap by explaining the core 
concepts behind one of the most popular 
implementations of AI; artificial neural networks (or 
ANNs). It will also show some of its use cases within 
Physics research, so as to highlight how this 
technology may one day become the key instrument 
through which we understand the world around us. 

Working Principles of ANNs 

Artificial intelligence is a somewhat vague term which 
often means different things to different people, 
partly due to the philosophical issue as to what 
defines intelligence to begin with. Here we adopt the 
popular definition that an AI is any system capable of 
‘thinking’ and ‘learning’ in a way which is analogous 
to humans [2]. With this, we can identify one of the 
most active subsets of AI to be machine learning, 

which refers to any algorithm which uses patterns in 
previously encountered data to make predictions 
regarding current inputs. Such models can be as 
‘simple’ as traditional statistics, such as regression; 
however, the slightly more exotic ‘artificial neural 
networks’ (ANNs) have, as of late, become extremely 
popular [3]. 

As the name suggests, ANNs are loosely based on 
biological neural networks in that they have a 
discretised, node-like structure similar to neurons in 
a brain; as shown in Fig. 1 [3]. 

 

Fig. 1. Diagram showing the basic structure of an artificial 
neural network. The colour-coded connections between 
the nodes shows the parallels between ANNs and 
biological neural pathways. The sheer number of total 
connections in this very small network helps to 
demonstrate the plausibility of reasonably sized ANNs 
being able to store the necessary information to solve 
abstract problems. 

 

‘Practice Makes Perfect…’: 
Artificial Neural Networks & Their Uses Within Physics 
Vedant Varshney 
Blackett Laboratory, Imperial College London 

 

Vedant Varshney 



 2 

To understand Fig. 1 in more detail, let us, for the 
sake of example, consider how one would go about 
building a simple 3-layer ANN which, when given a 
monochromatic image of a shape, classifies it as 
either a triangle or a square. 

We start by quantifying the input. For this specific 
example, we can take each one of the bits of an image 
and place it in its own node within the ‘input layer’. 

The next step would be to multiply each of these 
nodal values by some random ‘weight’ and add a 
random ‘bias’ before passing them on to each of the 
nodes in the ‘hidden layer’. Also, normalising the final 
result such that the value lies between 0 and 1 will be 
useful later. This normalisation is commonly achieved 
through the application of a sigmoid function. We can 
then repeat this step to move from the hidden layer 
to a final, 2-node output layer [3]. 

Let us interpret the value in the first and second node 
as the probability that the image is of a triangle and 
square respectively, which we can do given the 
normalisation. For the first pass through the network, 
these probabilities will be completely random. 
However, we can quantify the extent to which the 
model is incorrect (or the ‘cost’) by calculating the 
sum of the square differences between the obtained 
value and the correct value for each node [4] [3]. 

Each time we pass all of the available ‘training’ images 
through the network, we go back to adjust the 
weights and biases so as to decrease the average cost 
[4]. With hundreds if not thousands of training 
images, we may find that in time the model becomes 
very accurate indeed. 

Mathematically, by expressing the original input as a 
vector 𝒙 and the weights and biases for the jth layer of 
the network as a matrix 𝑊#  and vector 𝒃#  
respectively, one can obtain a very concise definition 
of the average cost 𝑐 as 

𝑐 =
1
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where the index 𝑖  refers to the image being 
processed and 𝜎, 𝑁 and 𝒚8  refer to the normalising 
sigmoid function, total number of images and the 
correct output vector respectively. 

From (1) is it clear that the average cost is a function 
of all of the weights and biases present in the 
network, henceforth denoted as a single column 
vector 𝚯 . Thus, to minimise the average cost, we 
need only step 𝚯 back in the direction which most 
quickly decreases the cost;  −∇𝑐(𝚯) [3]. This process 
of iterative gradient descent is shown in Fig. 2. 

 

Fig. 2. Diagram showing gradient descent. Note that for 
simplicity Θ is taken to be a scalar here; however, the idea 
presented can be extended to any n-dimensions.  Notice 
that keeping the step size proportional to the gradient 
|∇𝑐(𝚯)|  prevents the descent from overshooting a 
minimum [5]. Notice also that minimum found may not be 
global, as is the case here. Thus, even with an infinite 
number of training examples, gradient descent does not 
guarantee the optimum set of weight and biases for the 
problem. 

There are some subtleties we have sidestepped here, 
the most important of which is how one goes about 
calculating −∇𝑐(𝚯). Nevertheless, the above process 
of ‘learning’ through minimisation of some cost 
accurately describes the core concept behind all 
‘feed-forward’ neural networks. 

