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One sentence summary

As of October 2020, adults aged 20-49 are the primary age group driving COVID-19 epidemics in the United States,
with children and teens contribuƟng disproporƟonately few infecƟons.

Summary

Following iniƟal declines, in mid 2020 a resurgence in transmission of novel coronavirus disease (COVID-19) oc-
curred in the US and Europe. As COVID-19 disease control becomes more localised, understanding the age de-
mographics driving transmission and how these affect the loosening of intervenƟons is crucial. We analyse ag-
gregated, age-specific mobility trends from more than 10 million individuals in the US and linked these mecha-
nisƟcally to age-specific COVID-19 mortality data. We esƟmate that as of October 2020, individuals aged 20-49
are the only age groups sustaining resurgent SARS-CoV-2 transmission with reproducƟon numbers well above
one, and that at least 65 of 100 COVID-19 infecƟons originate from individuals aged 20-49 in the US. TargeƟng
intervenƟons to adults aged 20-49 is an important consideraƟon in halƟng resurgent epidemics and prevenƟng
COVID-19-aƩributable deaths.

1 IntroducƟon

Following worldwide spread of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the im-
plementaƟon of large-scale non-pharmaceuƟcal intervenƟons has led to sustained declines in the number of re-
ported SARS-CoV-2 infecƟons and deaths from coronavirus disease 2019 (COVID-19) [1, 2]. However since mid
June, the daily number of reported COVID-19 cases is resurging in Europe and North America, and surpassed in
the United States alone 40,000 daily reported cases on June 26, and 100,000 on November 4 [3]. Demographic
analyses have shown that the share of individuals aged 20-29 among reported cases increased most, suggesƟng
that young adults may be driving re-surging epidemics [4]. However reported COVID-19 case data may not be
a reliable indicator of disease spread due to the large proporƟon of asymptomaƟc COVID-19, increased tesƟng,
and changing tesƟng behaviour [5]. Here, we use detailed, longitudinal, and age-specific populaƟon mobility and
COVID-19 mortality data to esƟmate how non-pharmaceuƟcal intervenƟons, changing contact intensiƟes, age,
and other factors have interplayed and led to resurgent disease spread. We test previous claims that resurgent
COVID-19 is a result of increased spread from young adults, idenƟfy the populaƟon age groups driving SARS-CoV-
2 spread across the US through October 29, 2020, and quanƟfy changes in transmission dynamics since schools
reopened.

Similar to many other respiratory diseases, the spread of SARS-CoV-2 occurs primarily through close human con-
tact, which, at a populaƟon level, is highly structured [6]. Prior to the implementaƟon of COVID-19 intervenƟons,
contacts concentrated among individuals of similar age, were highest among school-aged children and teens, and
also common between children/teens and their parents, and middle-aged adults and the elderly [6]. Since the
beginning of the pandemic, these contact paƩerns have changed substanƟally [7, 8, 9]. In the US, the Berkeley
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Interpersonal Contact Study indicates that in late March 2020 aŌer stay-at-home orders were issued, the average
number of daily contacts made by a single individual, also known as contact intensity, dropped to four or fewer
contacts per day [9]. Data from China show that infants and school-aged children and teens had almost no contact
to similarly aged children and teens in the first weeks aŌer stay-at-home orders, and reduced contact intensiƟes
with older individuals [7]. However, detailed human contact and mobility data have remained scarce, especially
longitudinally, although such data are essenƟal to beƩer understand the enginges of COVID-19 transmission [10].

2 Results

Cell-phone data suggest similar rebounds in mobility across age groups

We compiled a naƟonal-level, aggregate mobility data set using cell phone data from >10 million individuals with
Foursquare’s locaƟon technology, Pilgrim [11], which leverages a wide variety of mobile device signals to pin-
point the Ɵme, duraƟon, and locaƟon of user visits to locaƟons such as shops, parks, or universiƟes. Unlike the
populaƟon-level mobility trends published by Google from cell phone geolocaƟon data [12], the data are disaggre-
gated by age. User venue visits were aggregated and projected to esƟmate for each state and two metropolitan
areas daily percent changes in venue visits for individuals aged 18 − 24, 25 − 34, 35 − 44, 45 − 54, 55 − 64, and
65+ years relaƟve to the the baseline period February 3 - February 9, 2020 (Figs. S1 and S2, and Supplementary
materials).

Across theUS as awhole, themobility trends indicate substanƟal iniƟal declines in venue visits followedby a subse-
quent rebound for all age groups (Fig. 1A and Fig. S1). During the iniƟal phase of epidemic spread, trends declined
most strongly among individuals aged 18-24 years across almost all states and metropolitan areas, and subse-
quently tended to increasemost strongly among individuals aged 18-24 in themajority of states andmetropolitan
areas (Fig. S3), consistent with re-opening policies for restaurants, night clubs, and other venues [10, 13, 14]. Yet,
considering both the iniƟal decline and subsequent rebound unƟl October 29, 2020, our data indicate that mobil-
ity levels among individuals aged < 35 years have not increased above those observed among older individuals
(Fig. 1B and Fig. S3).

Mobile phone signals are challenging to analyse, owing e.g. to daily fluctuaƟons in the user panel providing lo-
caƟon data, imprecise geolocaƟon measurements, and changing user behaviour [15]. We cross-validated the
inferred mobility trends against age-specific mobility data from a second mobile phone intelligence provider,
Emodo. This second data set quanƟfied the daily proporƟons of age-straƟfied users who spent Ɵme outside their
home locaƟon, and also showed no evidence for faster mobility rebounds among young adults aged< 35 years as
compared to older age groups (see Supplementary materials). While other age-specific behavioural differences in
for example consistent social distancing, mask use, duraƟon of visits, or types of venues visited could also explain
age-specific differences in transmission risk [10, 13, 14, 16, 17], these observaƟons nonetheless led us to hypoth-
esize that the resurgent epidemics in the US may not be driven by increased transmission from young adults aged
20-34.
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ReconstrucƟng human contact paƩerns and SARS-CoV-2 transmission

To test this hypothesis and disentangle the various factors, we incorporated the mobility data into a Bayesian
contact-and-infecƟonmodel that describes Ɵme-changing contact and transmissiondynamics at state andmetropoli-
tan area-level across the US. For the Ɵme period prior to changes inmobility trends, we used data frompre-COVID-
19 contact surveys [6], and each locaƟons’s age composiƟon and populaƟon density to predict contact intensiƟes
between individuals grouped in 5-year age bands (Figs. S4 to S6), similar as in [18]. On weekends, contact in-
tensiƟes between school-aged children and teens are lower than on weekdays, while inter-generaƟonal contact
intensiƟes are higher. In themodel, the observed age-specificmobility trends of Figure 1 are then used to esƟmate
in each locaƟon (state or metropolitan area) daily changes in age-specific contact intensiƟes for individuals aged
20 and above. For younger individuals, for whomobility trends are not recorded, contact intensiƟes during school
closure periods were set to esƟmates from two contact surveys conducted post COVID-19 emergence [8, 7]. Af-
ter school reopening in August 2020, relaƟve changes in disease relevant contacts from and to children and teens
aged 0-19were esƟmated through themodel. Contact intensiƟes between children and teens weremodelled and
esƟmated separately, to account for potenƟally lower or higher disease relevant contacts between children and
teens in the context of exisƟng non-pharmaceuƟcal intervenƟons within and outside schools (see Materials and
methods). As in [19], the model further incorporates random effects in space, Ɵme, and by age to allow for un-
observed, potenƟally age-specific factors that could modulate disease-relevant contact paƩerns. These random
effects enabled us to idenƟfy signatures of age-specific, behavioral drivers of SARS-CoV-2 transmission beyond the
mobility data in Figure 1, that may underlie the highly heterogeneous epidemic trajectories across the US. Finally,
the reconstructed contact intensiƟes are used in the model to esƟmate the rate of SARS-CoV-2 transmission, and
subsequently infecƟons and deaths. Figure 0 in the extended abstract provides a model overview, and full details
are in the Supplementary materials.

EsƟmateddiseasedynamics closely reproduce age-specific COVID-19 aƩributable death counts

The contact-and-infecƟonmodelwas fiƩed to the Foursquaremobility trends, and age-specific, COVID-19-aƩributed
mortality Ɵme series data, which we recorded daily from publicly available sources in 43 US states, the District
of Columbia and New York City since March 15, 2020 (Fig. S7, see also Supplementary materials). Our overall
raƟonale was that, reflecƟng the highly structured nature of human contacts, transmissions from age groups are
received by specific other age groups, and mortality accrues in the age groups receiving infecƟons. Thus, working
back from the Ɵme evoluƟon of reliably documented, age-specific COVID-19 aƩributable deaths, it is possible to
reconstruct age-specific drivers of transmission during parƟcular periods in Ɵme. Inference was performed in a
Bayesian framework and restricted to 38 US states, the District of Columbia and New York City with at least 300
COVID-19-aƩributed deaths, giving a total of 8,676 observaƟon days. The esƟmated disease dynamics closely
reproduced the age-specific COVID-19 death counts (Fig. S8).

Figure 2 illustrates the model fits for New York City, Florida, California, and Arizona, showing that the inferred epi-
demic dynamics differed markedly across locaƟons. For example, in New York City, the epidemic accelerated for
at least 4 weeks since the 10th cumulaƟve death and unƟl age-specific reproducƟon numbers started to decline,
resulƟng in an epidemic of large magnitude as shown through the esƟmated number of infecƟous individuals
(Fig. 2, mid column). Subsequently, we find that reproducƟon numbers for all age groups were controlled to well
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Figure 1: Mobility trends, and esƟmated Ɵme evoluƟon of contact intensiƟes in the United States. (A) NaƟonal,
longitudinal mobility trends for individuals aged 18-24, 25-34, 35-44, 45-54, 55-64, 65+, relaƟve to the baseline
period February 3 to February 9, 2020. Projected per capita visits standardised daily visit volumes by the popu-
laƟon size in each locaƟon and age group. The verƟcal dashed lines show the dip and rebound dates since when
mobility trends began to decrease and increase, which were esƟmated from the Ɵme series data. (B) 1-week av-
erage of age-specific mobility trends between October 23, 2020 - October 29, 2020 across the United States. (C)
Inferred Ɵme evoluƟon of contact intensiƟes in California, calculated as per EquaƟon 4

DOI: https://doi.org/10.25561/82551 Page 5 of 47



07 January 2021 Imperial College COVID-19 Response Team

Figure 2: Model fits and key generated quanƟƟes for New York City, California, Florida and Arizona. (LeŌ) Ob-
served cumulaƟve COVID-19mortality data (dots) versus posteriormedian esƟmates (line) and 95% credible inter-
vals (ribbon). The verƟcal line indicates the collecƟon start date of age-specific death counts. (Middle) EsƟmated
number of infecƟous individuals by age (posterior median). (Right) EsƟmated age-specific effecƟve reproducƟon
number, posterior median (line) and 95% credible intervals (ribbon).
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below one except for individuals aged 20-49 (Fig. 2, rightmost column), resulƟng in a steady decline of infecƟous
individuals. In the model, children and teens returned to their pre-lockdown contact intensiƟes on August 24,
2020 or later, depending on when state administraƟons no longer mandated state-wide school closures, and rel-
aƟve decreases or increases in their disease relevant contact intensiƟes aŌer school-reopening were esƟmated.
Concomitantly, reproducƟon numbers from children aged 0-9 and teens aged 10-19 increased, but as of the last
observaƟon week in October, 2020 we find no strong evidence that their reproducƟon numbers have exceeded
one at populaƟon level in most states and metropolitan areas considered. Detailed situaƟon analyses for all loca-
Ɵons are presented in the supplemetary materials.

SARS-CoV-2 transmission is sustained only from age groups 20-49, and in some locaƟons also
from 10-19

Figure 3 summarises the epidemic situaƟon for all states and metropolitan areas evaluated, and the age groups
that sustain COVID-19 spread. In the last observaƟon week in October, 2020, the esƟmated reproducƟon number
across all locaƟons evaluated was highest from individuals aged 35-49 (1.40 [1.35-1.46]) and close to or above
one only for individuals aged 20-34 and 10-19 (Tables S1 and S2). The mechanism underlying the high reproduc-
Ɵon numbers from the age groups 20-34, 35-49 are esƟmated, high numbers of COVID-19 relevant contacts from
these age bands. This reflected in part the typical large contact intensiƟes from these age groups in comparison
to older individuals (Fig. S6), increasing mobility trends since April 2020 for these age groups (Fig. 1), and school
closures unƟl fall 2020. In addiƟon, from the death Ɵme series data, the model inferred characterisƟc random
effect signatures in Ɵme and by age across locaƟons (Fig. S9), which indicate elevated transmission risk per venue
visit for individuals aged 20-49 relaƟve to other age groups. Figure S10 visualises the combined, esƟmated effects
of mobility and behaviour on transmission risk, and reveals together with Figure 3 considerable heterogeneity
in age-specific transmission dynamics across locaƟons. While the model consistently esƟmates effecƟve repro-
ducƟon numbers close to or above one across all locaƟons from adults aged 35-49, disease dynamics are more
variable from young adults aged 20-34, with some states (Arizona, Florida, Texas) showing sustained transmis-
sion from young adults in May and June, and other states (e.g. Colorado, Illinois, Wisconsin) showing sustained
transmission from young adults since August. This suggests that targeted intervenƟons to adults aged 20-49, and
foremost adults aged 35-49, could bring resurgent COVID-19 epidemics under control.

The majority of COVID-19 infecƟons originate from age groups 20-49

To quanƟfy how age groups contribute to resurgent COVID-19, it is not enough to esƟmate reproducƟon numbers,
because reproducƟon numbers esƟmate the number of secondary infecƟons per infecƟous individual, and the
number of infecƟous individuals varies by age as a result of age-specific suscepƟbility gradients and age-specific
contact exposures. We therefore considered the reconstructed transmission flows, and calculated from the fiƩed
model the contribuƟon of each age group to new infecƟons in each US locaƟon over Ɵme. Across all locaƟons
evaluated, we esƟmate that unƟlmid August 2020, before schools were considered to re-open in the first locaƟons
in the model, the percent contribuƟon to onward spread was 41.0% [40.7%-41.3%] from individuals aged 35-49,
compared to 2.5% [1.9%-3.4%] from individuals aged 0-9, 4.3% [3.8%-5.0%] from individuals aged 10-19, 34.2%
[33.2%-35.1%] from individuals aged 20-34, 15.1% [14.5%-15.6%] from individuals aged 50-64, 2.6% [2.2%-3.0%]
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Figure 3: Time evoluƟon of esƟmated age-specific SARS-CoV-2 reproducƟon numbers across the US. Each panel
shows for the corresponding locaƟon (state ormetropolitan area) the esƟmated posterior probability that the daily
effecƟve reproducƟon number from individuals straƟfied in 7 age groups were below. Darker colours indicate low
probability that reproducƟon numbers were below one.
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from individuals aged 65-79 age group, and 0.3% [0.3%-0.3%] from individuals aged 80+ (Table S4). SpaƟally,
the contribuƟon of adults aged 35-49 were esƟmated to be remarkably homogeneous across states, whereas the
esƟmated contribuƟons of young adults aged 20-34 to COVID-19 spread tended to be higher in Southern, South-
western, and Western regions of the US (Fig. 4), in line with previous observaƟons [4].

CT

MANY

VT

New York City

DC

20−34 year olds

CT

MANY

VT

New York City

DC

35−49 year olds

25% 50%
Proportion of SARS−Cov−2 infections originating 
from age group until Aug 23rd 2020

Figure 4: EsƟmated spaƟal variaƟon in the share of young adults aged 20-34 and adults aged 35-49 to COVID-
19 spread unƟl mid August, 2020. Posterior median esƟmates of the contribuƟon to cumulated SARS-CoV-2
infecƟons unƟl August 17, 2020, prior to school reopening in the first states in the model. State-level COVID-19
epidemics not considered in this study are in grey.

