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In[276]:= Gauss[x_, mu_, sig_] :=
1

2 π sig2
Exp%

(x % mu)2

2 sig2


In[286]:= mu = 0.0

sig = 1

Plot[{Gauss[x, mu, sig], Gauss[x, mu + 3, sig]},
{x, %10, 10}, PlotRange + {{%10, 10}, {0, 0.4}}]
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In[289]:= mu = 0.0

sig = 1

Plot[{Gauss[x, mu, sig], Gauss[x, mu, 2 sig]},
{x, %10, 10}, PlotRange + {{%10, 10}, {0, 0.4}}]
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Overview

• Why Gaussians? Central Limit Theorem 

• Gaussian inference 

• Gaussian linear models 

• Poisson processes
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I. INTRODUCTION

A. Bayes recap

In previous lecture were introduced to Bayes Theorem and some examples of how it can be

applied. Now want to look at some more concrete examples in detail.

P (⇥|D, I) =
P (D|⇥, I)P (⇥|I)

P (D|I) (1)

Remember that Bayes Law comes in four parts. The posterior probability, which is the thing that

we want to describe what information we have about the model parameters ⇥. The likelihood,

which relates the observed data D to the model, a prior probability which encodes what we knew

about the parameters before we collected data. Finally, the evidence, which encodes the probability

of the data and which acts as a normalisation constant.

B. Gaussian distribution

Possibly the first key question in inference is to ask what form the likelihood takes. I want to

say a little about two common forms - Gaussian and Poisson - in this lecture.

You’ll have come across the Gaussian or normal distribution before. In normalised form it looks

like

P (x|µ,�, I) = 1p
2⇡�2

exp


�1

2

(x� µ)2

�2

�
(2)

⇤
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Gaussian distribution
• One of the most common distributions in statistics
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This distribution has moments hxi = µ and h(x�µ)2i = �2. All higher cumulants k

n

= 0, so these

two numbers convey all information about the distribution.

The Gaussian distribution is a very common distribution in science and its worth dwelling for a

moment on why that is. There are at least two ways that we can think about this.

1. Central Limit Theorem

One way in which the Gaussian distribution arises is from the Central Limit Theorem. This

states that the sum of n random values drawn from a probability distribution of finite variance, �2,

tends to be Gaussian distributed about the expectation value for the sum, with variance n�2.

Its Central to probability and statistics. A Limit Theorem because it is only asymptotically

true in the case of a large sample.

Its particularly important because it holds whenever we have a large amount of data regardless

of what distribution the data was drawn from. So if we have manner datum each drawn from a

Binomial or Poisson distribution, the distribution of the data as a whole will look Gaussian.

So examples might be measurements of light, which count many photons to get the intensity,

or the distribution of human heights, each of which is drawn from some complicated distribution

dependent on genetics and nutrition.

Since the Central Limit Theorem is so important, I want to sketch a proof of it. The details

aren’t important, but it’ll hopefully give you a feel for what’s going on.

We start by considering the distribution of a sum of just two variables. Call the sum z = x+ y

where x and y are random variables. We want to know the shape of the probability density p(z).

The probability of observing a value of z that is greater than some value z1 is given by

p(z � z1) =

Z 1

z

1

dz p(z)

=

Z 1

�1
dy

Z 1

z

1

�y

dx p(x, y)

where the integral limits can be seen from defining the region in the x� y plane.

If we now transform back to z so that x = z � y we find

p(z � z1) =

Z 1

�1
dy

Z 1

z

1

dz p(z � y, y) (3)

Moments
2
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All higher cumulants κn are zero => mean & variance tell 
you everything about distribution



Gaussians & CLT
• Central Limit Theorem: 
 
The sum of a n random numbers drawn from a 
probability distribution of finite variance σ2 tends to 
be Gaussian distributed about the expectation 
value of the sum with variance nσ2 

• Applies asymptotically hence, Limit Theorem 

• Means that statistics of large set of random 
numbers becomes independent of distribution of 
individual numbers 
=> Gaussian widely applicable



Sketch of a proof of CLT
• Consider sum of two random variables x & y 

• Want to know p(z)

2
This distribution has moments hxi = µ and h(x�µ)2i = �2. All higher cumulants k

n

= 0, so these

two numbers convey all information about the distribution.

The Gaussian distribution is a very common distribution in science and its worth dwelling for a

moment on why that is. There are at least two ways that we can think about this.

1. Central Limit Theorem

One way in which the Gaussian distribution arises is from the Central Limit Theorem. This

states that the sum of n random values drawn from a probability distribution of finite variance, �2,

tends to be Gaussian distributed about the expectation value for the sum, with variance n�2.

Its Central to probability and statistics. A Limit Theorem because it is only asymptotically

true in the case of a large sample.

Its particularly important because it holds whenever we have a large amount of data regardless

of what distribution the data was drawn from. So if we have manner datum each drawn from a

Binomial or Poisson distribution, the distribution of the data as a whole will look Gaussian.

So examples might be measurements of light, which count many photons to get the intensity,

or the distribution of human heights, each of which is drawn from some complicated distribution

dependent on genetics and nutrition.

Since the Central Limit Theorem is so important, I want to sketch a proof of it. The details

aren’t important, but it’ll hopefully give you a feel for what’s going on.

We start by considering the distribution of a sum of just two variables. Call the sum z = x+ y

where x and y are random variables. We want to know the shape of the probability density p(z).

The probability of observing a value of z that is greater than some value z1 is given by

p(z � z1) =

Z 1

z

1

dz p(z)

=

Z 1

�1
dy

Z 1

z

1

�y

dx p(x, y)

where the integral limits can be seen from defining the region in the x� y plane.

If we now transform back to z so that x = z � y we find

p(z � z1) =

Z 1

�1
dy

Z 1

z

1

dz p(z � y, y) (3)

2
This distribution has moments hxi = µ and h(x�µ)2i = �2. All higher cumulants k

n

= 0, so these

two numbers convey all information about the distribution.

The Gaussian distribution is a very common distribution in science and its worth dwelling for a

moment on why that is. There are at least two ways that we can think about this.

1. Central Limit Theorem

One way in which the Gaussian distribution arises is from the Central Limit Theorem. This

states that the sum of n random values drawn from a probability distribution of finite variance, �2,

tends to be Gaussian distributed about the expectation value for the sum, with variance n�2.

Its Central to probability and statistics. A Limit Theorem because it is only asymptotically

true in the case of a large sample.

Its particularly important because it holds whenever we have a large amount of data regardless

of what distribution the data was drawn from. So if we have manner datum each drawn from a

Binomial or Poisson distribution, the distribution of the data as a whole will look Gaussian.

So examples might be measurements of light, which count many photons to get the intensity,

or the distribution of human heights, each of which is drawn from some complicated distribution

dependent on genetics and nutrition.

Since the Central Limit Theorem is so important, I want to sketch a proof of it. The details

aren’t important, but it’ll hopefully give you a feel for what’s going on.

We start by considering the distribution of a sum of just two variables. Call the sum z = x+ y

where x and y are random variables. We want to know the shape of the probability density p(z).

The probability of observing a value of z that is greater than some value z1 is given by

p(z � z1) =

Z 1

z

1

dz p(z)

=

Z 1

�1
dy

Z 1

z

1

�y

dx p(x, y)

where the integral limits can be seen from defining the region in the x� y plane.

If we now transform back to z so that x = z � y we find

p(z � z1) =

Z 1

�1
dy

Z 1

z

1

dz p(z � y, y) (3)

4 The addition of random variables: towards the
Central Limit Theorem

4.1 The probability distribution of summed random variables

Let us consider the distribution of the sum of two or more random variables: this will
lead us on to the Central Limit Theorem which is of critical importance in probability
theory and hence astrophysics.

Let us define a new random variable z = x + y. What is the probability density, p(z)
of z? The probability of observing a value, z, which is greater than some value z1 is

p(z ≥ z1) =
∫ ∞

z1

dz p(z) (63)

=
∫ ∞

−∞
dy
∫ ∞

z1−y
dx p(x, y), (64)

where the integral limits on the second line can be seen from defining the region in the
x − y plane (see Figure 3).

Figure 3: The region of integration of equation (64).

If we now change variables back to z, so x = z − y we find

p(z ≥ z1) =
∫ ∞

−∞
dy

∫ ∞

z1

dz p(z − y, y). (65)

Now, comparing with equation (63) we can write p(z) as

p(z) =
∫ ∞

−∞
dy p(z − y, y) (66)

If the distributions of x and y are independent, then we arrive at a particularly im-
portant result;

p(z) =
∫ ∞

−∞
dy px(z − y)py(y) (67)
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Transform back to z: x=z-y

3
which if we compare to our starting point tells us that

p(z) =

Z 1

�1
dy p(z � y, y). (4)

If we now assume that the distributions of x and y are independent then we arrive at the result

that

p(z) =

Z 1

�1
dy p

x

(z � y)p
y

(y), (5)

which you should recognise as the convolution of the two distributions p
x

(x) and p
y

(y).

