
Results and Future Work
GAN Results
The generator is tested on unseen sets of oscillation 
parameters within the training 𝒑 range, as seen in Figure 3.

• The generator replicates the CAFAna simulated data 
within the Poisson error of each bin in the histogram. 
This is tested across the entire sin! 2𝜃"# and 𝛿$% space.

• The performance of the generator is evaluated based on:
the percentage of predicted spectra within the Poisson 
error and the cumulative error for all parameter 
combinations.

• Exploiting the trained generator, the likelihood surface is 
created by sampling uniformly in parameter space. The 
maximum likelihood parameter pair is found analytically 
and a 1𝜎 contour is determined using gradient descent –
shown in Figure 4.

Significance of our work
• Ability to draw samples of simulated oscillation events 

more rapidly than the Monte Carlo simulator.

• Inverse network can potentially extract oscillation 
parameters from experimental data in DUNE and other 
experiments. Also, statistical confidence intervals can be 
calculated using the differentiable generator.

Future works include adding systematic error parameters 
incurred inherently by DUNE to the input parameters 𝒑.

Figure 3. An example 𝑣! → 𝑣" oscillation event spectrum for a given sin# 2𝜃$% and 𝛿&'
parameter set. The generated spectrum is correct to within the Poisson error of the real 
spectrum. The Poisson error is reflective of the inherent error in DUNE measurements. 

Statistical Inference
Parameter & Confidence Interval Estimation

A log-likelihood surface in the parameter space is created 
using the generator by comparing it’s outputs to a toy 
experiment. 

The maximum likelihood estimators may be computed by 
inverting the GAN, determining the set of sin! 2𝜃"# and 𝛿$%
values which correspond to the toy experiment.

Adopting the gradients in the log-likelihood surface and a 
gradient descent technique, the confidence interval (contour 
line) of our estimator can be determined. This method is 
achievable due to the fact that the generator is differentiable.

Neutrino Oscillation Measurements with Model-
Assisted Generative Adversarial Nets

Introduction
Deep Underground Neutrino Experiment
• The Deep Underground Neutrino Experiment (DUNE) is a 

long baseline experiment which will study neutrino 
oscillations and measure its oscillation parameters. 

• It will also measure the CP violation in the neutrino sector, 
possibly explaining the matter-antimatter imbalance in our 
universe.
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Method
GAN Training
We use the analysis framework CAFAna [7] to create the 
𝑣& → 𝑣' oscillation event spectrums for given sets of 
sin! 2𝜃"# and 𝛿$%. 

Training loop

For generator(𝜃!", 𝛿#$) ≇ CAFAna(𝜃!", 𝛿#$) do:
sample 𝜃!", 𝛿#$ to get m pairs of parameters {𝑥!… 𝑥%} 
use generator to generate m histograms {𝐺(𝑥%)}
use CAFAna to generate m histograms {C(𝑥%)}

calculate discriminator loss:
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update discriminator with 𝐸& using Adam

calculate generator loss:

𝐸* = −
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update generator with 𝐸* using Adam

Generative Adversarial Networks (GAN)

Using a GAN, a generator can be trained to replicate a real 
image for a given set of input parameters, 𝒑. 

Here, the real image is a 1D histogram of the simulated
neutrino oscillation probability event spectrum for the 𝑣& → 𝑣'
regime, which are dependent on 𝒑: sin! 2𝜃"# and 𝛿$%.

Figure 2. The architecture of the GAN, demonstrating how the generator and discriminator 
are connected during training. Both the simulated real data and the generated fake data 
are given misleading labels and are inputted into the discriminator.

• The generator is a neural network that takes 𝒑 and outputs 
a 1D histogram representative of the neutrino event 
spectra, creating the fake dataset.  

• The discriminator is a neural network devoted to 
differentiating between the real simulated data from DUNE, 
and the fake histograms. For an unknown histogram input, 
a decision value, ,𝑦 between 0 (fake) and 1 (real) is 
outputted.

During training, random 𝒑 are inputted into the GAN and the 
discriminator and generator play a two-player minmax game -
set up shown in Figure 2. The ,𝑦 output is exploited to improve 
the generator histogram replication via backpropagation.

Figure 1. Example neutrino oscillation probability event spectrum, reconstructed for DUNE, 
as a function of neutrino energy for varying 𝛿&'.  Image taken courtesy of referenced 
literature [6].

Theory
Neutrino Oscillations
The neutrino mass eigenstates 𝑣( for 𝑗 = 1, 2, 3 are 
superposed, subject to the Pontecorvo-Maki-Nakagawa-
Sakata matrix [2], to create the neutrino flavour eigenstates 𝑣)
for 𝛼 = 𝑒, 𝜇, 𝜏 [3].

A phase difference is created during a neutrino flavour state 
evolution due to a mass difference ∆𝑚*( in 𝑣(, resulting in 
neutrino oscillations.

The oscillation probability for the 𝑣& → 𝑣' regime, is given by:
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is the neutrino energy and L is the baseline distance [4]. This 
probability is parameterised by the mixing angle 𝜃*( and the 
charge-parity (CP) violation phase 𝛿$% [5]. 

Figure 4. The likelihood surface with the maximum indicated by the red dot and 1𝜎 confidence 
interval for an example toy experiment (red contour line). The blue dots are random throws 
within the Poisson error of the toy experiment, calculated to show that they fall within the 
contour at the given confidence interval. 

Figure 1. The DUNE long baseline set-up, with an accelerator at Fermilab and the far detector 
1300km away. This schematic is taken courtesy of the referenced literature [1].

The Project
• We train a model-assisted Generative Adversarial 

Network to emulate existing Monte Carlo based neutrino 
simulations, from which we are able to draw samples for 
any given oscillation parameter-set more rapidly.

• Due to the differentiability and potential invertibility of 
the neural network, analytical extraction of the oscillation 
parameters for experimentally observed events, along with 
their statistical uncertainties, is achievable.
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