No substanƟal shiŌs in age-specific disease dynamics over Ɵme

Over Ɵme, we found that the share of age groups among the observed COVID-19 aƩributable deaths was re-
markably constant (Fig. 5A and Fig. S11), which stands in contrast to the large fluctuaƟons in the share of age
groups among reported cases [4]. To test for shiŌs in the share of age groups among COVID-19 infecƟons, we
next back-calculated the number of expected, age-specific infecƟons per calendar month of aggregated COVID-19
aƩributable deaths using meta-analysis esƟmates of the age-specific COVID-19 infecƟon fatality raƟo [20]. This
empirical analysis suggested no staƟsƟcally significant trends in the share of age groups among COVID-19 infec-
Ɵons (Fig. 5B and Fig. S12), which is further supported by model esƟmates (Fig. 5C and Fig. S13). Based on the
combined mobility and death data, we find the reconstructed fluctuaƟons in age-specific reproducƟon numbers
had only a relaƟvely modest impact on the contribuƟon of age groups to onward spread over Ɵme, and no ev-
idence that young adults aged 20-34 were the primary source of resurgent COVID-19 in the US over summer
2020. These results underscore that, when tesƟng rates are heterogeneous and not populaƟon representaƟve, it
is challenging to determine the age-specific paƩern of transmission based only on reported case data.
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Figure 5: Share of age groups among COVID-19 aƩributable deaths and infecƟons in the United States. (Top)
ProporƟon of monthly observed deaths aƩributed to COVID-19 by age group. Age-specific COVID-19 aƩributable
deaths were recorded from state or city Departments of Health. Departments of Health used their own age
straƟficaƟon, and the observed data were re-esƟmated into common age groups across states with a Dirichlet-
MulƟnomial model. More details are given in the Supplementary materials. (Middle) ProporƟon of monthly
reported cases among 20-49 year olds. Monthly cases were back calculated the monthly cases by dividing the
observed monthly deaths to the infecƟon fatality rate esƟmated by Levin and colleagues [20]. The figure shows
the share of individuals aged 20 to 49 among monthly cases. (BoƩom) New daily esƟmated infecƟons by age
group for New York City, Florida, California and Arizona (posterior median).

School reopening has not resulted in significant increases in COVID-19 aƩributable deaths

Since August 2020, school closure mandates have been liŌed in 39 out of 40 of the US locaƟons evaluated in this
study, and provided 2,570 observaƟon days to esƟmate the impact of school reopening on COVID-19 spread. The
following analyses are therefore based on fewer data points than those aforemenƟoned, rely on mortality figures
accrued unƟl end of October 2020, as well as reported school case data from Florida and Texas, which were used
to define lower and upper bounds on cumulaƟve aƩack rates among children and teens aged 5-18 (see Materials
and methods). ReproducƟon numbers from teens aged 10-19 were esƟmated at slightly below one (0.75 [0.59-
0.89]) aŌer schools were considered to have reopened in the model (Fig. 3 and Table S2). ReproducƟon numbers
from children aged 0-9 were esƟmated to be lower than from teens, 0.54 [0.44-0.62], because at populaƟon-
level preschoolers have fewer contacts than school-aged children (Fig. S6). We find that the higher reproducƟon
numbers from children and teens resulted in age shiŌs in the sources of SARS-CoV-2 infecƟons, for instance in
October 2020 an esƟmated 3.3% [2.2%-4.4%] of infecƟons originated from children aged 0-9, 7.8% [5.1%-11.1%]
from teens aged 10-19, 32.7% [30.8%-34.8%] from 20-34, 37.8% [36.3%-39.2%] from 35-49, 15.4% [14.3%-16.4%]
from 50-64, 2.7% [2.3%-3.1%] from 65-79, and 0.3% [0.2%-0.3%] from individuals aged 80+ across all locaƟons
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evaluated (Table S5).

The reconstructed shiŌs in the age of COVID-19 sources aŌer school reopening are relaƟvely modest compared
to the typical age profile of infecƟon sources of pandemic flu [21], and reflect lower age-specific suscepƟbility to
SARS-CoV-2 transmission among children and teens, but also substanƟally fewer, inferred disease relevant con-
tacts from children and teens than would be expected from their corresponding pre-pandemic contact intensiƟes.
The mechanisms behind these beneficial effects remain unclear, but the model suggests they are substanƟal. In
retrospecƟve counterfactual scenarios we explored what COVID-19 death trajectories would have been expected
if schools had remained closed, and find a large overlap between the counterfactual and actual case and death
trajectories (Fig. 6, Fig. S15). However, since children and teens seed infecƟons in older age groups that are
more transmission efficient, we find that as of October 2020, school opening is associated with an esƟmated
28.3% [16.3%-42.4%] increase of COVID-19 infecƟons and an esƟmated 6.5% [3.7%-9.5%] increase in COVID-19
aƩributable deaths (Fig. S16 and Table S7). These findings indicate that adults aged 20-34 and 35-49 conƟnue to
be the only age groups that contribute disproporƟonally to COVID-19 spread relaƟve to their size in the popula-
Ɵon (Fig. S14), and that the impact of school reopening on resurgent COVID-19 is miƟgated most effecƟvely by
targeƟng disease control to adults aged 20-49.

Caveats

The findings of this study need to be considered in the context of the following limitaƟons. First, Rossen and
colleagues [22] observed that US excess deaths between the beginning of the pandemic and October, 2020 were
by 38% higher than the reported COVID-19 aƩributable deaths, suggesƟng that the death data on which this
analysis rests are subject to under-reporƟng. The scale of the US epidemics may be larger than we infer, and
our age-specific analyses may be biased if underreporƟng of deaths depends on age. However, due to the high
proporƟon of asymptomaƟc COVID-19 cases [5], underreporƟng is a substanƟally larger caveat for reported case
data, and in parƟcular the observed shiŌs in the share of age groups among reported cases [4, 23], which are
absent from the share of age groups among reported deaths (Fig. S11). This suggests that the age-specific death
data provide a more reliable picture into resurgent COVID-19 epidemics than reported cases. Second, we rely
on limited data from two contact surveys performed in the United Kingdom and China to characterise contact
paƩerns from and to younger individuals during school closure periods [7, 8], and this could have biased our
findings that children and teens have contributed negligibly to SARS-CoV-2 spread unƟl school reopening. To
address this limitaƟon, we explored the impact of higher inter-generaƟonal contact intensiƟes involving children
during school closure periods, and in these analyses the esƟmated contribuƟon of children aged 0-9 to onward
spread unƟl August 2020 remained below 5% and the contribuƟon of teens aged 10-19 remained below 12.5%
(see supplementary materials). Third, epidemiologic models are sensiƟve to assumpƟons on the infecƟon fatality
raƟo (IFR) that enables the esƟmaƟon of actual cases from observed deaths by age. Our analyses are based
on a meta-analysis that consolidates esƟmates from 27 studies and 34 geographic locaƟons [20]. To test the
assumed IFR, we compared the scale of the esƟmated resurgent epidemics against data from sero-prevalence
surveys conducted by the Centers for Disease Control and PrevenƟon (CDC) [24], and found good congruence
(Table S6 and supplementary materials). Fourth, the COVID-19 epidemic is more granular than considered in our
spaƟal modelling approach. SubstanƟal heterogeneity in disease transmission exists at county level [25], and our
situaƟon analyses by state andmetropolitan areas need to be interpreted as averages. FiŌh, themodel underlying
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our analyses relies to no excepƟon on simplifying mathemaƟcal assumpƟons on populaƟon-level disease spread,
which may be shown unsuitable as further evidence on SARS-Cov-2 transmission accumulates [26]. For instance,
the model assumes children and teens are as transmissible as adults, which has been challenging to quanƟfy to

Figure 6: RetrospecƟve counterfactual modelling scenarios exploring the impact of school reopening on COVID-
19-aƩributable cases. Shown in blue are esƟmated, daily COVID-19 cases (posterior median: blue line, 95% cred-
ible interval: blue ribbon) under the model unƟl October 29, 2020 for states in which state-wide school closures
were no longer mandated since August, 2020. In counterfactual modelling scenarios, the retrospecƟve impact
of conƟnued school closures was explored unƟl October 29, 2020, and the predicted case trajectories are shown
(posterior median: red line, 95% credible interval: red ribbon), revealing no staƟsƟcally significant differences.
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date [27], and falls short of accounƟng for populaƟon structure other than age, such as household seƫngs, where
aƩack rates have been esƟmated to be substanƟally higher than in non-household seƫngs [28]. It is possible
that the model under-esƟmates the impact of school reopening on SARS-Cov-2 transmission within households.
However, contact tracing in elementary schools and further data from countries that have re-opened schools have
provided no evidence for substanƟal transmission in schools, nor increased community-level infecƟon rates [29,
30], although most reports stem from locaƟons prior to resurgent COVID-19, and it remains challenging to predict
the longer-term impact of school reopening into winter 2020 [26, 31].

3 Conclusions

This study provides evidence that the resurgent COVID-19 epidemics in theUS are driven by adults aged 20-49, and
in parƟcular adults aged 35-49, before and aŌer school reopening. Unlike pandemic flu, these adults accounted
aŌer school reopening in October, 2020 for an esƟmated 70.5% [67.0%-73.9%] of SARS-CoV-2 infecƟons in the US
locaƟons considered, whereas less than 5% originated from children aged 0-9 and less than 10% from teens aged
10-19. The populaƟon mobility data, and the death data provided by state and city Departments of Health reveal
heterogeneous disease spread in the US, with higher transmission risk per venue visit aƩributed to individuals
aged 20-49 and over disƟnct Ɵme periods for many locaƟons, and younger epidemics with a greater share of
individuals aged 20-34 among cumulated infecƟons in the South, South-western, and Western regions of the US.
Over Ɵme, the share of age groups among reported deaths has been remarkably constant, suggesƟng that young
adults are unlikely to have been the primary source of resurgent epidemics since summer 2020, and that instead
changes in mobility and behaviour among the broader group of adults aged 20-49 underlie resurgent COVID-19 in
the US. This study indicates that targeƟng intervenƟons at adults aged 20-49, and in parƟcular adults aged 35-49,
could bring resurgent COVID-19 epidemics under control and avert deaths.

4 Materials and Methods

To characterise the role of age groups in driving resurgent COVID-19, we have taken a systemaƟc approach that
involved data collecƟon,mathemaƟcalmodelling, likelihood-based inference, and validaƟon against external data.
The following secƟons summarise our materials andmethods, and full technical details are in the Data Availability
Statement and the Supplementary Materials.

Data and data processing

The analyses presented in this study are based on age-specific COVID-19 aƩributable mortality counts that were
collected daily fromUS state and city Departments of Health (DoH), all-age COVID-19 death counts, all-age COVID-
19 case counts, COVID-19 case counts in school seƫngs K1-K15, human contact data before and during the pan-
demic, and human mobility data during the pandemic.

Briefly, age-specific COVID-19 cumulaƟve death counts were retrieved for 43 US states, the District of Columbia
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and New York City from city or state DoH websites, data repositories, or via data requests to DoH (table ??).
Data were checked for consistency and adjusted when necessary. Age-specific COVID-19 death Ɵme series were
reconstructed from cumulaƟve counts, and the Ɵme series were used for model fiƫng [32].

All-age daily COVID-19 case and death counts from February 01, 2020 unƟl October 30, 2020 regardless of age
were obtained from John Hopkins University (JHU) for all U.S. states and the District of Columbia [3], except New
York State. For New York State, daily COVID-19 death counts from February 01, 2020 unƟl October 30, 2020
were obtained from the New York Times’ (NYT) data [33]. For New York City, daily COVID-19 deaths counts were
obtained from the GitHub Repository [34]. The all-age death counts were used for model fiƫng prior to when
age-specific death counts were reported for each locaƟon, and all-age case counts were used for model fiƫng for
the enƟre study period.

COVID-19 case counts in school seƫngs K1-K15 were retrieved for Florida and Texas and matched with student
enrolment numbers in each school from the Common Core of Data America’s Public Schools database [35]. Cu-
mulaƟve aƩack rates were obtained by dividing cumulaƟve reported cases among students by student numbers,
and used for model fiƫng.

Human contact data before the pandemic were obtained from the Polymod study [6], and used to predict baseline
contact matrices during the early part of the pandemic for each locaƟon, similar as in [18]. Given the variaƟon
in contact paƩerns seen across survey seƫngs, baseline contact matrices for each study locaƟon in the US were
predicted based on each locaƟon’s populaƟon density and age composiƟon with a log linear regression model.
Age-specific populaƟon counts were obtained from [36]. Area measurements were obtained for every US states
and for New York City respecƟvely from [37] and [38]. Contact matrices were predicted by 5-year age bands for
weekdays and weekends, and used in the model. Human contact data during the pandemic were retrieved from
two surveys [8, 7], and used in the model to specify contact paƩerns from and to individuals aged 0-19 during
periods of school closure.

Age-specific human mobility trends were derived from the Foursquare Labs Inc. US first-party panel that includes
>10 million of opt-in, always-on acƟve users. From operated and partner apps, Foursquare collect a variety of
device signals against opted-in users including intermiƩent device GPS coordinate pings, WiFi signals, cell signal
strength, devicemodel, and operaƟng system version. A smaller set of labeled explicit check-ins are captured from
a porƟon of the user panel. Check-ins are explicit confirmaƟons that a user was at a given venue at a given point of
Ɵme, and serve as training labels for a non-linear model that is used to predict visits among users with unlabeled
visits in terms of probabiliƟes as to which venue users ulƟmately visited [11]. Visit probabiliƟes among panelists
were processed and aggregated by day, age, and study locaƟon, and standardised to daily per capita visits using
latest US Census data. Percent changes in daily venue visits by age and study locaƟonwere obtained relaƟve to the
baseline period February 3 to February 9, 2020, and used for analysis andmodel fiƫng. For validaƟon purposes, a
second mobility data set was obtained from Emodo. The Emodo data set quanƟfies the proporƟon of individuals
with at least one observed ping outside the user’s home locaƟon, out of a panel of individuals whose GPS enabled
devices emiƩed at least one ping on the corresponding day. Primary data were similarly aggregated by day, age,
and study locaƟon, standardised to daily per capita visits using latest US Census data, and mobility trends were
calculated relaƟve to the baseline period February 19 to March 3, 2020.
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StaƟsƟcal analysis of human mobility data and COVID-19 aƩributable death data

The age-specific human mobility data showed marked Ɵme trends, which were characterised in terms of three
phases defined by the dip date aŌer which the 15-day moving average fell below 10% compared to the average
value in the two prior weeks, and the rebound date that corresponded to the date at which the 15-day moving
average was lowest. Differences in the mobility trends relaƟve to the February baseline period, before and aŌer
rebound dates, and relaƟve to individuals aged 35-44 were assessed using Gamma regression models using log
link and locaƟon by age interacƟon covariates.

To characterise the Ɵme evoluƟon of deaths across locaƟons and validate model fits, age-specific COVID-19 at-
tributable deaths among the same age strata across locaƟonswere predicted bymonthwith Dirichlet-MulƟnomial
regression models. Trends in the share of age groups among monthly deaths were assessed by tesƟng for differ-
ences in the proporƟons in the first month relaƟve to subsequent months.

To test for potenƟal differences in age-specific transmission dynamics based on the collected death data and with-
out epidemic models, meta-analysis esƟmates of age-specific infecƟon fatality raƟos [20] were used to predict the
share of age groups among infecƟons frommonthly age-specific deaths. Trends in the share of age groups among
monthly infecƟons were assessed by tesƟng for differences in the proporƟons in the first month relaƟve to sub-
sequent months.

