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ICIC Overview

 Why Gaussians” Central Limit Theorem
e (Gaussian inference
e (Gaussian linear models

* Poisson processes



ICIC References

* Loredo’s Bayesian Inference in the Physical Sciences:
- http://astrosun.tn.cornell.edu/staff/loredo/bayes
- “The Promise of Bayesian Inference tor Astrophysics” &
“From Laplace to SN 1987a”

 MacKay, Information Theory, Inference & Learning Algorithms

* Jaynes, Probability Theory: the Logic of Science
- And other refs at http://bayes.wustl.edu

 Hobson et al, Bayesian Methods in Cosmology

* Sivia, Data Analysis: A Bayesian Tutorial


http://astrosun.tn.cornell.edu/staff/loredo/bayes
http://bayes.wustl.edu
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ICIC' Gaussian distribution

e One of the most common distributions in statistics

1 1 (=)
P(x|p,0,1) = T exp | —5 (= OQ'U)
Moments (x) = ((x — p)?) = o?

All higher cumulants kn are zero => mean & variance tell
you everything about distribution



ICIC'  Gaussians & CLT

e | Central Limit Theorem:

The sum of a nrandom numbers drawn from a
porobability distribution of finite variance o tends to
be Gaussian distributed about the expectation
value of the sum with variance no?

 Applies asymptotically hence, Limit Theorem

 Means that statistics of large set of random
numbers becomes independent of distribution of
individual numbers

=> (Gaussian widely applicable




ICIC!Sketch of a proof of CLT

» Consider sum of two random variables x & y
2=+ Y
 Want to know p(z)

p(z > z1) —/ dz p(z

/ dy/ dz p(x,y)

Transform back to z: x=z-y
Z/_OO dy /Oodzp(z—y,y)

Comparison gives  p(z) = /_OO dyp(z —y,y).




ICIC! sketch of a proof (II)

SO we have p(z) = /_OO dyp(z —y,v).

Assuming independence  p(z) :/OO dy pe (2 — )0y (v),

Which is just the convolution of px(x) and py(y)

Recall from Fourier theory that FT of convolution is
a product, so helpful to think in Fourier space

Characteristic function ;) - / T drp()e®T p(a) = / b O bk
= F.T. of prob distribution N -

characteristic function prob. distribution

So for z have: 0 (k) = ¢ (k)py(k)



ICIC

Sum of n random variables X = \/%(an + T2 + ... + Tp)
o(X) will be convolution of all the px(xi)

So characteristic fn is a product  ¢x (k) = [¢=(k/v/n)]".
Expand characteristic fn

00 2 3
6ok VW) = [ dep@e VN 21 i) - S5 + 0 ([i] )

VN 2N VN
Assume (z) =0, (%) = o3 Higher terms ~O(n-3/2) & vanish
Th oz " o2 n — 00
ecn ng(k) — |1 = 5 x v oik=/2 .
n

Gaussian, so when we FT get a Gaussian.

]. _X2 9 2)
p(X) — e /( Ox .
2102 variance of mean oz/vn.

Central limit theory leads to Gaussian distribution



ICIC'  Gaussians & belief

e Alternatively, can ask what distribution is least
informative if we know mean and variance
=> again leads to Gaussian

e Can show this rigourously from maximum entropy

considerations. (in continuous Case need extra fn m(x) to insure invariance

under parameter change)
S =— szlogpz | = — / log[ }

 Maximising S subject to known mean p & vamance O
(e.g. by Lagrange multipliers) produces Gaussian

Q= —ipi log [% + Ao (1 - ZZ%) + A1 (,LL - szpz) + A2 (02 > (xi— M)2pz‘)

Recover the standard Gaussian distribution

1 1 (z —p)?
P 1) = _ -
(SIB’,LL, g, ) 27‘(’0’2 eXPp [ 2 0.2 ]




ICIC"  Why Gaussians?

* Central Limit Theorem: sum of many random
numbers has a Gaussian sampling distribution

e MaxEnt: If we know mean & variance, the least
informative distribution is Gaussian



ICIC! Gaussian inference

observations {qdj/

* | Problem: want to estimate signal s, given n noisy

e Need model for observations:

 Noise: assume ni=(di-s) is Gaussian zero mean &

known variance o2

data = signal + noise

d; = S+ n;

* Work through Bayes theorem:

p(8|d, I) —

p(d‘s, I)p(s\[)

p(d|I)




ICIC Prior  p(s|I)
 How do we choose prior? Often to encode ignorance about s

 Common options?