If you think back to your classes on Fourier theory, then you’ll hopefully remember that the

Fourier transform of convolution is equal to the product of the Fourier transformed functions. It

can be useful to introduce the characteristic function defined as the Fourier transform of a

probability distribution

�(k) =

Z 1

�1
dx p(x)eikx (6)

with the usual inverse

p(x) =

Z 1

�1

dk

2⇡
�(k)e�ikx. (7)

With this language the convolution leads to a Fourier transform

�
z

(k) = �
x

(k)�
y

(k) (8)

I leave demonstrating that as a revision exercise to the reader.

You might be able to see where this is going now. The Central Limit Theorem holds when we

add together n random variables x
i

.

Let

X =
1p
N

(x1 + x2 + ...+ x
n

) (9)

be the sum of n random variables x
i

each drawn from the same underlying distribution. The

distribution p(X) will be a convolution of the underlying distributions.

From the properties of the characteristic functions, we can see that this will lead to a product

of characteristic functions.

Comparison gives



Sketch of a proof (II)
3

which if we compare to our starting point tells us that

p(z) =

Z 1

�1
dy p(z � y, y). (4)

If we now assume that the distributions of x and y are independent then we arrive at the result

that

p(z) =

Z 1

�1
dy p

x

(z � y)p
y

(y), (5)

which you should recognise as the convolution of the two distributions p
x

(x) and p
y

(y).

If you think back to your classes on Fourier theory, then you’ll hopefully remember that the

Fourier transform of convolution is equal to the product of the Fourier transformed functions. It

can be useful to introduce the characteristic function defined as the Fourier transform of a

probability distribution

�(k) =

Z 1

�1
dx p(x)eikx (6)

with the usual inverse

p(x) =

Z 1

�1

dk

2⇡
�(k)e�ikx. (7)

With this language the convolution leads to a Fourier transform

�
z

(k) = �
x

(k)�
y

(k) (8)

I leave demonstrating that as a revision exercise to the reader.

You might be able to see where this is going now. The Central Limit Theorem holds when we

add together n random variables x
i

.

Let

X =
1p
N

(x1 + x2 + ...+ x
n

) (9)

be the sum of n random variables x
i

each drawn from the same underlying distribution. The

distribution p(X) will be a convolution of the underlying distributions.

From the properties of the characteristic functions, we can see that this will lead to a product

of characteristic functions.

So we have

Assuming independence

3
which if we compare to our starting point tells us that

p(z) =

Z 1

�1
dy p(z � y, y). (4)

If we now assume that the distributions of x and y are independent then we arrive at the result

that

p(z) =

Z 1

�1
dy p

x

(z � y)p
y

(y), (5)

which you should recognise as the convolution of the two distributions p
x

(x) and p
y

(y).

If you think back to your classes on Fourier theory, then you’ll hopefully remember that the

Fourier transform of convolution is equal to the product of the Fourier transformed functions. It

can be useful to introduce the characteristic function defined as the Fourier transform of a

probability distribution

�(k) =

Z 1

�1
dx p(x)eikx (6)

with the usual inverse

p(x) =

Z 1

�1

dk

2⇡
�(k)e�ikx. (7)

With this language the convolution leads to a Fourier transform

�
z

(k) = �
x

(k)�
y

(k) (8)

I leave demonstrating that as a revision exercise to the reader.

You might be able to see where this is going now. The Central Limit Theorem holds when we

add together n random variables x
i

.

Let

X =
1p
N

(x1 + x2 + ...+ x
n

) (9)

be the sum of n random variables x
i

each drawn from the same underlying distribution. The

distribution p(X) will be a convolution of the underlying distributions.

From the properties of the characteristic functions, we can see that this will lead to a product

of characteristic functions.

Which is just the convolution of px(x) and py(y)

3
which if we compare to our starting point tells us that

p(z) =

Z 1

�1
dy p(z � y, y). (4)

If we now assume that the distributions of x and y are independent then we arrive at the result

that

p(z) =

Z 1

�1
dy p

x

(z � y)p
y

(y), (5)

which you should recognise as the convolution of the two distributions p
x

(x) and p
y

(y).

If you think back to your classes on Fourier theory, then you’ll hopefully remember that the

Fourier transform of convolution is equal to the product of the Fourier transformed functions. It

can be useful to introduce the characteristic function defined as the Fourier transform of a

probability distribution

�(k) =

Z 1

�1
dx p(x)eikx (6)

with the usual inverse

p(x) =

Z 1

�1

dk

2⇡
�(k)e�ikx. (7)

With this language the convolution leads to a Fourier transform

�
z

(k) = �
x

(k)�
y

(k) (8)

I leave demonstrating that as a revision exercise to the reader.

You might be able to see where this is going now. The Central Limit Theorem holds when we

add together n random variables x
i

.

Let

X =
1p
N

(x1 + x2 + ...+ x
n

) (9)

be the sum of n random variables x
i

each drawn from the same underlying distribution. The

distribution p(X) will be a convolution of the underlying distributions.

From the properties of the characteristic functions, we can see that this will lead to a product

of characteristic functions.

3
which if we compare to our starting point tells us that

p(z) =

Z 1

�1
dy p(z � y, y). (4)

If we now assume that the distributions of x and y are independent then we arrive at the result

that

p(z) =

Z 1

�1
dy p

x

(z � y)p
y

(y), (5)

which you should recognise as the convolution of the two distributions p
x

(x) and p
y

(y).

If you think back to your classes on Fourier theory, then you’ll hopefully remember that the

Fourier transform of convolution is equal to the product of the Fourier transformed functions. It

can be useful to introduce the characteristic function defined as the Fourier transform of a

probability distribution

�(k) =

Z 1

�1
dx p(x)eikx (6)

with the usual inverse

p(x) =

Z 1

�1

dk

2⇡
�(k)e�ikx. (7)

With this language the convolution leads to a Fourier transform

�
z

(k) = �
x

(k)�
y

(k) (8)

I leave demonstrating that as a revision exercise to the reader.

You might be able to see where this is going now. The Central Limit Theorem holds when we

add together n random variables x
i

.

Let

X =
1p
N

(x1 + x2 + ...+ x
n

) (9)

be the sum of n random variables x
i

each drawn from the same underlying distribution. The

distribution p(X) will be a convolution of the underlying distributions.

From the properties of the characteristic functions, we can see that this will lead to a product

of characteristic functions.

3
which if we compare to our starting point tells us that

p(z) =

Z 1

�1
dy p(z � y, y). (4)

If we now assume that the distributions of x and y are independent then we arrive at the result

that

p(z) =

Z 1

�1
dy p

x

(z � y)p
y

(y), (5)

which you should recognise as the convolution of the two distributions p
x

(x) and p
y

(y).

If you think back to your classes on Fourier theory, then you’ll hopefully remember that the

Fourier transform of convolution is equal to the product of the Fourier transformed functions. It

can be useful to introduce the characteristic function defined as the Fourier transform of a

probability distribution

�(k) =

Z 1

�1
dx p(x)eikx (6)

with the usual inverse

p(x) =

Z 1

�1

dk

2⇡
�(k)e�ikx. (7)

With this language the convolution leads to a Fourier transform

�
z

(k) = �
x

(k)�
y

(k) (8)

I leave demonstrating that as a revision exercise to the reader.

You might be able to see where this is going now. The Central Limit Theorem holds when we

add together n random variables x
i

.

Let

X =
1p
N

(x1 + x2 + ...+ x
n

) (9)

be the sum of n random variables x
i

each drawn from the same underlying distribution. The

distribution p(X) will be a convolution of the underlying distributions.

From the properties of the characteristic functions, we can see that this will lead to a product

of characteristic functions.

Recall from Fourier theory that FT of convolution is  
a product, so helpful to think in Fourier space

Characteristic function!
= F.T. of prob distribution

So for z have:

characteristic function prob. distribution
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Sum of n random variables

p(X) will be convolution of all the px(xi)

Expand characteristic fn
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Now, if the characteristic function of p(x) is

�
x

(k) =

Z 1

�1
dx p(x)eikx ⇡ 1 + ikhxi � 1

2
k2hx2i+O(k3) (10)

where we’ve expanded out eiix for small k why?. The sum for X is over x
i

/
p
n rather than x

i

, so
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Gaussians & belief
• Alternatively, can ask what distribution is least 

informative if we know mean and variance  
=> again leads to Gaussian 

• Can show this rigourously from maximum entropy 
considerations. (in continuous case need extra fn m(x) to insure invariance 
under parameter change) 

• Maximising S subject to known mean μ & variance σ 
(e.g. by Lagrange multipliers) produces Gaussian
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what we should choose if we wish to be maximally ignorant about the sampling distribution while

retaining a known mean and variance. Its the “least informative” distribution in this sense.