Contact-and-infecƟon model

To quanƟfy age-specific aspects of COVID-19 spread in heterogeneous populaƟons, we formulated an age-specific,
discrete-Ɵme renewal model in which disease transmission occurs via contact intensiƟes between populaƟon
groups straƟfied by 5-year age bands. The model has four key features described below. First, contact intensiƟes
vary in Ɵme and are inferred from signatures in the age-specific mortality and mobility data. This feature aims to
reflect the substanƟal changes in human contact paƩerns during the pandemic [7, 9, 8]. Second, the challenge
and value of the model to produce generalizable knowledge is to explain disease spread across mulƟple locaƟons
with disƟnct demographics simultaneously. To this end, the renewal equaƟons were embedded into a hierarchical
model in which informaƟon on disease spread is borrowed across locaƟons [39, 1]. Third, the model describes
disease spread during the iniƟal and later phase of the pandemic, asmobility paƩerns become less correlatedwith
transmission risk and schools reopen [40, 41]. This feature allowed us to test for changes in disease dynamics over
Ɵme. Fourth, the model is fiƩed in a Bayesian framework to the all-age and age-specific death data, all-age case
data, case data from schools, and age-specific human mobility trends [42]. This feature forced us to focus on a
model whose parameters are inferable from the data across all locaƟons. The model is described in detail in the
Supplementary materials.

Briefly, we consider populaƟons straƟfied by the 5-year age bandsA, such that

a ∈ A =
{

[0 − 4], [5 − 9], . . . , [75 − 79], [80 − 84], [85+]
}
, (1)

and denote the number of new infecƟons, c, on day t, in age band a, and locaƟon m as cm,t,a. In the renewal
equaƟon, past infecƟons are weighted by their relaƟve infecƟousness on day t, and the sum of these individuals
has contacts with individuals in other age groups. Contacts are described by the expected number of disease
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relevant human contacts one person in age a has with other individuals in age band a′ on day t in locaƟon m,
Cm,t,a,a′ . Upon contact, a proporƟon sm,t,a′ of individuals of age a′ on day t in locaƟonm remains suscepƟble to
SARS-CoV-2 infecƟon, and transmission occurs with probability ρa′ . Thus, the age-specific renewal equaƟon with
Ɵme-changing contact intensiƟes is

cm,t,a′ = sm,t,a′ρa′

∑
a

Cm,t,a,a′

( t−1∑
s=1

cm,s,a g(t− s)
)

(2)

where g quanƟfies the relaƟve infecƟousness of individuals s days aŌer infecƟon. An important feature of SARS-
CoV-2 transmission is that similarly to other coronaviruses but unlike pandemic influenza [43], suscepƟbility to
SARS-CoV-2 infecƟon increases with age [7, 44, 21]. Here, we used contact tracing data from Hunan province,
China [7] to specify lower suscepƟbility to SARS-CoV-2 infecƟon among children aged 0-9, and higher suscepƟbility
among individuals aged 60+, when compared to the 10-59 age group as part of the transmission probabiliƟes ρa′ .
Previously infected individuals are assumed to be immune to re-infecƟon within the analysis period, consistent
with mounƟng evidence for sustained anƟbody responses to SARS-CoV-2 anƟgens [45, 46], so that

sm,t,a′ = 1 −
∑t−1

s=1 cm,t,a′

Nm,a′
, (3)

whereNm,a′ denotes the populaƟon count in age group a′ and locaƟonm.

For adults aged 20+, the Ɵme changing contact intensiƟes were described in terms of the pre-pandemic baseline
contact intensiƟes in locaƟonm, whichwedenote byCm,a,a′ , and expected reducƟons in disease relevant contacts
from contacƟng individuals of age a on day t in locaƟonm, which we denote by ηm,t,a, and contacted individuals
of age a′ on day t in locaƟonm, ηm,t,a′ ,

Cm,t,a,a′ = ηm,t,a Cm,a,a′ ηm,t,a′ , (4)

where a, a′ ∈ {[20 − 24], . . . , [85+]}. Expected reducƟons in disease relevant contacts were specified as a
random effects model that included the observed, age-specific mobility trends as covariates. In the model, each
age-specific mobility trend was decoupled into three separate covariates that reflect the iniƟal pre-pandemic,
dip, and rebound phases in human mobility trends, so that previously observed decreases in correlaƟon between
mobility trends and transmission risk could be captured [47, 40, 41]. As the same number of venue visits in e.g.
Wyoming may translate to different transmission risk than in e.g. New York City, spaƟal random effects allowed
for scaling of mobility trends during the dip and rebound phase in each locaƟon. As venue visits do not capture
all aspects of transmission risk, the model further incorporates independently for each locaƟon autocorrelated
biweekly random effects to capture informaƟon on elevated, disease relevant contact intensiƟes and transmission
risk that is present in the death Ɵme series data. To test for age-specific signatures of elevated transmission risk,
the model further included for each locaƟon age-specific random effects for individuals aged 20-49.

For children and teens aged 0-20, mobility data are not available, and during periods of school closure the contact
intensiƟes from and to children and teens were set to the average contact intensiƟes reported in [7]. This implied
that relaƟve to pre-pandemic contact paƩerns, peer-based contacts were substanƟally reduced, whereas contacts
from an adult to children and teens increased slightly. In the model, schools were set to re-open on or aŌer
August 24, 2020 when state administraƟons no longer mandated state-wide school closures by that date [48, 49].
ThereaŌer, EquaƟon (4) was extended to include children and teens, and expected mobility reducƟons where
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esƟmated from the case and death data. In the absence of further data, a common average effect could be
esƟmated across locaƟons and children and teen age groups for the last two observaƟonmonths, ηm,t,a = ηchildren

for a ∈ [0− 20]. A further compound effect γ was added to modulate the number of disease relevant child/teen-
child/teen contacts, which we interpreted as reduced infecƟousness from children and teens and/or a posiƟve
impact of non-pharmaceuƟcal intervenƟons among school-aged children and teens.

Bayesian inference

Past age-specific disease dynamics across all locaƟons were inferred from age-specific death data available across
locaƟons, and age-specific mobility data. To do this, in the model, a proporƟon πm,a of new infecƟons in locaƟon
m of age a die, and the day of death is determined by the infecƟon-to-death distribuƟon, which was assumed to
be constant across age groups. The proporƟons πm,a were associated with a strongly informaƟve prior derived
from the meta-analysis of [20], but were allowed to deviate from the baseline infecƟon fatality raƟo through
locaƟon-specific random effects. The expected number of deaths in locaƟon m on day t in age band a, dm,t,a,
were aggregated to the reporƟng strata in each locaƟon, and fiƩed to the observed data using a NegaƟve Binomial
likelihoodmodel. When age-specific death datawere not available, themodel was fiƩed to all-age death datawith
a NegaƟve Binomial likelihood model. All-age case data were smoothed, and used to specify a lower bound on
the overall number of infecƟons cm,t =

∑
a cm,t,a through a student-t cumulaƟve density likelihood model. Case

data from schools were used to calculate empirical aƩack rates in school seƫngs during specified observaƟon
windows. In turn, the empirical aƩack rates were used to describe a lower bound on the actual aƩack rate among
5-18 year old children and teens in the same observaƟon periods in the model, using a normal cumulaƟve density
likelihood model. An upper bound on the actual aƩack rates was also specified by assuming that actual cases in
school seƫngswere under-reported atmost 10-fold, using a normal complementary cumulaƟve density likelihood
model. The contact-and-infecƟon model was fit with CmdStan release 2.23.0 (22 April 2020), using an adapƟve
Hamiltonian Monte Carlo (HMC) sampler [42]. 8 HMC chains were run in parallel for 1, 000 iteraƟons, of which
the first 400 iteraƟons were specified as warm-up. There were no divergent transiƟons.

Generated quanƟƟes

Results were reported in the age bands d ∈ D = {[0−9], [10−19], [20−34], [35−49], [50−64], [65−79], [80+]}.
The primary model outputs were aggregated correspondingly, e.g. the number of new infecƟons in locaƟonm on
day t in reporƟng age band dwas cm,t,d =

∑
a∈d cm,t,a. The effecƟve number of infecƟous individuals c∗ in loca-

Ɵonm and age band d on day twas calculated based on the renewalmodel (2), c∗m,t,d =
∑t−1

s=1 cm,s,dg(t−s), and
is shown in Figure 2. Following (2), the Ɵme-varying reproducƟon number on day t from one infecƟous person in a
in locaƟonm isRm,t,a =

∑
a′ sm,t,a′ ρa′ Cm,t,a,a′ , and the reproducƟon numbers were aggregated to the report-

ing strata based on the idenƟtyRm,t,d =
∑

a∈d(c∗m,t,a)/(
∑

k∈d c
∗
m,t,k)Rm,t,a, and are shown in Figure 2 and Ta-

bles S1-S2. The transmission flows from age group a to age group a′ at Ɵme t in locaƟonm are given byFm,t,a,a′ =
sm,t,a′ ρa′ Cm,t,a,a′ (

∑t−1
s=1 cm,s,ag(t−s)), and are aggregated usingFm,t,d,d′ =

∑
a∈d,a′∈d′ Fm,t,a,a′ . In turn, the

contribuƟons of age groups to COVID-19 spread are Sm,t,d = (
∑

d′ Fm,t,d,d′)/(
∑

d

∑
d′ Fm,t,d,d′), and are re-

ported in Tables S4. Cumulated COVID-19 aƩack rates were calculated throughAm,t,d = (
∑t

s=1 cm,s,d)/(Nm,d),
whereNm,d is the number of individuals in locaƟonm and age band d, and are reported in Table S6.
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ValidaƟon and sensiƟvity analyses

Reconstructed past transmission dynamics were assessed against external data on the scale of the epidemic from
seroprevalence surveys conducted across the US by the CDC [24]. ValidaƟon results are reported in the Supple-
mentary materials, suggesƟng larger discrepancies between model fit and seroprevalence data for ConnecƟcut
and New York City, with larger epidemics reconstructed in the model than the data suggest. The contact-and-
infecƟon model does not account for sustained spaƟal importaƟon of SARS-CoV-2 infecƟons such as from New
York City to ConnecƟcut, and may have over-esƟmated the magnitude of self-sustaining epidemic in locaƟons
receiving sustained SARS-Cov-2 importaƟons. However, we also note that the ConnecƟcut seroprevalence esƟ-
mates predict an infecƟon to observed case raƟo that is substanƟally below those of the other CDC seroprevalence
studies. The inferred contact paƩerns were assessed against external data from the BICS study that quanƟfied hu-
man contact paƩerns during the pandemic [9]. ValidaƟon results are reported in the Supplementary materials,
suggesƟng similarly strong reducƟons in human contact intensiƟes as in the survey data. Disaggregated by age,
the model reproduces highest contact intensiƟes among 35-44 year old individuals, comparaƟvely lower contact
intensiƟes from individuals aged 45+, and largest reducƟons in contact intensiƟes from individuals aged 25-34.
The survey data suggest that contact intensiƟes from individuals aged 18-24 could be higher than reconstructed
through the contact-and-infecƟonmodel, butwe also note large confidence intervals around the survey esƟmates.

SensiƟvity analyseswere conducted to assess centralmodelling assumpƟons on the infecƟon fatality raƟo, contact
intensiƟes among children and teens during periods of school closure, relaƟve suscepƟbility of children and teens
to SARS-CoV-2 infecƟon, and are reported in the Supplementary materials. Our findings on the age groups that
drive SARS-CoV-2 transmission were found to be robust to these assumpƟons.
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6 Supplementary Tables and Figures

Table S1: EsƟmated probability that age-specific reproducƟon numbers were below one for the week October
19, 2020 - October 25, 2020. Posterior mean esƟmates are shown in percent.

Age of infecƟous individuals (years)
LocaƟon Overall [0 − 9] [10 − 19] [20 − 34] [35 − 49] [50 − 64] [65 − 79] 80+
All locaƟons 0.0% 100.0% 100.0% 0.0% 0.0% 100.0% 100.0% 100.0%
Alabama 22.9% 100.0% 100.0% 0.5% 0.0% 89.4% 100.0% 100.0%
Alaska - - - - - - - -
Arizona 57.5% 100.0% 99.7% 4.5% 0.0% 100.0% 100.0% 100.0%
Arkansas - - - - - - - -
California 66.7% 100.0% 100.0% 0.1% 0.0% 100.0% 100.0% 100.0%
Colorado 0.1% 100.0% 99.9% 0.0% 0.0% 96.9% 100.0% 100.0%
ConnecƟcut 0.0% 100.0% 89.0% 0.0% 0.0% 5.7% 100.0% 100.0%
Delaware 0.7% 100.0% 99.7% 0.0% 0.0% 2.3% 100.0% 100.0%
District of Columbia 64.7% 100.0% 100.0% 11.0% 16.4% 100.0% 100.0% 100.0%
Florida 99.3% 100.0% 100.0% 65.8% 7.0% 100.0% 100.0% 100.0%
Georgia 50.3% 100.0% 100.0% 13.2% 1.5% 100.0% 100.0% 100.0%
Hawaii - - - - - - - -
Idaho 0.2% 100.0% 100.0% 0.0% 0.0% 99.9% 100.0% 100.0%
Illinois 1.2% 100.0% 90.6% 0.0% 0.0% 61.6% 100.0% 100.0%
Indiana 0.0% 100.0% 99.0% 0.0% 0.0% 2.4% 100.0% 100.0%
Iowa 1.2% 100.0% 98.2% 0.1% 0.0% 17.2% 100.0% 100.0%
Kansas 43.4% 100.0% 100.0% 6.7% 0.1% 94.6% 100.0% 100.0%
Kentucky 0.0% 100.0% 100.0% 0.0% 0.0% 36.9% 100.0% 100.0%
Louisiana 26.4% 100.0% 100.0% 2.6% 1.4% 100.0% 100.0% 100.0%
Maine - - - - - - - -
Maryland 4.0% 100.0% 90.8% 0.1% 0.0% 44.8% 100.0% 100.0%
MassachuseƩs 14.5% 100.0% 94.1% 0.5% 0.0% 70.6% 100.0% 100.0%
Michigan 2.3% 100.0% 96.6% 0.1% 0.0% 52.3% 100.0% 100.0%
Minnesota 0.1% 100.0% 93.3% 0.0% 0.0% 22.4% 100.0% 100.0%
Mississippi 68.8% 100.0% 100.0% 9.1% 0.0% 99.7% 100.0% 100.0%
Missouri 21.5% 100.0% 100.0% 0.6% 0.0% 77.2% 100.0% 100.0%
Montana - - - - - - - -
Nebraska - - - - - - - -
Nevada 35.6% 100.0% 100.0% 0.1% 0.1% 100.0% 100.0% 100.0%
New Hampshire 0.1% 100.0% 98.6% 0.0% 0.0% 0.2% 100.0% 100.0%
New Jersey 0.0% 100.0% 94.0% 0.0% 0.0% 11.4% 100.0% 100.0%
New Mexico 1.3% 100.0% 98.7% 0.0% 0.0% 72.4% 100.0% 100.0%
New York - - - - - - - -
New York City 31.5% 100.0% 100.0% 0.1% 2.9% 100.0% 100.0% 100.0%
North Carolina 7.0% 100.0% 99.0% 0.1% 0.0% 59.7% 100.0% 100.0%
North Dakota 15.5% 100.0% 100.0% 0.0% 0.0% 98.2% 100.0% 100.0%
Ohio - - - - - - - -
Oklahoma 7.9% 100.0% 100.0% 0.1% 0.0% 99.7% 100.0% 100.0%
Oregon 2.6% 100.0% 100.0% 0.0% 0.0% 87.7% 100.0% 100.0%
Pennsylvania 0.2% 100.0% 87.3% 0.0% 0.0% 1.5% 100.0% 100.0%
Rhode Island 0.0% 100.0% 89.8% 0.0% 0.0% 19.0% 100.0% 100.0%
South Carolina 33.4% 100.0% 100.0% 2.4% 0.1% 99.5% 100.0% 100.0%
South Dakota - - - - - - - -
Tennessee 8.6% 100.0% 100.0% 0.0% 0.0% 80.7% 100.0% 100.0%
Texas 98.9% 100.0% 100.0% 56.2% 3.1% 100.0% 100.0% 100.0%
Utah 0.1% 100.0% 95.6% 0.0% 0.0% 100.0% 100.0% 100.0%
Vermont - - - - - - - -
Virginia 48.8% 100.0% 99.9% 13.5% 0.0% 92.9% 100.0% 100.0%
Washington 32.3% 100.0% 100.0% 2.3% 0.6% 100.0% 100.0% 100.0%
West Virginia - - - - - - - -
Wisconsin 0.0% 100.0% 99.6% 0.0% 0.0% 1.2% 100.0% 100.0%
Wyoming - - - - - - - -
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Table S2: EsƟmated age-specific reproducƟon numbers for the week October 19, 2020 to October 25, 2020.
Posterior median esƟmates and 95% credible intervals are reported.