(Gaussian with zero mean and variance 2.
Let > at end of calculation

Uniform in range [21,22]. Again let 21—=-c0, 20— 0 at end

“Jeffrey’s prior”, p(s|l)«1/s. Appropriate if ignorant about scale
of s. Equivalent to flat prior on logs

° ' ' : 1
Here adopt uniform prior p(s|1) = — Y <<%,
2 T ]




ICIC! Priors

* Can think about priors from perspective of properties of pdf

e Location priors: do | know the origin®
=> want pdf invariance under translation X — X + z,

p(X|DAX =~ p(X + zo|)A(X + o)

~ p(X + X I)dX

=> uniform prior p(X|I) = const

* Scale priors: Am | sure on the units?
=> want pdf invariance under rescaling

plo|ll)dX ~ p(So|l)d(So)
ploll) = p(Bol|l)

=> uniformin log prior  p(o|l) x 1/o




IcIc! Likelihood  p(djs, 1)

e \We've decided our noise is Gaussian, so for

individual datum have 1 " 1(d; — 8)?
p(dils, I) = = P |75
e [For full data set: - -
p(d]s. I) = (27022 exp | ——— S (d; — s)2
202 i
* Fine, but helpftul to manipulate analytlcally
Recallmean d = N Z d;.
Zn:(d—s) Zn:(d2—2ds+s) +NZ d_d
. Result Separates into two parts
data+parameters data only
1 . 1 .
p(d|s, I) = (2rc?)™? exp (s — d)2 exp ((d; — d)?)
20’b - 20y

on=0/VN (- dp?) =Y, U



ICIC!

Evidence

p(d|])

Evidence plays role of normalisation factor here

p(d|s, I)p(s|1)

1 :/dsp(S!d,I) = /ds p(d|I) —>

So taking results for prior and likeli

p(d|T) = / ds p(d]s, I)p(s|I)

glelele

219 1 ] 1 — 1
_ 2\n/2 Y. e 2
p(d|I) /21 ds (2mo“)"“ exp [ 202(8 d) _ exp [ 205<(dz d) >] S, — 3,
1 - 1

_ 2\n /2 o R AV

(2mo*)"™ < exp [ 205 ((di — d) >] Yo — 3

X2 1 9
X /21 ds exp [——202 (s — d) ]

Recall definition of error function

Gives final result for evidence

2 T,
erfa::—/ e U dt
VT Jo

p(d|]) = (2m0®)"/Z exp [_2;3«6& } d)2>] I i 1 3%0 2% {erf (axjﬁi ) - (cfz\%




ICIC! Posterior

. : d(s, I I
Combine results in Bayes theorem  p(sld, I) = d ‘;Edff)( 1)

— s. 1) = (2r02)"2 ex —Ls—_Q ex ! — — 1
= | pldls.) = (2n0%)" exp | 2 07| exp |- 52 (= A X esin = —

p(s|d, I) = VN 2 erf<22d> erf<zld> exp [—%(3—5)2]

Qo2

Taking limit 21—-00, 20— 00




ICIC Inference?

Posterior contains everything that we infer about signal
1 1 _

\/@ exp [——2(5 - d)2]

sid, ) =
p(sld, I) %07
Best estimate of signal is peak of posterior

Bayesian 68% confidence interval s =d+o, =d+o/VN.

Alternative priors? Infinite Gaussian gives same result.

f didn’t know ¢?: assume Jeffrey’s prior p(all)«1/o,
then marginalise over o, leads to broader posterior
p(s|I) oc [s — 2s(d) + (d*)] 7.

(connected to Student-t distribution, same maximum, more conservative bound)




ICIC!

Simple example

Toy example

S’[rue: 1 O, O :2

Make a random data set

6.07335, 11.213, 7.86354, 11.2595, 10.5425, 6.5558, 9.20705, 8.04459, 10.2605, 10.9534

2.0
1 1 B 1.5
p(sld, T) = exp [——2<s - d)?] |
A /2#02 2Ub -
1.0
05
0.0L

N
|

N=10

00




ICIC"  Straight line fitting

* Same procedure applies for more complicated signals e.g.
straight-line fitting

data = signal + noise

* Let signal be linear in time d; = at; + b+ n,
* Likelihood | _ 1 1 (d; — at; — b)°
p(d2|a7 b7 I) — Wexp _5 0_2

e This is multivariate Gaussian in di. Since linear in (a,b) also
multivariate Gaussian in (a,b)

* Not normalised in (a,b) so not distribution! Needs application
of Bayes Theorem with prior to get probability distribution

* Posterior maximised for same parameters as “least squares”
fitting with same errors and covariance

e Same numbers, but different interpretation! (see PS1 QO)



ICIC!