Entropy is
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p(x) log
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m(x)
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(14)

In continuous limit, need Lebesque measure m(x) to ensure that entropy expression is invariant

under a change of variables x ! y = f(x).

C. Gaussian inference

To give a concrete example of an inference problem, let’s imagine the common problem of

wanting to infer a signal s, some number, from a series of noisy measurements d
i

.

To make progress, we need a model for how signal and measurements are connected.

d
i

= s+ n
i

(15)

where n
i

is noise.

We will assume that the noise n
i

has zero mean and known variance �2. It therefore makes

sense to assign a Gaussian distribution to (d
i

� s).

Now we can start working through the elements of Bayes Theorem.

p(s|d, I) = p(d|s, I)p(s|I)
p(d|I) (16)

p(s|d, I) p(d|s, I) p(s|I) p(d|I) (17)

1. Prior

First let’s assign a prior to the signal s. A normal strategy is to begin with an assumption of

ignorance about the prior. Exactly how we encode that will vary for di↵erent problems.

We could take a Gaussian with zero mean and variance ⌃ and then take the limit ⌃ ! 1 at

the end of the calculation. This would be one way of saying that the signal could take any value.

Clever title

Jonathan R. Pritchard⇤

Imperial College London

abstract here

I. INTRODUCTION

A. Bayes recap

In previous lecture were introduced to Bayes Theorem and some examples of how it can be

applied. Now want to look at some more concrete examples in detail.

P (⇥|D, I) =
P (D|⇥, I)P (⇥|I)

P (D|I) (1)

Remember that Bayes Law comes in four parts. The posterior probability, which is the thing that

we want to describe what information we have about the model parameters ⇥. The likelihood,

which relates the observed data D to the model, a prior probability which encodes what we knew

about the parameters before we collected data. Finally, the evidence, which encodes the probability

of the data and which acts as a normalisation constant.

B. Gaussian distribution

Possibly the first key question in inference is to ask what form the likelihood takes. I want to

say a little about two common forms - Gaussian and Poisson - in this lecture.

You’ll have come across the Gaussian or normal distribution before. In normalised form it looks

like

P (x|µ,�, I) = 1p
2⇡�2

exp


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(x� µ)2
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(2)
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C. Gaussian inference

To give a concrete example of an inference problem, let’s imagine the common problem of

wanting to infer a signal s, some number, from a series of noisy measurements d
i

.

To make progress, we need a model for how signal and measurements are connected.

d
i

= s+ n
i

(16)

where n
i

is noise.

We will assume that the noise n
i

has zero mean and known variance �2. It therefore makes

sense to assign a Gaussian distribution to (d
i

� s).

Now we can start working through the elements of Bayes Theorem.

p(s|d, I) = p(d|s, I)p(s|I)
p(d|I) (17)

p(s|d, I) p(d|s, I) p(s|I) p(d|I) (18)

1. Prior

First let’s assign a prior to the signal s. A normal strategy is to begin with an assumption of

ignorance about the prior. Exactly how we encode that will vary for di↵erent problems.

Recover the standard Gaussian distribution



Why Gaussians?

• Central Limit Theorem: sum of many random 
numbers has a Gaussian sampling distribution 

• MaxEnt: If we know mean & variance, the least 
informative distribution is Gaussian



Gaussian inference
• Problem: want to estimate signal s, given n noisy 

observations {di} 

• Need model for observations:  

• Noise: assume ni=(di-s) is Gaussian zero mean & 
known variance σ2 

• Work through Bayes theorem:
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where n
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We will assume that the noise n
i

has zero mean and known variance �2. It therefore makes

sense to assign a Gaussian distribution to (d
i

� s).

Now we can start working through the elements of Bayes Theorem.

1. Prior

First let’s assign a prior to the signal s. A normal strategy is to begin with an assumption of

ignorance about the prior. Exactly how we encode that will vary for di↵erent problems.

We could take a Gaussian with zero mean and variance ⌃ and then take the limit ⌃ ! 1 at

the end of the calculation. This would be one way of saying that the signal could take any value.

An alternative would be to assign a uniform prior on the interval (�⌃1,⌃2) ! (�1,1). This

would have the same e↵ect.

A uniform prior is a common choice to encode ignorance. In more detail, its a statement that we

don’t have any knowledge within slight shifts of the value. Mathematically, a uniform prior arises

from asking that the probability distribution should be essentially invariant under small o↵sets x0

p(X|I)dX ⇡ p(X + x0|I)d(X + x0)

p(X|I)dX ⇡ p(X + x0|I)dX

This is true provided p(X|I) = const within some fixed range.
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We could take a Gaussian with zero mean and variance ⌃ and then take the limit ⌃ ! 1 at

the end of the calculation. This would be one way of saying that the signal could take any value.

An alternative would be to assign a uniform prior on the interval (�⌃1,⌃2) ! (�1,1). This

would have the same e↵ect.

A uniform prior is a common choice to encode ignorance. In more detail, its a statement that we

don’t have any knowledge within slight shifts of the value. Mathematically, a uniform prior arises
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data = signal + noise



Prior
• How do we choose prior? Often to encode ignorance about s 

• Common options?  
 
Gaussian with zero mean and variance Σ.  
Let Σ→∞ at end of calculation 
 
Uniform in range [Σ1,Σ2]. Again let Σ1→-∞, Σ2→∞ at end 
 
“Jeffrey’s prior”, p(s|I)∝1/s. Appropriate if ignorant about scale 
of s. Equivalent to flat prior on logs 

• Here adopt uniform prior:
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We will assume that the noise n
i

has zero mean and known variance �2. It therefore makes

sense to assign a Gaussian distribution to (d
i

� s).

Now we can start working through the elements of Bayes Theorem.

p(s|d, I) = p(d|s, I)p(s|I)
p(d|I) (15)

p(s|d, I) p(d|s, I) p(s|I) p(d|I) (16)

1. Prior

First let’s assign a prior to the signal s. A normal strategy is to begin with an assumption of

ignorance about the prior. Exactly how we encode that will vary for di↵erent problems.

We could take a Gaussian with zero mean and variance ⌃ and then take the limit ⌃ ! 1 at

the end of the calculation. This would be one way of saying that the signal could take any value.

An alternative would be to assign a uniform prior on the interval (�⌃1,⌃2) ! (�1,1). This

would have the same e↵ect.

A uniform prior is a common choice to encode ignorance. In more detail, its a statement that we

don’t have any knowledge within slight shifts of the value. Mathematically, a uniform prior arises

6
from asking that the probability distribution should be essentially invariant under small o↵sets x0

p(X|I)dX ⇡ p(X + x0|I)d(X + x0)

p(X|I)dX ⇡ p(X + x0|I)dX

This is true provided p(X|I) = const within some fixed range.

As an example of an alternative, some times we are ignorant even about the order of magnitude

of the parameter. This can be cast mathematically as wanting the pdf to be invariant under

rescaling � ! ��.

p(�|I)dX ⇡ p(��|I)d(��)

p(�|I) ⇡ p(��|I)�

This is true is p(�|I) / 1/�. This is often known as the Je↵rey’s prior.

We’ll adopt a uniform prior

p(s|I) = 1

⌃2 � ⌃1
if ⌃1  s  ⌃2 (17)

Only at the end can we take the limit (�⌃1,⌃2) ! (�1,1). You can see that this is important

because if we do this at anytime earlier then this prior will become zero. This shouldn’t worry you

as will become clear later.

2. Likelihood

Next up is the likelihood, since we’re assuming the data is Gaussian distributed this is straight-

forward to write down. For an individual data point we have

p(d
i

|s, I) = 1p
2⇡�2

exp


�1

2

(d
i

� s)2

�2

�
(18)

and the total probability of getting our observed dataset will be their product (assuming each

datum is independent)

p(d|s, I) = (2⇡�2)n/2 exp

"
� 1

2�2

nX

i

(d
i

� s)2
#
. (19)

This is a perfectly good likelihood and we could implement it numerically. With a little analytic

manipulation though we can massage it into a more useful form.
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=> want pdf invariance under rescaling  
 
 
 
 
=> uniform in log prior
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Likelihood
• We’ve decided our noise is Gaussian, so for 

individual datum have 

• For full data set:  

• Fine, but helpful to manipulate analytically  
 

• Result separates into two parts
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what we should choose if we wish to be maximally ignorant about the sampling distribution while

retaining a known mean and variance. Its the “least informative” distribution in this sense.