Age of infecƟous individuals (years)
LocaƟon Overall [0 − 9] [10 − 19] [20 − 34] [35 − 49] [50 − 64] [65 − 79] 80+
All locaƟons 1.10 [1.07-1.15] 0.54 [0.44-0.62] 0.75 [0.59-0.89] 1.29 [1.23-1.36] 1.40 [1.35-1.46] 0.93 [0.89-0.97] 0.43 [0.40-0.45] 0.12 [0.11-0.12]
Alabama 1.05 [0.93-1.24] 0.50 [0.39-0.60] 0.70 [0.54-0.87] 1.20 [1.04-1.45] 1.34 [1.19-1.58] 0.94 [0.85-1.04] 0.45 [0.40-0.50] 0.12 [0.11-0.13]
Alaska - - - - - - - -
Arizona 0.98 [0.87-1.22] 0.53 [0.42-0.64] 0.74 [0.58-0.93] 1.16 [0.98-1.50] 1.28 [1.12-1.58] 0.77 [0.70-0.85] 0.39 [0.36-0.43] 0.11 [0.10-0.12]
Arkansas - - - - - - - -
California 0.98 [0.91-1.11] 0.53 [0.42-0.63] 0.73 [0.56-0.89] 1.15 [1.05-1.34] 1.21 [1.13-1.38] 0.83 [0.78-0.89] 0.37 [0.35-0.41] 0.11 [0.10-0.11]
Colorado 1.18 [1.07-1.33] 0.54 [0.44-0.65] 0.73 [0.57-0.90] 1.38 [1.24-1.58] 1.50 [1.36-1.68] 0.89 [0.79-1.00] 0.38 [0.33-0.44] 0.10 [0.09-0.12]
ConnecƟcut 1.32 [1.16-1.58] 0.58 [0.46-0.69] 0.87 [0.68-1.08] 1.53 [1.30-1.87] 1.70 [1.49-2.03] 1.11 [0.98-1.29] 0.44 [0.38-0.52] 0.12 [0.11-0.14]
Delaware 1.23 [1.05-1.50] 0.52 [0.41-0.64] 0.73 [0.57-0.93] 1.48 [1.24-1.85] 1.49 [1.26-1.82] 1.15 [1.00-1.31] 0.63 [0.55-0.74] 0.15 [0.13-0.18]
District of Columbia 0.96 [0.79-1.20] 0.41 [0.31-0.52] 0.54 [0.42-0.70] 1.14 [0.93-1.43] 1.10 [0.91-1.34] 0.59 [0.49-0.74] 0.28 [0.22-0.37] 0.15 [0.12-0.20]
Florida 0.85 [0.79-0.96] 0.46 [0.38-0.54] 0.64 [0.50-0.78] 0.98 [0.89-1.13] 1.07 [0.98-1.22] 0.78 [0.73-0.84] 0.39 [0.36-0.42] 0.10 [0.10-0.11]
Georgia 1.00 [0.78-1.27] 0.45 [0.36-0.53] 0.63 [0.49-0.77] 1.19 [0.90-1.56] 1.29 [1.02-1.60] 0.73 [0.65-0.82] 0.29 [0.25-0.33] 0.08 [0.07-0.09]
Hawaii - - - - - - - -
Idaho 1.38 [1.10-1.64] 0.48 [0.38-0.58] 0.63 [0.49-0.79] 1.68 [1.34-1.99] 1.69 [1.35-2.00] 0.83 [0.73-0.94] 0.42 [0.37-0.48] 0.11 [0.09-0.12]
Illinois 1.11 [1.01-1.23] 0.62 [0.50-0.74] 0.87 [0.67-1.07] 1.25 [1.12-1.41] 1.43 [1.29-1.58] 0.98 [0.88-1.09] 0.45 [0.39-0.51] 0.12 [0.11-0.14]
Indiana 1.22 [1.10-1.39] 0.58 [0.47-0.69] 0.79 [0.61-0.97] 1.37 [1.20-1.61] 1.56 [1.40-1.78] 1.11 [1.00-1.23] 0.51 [0.45-0.58] 0.14 [0.12-0.16]
Iowa 1.09 [1.01-1.20] 0.56 [0.44-0.69] 0.78 [0.59-0.98] 1.17 [1.06-1.32] 1.41 [1.31-1.57] 1.04 [0.96-1.13] 0.55 [0.51-0.60] 0.15 [0.14-0.17]
Kansas 1.01 [0.87-1.16] 0.51 [0.40-0.62] 0.70 [0.54-0.88] 1.15 [0.96-1.35] 1.28 [1.09-1.47] 0.90 [0.81-1.03] 0.43 [0.38-0.50] 0.12 [0.10-0.14]
Kentucky 1.14 [1.05-1.29] 0.50 [0.40-0.61] 0.66 [0.51-0.82] 1.26 [1.15-1.46] 1.46 [1.35-1.67] 1.01 [0.94-1.10] 0.45 [0.40-0.50] 0.12 [0.11-0.13]
Louisiana 1.09 [0.83-1.42] 0.50 [0.40-0.61] 0.68 [0.53-0.84] 1.37 [1.00-1.82] 1.37 [1.04-1.76] 0.77 [0.67-0.87] 0.33 [0.29-0.37] 0.09 [0.08-0.10]
Maine - - - - - - - -
Maryland 1.10 [0.99-1.31] 0.63 [0.50-0.76] 0.86 [0.65-1.08] 1.22 [1.07-1.51] 1.41 [1.26-1.69] 1.01 [0.91-1.12] 0.43 [0.38-0.49] 0.12 [0.10-0.13]
MassachuseƩs 1.07 [0.94-1.25] 0.57 [0.45-0.68] 0.84 [0.65-1.04] 1.25 [1.07-1.50] 1.33 [1.16-1.55] 0.96 [0.85-1.09] 0.41 [0.36-0.47] 0.11 [0.10-0.13]
Michigan 1.17 [1.00-1.37] 0.59 [0.47-0.70] 0.82 [0.64-1.01] 1.33 [1.11-1.61] 1.50 [1.29-1.75] 1.00 [0.84-1.18] 0.49 [0.42-0.59] 0.13 [0.11-0.16]
Minnesota 1.15 [1.06-1.28] 0.64 [0.51-0.78] 0.84 [0.65-1.05] 1.27 [1.15-1.45] 1.46 [1.34-1.63] 1.04 [0.94-1.14] 0.47 [0.42-0.51] 0.13 [0.11-0.14]
Mississippi 0.96 [0.85-1.16] 0.46 [0.37-0.56] 0.67 [0.52-0.84] 1.11 [0.96-1.40] 1.25 [1.10-1.51] 0.85 [0.76-0.95] 0.38 [0.33-0.43] 0.10 [0.09-0.12]
Missouri 1.05 [0.93-1.15] 0.50 [0.40-0.60] 0.67 [0.52-0.83] 1.18 [1.04-1.32] 1.32 [1.17-1.46] 0.96 [0.87-1.06] 0.46 [0.41-0.51] 0.12 [0.11-0.14]
Montana - - - - - - - -
Nebraska - - - - - - - -
Nevada 1.04 [0.89-1.32] 0.52 [0.41-0.63] 0.69 [0.54-0.87] 1.29 [1.09-1.64] 1.29 [1.10-1.64] 0.73 [0.63-0.85] 0.33 [0.27-0.39] 0.08 [0.07-0.10]
New Hampshire 1.22 [1.08-1.42] 0.50 [0.39-0.63] 0.75 [0.56-0.97] 1.33 [1.17-1.60] 1.49 [1.31-1.78] 1.23 [1.07-1.40] 0.50 [0.42-0.58] 0.12 [0.10-0.14]
New Jersey 1.28 [1.10-1.59] 0.61 [0.49-0.73] 0.85 [0.66-1.04] 1.51 [1.26-1.94] 1.67 [1.44-2.05] 1.09 [0.95-1.26] 0.47 [0.41-0.55] 0.13 [0.11-0.16]
New Mexico 1.10 [1.01-1.28] 0.53 [0.42-0.65] 0.78 [0.60-0.97] 1.27 [1.16-1.50] 1.38 [1.26-1.64] 0.97 [0.89-1.07] 0.47 [0.41-0.54] 0.12 [0.11-0.14]
New York - - - - - - - -
New York City 1.09 [0.83-1.59] 0.48 [0.38-0.59] 0.63 [0.48-0.80] 1.52 [1.12-2.22] 1.28 [0.99-1.75] 0.61 [0.52-0.71] 0.28 [0.24-0.32] 0.08 [0.07-0.09]
North Carolina 1.07 [0.98-1.20] 0.54 [0.43-0.66] 0.76 [0.59-0.96] 1.16 [1.06-1.34] 1.37 [1.26-1.56] 0.99 [0.92-1.08] 0.45 [0.41-0.50] 0.12 [0.11-0.13]
North Dakota 1.07 [0.94-1.19] 0.51 [0.39-0.65] 0.62 [0.46-0.81] 1.33 [1.17-1.50] 1.25 [1.11-1.39] 0.87 [0.75-0.99] 0.40 [0.33-0.48] 0.12 [0.09-0.14]
Ohio - - - - - - - -
Oklahoma 1.15 [0.95-1.40] 0.49 [0.39-0.60] 0.66 [0.51-0.81] 1.38 [1.11-1.71] 1.45 [1.20-1.74] 0.85 [0.76-0.95] 0.40 [0.35-0.45] 0.11 [0.10-0.12]
Oregon 1.21 [1.00-1.53] 0.43 [0.34-0.53] 0.58 [0.45-0.72] 1.43 [1.16-1.82] 1.52 [1.26-1.91] 0.93 [0.82-1.05] 0.52 [0.47-0.59] 0.13 [0.12-0.15]
Pennsylvania 1.21 [1.07-1.41] 0.62 [0.50-0.75] 0.88 [0.68-1.09] 1.31 [1.13-1.61] 1.54 [1.35-1.82] 1.15 [1.01-1.29] 0.54 [0.47-0.61] 0.15 [0.13-0.17]
Rhode Island 1.18 [1.07-1.37] 0.56 [0.44-0.69] 0.85 [0.64-1.08] 1.36 [1.20-1.63] 1.50 [1.36-1.74] 1.06 [0.94-1.19] 0.53 [0.48-0.60] 0.15 [0.13-0.17]
South Carolina 1.03 [0.87-1.23] 0.43 [0.35-0.52] 0.61 [0.47-0.75] 1.22 [1.00-1.48] 1.31 [1.10-1.56] 0.87 [0.78-0.97] 0.44 [0.39-0.49] 0.11 [0.10-0.12]
South Dakota - - - - - - - -
Tennessee 1.11 [0.95-1.33] 0.47 [0.38-0.57] 0.64 [0.49-0.79] 1.32 [1.11-1.60] 1.39 [1.19-1.66] 0.95 [0.86-1.06] 0.42 [0.37-0.48] 0.11 [0.10-0.13]
Texas 0.86 [0.79-0.97] 0.54 [0.45-0.62] 0.75 [0.60-0.89] 0.99 [0.88-1.16] 1.09 [1.00-1.25] 0.68 [0.64-0.74] 0.31 [0.28-0.33] 0.09 [0.08-0.09]
Utah 1.20 [1.07-1.38] 0.63 [0.49-0.77] 0.81 [0.62-1.03] 1.45 [1.28-1.69] 1.47 [1.33-1.68] 0.76 [0.68-0.86] 0.32 [0.27-0.36] 0.09 [0.08-0.11]
Vermont - - - - - - - -
Virginia 1.00 [0.93-1.12] 0.53 [0.42-0.63] 0.72 [0.56-0.89] 1.06 [0.96-1.21] 1.30 [1.21-1.46] 0.94 [0.88-1.02] 0.41 [0.38-0.45] 0.11 [0.10-0.12]
Washington 1.06 [0.84-1.38] 0.38 [0.31-0.45] 0.49 [0.38-0.59] 1.29 [1.00-1.70] 1.30 [1.04-1.66] 0.79 [0.69-0.91] 0.39 [0.34-0.45] 0.10 [0.09-0.11]
West Virginia - - - - - - - -
Wisconsin 1.23 [1.10-1.38] 0.54 [0.43-0.66] 0.75 [0.58-0.93] 1.34 [1.17-1.54] 1.59 [1.41-1.79] 1.13 [1.01-1.26] 0.49 [0.44-0.56] 0.13 [0.12-0.15]
Wyoming - - - - - - - -
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Table S3: EsƟmated age-specific reproducƟon numbers in the week August 17, 2020 to August 23, 2020. Pos-
terior median esƟmates and 95% credible intervals are reported. EsƟmates correspond to the last week before
schools were set to reopen in the first US locaƟons in the model.