Line fitting

* Can use standard routines for line fitting

a=23.231402 + 0.356205
b=1.758491 £ 0.061171
“I'cov(a,b) =-0.018710
rab = -0.858655

chi2 = 37.047120

10 : r &

10



ICIC' General linear models

 Many problems can be reduced to linear by appropriate
choice of basis

e Consider d(t;) = Zajpfp(ti) + n;
p

l.e. a sum of known functions of unknown coefficient plus noise. Want to infer x;
e.qg. linear fit has fo(t)=1, f1(t)=t

o Assume zero mean Gaussian noise, possibly correlated
(n) =0, (n;n;) = Ny
o Jypically noise can be considered stationary (isotropic)
so that Nj = N(tj-t)

o Rewrite in matrix form % = > Ay +n; Aip = fp(ti)
p

O 1 1
o Likelihood | p(di|zp,I) = SN2 exp _i(d — Ax)'N~1(d — Az)




ICIC' General linear models

As before can rewrite this as data-only and
data+parameters terms

depends on data only depends on data & parameters

p(dil, T) o exp {—%(d _ AZ)TNY(d - A:?:)} exp [—%(x _ BT (- f)}

X exp [—%(d — AW NHd - AWd)] exp [—%(x —wa)'c(z- Wd)]

N2
The parameter independent part is just e Xmax

The parameter dependent part makes clear that the likelihood is a multivariate

Gaussian with mean 7= Wd — (ATN_lA)_lATN_ld

and variance C

C=(A"N"1tA)"1



ICIC' General linear models

In the limit of an infinitely wide uniform (or Gaussian) prior
on X then the posterior Is

p(ib‘d, I) —

1

27 C|1/2

x|

1

2

(x —Wd)'C Nz — Wd)}

As before, normalisation cancelled out the ex2 part

Best estimate of x is the noise weighted mean
T=Wd= (AIN"1A)"TATN~1(

We get errors on x from the covariance matrix (6zpdz)

Opq

Covariance matrix 0]% = Cpp  gives errors if we marginalise over all other parameters

Inverse matrix 02 = 1/C=1 gives errors if we fix all other parameters
p pp



ICIC'  Covariance matrix

Covariance matrix 0']% = Cpp  gives errors if we marginalise over all other parameters

Inverse matrix o7 = 1/C,' gives errors if we fix all other parameters

21/C11 o
- , marginalised xo

fixed xo

X1

For Gaussian distribution, marginalising one or more parameters doesn'’t shift the best fit
values of the others. Not true for a general distribution.



ICIC Chi Squared

* The exponential part of a Gaussian always takes the
form exp(-x4/2)

* Inthe Likelihood, we have x°=2>i(datai-model;)?/o?

* For fixed model, x°has a x? distribution with number of
degrees of freedom vV = Ndata — NVparameters

 The distribution peaks at x* = v + v2v

e Chi squared too big or small can be sign of poor model
(overfitting or too many parameters)

e Frequentist arguments, but useful rule of thumb



ICIC"  Poisson processes

* Poisson processes occur when counting discrete events.

e Can occur in two different ways:
- Course measurements where “bin” events and can only report
number of events in one or more finite intervals (counting
Drocess).
- Fine measurements where count individual events (point
Drocess)

* Poisson statistics obey two key properties:

(1) Given an event rate r, the probability for finding an event in
an interval dtis proportional to the size of the interval

p(E|r,I) = rdt

(2) Probabilities for different intervals are independent



ICIC' Poisson distribution

A"
* Poisson probability distribution p(n|>\, [) = €
n!
* Moments (n) = an(n\r, I)=7rT =\
n=0

((n—(n)*) = (n) = A

* SO single parameter describes Poisson distribution
* (M=o limit of Binomial distribution, for N successes in M trials)
* Can derive from Maximum Entropy as least restrictive

distribution given known expectation for number of events in
fixed interval (see Sivia Chap 5).



ICIC Poisson inference

* Let's say we measure nevents in an interval of time T

and we want to infer the event rate r
p(n|r, Ip(r|)

e | kelihood IR
p(n|r,I) = (Tn!) e "t

* [or prior two common options:
- r known to be non-zero. lts a scale parameter
p(r|l) oc 1/r = 1/|rlog(ry/r)]
- r can be zero. Uniform prior
p(rlI) =1/ry
* Jaking scale parameter prior, we get posterior

p(r\n, ]) _ TG_(; E’I“ff))!n_

(uniform prior would

Best estimate of rate isthen  rT'=n++/n Give ne1)




ICIC!

n=0 have no
information to

make inference .

Inferences for rate
n=0 N=1

T T Q T T T T T T T T T T

100

n=100

—rT T n—1
|n,]) — € (T )

(n —1)!

n=100 posterior
. becomes close
to Gaussian



ICIC Poisson rates

* Backgrounds: n=b + s
- can fix or infer known or unknown background rate
- e.g. np from Tp spent observing background and nsg
from Tsobserving (b+s)
- See Loredo articles for detailed examples

e Spatial or temporal variation in signal (or background)
e.g. s = s(t)

* e.g. counts of cosmic rays over sky, neutrinos

* Arrival statistics of individual rare particles e.g. UHECR



ICIC Conclusions

e (Gaussian distributions are everywhere! Arise from Central
Limit Theorem; arise when all you know Is mean & variance.

* (Gaussian linear model equivalent to “generalised least
squares” => many toolkits work for Bayesian analysis

e Poisson statistics important for discrete events e.g. counting
problems, arrival statistics

» Can view distributions as statements about what you believe
- often make most ignorant choices, but don't have to
especially for priors.

 Framework is general and explicit about assumptions.
Makes it easy to modity assumptions to fit specific problems.