C. Gaussian inference

To give a concrete example of an inference problem, let’s imagine the common problem of

wanting to infer a signal s, some number, from a series of noisy measurements d
i

.

To make progress, we need a model for how signal and measurements are connected.

d
i

= s+ n
i

(14)

where n
i

is noise.

We will assume that the noise n
i

has zero mean and known variance �2. It therefore makes

sense to assign a Gaussian distribution to (d
i

� s).

Now we can start working through the elements of Bayes Theorem.

p(s|d, I) = p(d|s, I)p(s|I)
p(d|I) (15)

p(s|d, I) p(d|s, I) p(s|I) p(d|I) (16)

1. Prior

First let’s assign a prior to the signal s. A normal strategy is to begin with an assumption of

ignorance about the prior. Exactly how we encode that will vary for di↵erent problems.

We could take a Gaussian with zero mean and variance ⌃ and then take the limit ⌃ ! 1 at

the end of the calculation. This would be one way of saying that the signal could take any value.

An alternative would be to assign a uniform prior on the interval (�⌃1,⌃2) ! (�1,1). This

would have the same e↵ect.

A uniform prior is a common choice to encode ignorance. In more detail, its a statement that we

don’t have any knowledge within slight shifts of the value. Mathematically, a uniform prior arises

6
from asking that the probability distribution should be essentially invariant under small o↵sets x0

p(X|I)dX ⇡ p(X + x0|I)d(X + x0)

p(X|I)dX ⇡ p(X + x0|I)dX

This is true provided p(X|I) = const within some fixed range.

As an example of an alternative, some times we are ignorant even about the order of magnitude

of the parameter. This can be cast mathematically as wanting the pdf to be invariant under

rescaling � ! ��.

p(�|I)dX ⇡ p(��|I)d(��)

p(�|I) ⇡ p(��|I)�

This is true is p(�|I) / 1/�. This is often known as the Je↵rey’s prior.

We’ll adopt a uniform prior

p(s|I) = 1

⌃2 � ⌃1
if ⌃1  s  ⌃2 (17)

Only at the end can we take the limit (�⌃1,⌃2) ! (�1,1). You can see that this is important

because if we do this at anytime earlier then this prior will become zero. This shouldn’t worry you

as will become clear later.

2. Likelihood

Next up is the likelihood, since we’re assuming the data is Gaussian distributed this is straight-

forward to write down. For an individual data point we have

p(d
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|s, I) = 1p
2⇡�2

exp


�1

2

(d
i

� s)2

�2

�
(18)

and the total probability of getting our observed dataset will be their product (assuming each

datum is independent)

p(d|s, I) = (2⇡�2)n/2 exp

"
� 1

2�2

nX

i

(d
i

� s)2
#
. (19)

This is a perfectly good likelihood and we could implement it numerically. With a little analytic

manipulation though we can massage it into a more useful form.
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Noting that the mean of our data is d̄ = 1

N

P
i

d
i

. Then by completing the square on the

exponent
nX

i

(d
i

� s)2 =
nX

i

(d2
i

� 2d
i

s+ s2) = N(s� d̄)2 +N
X

i

(d
i

� d̄)2

N
(20)

Here we’ve separated out a term that depends upon the signal (model parameters) plus the

data and a term that depends only on the data. The second term here is the variance of our data

h(d
i

� d̄)2i =
P

i

(d
i

�d̄)2

N

.

So the final likelihood looks like

p(d|s, I) = (2⇡�2)n/2 exp


� N

2�2
(s� d̄)2

�
exp


� N

2�2
h(d

i

� d̄)2i
�
. (21)

or if we define �
b

⌘ �/
p
N

p(d|s, I) = (2⇡�2)n/2 exp


� 1

2�2
b

(s� d̄)2
�
exp


� 1

2�2
b

h(d
i

� d̄)2i
�
. (22)

3. Evidence

Now that we have a prior and the likelihood, we can evaluate the Evidence as a normalisation

factor. This is important in placing the prior in the proper context as we’ll see.

From Bayes theorem,

1 =

Z
ds p(s|d, I) =

Z
ds

p(d|s, I)p(s|I)
p(d|I) (23)

so that

p(d|I) =
Z

ds p(d|s, I)p(s|I) (24)

Substituting in our likelihood and prior we have

p(d|I) =

Z ⌃
2

⌃
1

ds (2⇡�2)n/2 exp


� 1

2�2
b

(s� d̄)2
�
exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1
(25)

= (2⇡�2)n/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1
(26)

⇥
Z ⌃

2

⌃
1

ds exp


� 1

2�2
b

(s� d̄)2
�

(27)

You might recall that the integral of a Gaussian within finite limits is given by an error function

erfx =
2p
⇡

Z
x

0
e�t

2

dt (28)
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So with some algebra and a little manipulation we get the rather cumbersome result that

p(d|I) = (2⇡�2)N/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�
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⌃2 � ⌃1

p
2⇡�2
p
N

1

2

"
erf
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�
p

2/N

!
� erf

 
⌃1 � d̄

�
p

2/N

!#

(29)

4. Posterior

Although our result for the evidence was cumbersome when we put everything together for the

posterior there’s a significant simplification.

p(s|d, I) =
p
Np

2⇡�2
2

"
erf
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�
p

2/N

!
� erf
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�
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!#�1

exp


� 1

2�2
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(s� d̄)2
�

(30)

Now we can take the limit (�⌃1,⌃2) ! (�1,1), which gives the final result

p(s|d, I) = 1q
2⇡�2

b

exp


� 1

2�2
b

(s� d̄)2
�
. (31)

This is a correctly normalised Gaussian with mean d̄ and variance �
b

= �/
p
N .

Note that this doesn’t depend upon the prior at all and we would have gotten the same result

if we’d used an infinite width Gaussian prior.

Our final inference is that the best estimate of the signal that we can make is s = d̄± �
b

.

We could ask what would have happened if we assumed that � wasn’t known. Then we would

have been in the situation of using the Je↵rey’s prior p(s|I) / 1/s. This leads to a marginalised

posterior p(s|I) / [s� 2shdi+ hd2i]�2. A much broader distribution.

D. Straight line fitting with errors on the amplitude

A common application of this is the case where our signal depends linearly on time i.e.

d
i

= at
i

+ b+ n
i

(32)

and again the noise is assumed to be independent and hn
i

i = 0 and hn2
i

i = �2.

In this case, the likelihood is

p(d
i

|a, b, I) = 1p
2⇡�2

exp


�1

2

(d
i

� at
i

� b)2

�2

�
(33)

So taking results for prior and likelihood

Recall definition of error function

Gives final result for evidence

5
what we should choose if we wish to be maximally ignorant about the sampling distribution while

retaining a known mean and variance. Its the “least informative” distribution in this sense.

C. Gaussian inference

To give a concrete example of an inference problem, let’s imagine the common problem of

wanting to infer a signal s, some number, from a series of noisy measurements d
i

.

To make progress, we need a model for how signal and measurements are connected.

d
i

= s+ n
i

(14)

where n
i

is noise.

We will assume that the noise n
i

has zero mean and known variance �2. It therefore makes

sense to assign a Gaussian distribution to (d
i

� s).

Now we can start working through the elements of Bayes Theorem.

p(s|d, I) = p(d|s, I)p(s|I)
p(d|I) (15)

p(s|d, I) p(d|s, I) p(s|I) p(d|I) (16)

1. Prior

First let’s assign a prior to the signal s. A normal strategy is to begin with an assumption of

ignorance about the prior. Exactly how we encode that will vary for di↵erent problems.

We could take a Gaussian with zero mean and variance ⌃ and then take the limit ⌃ ! 1 at

the end of the calculation. This would be one way of saying that the signal could take any value.

An alternative would be to assign a uniform prior on the interval (�⌃1,⌃2) ! (�1,1). This

would have the same e↵ect.

A uniform prior is a common choice to encode ignorance. In more detail, its a statement that we

don’t have any knowledge within slight shifts of the value. Mathematically, a uniform prior arises
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= s+ n
i

(14)

where n
i

is noise.

We will assume that the noise n
i

has zero mean and known variance �2. It therefore makes

sense to assign a Gaussian distribution to (d
i

� s).

Now we can start working through the elements of Bayes Theorem.

p(s|d, I) = p(d|s, I)p(s|I)
p(d|I) (15)

p(s|d, I) p(d|s, I) p(s|I) p(d|I) (16)

1. Prior

First let’s assign a prior to the signal s. A normal strategy is to begin with an assumption of

ignorance about the prior. Exactly how we encode that will vary for di↵erent problems.