Other Types of ANNs 

Going beyond the basic structure of a feed-forward 
network, there exist many specialised ANNs which 
contain some additional complexity which enable 
them to better solve more complex problems. 
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One popular variation is known as a recurrent neural 
network (or RNN). Here the main change is that 
several nodes in the network may contain 
connections to either themselves or other nodes in 
the same layer [3]. These recurrences mean that any 
new input is considered in the context of previous 
inputs, thus the network obtains some concept of 
memory [3]. This ability is extremely useful for solving 
problems where input order is of importance, such as 
natural language processing. One can imagine the 
importance of distinguishing between sentences such 
as ‘for the many not the few’ and ‘for the few not the 
many’ when training a semantic classifier for 
example… 

Another common model is the convolutional neural 
network (or CNN). Here there exist some nodes which 
instead of transforming values in the standard way 
with weights and biases, convolve their input with 
some filter matrix in a way which is completely 
analogous to some filter function 𝑓 convolving some 
input function 𝑔  such that the output is 𝑓 ∗ 𝑔  [3]. 
Such convolutional matrices act almost as pattern 
detectors in the network; thus, CNNs are useful for 
solving problems where input structure is of 
importance, such as image recognition [3]. 

The last ANN variant we consider here is the deep 
neural network, which refers to any network with 
more than one hidden layer. Such models are 
particularly effective at building ‘hierarchal 
representations’ [6] of their input data such that the 
first layer considers only the lowest-level features 
and the abstractness increases until the last layer 
considers the highest-level features [3]. This 
structure makes ‘deep learning’ an effective tool for 
analysing abstract or multidimensional inputs [3]. 

Applications in High Energy Physics 

It can be shown that any feed-forward neural 
network with at least one hidden layer can 
approximate any continuous function; they are 
‘universal approximators’ [7]. Thus, ANNs can, in 
principle, be used for any problem which reduces to 
a functional mapping from an input vector 𝒙 to an 
output 𝒚. 

Practically, however, ANNs generally lend themselves 
to problems which satisfy two essential criteria; 

i. the problem is abstract in nature; and 

ii. there exists a vast amount of data 
through which a model can be trained. 

It is exactly these criteria which make neural 
networks so ideal for use in high energy physics (or 
HEP) research. To explain why this is the case, it is 
useful to understand one of the core problems found 
in fields with a heavy emphasis on data analysis; the 
‘curse of dimensionality’ [6]. 

In the context of HEP, consider an event where only 
one variable, say the position of a particle, is 
measured. An approximate probability distribution 
for the particle’s position could then be built with 
some ‘𝑁 samples’ [6]. However, if you then choose to 
consider two variables simultaneously, you will 
invariably find that 𝑁9 samples are now required to 
construct the statistical model to the same level of 
accuracy as before [6]. More generally, the amount of 
data required to construct any model to a consistent 
level of accuracy scales exponentially with the 
dimensionality of the input [6]. 

HEP experiments, such as those taking place at the 
Large Hadron Collider are infamous for the sheer 
number of variables they track at any given time. 
Thus, it would be impractical at best and impossible 
at worst to create any meaningful model of an HEP 
event without some pre-processing to reduce the 
dimensionality of the data collected while minimising 
the amount of information lost in the process [6]. 

This problem of low-loss dimensionality reduction 
satisfies the previously mentioned criteria and is 
indeed where neural networks found some of their 
earliest success within the field [6]. 

Historically, feed-forward and recurrent neural 
networks only replaced ‘low-level’ operations within 
the overall process of data reduction [8]. Here, the 
emphasis was very much on identifying particle 
tracks, noise reduction and other general pattern 
recognition tasks based on ‘well understood’ particle 
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behaviour [6]. The subsequent ‘high-level’ 
operations, such as finding the ‘angular distribution’ 
of particle jets [8], were driven by more contentious 
physical models. More careful consideration of any 
potential model bias was needed here and thus such 
operations were often not completed through ANNs 
[8]. 