Age of infecƟous individuals (years)
LocaƟon Overall [0 − 9] [10 − 19] [20 − 34] [35 − 49] [50 − 64] [65 − 79] 80+
All locaƟons 0.92 [0.89-0.95] 0.57 [0.54-0.60] 0.73 [0.69-0.77] 1.01 [0.97-1.06] 1.14 [1.10-1.18] 0.73 [0.71-0.75] 0.43 [0.41-0.44] 0.23 [0.22-0.24]
Alabama 0.92 [0.83-1.02] 0.54 [0.45-0.64] 0.69 [0.58-0.82] 1.00 [0.88-1.15] 1.15 [1.05-1.29] 0.77 [0.70-0.83] 0.47 [0.43-0.51] 0.25 [0.23-0.27]
Alaska - - - - - - - -
Arizona 0.82 [0.76-0.91] 0.58 [0.48-0.68] 0.75 [0.63-0.88] 0.87 [0.78-1.01] 1.05 [0.97-1.18] 0.65 [0.61-0.70] 0.40 [0.37-0.43] 0.22 [0.20-0.23]
Arkansas - - - - - - - -
California 0.91 [0.87-0.97] 0.58 [0.51-0.67] 0.74 [0.65-0.85] 0.99 [0.93-1.07] 1.12 [1.07-1.20] 0.76 [0.72-0.79] 0.44 [0.42-0.47] 0.24 [0.22-0.25]
Colorado 1.03 [0.92-1.13] 0.62 [0.52-0.73] 0.78 [0.66-0.91] 1.10 [0.98-1.24] 1.29 [1.16-1.42] 0.78 [0.70-0.86] 0.42 [0.38-0.47] 0.22 [0.20-0.25]
ConnecƟcut 1.07 [0.97-1.19] 0.58 [0.50-0.66] 0.76 [0.65-0.87] 1.18 [1.04-1.37] 1.38 [1.23-1.56] 0.83 [0.74-0.93] 0.46 [0.41-0.52] 0.25 [0.22-0.28]
Delaware 1.02 [0.91-1.15] 0.52 [0.42-0.64] 0.67 [0.54-0.82] 1.18 [1.04-1.36] 1.26 [1.11-1.44] 0.88 [0.79-0.98] 0.58 [0.53-0.65] 0.31 [0.28-0.34]
District of Columbia 1.01 [0.88-1.17] 0.42 [0.32-0.53] 0.56 [0.43-0.71] 1.20 [1.04-1.40] 1.16 [1.01-1.33] 0.61 [0.53-0.70] 0.27 [0.22-0.32] 0.14 [0.12-0.17]
Florida 0.99 [0.87-1.14] 0.55 [0.48-0.62] 0.70 [0.61-0.79] 1.15 [0.97-1.38] 1.25 [1.08-1.46] 0.75 [0.70-0.81] 0.44 [0.41-0.48] 0.24 [0.22-0.25]
Georgia 0.86 [0.75-1.01] 0.43 [0.38-0.49] 0.56 [0.50-0.64] 0.97 [0.81-1.20] 1.07 [0.92-1.27] 0.65 [0.59-0.71] 0.34 [0.30-0.37] 0.18 [0.16-0.20]
Hawaii - - - - - - - -
Idaho 0.85 [0.71-1.04] 0.44 [0.35-0.54] 0.55 [0.45-0.68] 0.98 [0.80-1.25] 1.02 [0.83-1.28] 0.64 [0.56-0.72] 0.39 [0.35-0.44] 0.21 [0.18-0.23]
Illinois 1.08 [1.00-1.16] 0.69 [0.60-0.79] 0.88 [0.76-1.01] 1.17 [1.06-1.29] 1.36 [1.25-1.47] 0.88 [0.78-0.96] 0.52 [0.46-0.57] 0.28 [0.25-0.30]
Indiana 1.04 [0.94-1.13] 0.58 [0.49-0.68] 0.73 [0.63-0.86] 1.10 [0.97-1.23] 1.31 [1.18-1.42] 0.90 [0.82-0.98] 0.53 [0.47-0.58] 0.28 [0.25-0.31]
Iowa 1.05 [0.95-1.13] 0.63 [0.50-0.78] 0.79 [0.63-0.98] 1.09 [0.96-1.20] 1.33 [1.21-1.45] 0.91 [0.82-0.98] 0.60 [0.55-0.66] 0.32 [0.29-0.35]
Kansas 1.17 [1.05-1.34] 0.57 [0.46-0.71] 0.72 [0.58-0.89] 1.30 [1.12-1.54] 1.46 [1.29-1.68] 0.91 [0.82-1.01] 0.53 [0.47-0.59] 0.28 [0.25-0.31]
Kentucky 1.02 [0.92-1.09] 0.51 [0.42-0.61] 0.64 [0.53-0.77] 1.08 [0.96-1.19] 1.28 [1.16-1.38] 0.84 [0.77-0.91] 0.47 [0.42-0.52] 0.25 [0.23-0.27]
Louisiana 0.87 [0.73-1.04] 0.49 [0.43-0.56] 0.63 [0.56-0.73] 1.02 [0.81-1.30] 1.08 [0.89-1.30] 0.65 [0.58-0.72] 0.35 [0.32-0.39] 0.19 [0.17-0.21]
Maine - - - - - - - -
Maryland 0.96 [0.87-1.03] 0.66 [0.56-0.78] 0.85 [0.71-1.00] 1.01 [0.90-1.12] 1.20 [1.09-1.30] 0.80 [0.72-0.87] 0.45 [0.41-0.50] 0.25 [0.22-0.27]
MassachuseƩs 1.02 [0.93-1.12] 0.63 [0.54-0.73] 0.82 [0.70-0.95] 1.11 [0.99-1.25] 1.29 [1.16-1.42] 0.83 [0.74-0.93] 0.47 [0.41-0.53] 0.25 [0.22-0.28]
Michigan 1.03 [0.88-1.16] 0.64 [0.54-0.76] 0.82 [0.69-0.96] 1.09 [0.90-1.28] 1.33 [1.14-1.52] 0.81 [0.68-0.95] 0.52 [0.44-0.61] 0.27 [0.24-0.32]
Minnesota 1.03 [0.95-1.12] 0.74 [0.61-0.89] 0.93 [0.77-1.11] 1.08 [0.97-1.19] 1.30 [1.19-1.41] 0.85 [0.77-0.92] 0.50 [0.45-0.54] 0.27 [0.25-0.29]
Mississippi 0.90 [0.81-1.00] 0.48 [0.39-0.57] 0.62 [0.52-0.74] 1.00 [0.87-1.14] 1.13 [1.01-1.26] 0.75 [0.67-0.83] 0.42 [0.37-0.47] 0.23 [0.20-0.25]
Missouri 1.15 [1.07-1.25] 0.56 [0.46-0.67] 0.70 [0.58-0.84] 1.27 [1.16-1.41] 1.44 [1.33-1.58] 0.93 [0.86-1.01] 0.55 [0.51-0.60] 0.29 [0.27-0.32]
Montana - - - - - - - -
Nebraska - - - - - - - -
Nevada 0.83 [0.75-0.95] 0.62 [0.51-0.75] 0.79 [0.65-0.96] 0.95 [0.84-1.12] 0.99 [0.88-1.14] 0.59 [0.52-0.66] 0.33 [0.29-0.38] 0.18 [0.16-0.20]
New Hampshire 1.01 [0.89-1.14] 0.59 [0.45-0.75] 0.75 [0.57-0.96] 1.12 [0.97-1.30] 1.24 [1.09-1.43] 0.87 [0.77-0.97] 0.48 [0.42-0.54] 0.25 [0.23-0.28]
New Jersey 0.94 [0.84-1.06] 0.53 [0.47-0.61] 0.70 [0.61-0.80] 1.06 [0.92-1.24] 1.21 [1.08-1.37] 0.77 [0.69-0.86] 0.47 [0.42-0.52] 0.25 [0.23-0.28]
New Mexico 0.97 [0.91-1.03] 0.65 [0.53-0.79] 0.82 [0.67-1.00] 1.06 [0.97-1.14] 1.20 [1.12-1.27] 0.79 [0.73-0.85] 0.44 [0.40-0.49] 0.24 [0.22-0.26]
New York - - - - - - - -
New York City 0.99 [0.70-1.33] 0.37 [0.32-0.42] 0.50 [0.43-0.57] 1.22 [0.79-1.75] 1.17 [0.83-1.56] 0.57 [0.46-0.67] 0.33 [0.28-0.38] 0.18 [0.15-0.20]
North Carolina 0.99 [0.94-1.05] 0.60 [0.49-0.73] 0.76 [0.62-0.93] 1.05 [0.98-1.12] 1.24 [1.18-1.32] 0.85 [0.80-0.89] 0.49 [0.45-0.52] 0.26 [0.24-0.28]
North Dakota 1.28 [1.15-1.46] 0.62 [0.46-0.82] 0.77 [0.57-1.01] 1.45 [1.28-1.71] 1.55 [1.38-1.77] 0.99 [0.86-1.12] 0.55 [0.46-0.66] 0.29 [0.24-0.34]
Ohio - - - - - - - -
Oklahoma 0.96 [0.83-1.12] 0.49 [0.41-0.59] 0.62 [0.52-0.75] 1.08 [0.88-1.31] 1.19 [1.02-1.39] 0.73 [0.66-0.81] 0.42 [0.38-0.46] 0.22 [0.20-0.24]
Oregon 0.93 [0.82-1.08] 0.46 [0.38-0.56] 0.58 [0.47-0.70] 1.03 [0.89-1.23] 1.14 [0.99-1.36] 0.76 [0.69-0.85] 0.50 [0.46-0.56] 0.26 [0.24-0.28]
Pennsylvania 1.02 [0.93-1.12] 0.71 [0.60-0.83] 0.91 [0.77-1.06] 1.05 [0.93-1.20] 1.30 [1.18-1.45] 0.87 [0.79-0.95] 0.53 [0.48-0.58] 0.28 [0.26-0.31]
Rhode Island 1.06 [0.95-1.18] 0.59 [0.47-0.73] 0.76 [0.61-0.94] 1.10 [0.98-1.26] 1.39 [1.24-1.58] 0.86 [0.76-0.96] 0.58 [0.52-0.65] 0.31 [0.27-0.34]
South Carolina 0.86 [0.80-0.96] 0.43 [0.37-0.50] 0.55 [0.47-0.65] 0.97 [0.88-1.11] 1.08 [0.99-1.20] 0.71 [0.66-0.76] 0.43 [0.40-0.46] 0.23 [0.21-0.24]
South Dakota - - - - - - - -
Tennessee 0.99 [0.90-1.09] 0.48 [0.40-0.59] 0.62 [0.50-0.75] 1.11 [0.99-1.26] 1.21 [1.09-1.34] 0.82 [0.76-0.88] 0.45 [0.41-0.49] 0.24 [0.22-0.26]
Texas 0.82 [0.75-0.91] 0.59 [0.51-0.68] 0.75 [0.65-0.87] 0.87 [0.78-1.02] 1.01 [0.92-1.14] 0.65 [0.60-0.69] 0.38 [0.35-0.40] 0.21 [0.19-0.22]
Utah 0.96 [0.88-1.08] 0.58 [0.45-0.73] 0.73 [0.57-0.92] 1.05 [0.93-1.21] 1.17 [1.06-1.32] 0.73 [0.67-0.79] 0.37 [0.33-0.41] 0.20 [0.18-0.22]
Vermont - - - - - - - -
Virginia 1.06 [0.98-1.14] 0.59 [0.50-0.69] 0.74 [0.63-0.88] 1.09 [1.00-1.21] 1.34 [1.24-1.46] 0.90 [0.83-0.96] 0.50 [0.46-0.54] 0.27 [0.25-0.29]
Washington 0.97 [0.80-1.19] 0.36 [0.32-0.40] 0.45 [0.41-0.50] 1.12 [0.89-1.42] 1.19 [0.97-1.48] 0.73 [0.65-0.81] 0.44 [0.39-0.49] 0.23 [0.20-0.25]
West Virginia - - - - - - - -
Wisconsin 1.02 [0.92-1.13] 0.59 [0.48-0.72] 0.75 [0.61-0.90] 1.05 [0.92-1.20] 1.31 [1.16-1.47] 0.87 [0.80-0.96] 0.50 [0.46-0.56] 0.27 [0.24-0.29]
Wyoming - - - - - - - -
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Table S4: EsƟmated cumulated contribuƟon of age groups to SARS-CoV-2 transmission as of August 17, 2020.
Posterior median esƟmates and 95% credible intervals are reported. EsƟmates are up to the last week before
schools were set to reopen in the first US locaƟons in the model.