We could take a Gaussian with zero mean and variance ⌃ and then take the limit ⌃ ! 1 at

the end of the calculation. This would be one way of saying that the signal could take any value.

An alternative would be to assign a uniform prior on the interval (�⌃1,⌃2) ! (�1,1). This

would have the same e↵ect.

A uniform prior is a common choice to encode ignorance. In more detail, its a statement that we

don’t have any knowledge within slight shifts of the value. Mathematically, a uniform prior arises
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So with some algebra and a little manipulation we get the rather cumbersome result that

p(d|I) = (2⇡�2)N/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1

p
2⇡�2
p
N

1

2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#

(29)

4. Posterior

Although our result for the evidence was cumbersome when we put everything together for the

posterior there’s a significant simplification.

p(s|d, I) =
p
Np

2⇡�2
2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#�1

exp


� 1

2�2
b

(s� d̄)2
�

(30)

Now we can take the limit (�⌃1,⌃2) ! (�1,1), which gives the final result

p(s|d, I) = 1q
2⇡�2

b

exp


� 1

2�2
b

(s� d̄)2
�
. (31)

This is a correctly normalised Gaussian with mean d̄ and variance �
b

= �/
p
N .

Note that this doesn’t depend upon the prior at all and we would have gotten the same result

if we’d used an infinite width Gaussian prior.

Our final inference is that the best estimate of the signal that we can make is s = d̄± �
b

.

We could ask what would have happened if we assumed that � wasn’t known. Then we would

have been in the situation of using the Je↵rey’s prior p(s|I) / 1/s. This leads to a marginalised

posterior p(s|I) / [s� 2shdi+ hd2i]�2. A much broader distribution.

D. Straight line fitting with errors on the amplitude

A common application of this is the case where our signal depends linearly on time i.e.

d
i

= at
i

+ b+ n
i

(32)

and again the noise is assumed to be independent and hn
i

i = 0 and hn2
i

i = �2.

In this case, the likelihood is

p(d
i

|a, b, I) = 1p
2⇡�2

exp


�1

2

(d
i

� at
i

� b)2

�2

�
(33)
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from asking that the probability distribution should be essentially invariant under small o↵sets x0

p(X|I)dX ⇡ p(X + x0|I)d(X + x0)

p(X|I)dX ⇡ p(X + x0|I)dX

This is true provided p(X|I) = const within some fixed range.

As an example of an alternative, some times we are ignorant even about the order of magnitude

of the parameter. This can be cast mathematically as wanting the pdf to be invariant under

rescaling � ! ��.

p(�|I)dX ⇡ p(��|I)d(��)

p(�|I) ⇡ p(��|I)�

This is true is p(�|I) / 1/�. This is often known as the Je↵rey’s prior.

We’ll adopt a uniform prior

p(s|I) = 1

⌃2 � ⌃1
if ⌃1  s  ⌃2 (17)

Only at the end can we take the limit (�⌃1,⌃2) ! (�1,1). You can see that this is important

because if we do this at anytime earlier then this prior will become zero. This shouldn’t worry you

as will become clear later.

2. Likelihood

Next up is the likelihood, since we’re assuming the data is Gaussian distributed this is straight-

forward to write down. For an individual data point we have

p(d
i

|s, I) = 1p
2⇡�2

exp


�1

2

(d
i

� s)2

�2

�
(18)

and the total probability of getting our observed dataset will be their product (assuming each

datum is independent)

p(d|s, I) = (2⇡�2)n/2 exp

"
� 1

2�2

nX

i

(d
i

� s)2
#
. (19)

This is a perfectly good likelihood and we could implement it numerically. With a little analytic

manipulation though we can massage it into a more useful form.
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Noting that the mean of our data is d̄ = 1

N

P
i

d
i

. Then by completing the square on the

exponent
nX

i

(d
i

� s)2 =
nX

i

(d2
i

� 2d
i

s+ s2) = N(s� d̄)2 +N
X

i

(d
i

� d̄)2

N
(20)

Here we’ve separated out a term that depends upon the signal (model parameters) plus the

data and a term that depends only on the data. The second term here is the variance of our data

h(d
i

� d̄)2i =
P

i

(d
i

�d̄)2

N

.

So the final likelihood looks like

p(d|s, I) = (2⇡�2)n/2 exp


� N

2�2
(s� d̄)2

�
exp


� N

2�2
h(d

i

� d̄)2i
�
. (21)

or if we define �
b

⌘ �/
p
N

p(d|s, I) = (2⇡�2)n/2 exp


� 1

2�2
b

(s� d̄)2
�
exp


� 1

2�2
b

h(d
i

� d̄)2i
�
. (22)

3. Evidence

Now that we have a prior and the likelihood, we can evaluate the Evidence as a normalisation

factor. This is important in placing the prior in the proper context as we’ll see.

From Bayes theorem,

1 =

Z
ds p(s|d, I) =

Z
ds

p(d|s, I)p(s|I)
p(d|I) (23)

so that

p(d|I) =
Z

ds p(d|s, I)p(s|I) (24)

Substituting in our likelihood and prior we have

p(d|I) =

Z ⌃
2

⌃
1

ds (2⇡�2)n/2 exp


� 1

2�2
b

(s� d̄)2
�
exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1
(25)

= (2⇡�2)n/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1
(26)

⇥
Z ⌃

2

⌃
1

ds exp


� 1

2�2
b

(s� d̄)2
�

(27)

You might recall that the integral of a Gaussian within finite limits is given by an error function

erfx =
2p
⇡

Z
x

0
e�t

2

dt (28)
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So with some algebra and a little manipulation we get the rather cumbersome result that

p(d|I) = (2⇡�2)N/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1

p
2⇡�2
p
N

1

2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#

(29)

4. Posterior

Although our result for the evidence was cumbersome when we put everything together for the

posterior there’s a significant simplification.

p(s|d, I) =
p
Np

2⇡�2
2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#�1

exp


� 1

2�2
b

(s� d̄)2
�

(30)

Now we can take the limit (�⌃1,⌃2) ! (�1,1), which gives the final result

p(s|d, I) = 1q
2⇡�2

b

exp


� 1

2�2
b

(s� d̄)2
�
. (31)

This is a correctly normalised Gaussian with mean d̄ and variance �
b

= �/
p
N .

Note that this doesn’t depend upon the prior at all and we would have gotten the same result

if we’d used an infinite width Gaussian prior.

Our final inference is that the best estimate of the signal that we can make is s = d̄± �
b

.

We could ask what would have happened if we assumed that � wasn’t known. Then we would

have been in the situation of using the Je↵rey’s prior p(s|I) / 1/s. This leads to a marginalised

posterior p(s|I) / [s� 2shdi+ hd2i]�2. A much broader distribution.

D. Straight line fitting with errors on the amplitude

A common application of this is the case where our signal depends linearly on time i.e.

d
i

= at
i

+ b+ n
i

(32)

and again the noise is assumed to be independent and hn
i

i = 0 and hn2
i

i = �2.

In this case, the likelihood is

p(d
i

|a, b, I) = 1p
2⇡�2

exp


�1

2

(d
i

� at
i

� b)2

�2

�
(33)

Combine results in Bayes theorem

Gives the posterior

Taking limit Σ1→-∞, Σ2→∞
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So with some algebra and a little manipulation we get the rather cumbersome result that

p(d|I) = (2⇡�2)N/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1

p
2⇡�2
p
N

1

2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#

(29)

4. Posterior

Although our result for the evidence was cumbersome when we put everything together for the

posterior there’s a significant simplification.

p(s|d, I) =
p
Np

2⇡�2
2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#�1

exp


� 1

2�2
b

(s� d̄)2
�

(30)

Now we can take the limit (�⌃1,⌃2) ! (�1,1), which gives the final result

p(s|d, I) = 1q
2⇡�2

b

exp


� 1

2�2
b

(s� d̄)2
�
. (31)

This is a correctly normalised Gaussian with mean d̄ and variance �
b

= �/
p
N .

Note that this doesn’t depend upon the prior at all and we would have gotten the same result

if we’d used an infinite width Gaussian prior.

Our final inference is that the best estimate of the signal that we can make is s = d̄± �
b

.

We could ask what would have happened if we assumed that � wasn’t known. Then we would

have been in the situation of using the Je↵rey’s prior p(s|I) / 1/s. This leads to a marginalised

posterior p(s|I) / [s� 2shdi+ hd2i]�2. A much broader distribution.

D. Straight line fitting with errors on the amplitude

A common application of this is the case where our signal depends linearly on time i.e.

d
i

= at
i

+ b+ n
i

(32)

and again the noise is assumed to be independent and hn
i

i = 0 and hn2
i

i = �2.