Deep neural networks in particular have also proven 
themselves to have several useful applications in HEP. 
One such application is event selection, which is the 
process by which events of interest are isolated from 
auxiliary events within a single signal [6]. What is 
particularly interesting here is that in recent years, it 
has been shown that, despite the dimensionality 
problem, deep networks given low-level data tend to 
be more accurate than those given high-level data [9]. 
Thus, astonishingly, making use of less human 
intelligence can sometimes produce more favourable 
results… 

Other Applications 

Applications of neural networks are not restricted to 
HEP; many different subfields within physics benefit 
from the technology. Consider, for example, the field 
of fluid dynamics. A major problem within this area is 
that although there exists an analytical framework 
which accurately describes fluid behaviour, namely 
the Navier-Stokes equations, solving these 
intractable equations for systems on reasonable 
scales often proves to be very computationally 
expensive [10]. As such, scientists are always on the 
lookout for methods which can accurately simulate 
fluid behaviour with a computational complexity 
lower than a full numerical solution. 

As was previously mentioned, multilayer neural 
networks are ‘universal approximators’ [7], thus one 
can immediately see the appeal in using ANNs to 
approximate the Navier-Stokes equations and 
generate accurate fluid simulations quickly. Indeed, 
many such networks have been built. One of note is 
‘FluidNet’; a convolutional neural network built in a 
recent Google – New York University collaboration 
[10] [11]. Here researchers were able to create an 
accurate smoke simulation with a computational 

runtime a remarkable two orders of magnitude lower 
than that for a traditional approximation method. 
Their results are shown in Fig. 3. 

 

Fig. 3. A frame from a smoke plume simulation. The plume 
on the left and right was obtained from a traditional 
approximation method and ‘FluidNet’ respectively. The 
two simulations seem to give very similar results; however, 
the one making use of an ANN runs far more quickly. Figure 
reproduced from [10]. 

The Future of ANNs in Physics 

The preceding sections mention the idea that it is 
often the case that an ANN is able outperform 
solutions based on human intelligence. It therefore 
follows that such networks must contain, in some 
abstract form, knowledge of which we are not yet 
aware. However, how would one go about retrieving 
this information from the myriad of parameters 
present within the model? This inability of neural 
networks to explain their decisions is often referred 
to as neural network ‘opacity’ [12] or, more 
affectionately, the ‘black box’ problem [13]. To date, 
this issue remains largely unsolved; however, let us 
speculate the potential benefits a future solution may 
bring. 

Perhaps the most impactful benefit would be the 
removal of training data bias [14]. To illustrate this, 
consider a peak detection ANN trained on simulated 
data. Simulations are often imperfect and so it may 
be the case that the simulated data is biased in some 
way; for example, it may be that all generated peaks 
are negatively skewed. This may lead the neural 
network to ‘believe’ that negative skew is a general 
characteristic of all peaks. Thus, the model may 
incorrectly classify positively skewed peaks as 
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background during a real experiment. If the network 
was transparent, however, and was able to explain its 
reasoning, scientists would be better able to identify 
this bias and remove it prior to model deployment. 
Such a change would undoubtedly reduce the 
systematic uncertainty present within the 
experiment. 

Other more exotic benefits have also been 
speculated. One such idea is perhaps best described 
as the automated generation of wisdom. Here the 
thinking is that the network’s ability to communicate 
its findings may enable us to more rapidly develop 
our existing theoretical knowledge. One may even 
imagine a network where, to quote Caltech physicist 
Jean-Roch Vlimant, “you would just throw data at this 
machine, and it would come back with the laws of 
nature” [15]. 

Such an idea seems fanciful right now, however, we 
have over recent years seen some real progress 
towards this endgame. Consider, for example, the 
recent work from the Lincoln Laboratory at MIT 
where researchers have developed the ‘Transparency 
by Design Network’ (or ‘TbD-net’) [16]. This neural 
network is not only capable of solving abstract ‘visual 
reasoning’ tasks but also outputting its decision-
making process as human-interpretable ‘attention 
masks’, which highlight regions of the image on which 
the network is currently focussed [16]. 

Conclusion 

It is clear at this point that artificial neural networks 
are one of the most revolutionary methods of data 
analyses to emerge in recent decades. Its applications 
in physics are far from cute novelties as 
demonstrated by the fact that the technology has 
already impacted several subfields and indeed 
contributed to many remarkable scientific 
achievements, including the discovery of the Higgs 
boson in 2012 [17]. The future of the technology 
looks brighter still, with one particularly exciting 
development being the rise of transparent neural 
networks. 

So, are we destined for a time when physicists are 
made redundant by our very own version of ‘Deep 
Thought’; the supercomputer immortalised in 
Douglas Adam’s ‘The Hitchhiker’s Guide to the 
Galaxy’? Probably not. Nevertheless, I am sure you 
would agree that machine learning will play a 
significant role in the scientific research of the years 
to come. 
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