Age of infected individuals (years)
LocaƟon [0 − 9] [10 − 19] [20 − 34] [35 − 49] [50 − 64] [65 − 79] 80+
Alabama 1.9% [1.2%-2.9%] 3.1% [2.1%-4.4%] 31.8% [29.7%-33.8%] 41.5% [40.2%-42.7%] 17.9% [16.3%-19.4%] 3.4% [2.9%-4.0%] 0.4% [0.3%-0.4%]
Alaska - - - - - - -
Arizona 2.9% [1.9%-4.5%] 4.8% [3.3%-6.9%] 31.6% [29.0%-34.0%] 42.8% [41.8%-43.6%] 14.6% [13.2%-15.6%] 3.0% [2.5%-3.5%] 0.3% [0.3%-0.4%]
Arkansas - - - - - - -
California 2.2% [1.5%-3.2%] 3.5% [2.6%-4.6%] 34.6% [32.9%-36.2%] 40.6% [39.9%-41.2%] 16.0% [15.1%-16.8%] 2.7% [2.4%-3.2%] 0.3% [0.3%-0.4%]
Colorado 2.8% [1.9%-4.1%] 4.7% [3.6%-6.3%] 33.1% [31.0%-34.9%] 42.1% [41.3%-42.7%] 14.7% [13.8%-15.5%] 2.3% [2.0%-2.6%] 0.2% [0.2%-0.3%]
ConnecƟcut 3.0% [2.1%-4.2%] 6.3% [5.2%-7.7%] 27.6% [26.2%-29.1%] 39.2% [38.7%-39.7%] 20.0% [19.0%-20.8%] 3.4% [3.0%-4.0%] 0.4% [0.3%-0.4%]
Delaware 2.0% [1.2%-3.1%] 3.1% [2.1%-4.7%] 31.6% [30.1%-33.1%] 36.5% [36.1%-36.9%] 21.1% [20.0%-21.7%] 5.1% [4.4%-5.9%] 0.5% [0.4%-0.6%]
District of Columbia 2.1% [1.2%-3.6%] 2.8% [1.6%-4.6%] 51.4% [49.1%-52.8%] 33.5% [33.3%-33.7%] 9.3% [8.5%-10.1%] 0.8% [0.6%-1.0%] 0.1% [0.1%-0.1%]
Florida 2.0% [1.4%-2.8%] 3.2% [2.5%-4.2%] 35.2% [34.0%-36.3%] 40.9% [40.3%-41.5%] 15.4% [14.4%-16.4%] 2.9% [2.5%-3.4%] 0.3% [0.3%-0.4%]
Georgia 1.5% [1.0%-2.1%] 2.7% [2.2%-3.4%] 37.4% [36.1%-38.5%] 42.3% [41.4%-43.1%] 14.1% [12.9%-15.0%] 1.9% [1.6%-2.3%] 0.2% [0.2%-0.2%]
Hawaii - - - - - - -
Idaho 1.2% [0.7%-1.8%] 1.8% [1.2%-2.6%] 41.4% [39.8%-42.8%] 40.5% [39.6%-41.3%] 12.4% [11.0%-13.8%] 2.5% [2.1%-3.0%] 0.2% [0.2%-0.3%]
Illinois 3.7% [2.6%-5.3%] 6.8% [5.3%-8.8%] 28.1% [26.1%-30.0%] 40.7% [40.2%-41.1%] 17.2% [16.0%-18.1%] 3.1% [2.7%-3.6%] 0.4% [0.3%-0.4%]
Indiana 2.4% [1.6%-3.4%] 4.6% [3.6%-5.9%] 28.1% [26.1%-30.1%] 41.2% [40.4%-41.9%] 19.8% [19.0%-20.5%] 3.5% [3.0%-4.0%] 0.4% [0.3%-0.4%]
Iowa 2.3% [1.4%-3.8%] 3.8% [2.5%-5.9%] 27.5% [24.5%-30.6%] 42.7% [41.4%-43.8%] 19.0% [17.7%-19.7%] 4.1% [3.6%-4.8%] 0.5% [0.4%-0.5%]
Kansas 1.9% [1.1%-3.1%] 3.1% [2.0%-4.7%] 33.0% [30.0%-35.7%] 41.3% [40.0%-42.5%] 17.4% [16.1%-18.8%] 2.9% [2.5%-3.4%] 0.3% [0.3%-0.4%]
Kentucky 1.5% [1.0%-2.3%] 2.5% [1.8%-3.6%] 31.4% [28.9%-33.8%] 43.0% [41.3%-44.5%] 18.4% [17.4%-19.2%] 2.9% [2.4%-3.3%] 0.3% [0.3%-0.3%]
Louisiana 2.5% [1.8%-3.7%] 4.9% [4.0%-6.1%] 35.2% [33.7%-36.4%] 38.7% [38.2%-39.2%] 16.0% [15.1%-16.7%] 2.4% [2.0%-2.7%] 0.3% [0.2%-0.3%]
Maine - - - - - - -
Maryland 3.2% [2.1%-4.7%] 5.5% [4.0%-7.6%] 28.3% [26.1%-30.2%] 40.8% [40.4%-41.2%] 18.7% [17.4%-19.6%] 3.1% [2.7%-3.6%] 0.4% [0.3%-0.4%]
MassachuseƩs 3.2% [2.2%-4.5%] 5.9% [4.6%-7.7%] 30.0% [28.0%-31.7%] 38.8% [38.4%-39.2%] 18.6% [17.6%-19.4%] 3.1% [2.7%-3.6%] 0.4% [0.3%-0.4%]
Michigan 3.2% [2.2%-4.8%] 6.8% [5.5%-8.8%] 27.9% [25.8%-29.9%] 38.8% [38.2%-39.3%] 18.8% [17.6%-19.8%] 3.9% [3.4%-4.5%] 0.4% [0.4%-0.5%]
Minnesota 3.4% [2.2%-5.2%] 5.6% [3.9%-7.9%] 28.1% [25.5%-30.6%] 41.8% [41.1%-42.3%] 17.6% [16.2%-18.7%] 3.0% [2.6%-3.5%] 0.3% [0.3%-0.4%]
Mississippi 1.7% [1.1%-2.6%] 2.8% [2.0%-4.0%] 33.4% [31.4%-35.2%] 41.3% [39.9%-42.6%] 17.6% [15.9%-19.0%] 2.9% [2.4%-3.5%] 0.3% [0.3%-0.4%]
Missouri 1.9% [1.2%-2.8%] 3.1% [2.2%-4.4%] 32.1% [29.8%-34.3%] 41.1% [39.9%-42.2%] 18.1% [17.1%-19.0%] 3.3% [2.8%-3.8%] 0.4% [0.3%-0.4%]
Montana - - - - - - -
Nebraska - - - - - - -
Nevada 3.0% [1.9%-4.9%] 4.8% [3.3%-7.0%] 39.3% [37.1%-40.8%] 39.0% [38.5%-39.4%] 11.7% [10.0%-13.3%] 1.9% [1.5%-2.3%] 0.2% [0.2%-0.2%]
New Hampshire 2.3% [1.2%-3.9%] 3.6% [2.0%-6.1%] 29.6% [27.4%-31.7%] 40.3% [39.6%-40.9%] 20.9% [19.2%-22.0%] 2.9% [2.4%-3.4%] 0.3% [0.3%-0.4%]
New Jersey 3.1% [2.2%-4.4%] 6.3% [5.2%-7.9%] 27.6% [26.2%-28.9%] 39.9% [39.4%-40.3%] 19.2% [18.1%-20.0%] 3.5% [3.0%-4.0%] 0.4% [0.4%-0.5%]
New Mexico 2.8% [1.7%-4.4%] 4.3% [2.8%-6.5%] 33.1% [30.5%-35.4%] 39.9% [39.0%-40.5%] 16.8% [15.4%-17.7%] 2.8% [2.4%-3.4%] 0.3% [0.3%-0.3%]
New York - - - - - - -
New York City 2.8% [1.9%-3.9%] 5.6% [4.7%-6.7%] 38.3% [37.1%-39.3%] 35.3% [34.8%-35.7%] 15.0% [14.2%-15.6%] 2.7% [2.4%-3.1%] 0.3% [0.3%-0.4%]
North Carolina 2.1% [1.3%-3.3%] 3.5% [2.3%-5.2%] 29.8% [27.3%-32.1%] 42.7% [41.7%-43.6%] 18.4% [17.3%-19.2%] 3.1% [2.7%-3.7%] 0.3% [0.3%-0.4%]
North Dakota 2.2% [1.1%-4.0%] 3.2% [1.7%-5.7%] 37.9% [33.1%-42.2%] 38.6% [36.7%-40.1%] 15.7% [13.8%-17.0%] 2.1% [1.7%-2.7%] 0.3% [0.2%-0.3%]
Ohio - - - - - - -
Oklahoma 1.6% [1.0%-2.5%] 2.7% [2.0%-3.8%] 35.7% [33.3%-37.9%] 42.2% [40.8%-43.6%] 14.9% [13.8%-16.0%] 2.5% [2.2%-3.0%] 0.3% [0.2%-0.3%]
Oregon 1.5% [1.0%-2.4%] 2.6% [1.9%-3.7%] 35.4% [33.3%-37.3%] 40.6% [39.5%-41.8%] 15.8% [14.4%-17.3%] 3.6% [3.0%-4.3%] 0.3% [0.3%-0.4%]
Pennsylvania 3.6% [2.4%-5.2%] 6.8% [5.1%-9.0%] 24.8% [22.8%-26.9%] 40.6% [40.0%-41.1%] 20.0% [18.6%-21.1%] 3.7% [3.1%-4.3%] 0.4% [0.4%-0.5%]
Rhode Island 2.6% [1.6%-4.2%] 4.6% [3.0%-7.2%] 27.4% [24.2%-30.4%] 42.7% [41.5%-43.7%] 18.0% [16.4%-19.0%] 4.1% [3.6%-4.7%] 0.5% [0.4%-0.5%]
South Carolina 1.2% [0.8%-1.8%] 2.0% [1.5%-2.8%] 36.5% [35.0%-37.8%] 40.8% [39.7%-41.9%] 16.0% [14.8%-17.2%] 3.1% [2.7%-3.7%] 0.3% [0.3%-0.4%]
South Dakota - - - - - - -
Tennessee 1.4% [0.9%-2.2%] 2.2% [1.5%-3.3%] 35.6% [33.8%-37.4%] 40.4% [39.4%-41.4%] 17.4% [16.1%-18.6%] 2.6% [2.2%-3.1%] 0.3% [0.2%-0.3%]
Texas 2.6% [1.8%-3.7%] 4.2% [3.1%-5.6%] 35.3% [33.5%-37.0%] 42.4% [41.8%-43.0%] 13.1% [12.0%-13.9%] 2.2% [1.9%-2.5%] 0.2% [0.2%-0.3%]
Utah 2.0% [1.2%-3.4%] 3.1% [1.9%-5.1%] 38.3% [34.8%-41.3%] 42.3% [40.7%-43.6%] 12.4% [11.3%-13.3%] 1.7% [1.4%-2.0%] 0.2% [0.2%-0.2%]
Vermont - - - - - - -
Virginia 2.3% [1.5%-3.5%] 4.0% [2.9%-5.5%] 27.8% [25.6%-29.9%] 43.7% [42.7%-44.5%] 18.9% [17.9%-19.6%] 3.0% [2.6%-3.5%] 0.3% [0.3%-0.4%]
Washington 1.8% [1.3%-2.7%] 4.8% [4.0%-5.8%] 36.4% [35.3%-37.5%] 38.5% [37.7%-39.3%] 15.3% [14.2%-16.2%] 2.9% [2.5%-3.4%] 0.3% [0.2%-0.3%]
West Virginia - - - - - - -
Wisconsin 2.3% [1.4%-3.6%] 4.1% [2.9%-5.8%] 27.3% [24.7%-29.9%] 42.2% [41.0%-43.3%] 20.3% [19.1%-21.3%] 3.3% [2.9%-3.9%] 0.4% [0.3%-0.4%]
Wyoming - - - - - - -
All locaƟons 2.5% [1.9%-3.4%] 4.3% [3.8%-5.0%] 34.2% [33.2%-35.1%] 41.0% [40.7%-41.3%] 15.1% [14.5%-15.6%] 2.6% [2.2%-3.0%] 0.3% [0.3%-0.3%]

Percent of populaƟon
All locaƟons 12.1% 13.1% 20.6% 19.2 % 19.2% 12.1% 3.7%
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Table S5: EsƟmated contribuƟon of age groups to SARS-CoV-2 transmission between October 05, 2020 and
October 26, 2020. Posterior median esƟmates and 95% credible intervals are reported.

Age of infected individuals (years)
LocaƟon [0 − 9] [10 − 19] [20 − 34] [35 − 49] [50 − 64] [65 − 79] 80+
Alabama 2.4% [1.5%-3.7%] 5.7% [3.5%-9.3%] 32.7% [29.3%-36.7%] 38.6% [36.9%-40.5%] 16.8% [13.7%-19.3%] 3.2% [2.4%-4.0%] 0.3% [0.2%-0.4%]
Alaska - - - - - - -
Arizona 3.6% [2.2%-5.4%] 9.0% [5.2%-15.9%] 32.0% [27.1%-36.8%] 37.7% [34.6%-39.7%] 14.1% [11.5%-15.9%] 3.1% [2.4%-3.8%] 0.3% [0.2%-0.4%]
Arkansas - - - - - - -
California 3.3% [2.1%-4.8%] 7.7% [4.8%-11.9%] 32.8% [30.0%-35.7%] 36.8% [35.1%-38.2%] 16.1% [14.4%-17.3%] 2.8% [2.4%-3.3%] 0.3% [0.2%-0.3%]
Colorado 2.6% [1.7%-3.9%] 5.4% [3.3%-8.2%] 33.8% [31.0%-36.7%] 41.8% [40.1%-43.5%] 14.0% [11.6%-16.4%] 2.1% [1.6%-2.7%] 0.2% [0.1%-0.3%]
ConnecƟcut 2.4% [1.6%-3.6%] 6.3% [3.9%-10.0%] 33.0% [29.4%-37.0%] 40.4% [38.1%-42.4%] 14.9% [11.7%-18.9%] 2.4% [1.7%-3.3%] 0.2% [0.2%-0.3%]
Delaware 2.2% [1.3%-3.3%] 4.7% [2.8%-7.4%] 34.2% [30.8%-39.0%] 34.7% [32.5%-36.7%] 18.9% [14.7%-22.5%] 4.7% [3.4%-6.1%] 0.4% [0.3%-0.5%]
District of Columbia 1.7% [0.9%-3.2%] 2.2% [1.1%-4.0%] 54.0% [51.2%-57.2%] 32.4% [31.7%-33.0%] 8.3% [6.5%-9.8%] 1.0% [0.7%-1.5%] 0.1% [0.1%-0.2%]
Florida 3.3% [2.2%-4.5%] 7.8% [4.8%-11.5%] 31.7% [29.4%-34.3%] 36.1% [34.3%-38.0%] 17.3% [15.5%-18.5%] 3.4% [2.9%-4.0%] 0.3% [0.3%-0.4%]
Georgia 2.5% [1.6%-3.8%] 6.0% [3.6%-10.0%] 36.7% [32.0%-41.5%] 39.7% [37.7%-40.9%] 13.0% [10.1%-15.8%] 1.8% [1.3%-2.4%] 0.2% [0.1%-0.2%]
Hawaii - - - - - - -
Idaho 1.4% [0.9%-2.1%] 2.9% [1.8%-4.6%] 42.9% [40.6%-44.7%] 41.3% [39.4%-42.9%] 9.4% [7.3%-11.8%] 1.9% [1.4%-2.5%] 0.2% [0.1%-0.2%]
Illinois 3.5% [2.3%-5.0%] 8.4% [5.0%-13.6%] 30.7% [27.6%-34.1%] 37.4% [35.2%-39.5%] 16.6% [13.7%-18.8%] 2.9% [2.3%-3.5%] 0.3% [0.2%-0.4%]
Indiana 2.4% [1.5%-3.6%] 5.3% [3.3%-8.1%] 30.8% [27.3%-35.0%] 40.0% [38.1%-42.0%] 17.8% [14.5%-20.9%] 3.1% [2.4%-4.0%] 0.3% [0.2%-0.4%]
Iowa 2.6% [1.6%-4.1%] 6.1% [3.6%-10.1%] 27.5% [23.9%-31.1%] 39.8% [38.2%-42.2%] 19.0% [16.3%-20.7%] 4.3% [3.5%-5.1%] 0.4% [0.4%-0.5%]
Kansas 2.6% [1.6%-4.0%] 5.9% [3.5%-9.5%] 31.9% [28.2%-35.6%] 38.7% [37.1%-40.6%] 17.4% [15.0%-19.3%] 3.0% [2.4%-3.6%] 0.3% [0.2%-0.4%]
Kentucky 2.0% [1.3%-3.1%] 4.3% [2.6%-6.6%] 32.0% [29.0%-35.5%] 41.5% [39.7%-43.6%] 17.2% [14.3%-19.0%] 2.7% [2.1%-3.3%] 0.3% [0.2%-0.3%]
Louisiana 2.8% [1.7%-4.4%] 6.2% [3.6%-10.5%] 39.6% [34.2%-44.4%] 36.8% [34.3%-38.3%] 12.5% [9.4%-15.5%] 1.8% [1.3%-2.5%] 0.2% [0.1%-0.2%]
Maine - - - - - - -
Maryland 3.7% [2.4%-5.6%] 8.6% [4.9%-14.6%] 29.1% [25.5%-33.6%] 37.6% [34.9%-40.5%] 17.4% [13.8%-19.9%] 2.9% [2.2%-3.6%] 0.3% [0.2%-0.4%]
MassachuseƩs 3.4% [2.2%-4.9%] 8.8% [5.1%-15.1%] 32.3% [28.4%-36.5%] 35.5% [33.1%-37.3%] 16.9% [13.9%-19.5%] 2.7% [2.1%-3.3%] 0.3% [0.2%-0.3%]
Michigan 2.7% [1.7%-4.1%] 6.4% [3.9%-10.5%] 32.1% [28.0%-36.7%] 39.8% [37.1%-42.3%] 15.0% [11.1%-20.0%] 3.1% [2.2%-4.4%] 0.3% [0.2%-0.4%]
Minnesota 3.1% [1.9%-4.7%] 6.6% [3.9%-10.8%] 30.1% [27.1%-33.6%] 39.4% [37.7%-41.5%] 17.3% [14.2%-19.1%] 3.0% [2.3%-3.6%] 0.3% [0.2%-0.4%]
Mississippi 2.6% [1.6%-3.9%] 6.8% [4.0%-11.0%] 32.8% [29.5%-37.3%] 37.0% [35.1%-39.1%] 17.3% [13.6%-19.5%] 3.0% [2.2%-3.8%] 0.3% [0.2%-0.4%]
Missouri 2.4% [1.5%-3.6%] 5.1% [3.2%-7.9%] 31.8% [29.1%-34.4%] 39.0% [37.7%-40.4%] 17.9% [16.1%-19.2%] 3.3% [2.8%-3.9%] 0.3% [0.3%-0.4%]
Montana - - - - - - -
Nebraska - - - - - - -
Nevada 3.2% [1.9%-5.1%] 6.9% [3.9%-12.0%] 38.8% [35.5%-42.5%] 37.1% [34.6%-39.4%] 11.5% [8.8%-14.0%] 1.9% [1.4%-2.5%] 0.2% [0.1%-0.2%]
New Hampshire 2.0% [1.2%-3.2%] 4.8% [2.7%-8.2%] 30.4% [27.6%-33.8%] 38.8% [36.6%-42.2%] 20.5% [16.0%-23.7%] 3.0% [2.1%-3.8%] 0.3% [0.2%-0.4%]
New Jersey 3.2% [2.0%-4.6%] 7.3% [4.3%-11.6%] 33.6% [29.1%-39.5%] 36.8% [34.4%-38.7%] 15.5% [11.6%-19.7%] 2.8% [2.0%-3.8%] 0.3% [0.2%-0.4%]
New Mexico 2.6% [1.6%-3.9%] 6.5% [3.8%-10.5%] 34.0% [31.1%-37.1%] 36.8% [35.1%-39.4%] 16.6% [13.6%-18.8%] 3.0% [2.2%-3.7%] 0.3% [0.2%-0.4%]
New York - - - - - - -
New York City 3.9% [2.3%-6.1%] 7.2% [4.0%-12.4%] 45.9% [39.4%-53.7%] 31.4% [29.6%-32.7%] 9.1% [6.3%-11.4%] 1.8% [1.2%-2.4%] 0.2% [0.1%-0.3%]
North Carolina 2.8% [1.7%-4.2%] 6.8% [4.0%-11.1%] 28.9% [26.0%-31.7%] 39.5% [38.0%-41.6%] 18.3% [16.3%-19.5%] 3.2% [2.6%-3.7%] 0.3% [0.3%-0.4%]
North Dakota 2.5% [1.4%-4.0%] 4.6% [2.7%-7.8%] 38.7% [34.6%-42.6%] 35.5% [33.9%-37.4%] 15.8% [12.8%-18.1%] 2.5% [1.8%-3.2%] 0.3% [0.2%-0.4%]
Ohio - - - - - - -
Oklahoma 2.1% [1.3%-3.2%] 4.4% [2.7%-6.9%] 37.2% [33.4%-41.1%] 40.7% [39.2%-42.3%] 13.0% [10.5%-15.3%] 2.2% [1.7%-2.8%] 0.2% [0.2%-0.3%]
Oregon 1.6% [1.0%-2.5%] 3.3% [2.0%-5.2%] 36.6% [33.3%-40.2%] 40.5% [38.3%-43.1%] 14.1% [10.6%-17.2%] 3.3% [2.3%-4.4%] 0.3% [0.2%-0.4%]
Pennsylvania 3.0% [1.9%-4.5%] 7.3% [4.2%-12.1%] 27.5% [23.8%-32.0%] 39.4% [37.0%-42.0%] 18.7% [14.8%-21.9%] 3.4% [2.5%-4.3%] 0.3% [0.3%-0.4%]
Rhode Island 2.7% [1.7%-4.0%] 7.0% [4.1%-11.5%] 32.5% [28.6%-37.3%] 37.9% [36.3%-39.9%] 15.6% [12.5%-18.0%] 3.6% [2.7%-4.4%] 0.4% [0.3%-0.5%]
South Carolina 2.0% [1.3%-3.0%] 4.7% [2.9%-7.3%] 35.7% [32.6%-39.1%] 38.3% [36.9%-39.8%] 15.6% [12.9%-17.7%] 3.2% [2.5%-4.0%] 0.3% [0.2%-0.4%]
South Dakota - - - - - - -
Tennessee 2.1% [1.3%-3.2%] 4.5% [2.8%-7.2%] 35.4% [32.5%-38.8%] 38.2% [36.8%-40.0%] 16.7% [13.6%-18.8%] 2.6% [2.0%-3.3%] 0.3% [0.2%-0.3%]
Texas 4.4% [3.0%-5.9%] 11.0% [6.9%-16.0%] 31.3% [28.1%-34.7%] 36.4% [34.0%-38.6%] 14.0% [12.6%-15.3%] 2.5% [2.1%-2.9%] 0.3% [0.2%-0.3%]
Utah 2.8% [1.7%-4.3%] 6.0% [3.4%-10.2%] 38.8% [34.6%-42.5%] 39.7% [38.0%-41.4%] 10.8% [9.0%-12.8%] 1.5% [1.2%-1.9%] 0.2% [0.1%-0.2%]
Vermont - - - - - - -
Virginia 3.1% [2.0%-4.5%] 7.0% [4.3%-10.9%] 26.4% [23.6%-29.3%] 41.2% [39.7%-42.8%] 19.0% [17.3%-20.1%] 3.0% [2.5%-3.5%] 0.3% [0.3%-0.4%]
Washington 1.7% [1.0%-2.5%] 3.0% [1.8%-4.7%] 39.6% [36.0%-43.9%] 39.3% [37.9%-40.7%] 13.6% [10.1%-16.3%] 2.5% [1.8%-3.3%] 0.2% [0.2%-0.3%]
West Virginia - - - - - - -
Wisconsin 2.1% [1.3%-3.2%] 4.6% [2.8%-7.3%] 29.7% [26.4%-33.3%] 42.4% [39.9%-44.8%] 17.7% [14.6%-21.4%] 2.8% [2.2%-3.7%] 0.3% [0.2%-0.4%]
Wyoming - - - - - - -
All locaƟons 3.3% [2.2%-4.4%] 7.8% [5.1%-11.1%] 32.7% [30.8%-34.8%] 37.8% [36.3%-39.2%] 15.4% [14.3%-16.4%] 2.7% [2.3%-3.1%] 0.3% [0.2%-0.3%]