In this case, the likelihood is

p(d
i

|a, b, I) = 1p
2⇡�2

exp


�1

2

(d
i

� at
i

� b)2

�2

�
(33)

X=



Inference?
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So with some algebra and a little manipulation we get the rather cumbersome result that

p(d|I) = (2⇡�2)N/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1

p
2⇡�2
p
N

1

2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#

(29)

4. Posterior

Although our result for the evidence was cumbersome when we put everything together for the

posterior there’s a significant simplification.

p(s|d, I) =
p
Np

2⇡�2
2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#�1

exp


� 1

2�2
b

(s� d̄)2
�

(30)

Now we can take the limit (�⌃1,⌃2) ! (�1,1), which gives the final result

p(s|d, I) = 1q
2⇡�2

b

exp


� 1

2�2
b

(s� d̄)2
�
. (31)

This is a correctly normalised Gaussian with mean d̄ and variance �
b

= �/
p
N .

Note that this doesn’t depend upon the prior at all and we would have gotten the same result

if we’d used an infinite width Gaussian prior.

Our final inference is that the best estimate of the signal that we can make is s = d̄± �
b

.

We could ask what would have happened if we assumed that � wasn’t known. Then we would

have been in the situation of using the Je↵rey’s prior p(s|I) / 1/s. This leads to a marginalised

posterior p(s|I) / [s� 2shdi+ hd2i]�2. A much broader distribution.

D. Straight line fitting with errors on the amplitude

A common application of this is the case where our signal depends linearly on time i.e.

d
i

= at
i

+ b+ n
i

(32)

and again the noise is assumed to be independent and hn
i

i = 0 and hn2
i

i = �2.

In this case, the likelihood is

p(d
i

|a, b, I) = 1p
2⇡�2

exp


�1

2

(d
i

� at
i

� b)2

�2

�
(33)

Posterior contains everything that we infer about signal

Best estimate of signal is peak of posterior

Alternative priors? Infinite Gaussian gives same result.

If didn’t know σ2: assume Jeffrey’s prior p(σ|I)∝1/σ,  
then marginalise over σ, leads to broader posterior
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So with some algebra and a little manipulation we get the rather cumbersome result that

p(d|I) = (2⇡�2)N/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1

p
2⇡�2
p
N

1

2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#

(29)

4. Posterior

Although our result for the evidence was cumbersome when we put everything together for the

posterior there’s a significant simplification.

p(s|d, I) =
p
Np

2⇡�2
2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#�1

exp


� 1

2�2
b

(s� d̄)2
�

(30)

Now we can take the limit (�⌃1,⌃2) ! (�1,1), which gives the final result

p(s|d, I) = 1q
2⇡�2

b

exp


� 1

2�2
b

(s� d̄)2
�
. (31)

This is a correctly normalised Gaussian with mean d̄ and variance �
b

= �/
p
N .

Note that this doesn’t depend upon the prior at all and we would have gotten the same result

if we’d used an infinite width Gaussian prior.

Our final inference is that the best estimate of the signal that we can make is s = d̄± �
b

.

We could ask what would have happened if we assumed that � wasn’t known. Then we would

have been in the situation of using the Je↵rey’s prior p(s|I) / 1/s. This leads to a marginalised

posterior p(s|I) / [s� 2shdi+ hd2i]�2. A much broader distribution.

D. Straight line fitting with errors on the amplitude

A common application of this is the case where our signal depends linearly on time i.e.

d
i

= at
i

+ b+ n
i

(32)

and again the noise is assumed to be independent and hn
i

i = 0 and hn2
i

i = �2.

In this case, the likelihood is

p(d
i

|a, b, I) = 1p
2⇡�2

exp


�1

2

(d
i

� at
i

� b)2

�2

�
(33)

(connected to Student-t distribution, same maximum, more conservative bound) 

Bayesian 68% confidence interval

8
Substituting in our likelihood and prior we have

p(d|I) =

Z ⌃
2

⌃
1

ds (2⇡�2)n/2 exp


� 1

2�2
b

(s� d̄)2
�
exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1
(27)

= (2⇡�2)n/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1
(28)

⇥
Z ⌃

2

⌃
1

ds exp


� 1

2�2
b

(s� d̄)2
�

(29)

You might recall that the integral of a Gaussian within finite limits is given by an error function

erfx =
2p
⇡

Z
x

0
e�t

2

dt (30)

So with some algebra and a little manipulation we get the rather cumbersome result that

p(d|I) = (2⇡�2)N/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1

p
2⇡�2
p
N

1

2

"
erf

 
⌃2 � d̄

�
p

2/N

!
� erf

 
⌃1 � d̄

�
p

2/N

!#

(31)

4. Posterior

Although our result for the evidence was cumbersome when we put everything together for the

posterior there’s a significant simplification.

p(s|d, I) =
p
Np

2⇡�2
2

"
erf

 
⌃2 � d̄

�
p

2/N

!
� erf

 
⌃1 � d̄

�
p

2/N

!#�1

exp


� 1

2�2
b

(s� d̄)2
�

(32)

Now we can take the limit (�⌃1,⌃2) ! (�1,1), which gives the final result

p(s|d, I) = 1q
2⇡�2

b

exp


� 1

2�2
b

(s� d̄)2
�
. (33)

This is a correctly normalised Gaussian with mean d̄ and variance �
b

= �/
p
N .

Note that this doesn’t depend upon the prior at all and we would have gotten the same result

if we’d used an infinite width Gaussian prior.

Our final inference is that the best estimate of the signal that we can make is then given by

s = d̄± �
b

= d̄± �/
p
N .

We could ask what would have happened if we assumed that � wasn’t known. Then we would

have been in the situation of using the Je↵rey’s prior p(s|I) / 1/s. This leads to a marginalised

posterior p(s|I) / [s� 2shdi+ hd2i]�2. A much broader distribution.



Toy example
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So with some algebra and a little manipulation we get the rather cumbersome result that

p(d|I) = (2⇡�2)N/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
�

1

⌃2 � ⌃1

p
2⇡�2
p
N

1

2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#

(29)

4. Posterior

Although our result for the evidence was cumbersome when we put everything together for the

posterior there’s a significant simplification.

p(s|d, I) =
p
Np

2⇡�2
2

"
erf

 
⌃2 � d̄

�
p
2/N

!
� erf

 
⌃1 � d̄

�
p
2/N

!#�1

exp


� 1

2�2
b

(s� d̄)2
�

(30)

Now we can take the limit (�⌃1,⌃2) ! (�1,1), which gives the final result

p(s|d, I) = 1q
2⇡�2

b

exp


� 1

2�2
b

(s� d̄)2
�
. (31)

This is a correctly normalised Gaussian with mean d̄ and variance �
b

= �/
p
N .

Note that this doesn’t depend upon the prior at all and we would have gotten the same result

if we’d used an infinite width Gaussian prior.

Our final inference is that the best estimate of the signal that we can make is s = d̄± �
b

.

We could ask what would have happened if we assumed that � wasn’t known. Then we would

have been in the situation of using the Je↵rey’s prior p(s|I) / 1/s. This leads to a marginalised

posterior p(s|I) / [s� 2shdi+ hd2i]�2. A much broader distribution.

D. Straight line fitting with errors on the amplitude

A common application of this is the case where our signal depends linearly on time i.e.

d
i

= at
i

+ b+ n
i

(32)

and again the noise is assumed to be independent and hn
i

i = 0 and hn2
i

i = �2.

In this case, the likelihood is

p(d
i

|a, b, I) = 1p
2⇡�2

exp


�1

2

(d
i

� at
i

� b)2

�2

�
(33)

strue=10, σ =2

In[358]:= Nuse = 1

dbarUse = dbar[Nuse]

sigmab = sigma  Nuse

lim1 = 0

lim2 = 15

g[s_, N_] := posts, sigma  N , dbar[N], lim1, lim2

Plot[{g[s, 1], g[s, 10], , g[s, 100]}, {s, 0, 20}, PlotRange + {{0, 20}, {0, 2}}]

Out[358]= 1

Out[359]= 6.07335

Out[360]= 2.

Out[361]= 0

Out[362]= 15

Out[364]=

0 5 10 15 20
0.0

0.5

1.0

1.5

2.0

Plot[{postInf[s, sigmab, dbarUse],
post[s, sigmab, dbarUse, lim1, lim2]}, {s, 0, 20}]

PoissonPlots.nb     5

N=1
N=10

N=100

s

Simple example
Make a random data set

In[379]:= Print[small]

{6.07335, 11.213, 7.86354, 11.2595, 10.5425, 6.5558, 9.20705, 8.04459, 10.2605, 10.9534}

Nuse = 1

dbarUse = dbar[Nuse]

sigmab = sigma  Nuse

lim1 = 0

lim2 = 15

g[s_, N_] := posts, sigma  N , dbar[N], lim1, lim2

Plot[{g[s, 1], g[s, 10], , g[s, 100]}, {s, 0, 20}, PlotRange + {{0, 20}, {0, 2}}]

Out[365]= 1

Out[366]=

6.07335, 11.213, 7.86354, 11.2595, 10.5425,
6.5558, 9.20705, 8.04459, $ 9984$ , 12.3426, 12.816,
9.81441, 11.7337, 13.4145, 8.07282, 10.84, 10.1137

large output show less show more show all set size limit...

Out[367]= 6.07335

Out[368]= 2.

Out[369]= 0

Out[370]= 15

Out[372]=
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Plot[{postInf[s, sigmab, dbarUse],
post[s, sigmab, dbarUse, lim1, lim2]}, {s, 0, 20}]
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Straight line fitting
• Same procedure applies for more complicated signals e.g. 

straight-line fitting 

• Let signal be linear in time  

• Likelihood 

• This is multivariate Gaussian in di. Since linear in (a,b) also 
multivariate Gaussian in (a,b) 

• Not normalised in (a,b) so not distribution! Needs application 
of Bayes Theorem with prior to get probability distribution 

• Posterior maximised for same parameters as “least squares”  
fitting with same errors and covariance 

• Same numbers, but different interpretation! (see PS1 Q0)
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So with some algebra and a little manipulation we get the rather cumbersome result that

p(d|I) = (2⇡�2)N/2 exp


� 1

2�2
b

h(d
i

� d̄)2i
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"
erf

 
⌃2 � d̄
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!
� erf

 
⌃1 � d̄

�
p

2/N
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(29)

4. Posterior

Although our result for the evidence was cumbersome when we put everything together for the

posterior there’s a significant simplification.

p(s|d, I) =
p
Np

2⇡�2
2

"
erf

 
⌃2 � d̄

�
p

2/N

!
� erf

 
⌃1 � d̄

�
p

2/N

!#�1

exp
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2�2
b

(s� d̄)2
�

(30)

Now we can take the limit (�⌃1,⌃2) ! (�1,1), which gives the final result

p(s|d, I) = 1q
2⇡�2

b

exp


� 1

2�2
b

(s� d̄)2
�
. (31)

This is a correctly normalised Gaussian with mean d̄ and variance �
b

= �/
p
N .

Note that this doesn’t depend upon the prior at all and we would have gotten the same result

if we’d used an infinite width Gaussian prior.

Our final inference is that the best estimate of the signal that we can make is s = d̄± �
b

.

We could ask what would have happened if we assumed that � wasn’t known. Then we would

have been in the situation of using the Je↵rey’s prior p(s|I) / 1/s. This leads to a marginalised

posterior p(s|I) / [s� 2shdi+ hd2i]�2. A much broader distribution.

D. Straight line fitting with errors on the amplitude

A common application of this is the case where our signal depends linearly on time i.e.

d
i

= at
i

+ b+ n
i

(32)

and again the noise is assumed to be independent and hn
i

i = 0 and hn2
i

i = �2.

In this case, the likelihood is

p(d
i

|a, b, I) = 1p
2⇡�2

exp


�1

2

(d
i

� at
i

� b)2

�2

�
(33)
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if we’d used an infinite width Gaussian prior.

Our final inference is that the best estimate of the signal that we can make is s = d̄± �
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In this case, the likelihood is
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data = signal + noise



Line fitting
• Can use standard routines for line fitting

a = 3.231402 ± 0.356205
b = 1.758491 ± 0.061171
cov(a,b) = -0.018710
rab = -0.858655
chi2 = 37.047120

Inference from a Gaussian:
Straight-line fitting

□ This means that for these problems you can just 
use usual canned routines... 

Wednesday, 11 September 13



General linear models
• Many problems can be reduced to linear by appropriate 

choice of basis 

• Consider 
 
i.e. a sum of known functions of unknown coefficient plus noise. Want to infer xp 
e.g. linear fit has f0(t)=1, f1(t)=t 

• Assume zero mean Gaussian noise, possibly correlated  

• Typically noise can be considered stationary (isotropic) 
so that Nij = N(tj-ti) 

• Rewrite in matrix form 

• Likelihood
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Which is a multivariate Gaussian in d

i

. Since the model is linear in a and b its also a multivariate

Gaussian in (a, b). Its not correctly normalised in (a, b), so isn’t a distribution in those parameters

until you apply Bayes Theorem and add a prior.

Tracking through the analysis, this is maximised at the value of “least squares” estimate for

(a, b) with the same values for the errors and covariance.

This is great, since it means that you can use standard Frequentist canned routines to get the

same result for line fitting as the Bayesian analysis.

Although the numbers are the same, interpretation is di↵erent.

E. General linear model

So straight-line fitting it nice, but often we have more complicated problems that we want to

analyse. Happily many of these can be recast into a linear form through the appropriate choice of

basis.

Consider

d(t
i

) =
X

p

x
p

f
p

(t
i

) + n
i

(34)

i.e. a sum of known functions with unknown coe�cients, plus noise. Generally we want to estimate

the value of the x
p

. This is exactly analogous to the straight line fitting i.e. taking f0(t) = 1, f1(t) =

t.

Again we’ll assume zero-mean Gaussian noise, but extend to allow the noise to be correlated

between di↵erent measurements

hni = 0, hn
i

n
j

i = N
ij

(35)

Typically the noise is stationary (isotropic), so that N
ij

= N(t
i

� t
j

) i.e. a function of only the

di↵erence in the times. This leads to a pleasing matrix form for the noise that is symmetric.

Writing the measurements in matrix form

d
i

=
X

p

A
ip

x
p

+ n
i

(36)

with A
ip

= f
p

(t
i

).

To infer the values of the x
p

we can follow the same procedure as before.
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The likelihood will be

p(d
i

|x
p

, I) =
1

|2⇡N |1/2
exp


�1

2
(d�Ax)TN�1(d�Ax)

�
(37)

where |N | = detN .

As before, we can rewrite this to separate a part depending only on the data from a part

depending on both data and parameters. This involves completing the square as before

p(d
i

|x
p

, I) / exp


�1

2
(d�Ax̄)TN�1(d�Ax̄)

�
exp


�1

2
(x� x̄)TC�1(x� x̄)

�
(38)

where x̄ = Wd = (ATN�1A)�1ATN�1d is the mean value of x, correctly accounting for the

noise correlations, and C = (ATN�1A)�1.

More explicitly, the separation between a data only and a data plus parameters term can be

seen by substituting x̄ = Wd

p(d
i

|x
p

, I) / exp


�1

2
(d�AWd)TN�1(d�AWd)

�
exp


�1

2
(x�Wd)TC�1(x�Wd)

�
(39)

The parameter independent term is just e��

2

max .

The parameter dependent factor shows that the likelihood is a multi variariate Gaussian with

mean x̄ and variance C.

II. POISSON

Poisson statistics arise when counting discrete events. Can occur in two slightly di↵erent ways:

with course measurements we “bin” events and can only report the number of events in one or

more finite intervals. Then the model is the Poisson counting process.

Alternatively, when we can count individual events then we have a Poisson point process.

Poisson processes obey two properties: (1) Given an event rate r, the probability for finding

an event in the interval dt is proportional to the size of the interval i.e. p(E|r, I) = rdt. (2)

Information about what happened in other intervals is irrelevant if we know r; i.e. the probabilities

for separate intervals are independent.

Poisson distribution

p(n|�, I) = �n

n!
e�� (40)



General linear models
As before can rewrite this as data-only and  
data+parameters terms
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with course measurements we “bin” events and can only report the number of events in one or

more finite intervals. Then the model is the Poisson counting process.

Alternatively, when we can count individual events then we have a Poisson point process.

Poisson processes obey two properties: (1) Given an event rate r, the probability for finding

an event in the interval dt is proportional to the size of the interval i.e. p(E|r, I) = rdt. (2)

Information about what happened in other intervals is irrelevant if we know r; i.e. the probabilities

for separate intervals are independent.

Poisson distribution

p(n|�, I) = �n

n!
e�� (40)

depends on data only depends on data & parameters



General linear models
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where |N | = detN .

As before, we can rewrite this to separate a part depending only on the data from a part

depending on both data and parameters. This involves completing the square as before
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where x̄ = Wd = (ATN�1A)�1ATN�1d is the mean value of x, correctly accounting for the

noise correlations, and C = (ATN�1A)�1.

More explicitly, the separation between a data only and a data plus parameters term can be
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The parameter independent term is just e��
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The parameter dependent factor shows that the likelihood is a multi variariate Gaussian with

mean x̄ and variance C.