Percent of populaƟon
All locaƟons 12.1% 13.1% 20.6% 19.2 % 19.2% 12.1% 3.7%
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Table S6: EsƟmated cumulaƟve age-specific aƩack rates as of October 29, 2020. Posterior median esƟmates and 95% credible intervals are reported
in percent.

Age of infecƟous individuals (years)
LocaƟon Overall [0 − 9] [10 − 19] [20 − 34] [35 − 49] [50 − 64] [65 − 79] 80+
Alabama 10.0% [8.7%-11.5%] 3.3% [2.3%-4.7%] 4.2% [3.2%-5.5%] 15.0% [12.9%-17.5%] 17.5% [15.1%-20.3%] 10.5% [9.2%-12.0%] 5.2% [4.4%-6.1%] 3.4% [2.9%-4.0%]
Alaska - - - - - - - -
Arizona 16.2% [14.3%-18.3%] 6.1% [4.3%-8.7%] 7.4% [5.8%-9.8%] 24.0% [21.1%-27.1%] 29.2% [25.6%-33.0%] 16.5% [14.5%-18.5%] 7.7% [6.7%-8.8%] 5.0% [4.4%-5.8%]
Arkansas - - - - - - - -
California 9.0% [7.9%-10.0%] 3.1% [2.3%-4.2%] 4.0% [3.2%-5.0%] 12.8% [11.3%-14.4%] 14.6% [12.8%-16.4%] 9.3% [8.2%-10.4%] 4.8% [4.2%-5.5%] 3.0% [2.6%-3.4%]
Colorado 6.3% [5.5%-7.2%] 2.4% [1.7%-3.3%] 3.0% [2.4%-3.8%] 8.7% [7.6%-10.0%] 10.5% [9.2%-12.0%] 6.2% [5.5%-7.0%] 3.0% [2.6%-3.5%] 2.1% [1.8%-2.5%]
ConnecƟcut 12.4% [10.9%-14.2%] 5.1% [3.7%-6.9%] 5.9% [4.8%-7.3%] 17.4% [15.1%-20.0%] 21.2% [18.6%-24.3%] 13.1% [11.4%-15.0%] 6.6% [5.6%-7.8%] 4.0% [3.3%-4.7%]
Delaware 10.5% [8.2%-13.7%] 3.7% [2.4%-5.5%] 4.3% [3.0%-6.2%] 15.4% [11.9%-20.6%] 17.8% [13.8%-23.2%] 11.5% [9.0%-14.6%] 6.0% [4.6%-7.8%] 4.2% [3.2%-5.4%]
District of Columbia 26.8% [22.5%-30.5%] 10.2% [6.8%-15.0%] 11.3% [7.9%-15.9%] 38.9% [32.8%-43.9%] 37.8% [31.8%-42.8%] 24.3% [20.2%-27.6%] 9.6% [7.7%-11.4%] 6.5% [5.2%-7.6%]
Florida 10.5% [9.5%-11.5%] 4.0% [3.0%-5.2%] 5.2% [4.2%-6.1%] 17.2% [15.5%-18.9%] 18.3% [16.4%-20.1%] 10.3% [9.3%-11.3%] 4.6% [4.0%-5.2%] 2.6% [2.2%-2.9%]
Georgia 16.0% [14.3%-17.9%] 4.7% [3.4%-6.3%] 6.1% [5.0%-7.5%] 25.6% [22.8%-29.0%] 26.8% [23.9%-30.1%] 15.5% [14.0%-17.1%] 7.3% [6.3%-8.3%] 5.4% [4.7%-6.2%]
Hawaii - - - - - - - -
Idaho 7.9% [5.7%-12.2%] 2.1% [1.3%-3.4%] 2.8% [1.8%-4.6%] 14.4% [10.2%-22.9%] 14.3% [10.1%-22.3%] 6.9% [5.2%-10.0%] 3.3% [2.5%-4.9%] 2.3% [1.7%-3.3%]
Illinois 13.2% [11.5%-15.2%] 5.7% [4.1%-7.9%] 7.6% [6.0%-9.7%] 17.8% [15.5%-20.4%] 22.0% [19.2%-25.2%] 13.6% [11.9%-15.5%] 7.1% [6.1%-8.4%] 4.5% [3.8%-5.3%]
Indiana 7.9% [6.7%-9.4%] 2.7% [1.9%-3.7%] 3.7% [2.9%-4.8%] 10.9% [9.1%-13.4%] 13.6% [11.6%-16.4%] 8.7% [7.5%-10.2%] 4.4% [3.7%-5.3%] 2.8% [2.4%-3.4%]
Iowa 7.4% [6.3%-9.0%] 2.6% [1.8%-3.7%] 3.5% [2.6%-4.8%] 10.1% [8.4%-12.4%] 13.2% [11.2%-16.1%] 8.1% [6.9%-9.8%] 4.5% [3.7%-5.6%] 2.5% [2.0%-3.1%]
Kansas 6.0% [5.0%-7.3%] 2.0% [1.4%-2.8%] 2.8% [2.1%-3.8%] 8.9% [7.5%-11.2%] 10.4% [8.8%-12.9%] 6.3% [5.4%-7.7%] 3.1% [2.6%-3.9%] 1.8% [1.5%-2.2%]
Kentucky 4.6% [4.0%-5.5%] 1.4% [1.0%-1.9%] 1.9% [1.5%-2.6%] 6.8% [5.9%-8.3%] 8.2% [7.0%-9.8%] 4.8% [4.2%-5.7%] 2.3% [1.9%-2.7%] 1.4% [1.2%-1.7%]
Louisiana 20.8% [17.9%-24.0%] 7.2% [5.2%-10.0%] 9.7% [7.7%-12.2%] 32.5% [27.8%-37.7%] 34.9% [30.1%-40.1%] 20.8% [17.9%-23.8%] 9.7% [8.1%-11.5%] 6.7% [5.6%-8.0%]
Maine - - - - - - - -
Maryland 11.7% [10.0%-13.5%] 4.7% [3.3%-6.7%] 6.1% [4.6%-8.1%] 15.8% [13.5%-18.3%] 19.5% [16.7%-22.6%] 12.1% [10.4%-14.0%] 6.2% [5.2%-7.3%] 4.2% [3.5%-5.0%]
MassachuseƩs 13.0% [11.3%-14.7%] 5.8% [4.1%-7.9%] 7.1% [5.6%-8.9%] 17.0% [14.8%-19.3%] 21.7% [18.8%-24.5%] 13.5% [11.7%-15.3%] 6.8% [5.7%-7.9%] 4.2% [3.5%-4.9%]
Michigan 10.9% [9.4%-12.5%] 4.4% [3.1%-6.3%] 6.2% [4.9%-7.9%] 14.8% [12.7%-17.3%] 18.8% [16.2%-21.8%] 11.1% [9.6%-12.5%] 5.9% [5.0%-6.9%] 3.8% [3.2%-4.4%]
Minnesota 5.9% [5.2%-6.9%] 2.4% [1.7%-3.3%] 3.3% [2.5%-4.3%] 8.1% [7.1%-9.6%] 10.2% [8.9%-12.0%] 6.1% [5.3%-7.1%] 3.1% [2.6%-3.7%] 1.9% [1.6%-2.2%]
Mississippi 19.1% [14.7%-23.0%] 6.1% [4.0%-8.8%] 7.4% [5.2%-10.2%] 29.1% [22.2%-35.3%] 32.5% [25.1%-39.4%] 20.9% [16.1%-24.8%] 9.8% [7.4%-12.0%] 7.0% [5.2%-8.5%]
Missouri 6.8% [5.9%-7.9%] 2.3% [1.6%-3.2%] 3.2% [2.5%-4.2%] 10.0% [8.7%-11.7%] 11.9% [10.3%-13.7%] 7.1% [6.2%-8.2%] 3.6% [3.0%-4.2%] 2.2% [1.8%-2.6%]
Montana - - - - - - - -
Nebraska - - - - - - - -
Nevada 13.8% [12.0%-16.1%] 5.5% [3.8%-7.9%] 7.1% [5.3%-9.6%] 22.6% [19.6%-26.3%] 22.2% [19.2%-25.9%] 12.3% [10.8%-13.9%] 5.7% [4.8%-6.5%] 4.1% [3.5%-4.8%]
New Hampshire 2.3% [1.7%-3.1%] 0.9% [0.5%-1.4%] 0.9% [0.6%-1.4%] 3.4% [2.6%-4.6%] 4.1% [3.1%-5.5%] 2.4% [1.8%-3.2%] 1.0% [0.8%-1.4%] 0.7% [0.5%-0.9%]
New Jersey 22.7% [19.3%-26.4%] 9.1% [6.4%-12.7%] 12.1% [9.5%-15.2%] 31.4% [26.9%-36.6%] 36.8% [31.6%-42.3%] 23.9% [20.3%-27.8%] 13.2% [10.9%-15.7%] 8.2% [6.7%-9.8%]
New Mexico 9.3% [8.0%-10.9%] 3.5% [2.4%-5.1%] 4.0% [2.9%-5.6%] 14.0% [12.1%-16.6%] 16.4% [14.1%-19.4%] 9.9% [8.6%-11.4%] 4.4% [3.8%-5.1%] 2.8% [2.4%-3.3%]
New York - - - - - - - -
New York City 34.9% [29.7%-40.1%] 13.3% [9.5%-18.2%] 18.3% [14.7%-22.5%] 49.1% [41.9%-56.2%] 51.4% [44.2%-58.5%] 35.6% [30.0%-41.3%] 19.6% [16.1%-23.7%] 12.3% [10.1%-15.1%]
North Carolina 6.6% [5.7%-7.6%] 2.3% [1.6%-3.3%] 3.1% [2.4%-4.2%] 9.3% [8.0%-10.8%] 11.2% [9.6%-13.0%] 7.1% [6.1%-8.1%] 3.4% [2.8%-4.0%] 2.3% [1.9%-2.7%]
North Dakota 11.0% [8.8%-14.4%] 3.7% [2.5%-5.6%] 5.7% [3.9%-8.4%] 16.4% [12.9%-21.6%] 18.7% [14.9%-24.2%] 11.2% [9.0%-14.5%] 5.4% [4.2%-7.4%] 2.8% [2.2%-3.8%]
Ohio - - - - - - - -
Oklahoma 6.5% [5.3%-8.5%] 1.9% [1.3%-2.9%] 2.7% [2.0%-3.8%] 10.3% [8.3%-14.0%] 11.6% [9.5%-15.4%] 6.4% [5.3%-8.1%] 3.1% [2.5%-4.0%] 1.9% [1.5%-2.4%]
Oregon 2.5% [2.0%-3.4%] 0.8% [0.5%-1.1%] 1.0% [0.7%-1.4%] 3.9% [3.1%-5.4%] 4.2% [3.3%-5.7%] 2.5% [2.0%-3.2%] 1.3% [1.0%-1.6%] 0.8% [0.6%-1.0%]
Pennsylvania 6.6% [5.5%-7.9%] 2.9% [2.0%-4.1%] 3.8% [2.9%-5.1%] 8.6% [7.1%-10.4%] 11.8% [9.8%-14.1%] 7.0% [5.9%-8.3%] 3.5% [2.9%-4.3%] 2.0% [1.7%-2.5%]
Rhode Island 11.3% [8.9%-14.3%] 4.4% [2.9%-6.8%] 5.5% [3.9%-7.9%] 14.9% [11.8%-18.9%] 20.1% [15.9%-25.4%] 11.4% [9.0%-14.4%] 6.6% [5.1%-8.6%] 3.8% [2.9%-4.9%]
South Carolina 13.1% [11.5%-15.2%] 3.8% [2.7%-5.2%] 4.9% [3.8%-6.3%] 21.5% [18.7%-25.0%] 22.9% [19.9%-26.5%] 13.3% [11.7%-15.1%] 6.3% [5.3%-7.5%] 4.4% [3.7%-5.2%]
South Dakota - - - - - - - -
Tennessee 10.6% [9.1%-12.6%] 3.3% [2.3%-4.6%] 4.5% [3.4%-5.9%] 16.5% [14.2%-20.1%] 17.6% [15.1%-21.2%] 11.0% [9.5%-12.8%] 5.0% [4.2%-6.0%] 3.4% [2.8%-4.0%]
Texas 14.7% [13.3%-16.2%] 5.0% [3.8%-6.6%] 6.7% [5.6%-7.9%] 21.9% [19.6%-24.3%] 24.5% [22.0%-27.1%] 14.4% [12.9%-15.9%] 7.7% [6.8%-8.7%] 5.5% [4.9%-6.2%]
Utah 5.7% [4.9%-7.2%] 1.7% [1.1%-2.5%] 2.4% [1.7%-3.4%] 8.7% [7.4%-11.2%] 9.9% [8.5%-12.4%] 6.2% [5.3%-7.5%] 2.8% [2.3%-3.5%] 2.0% [1.6%-2.4%]
Vermont - - - - - - - -
Virginia 6.1% [5.3%-6.8%] 2.1% [1.5%-2.9%] 2.9% [2.3%-3.7%] 8.0% [6.9%-9.1%] 10.5% [9.1%-11.8%] 6.6% [5.8%-7.4%] 3.2% [2.7%-3.7%] 2.1% [1.8%-2.5%]
Washington 4.8% [3.8%-6.1%] 1.3% [0.9%-1.9%] 2.1% [1.5%-2.7%] 7.5% [5.9%-9.5%] 7.9% [6.2%-10.0%] 4.7% [3.8%-5.9%] 2.4% [1.8%-3.0%] 1.6% [1.2%-2.0%]
West Virginia - - - - - - - -
Wisconsin 6.9% [5.8%-8.7%] 2.5% [1.7%-3.5%] 3.4% [2.6%-4.7%] 9.7% [8.0%-12.7%] 12.3% [10.3%-15.8%] 7.1% [6.1%-8.7%] 3.5% [2.9%-4.3%] 2.1% [1.7%-2.5%]
Wyoming - - - - - - - -