In the limit of an infinitely wide uniform or Gaussian prior on x, we will get a posterior
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�
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The Covariance matrix h�x
p

�x
q

i = C
pq

gives error �2
p

= C
pp

, if we marginalise all other param-

eters. The inverse covariance matrix gives error �2
p

= 1/C�1
pp

, if we fix other parameters.

Marginalization doesn’t move mean values for this model. i.e. marginalise over one of the x
p

and it won’t move the position of the other x
p

best fit points. This is a special property of the

Gaussian distribution.

Can compare this to the Fisher matrix F <=> C�1.

1. Chi squared

As an aside, the exponential factor of a Gaussian is always in the form exp(��2/2). So that the

likelihood is in the form �2 =
P

(data
i

�model
i

)2/�2
i

. For a fixed model, �2 has a �2 distribution

In the limit of an infinitely wide uniform (or Gaussian) prior 
on x then the posterior is

As before, normalisation cancelled out the e-χ2 part

We get errors on x from the covariance matrix
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where x̄ = Wd = (ATN�1A)�1ATN�1d is the mean value of x, correctly accounting for the
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The parameter dependent factor shows that the likelihood is a multi variariate Gaussian with

mean x̄ and variance C.
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Can compare this to the Fisher matrix F <=> C�1.

1. Chi squared

As an aside, the exponential factor of a Gaussian is always in the form exp(��2/2). So that the

likelihood is in the form �2 =
P

(data
i

�model
i

)2/�2
i
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where x̄ = Wd = (ATN�1A)�1ATN�1d is the mean value of x, correctly accounting for the
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The parameter dependent factor shows that the likelihood is a multi variariate Gaussian with

mean x̄ and variance C.

In the limit of an infinitely wide uniform or Gaussian prior on x, we will get a posterior
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Marginalization doesn’t move mean values for this model. i.e. marginalise over one of the x
p

and it won’t move the position of the other x
p

best fit points. This is a special property of the

Gaussian distribution.

Can compare this to the Fisher matrix F <=> C�1.
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gives errors if we fix all other parameters
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where |N | = detN .

As before, we can rewrite this to separate a part depending only on the data from a part

depending on both data and parameters. This involves completing the square as before
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where x̄ = Wd = (ATN�1A)�1ATN�1d is the mean value of x, correctly accounting for the

noise correlations, and C = (ATN�1A)�1.

More explicitly, the separation between a data only and a data plus parameters term can be
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The parameter dependent factor shows that the likelihood is a multi variariate Gaussian with

mean x̄ and variance C.

II. POISSON

Poisson statistics arise when counting discrete events. Can occur in two slightly di↵erent ways:

with course measurements we “bin” events and can only report the number of events in one or

more finite intervals. Then the model is the Poisson counting process.

Alternatively, when we can count individual events then we have a Poisson point process.

Poisson processes obey two properties: (1) Given an event rate r, the probability for finding

an event in the interval dt is proportional to the size of the interval i.e. p(E|r, I) = rdt. (2)

Information about what happened in other intervals is irrelevant if we know r; i.e. the probabilities

for separate intervals are independent.

Poisson distribution

p(n|�, I) = �n

n!
e�� (40)

Best estimate of x is the noise weighted mean
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The parameter dependent factor shows that the likelihood is a multi variariate Gaussian with
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, if we marginalise all other param-
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Gaussian distribution.

Can compare this to the Fisher matrix F <=> C�1.
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where x̄ = Wd = (ATN�1A)�1ATN�1d is the mean value of x, correctly accounting for the
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The parameter dependent factor shows that the likelihood is a multi variariate Gaussian with

mean x̄ and variance C.
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and it won’t move the position of the other x
p
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As an aside, the exponential factor of a Gaussian is always in the form exp(��2/2). So that the

likelihood is in the form �2 =
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(data
i
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i
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Covariance matrix

Inverse matrix

For Gaussian distribution, marginalising one or more parameters doesn’t shift the best fit 
values of the others. Not true for a general distribution. 
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fixed x2
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Chi Squared
• The exponential part of a Gaussian always takes the 

form exp(-χ2/2) 

• In the Likelihood, we have χ2=Σi(datai-modeli)2/σ2 

• For fixed model, χ2 has a χ2 distribution with number of 
degrees of freedom 

• The distribution peaks at  

• Chi squared too big or small can be sign of poor model 
(overfitting or too many parameters) 

• Frequentist arguments, but useful rule of thumb

11
for ⌫ = Ndata �Nparameters “degrees of freedom”. This distribution peaks at �2 = ⌫ ±

p
2⌫, which

gives a means for judging the goodness of fit of the model. If �2 is too big or too small (”overfitting”

- too many parameters or underestimated errors). Both are frequentist arguments, but provide a

good rule of thumb.

II. POISSON

Poisson statistics arise when counting discrete events. Can occur in two slightly di↵erent ways:

with course measurements we “bin” events and can only report the number of events in one or

more finite intervals. Then the model is the Poisson counting process.

Alternatively, when we can count individual events then we have a Poisson point process.

Poisson processes obey two properties: (1) Given an event rate r, the probability for finding

an event in the interval dt is proportional to the size of the interval i.e. p(E|r, I) = rdt. (2)

Information about what happened in other intervals is irrelevant if we know r; i.e. the probabilities

for separate intervals are independent.

Poisson distribution

p(n|�, I) = �n

n!
e�� (41)

which has moments

hni ⌘
1X

n=0

np(n|r, I) = rT = � (42)

and

h(n� hni)2i = hni = � (43)

So Poisson distribution arises from a single parameter �.

A. Poisson inference

Want to infer the rate r if you see n counts in a time T .

The likelihood is given by

p(n|r, I) = (rT )n

n!
e�rT (44)
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Poisson processes
• Poisson processes occur when counting discrete events. 

• Can occur in two different ways:  
- Course measurements where “bin” events and can only report 
number of events in one or more finite intervals (counting 
process).  
- Fine measurements where count individual events (point 
process) 

• Poisson statistics obey two key properties:  
 
(1) Given an event rate r, the probability for finding an event in 
an interval dt is proportional to the size of the interval  
 
 
(2) Probabilities for different intervals are independent 
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Information about what happened in other intervals is irrelevant if we know r; i.e. the probabilities

for separate intervals are independent.
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and
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Want to infer the rate r if you see n counts in a time T .

The likelihood is given by

p(n|r, I) = (rT )n
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Poisson distribution

• Poisson probability distribution 

• Moments 
 

• So single parameter describes Poisson distribution 

• (M→∞ limit of Binomial distribution, for N successes in M trials) 

• Can derive from Maximum Entropy as least restrictive 
distribution given known expectation for number of events in 
fixed interval (see Sivia Chap 5).
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Poisson inference
• Let’s say we measure n events in an interval of time T 

and we want to infer the event rate r 

• Likelihood 

• For prior two common options:  
- r known to be non-zero. Its a scale parameter  
 
- r can be zero. Uniform prior 

• Taking scale parameter prior, we get posterior
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Two choices of prior common: r known to be non-zero; it is a scale parameter so that we

take p(r|I) / 1/r = 1/[r log(r
u

/r
l

)] OR r can vanish and require p(n|I) ⇠ const, which leads to

p(r|I) = 1/r
u

.

Slightly di↵erent reasoning to get a uniform prior in this case. Arguing that the evidence p(n|I)

should be flat not that ignorance of r leads to constant prior.

If we take the prior p(r|I) / 1/r the Posterior distribution is then simply found as

p(r|n, I) = e�rT (rT )n�1

(n� 1)!
(45)
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Inferences for rateIn[9]:= p[l_, n_] :=
Exp[%l] ln%1

(n % 1)!
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Poisson rates

• Backgrounds: n = b + s  
- can fix or infer known or unknown background rate  
- e.g. nb from Tb spent observing background and ns 
from Ts observing (b+s) 
- See Loredo articles for detailed examples 

• Spatial or temporal variation in signal (or background) 
e.g. s = s(t) 

• e.g. counts of cosmic rays over sky, neutrinos 

• Arrival statistics of individual rare particles e.g. UHECR



Conclusions
• Gaussian distributions are everywhere! Arise from Central 

Limit Theorem; arise when all you know is mean & variance. 

• Gaussian linear model equivalent to “generalised least 
squares” => many toolkits work for Bayesian analysis 

• Poisson statistics important for discrete events e.g. counting 
problems, arrival statistics 

• Can view distributions as statements about what you believe 
- often make most ignorant choices, but don’t have to 
especially for priors. 

• Framework is general and explicit about assumptions. 
Makes it easy to modify assumptions to fit specific problems.