D
O
I:https://doi.org/10.25561/82551

Page
28

of47



07 January 2021 Imperial College COVID-19 Response Team

Table S7: EsƟmated excess SARS-CoV-2 infecƟons and excess COVID-19 aƩributable deaths in the school re-
opening scenario, when compared to conƟnued school closure scenarios. Posterior median esƟmates for each
locaƟon (state or metropolitan area), along with 95% credible intervals for the period August 24, 2020 to October
29, 2020. Transmission are reduced by a factor of ηschool from and to children and teens aged 0-18 due to face
mask use and other non-pharmaceuƟcal intervenƟons (see Supplementary materials).

Excess SARS-CoV-2 infecƟons, Excess COVID-19 aƩributable deaths
LocaƟon (percent increase) (percent increase)
All locaƟons 28.3% [16.3%-42.4%] 6.5% [3.7%-9.5%]
Alabama 25.4% [14.2%-40.5%] 5.8% [3.2%-9.1%]
Alaska - -
Arizona 29.5% [16.4%-47.5%] 4.2% [2.4%-6.7%]
Arkansas - -
California 27.1% [15.2%-42.7%] 5.7% [3.2%-8.7%]
Colorado 26.3% [14.6%-42.4%] 8.3% [4.7%-13.3%]
ConnecƟcut 39.6% [21.5%-65.2%] 13.2% [7.2%-21.1%]
Delaware 27.2% [15.0%-44.5%] 8.7% [4.6%-14.4%]
District of Columbia 24.8% [8.7%-45.1%] 4.4% [-1.5%-11.0%]
Florida 21.5% [12.7%-32.1%] 5.0% [2.9%-7.4%]
Georgia 25.8% [14.8%-40.0%] 4.9% [2.8%-7.4%]
Hawaii - -
Idaho 24.6% [14.0%-39.1%] 6.2% [3.4%-9.9%]
Illinois 37.9% [20.6%-61.5%] 11.2% [6.3%-17.4%]
Indiana 31.3% [17.2%-50.4%] 9.7% [5.3%-15.3%]
Iowa 27.9% [15.3%-46.1%] 8.0% [4.3%-12.9%]
Kansas 23.9% [13.6%-38.1%] 7.7% [4.3%-12.3%]
Kentucky 23.6% [13.3%-38.2%] 6.5% [3.6%-10.5%]
Louisiana 30.1% [17.2%-47.7%] 5.5% [3.1%-8.5%]
Maine - -
Maryland 38.8% [20.4%-65.9%] 9.4% [5.2%-14.9%]
MassachuseƩs 35.0% [19.0%-57.6%] 9.4% [5.3%-14.8%]
Michigan 34.7% [18.8%-56.5%] 10.6% [5.9%-16.7%]
Minnesota 33.8% [18.3%-57.1%] 10.1% [5.5%-16.4%]
Mississippi 26.2% [14.8%-41.9%] 5.1% [2.9%-8.0%]
Missouri 22.9% [12.9%-36.3%] 7.3% [4.1%-11.8%]
Montana - -
Nebraska - -
Nevada 26.0% [14.6%-43.1%] 4.6% [2.6%-7.2%]
New Hampshire 24.6% [13.2%-41.7%] 7.6% [4.1%-12.7%]
New Jersey 45.0% [24.3%-73.0%] 11.4% [6.4%-17.7%]
New Mexico 16.5% [2.5%-33.1%] 1.4% [-4.0%-6.2%]
New York - -
New York City 37.1% [21.4%-58.7%] 9.2% [5.3%-14.2%]
North Carolina 28.0% [15.5%-45.9%] 7.1% [4.0%-11.4%]
North Dakota 21.0% [11.9%-34.2%] 8.3% [4.5%-13.7%]
Ohio - -
Oklahoma 24.8% [13.9%-39.4%] 6.6% [3.7%-10.5%]
Oregon 18.3% [10.3%-29.6%] 4.6% [2.5%-7.4%]
Pennsylvania 34.8% [18.6%-58.1%] 9.8% [5.4%-15.5%]
Rhode Island 27.3% [9.4%-50.8%] 5.7% [-1.3%-12.8%]
South Carolina 23.0% [13.3%-35.8%] 4.6% [2.6%-7.2%]
South Dakota - -
Tennessee 22.8% [12.9%-36.0%] 6.0% [3.3%-9.4%]
Texas 32.0% [18.7%-46.8%] 5.6% [3.4%-7.9%]
Utah 37.5% [20.5%-63.8%] 10.8% [5.9%-17.7%]
Vermont - -
Virginia 24.5% [13.7%-39.2%] 6.3% [3.6%-10.0%]
Washington 16.6% [9.6%-26.0%] 4.6% [2.6%-7.3%]
West Virginia - -
Wisconsin 27.2% [14.9%-44.0%] 9.6% [5.2%-15.3%]
Wyoming - -
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Figure S1: Daily per person mobility trends for the 50 US states, District of Columbia and New York City (part
1). Mobility trends quanƟfy change in daily per person venue visits relaƟve to the baseline week February 3 to
February 9, 2020. The two dashed lines indicate the dip and rebound Ɵme (see Materials and methods).
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Figure S2: Daily per person mobility trends for the 50 US states, District of Columbia and New York City (part
2). Mobility trends quanƟfy change in daily per person venue visits relaƟve to the baseline week February 3 to
February 9, 2020. The two dashed lines indicate the dip and rebound Ɵme (see Materials and methods).
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Figure S3: IniƟal decline and surge in age-specific mobility trends in the United States. (A) Longitudinal mobility
trends for individuals aged 18 − 24, 25 − 34, 35 − 44, 45 − 54, 55 − 64, 65+ showed an iniƟal decline and a
subsequent increase across the United States. Rebound dates were esƟmated from the Ɵme series data, and to
have occurred betweenMarch 30, 2020 to April 20, 2020. The figure shows age-specificmobility trends relaƟve to
the baseline period February 03 to February 09, 2020 for each locaƟon (state or metropolitan area). The 1-week
mobility trend was calculated over the week prior to the rebound date. (B) Subsequent increases in mobility were
quanƟfied in terms of daily percent changes relaƟve to the 1-week average prior to the rebound dates shown in
Fig.A. The figure shows the average percent change in the last observaƟon week October 19, 2020 - October 25,
2020 for each age band and each locaƟon.
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Figure S4: Predicted age-specific contact matrices for the 50 US states, District of Columbia and New York City
prior to the pandemic, on weekdays. Shown in colour are the predicted number of contacts made by one in-
dex person of age a with individuals of age a′ per day. Contacts were esƟmated from regression models using
populaƟon demographics and fiƩed to contact survey esƟmates from the Polymod study. LocaƟons ordered by
populaƟon density.DOI: https://doi.org/10.25561/82551 Page 33 of 47



07 January 2021 Imperial College COVID-19 Response Team

Rhode Island New Jersey New York City District of Columbia

Florida New York Delaware Maryland Connecticut Massachusetts

Virginia Hawaii Illinois California Ohio Pennsylvania

Tennessee South Carolina Michigan Georgia Indiana North Carolina

Wisconsin Louisiana Texas Kentucky Washington New Hampshire

Mississippi Vermont Minnesota West Virginia Missouri Alabama

Oregon Colorado Iowa Oklahoma Arkansas Arizona

Idaho Nebraska Nevada Kansas Utah Maine

Alaska Wyoming Montana North Dakota South Dakota New Mexico

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

100

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

100

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

100

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

100

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

100

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

100

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

100

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

100

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85

100

Age of index person

A
ge

 o
f c

on
ta

ct

0.0 0.5
Log difference predicted contact intensities 
 vs. national average

Figure S5: Difference in predicted age-specific contact matrices for the 50 US states, District of Columbia and
New York City prior to the pandemic relaƟve to the naƟonal average, on weekdays. Shown in colour are the log
raƟo of the contact intensiƟes in each locaƟon compared to the contact intensiƟes for the naƟonal populaƟon.
LocaƟons ordered by populaƟon density.
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Figure S6: Predicted number of expected contacts by one index individual of age a per day. LocaƟons ordered
by populaƟon density, naƟonal average shown in black. PredicƟons shown for weekdays.
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Figure S7: Age-specific COVID-19 mortality data in the US (part 1). COVID-19 aƩributable deaths were recorded
as reported by city or state DoH. Shown is the percent contribuƟon of age groups to cumulated deaths (colours)
from the first day on which the death by age was recorded. The start of the x-axis is the same in every figure and
corresponds to the day with the first observaƟon of death by age across all locaƟons (states and metropolitan
areas).
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Figure S7: Age-specific COVID-19 mortality data in the US (part 2). COVID-19 aƩributable deaths were recorded
as reported by city or state DoH. Shown is the percent contribuƟon of age groups to cumulated deaths (colours)
from the first day on which the death by age was recorded. The start of the x-axis is the same in every figure and
corresponds to the day with the first observaƟon of death by age across all locaƟons (states and metropolitan
areas).
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Figure S7: Age-specific COVID-19 mortality data in the US (part 3). COVID-19 aƩributable deaths were recorded
as reported by city or state DoH. Shown is the percent contribuƟon of age groups to cumulated deaths (colours)
from the first day on which the death by age was recorded. The start of the x-axis is the same in every figure and
corresponds to the day with the first observaƟon of death by age across all locaƟons (states and metropolitan
areas).
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Figure S8: Summary of model fit to age-specific COVID-19 aƩributable mortality data. To invesƟgate model
fit, observed weekly deaths are ploƩed against posterior median esƟmates of the expected number of weekly
deaths. LocaƟons (states and metropolitan areas) are shown in color. For clarity, the data and weekly esƟmates
are grouped into four age bands.
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Figure S9: Summary of space, Ɵme and age random effects in the model that capture inferred age-specific dif-
ferences in transmission risk not captured in the observedmobility data. Shown are posterior median esƟmates
of the space, Ɵme, and age random effects of the contact-and-infecƟonmodel, see furtherMaterials andmethods
and Supplementary materials.
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Figure S10: EsƟmated age-specific reproducƟon numbers. Posterior median esƟmates of the reproducƟon num-
ber for each age group with 95% credible intervals.
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Figure S11: Empirical analysis of the share of age groups among observed COVID-19 aƩributed deaths. Age-
specific COVID-19 aƩributable deaths were recorded from state or city DoH. DoH used their own age straƟficaƟon,
and the observed data were re-esƟmated into common age groups across states with a Dirichlet-MulƟnomial
model; see the Supplementary materials. The figure shows the proporƟon of monthly deaths by age. A star (∗)
next to a locaƟon’s name indicates that there was was a staƟsƟcally significant shiŌ in the share of individuals
aged 80+ among deaths in the corresponding locaƟon. Note these are empirical esƟmates that do not rely on
the contact and infecƟon model.
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Figure S12: Empirical analysis of the esƟmated share of individuals aged 20 to 49 among COVID-19 aƩributed
cases. Monthly cases were back-calculated from the empirical proporƟon of age groups among deaths based on
the meta-analysis infecƟon fatality rate esƟmates of [20]; see the Supplementary materials. The figure shows the
esƟmated share of individuals aged 20 to 49 among monthly cases. A star (∗) next to a locaƟon’s name indicates
that there was was a significant shiŌ in the share of individuals aged 20 − 49 among deaths in the corresponding
locaƟon. Note these are empirical esƟmates that do not rely on the contact and infecƟon model.
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Figure S13: Model-based, esƟmated percent contribuƟon of age groups to SARS-CoV-2 infecƟons. Posterior me-
dian esƟmates are shown for each age band (colours). In the first 6 days of reconstructed transmission dynamics,
cases were assumed to originate from adults aged 20-54, and trends at the beginning of March reflect a transiƟon
from the assumed age composiƟon of iniƟal cases. Note the esƟmates presented in this figure are derived from
the fiƩed contact and infecƟon model.
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Figure S14: EsƟmated cumulated contribuƟon of age groups to SARS-CoV-2 infecƟons for October, versus the
proporƟon of the populaƟon in the same age group. Posterior median esƟmates of the contribuƟons from each
age group (blue fill bars with 95% credible intervals) are compared against the populaƟon age composiƟon of each
state (black contour bars).
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Figure S15: RetrospecƟve counterfactual modelling scenarios exploring the impact of school reopening on
COVID-19-aƩributable deaths. Shown in blue are esƟmated, daily COVID-19 deaths (posterior median: blue line,
95% credible interval: blue ribbon) under the model unƟl October 29, 2020 for states in which state-wide school
closures were no longer mandated since August, 2020. In counterfactual modelling scenarios, the retrospecƟve
impact of conƟnued school closures was explored unƟl October 29, 2020, and the predicted death trajectories
are shown (posterior median: red line, 95% credible interval: red ribbon), revealing no staƟsƟcally significant
differences. Brown bars illustrate reported all-age COVID-19-aƩributable deaths [3].
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Figure S16: EsƟmated age-specific daily SARS-CoV-2 infecƟons. Shown are the esƟmated, daily SARS-CoV-2 in-
fecƟons by age group (posterior median) .
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