



# Probability: More examples

Jonathan Pritchard





#### Overview

- Why Gaussians? Central Limit Theorem
- Gaussian inference
- Gaussian linear models
- Poisson processes



#### References

- Loredo's Bayesian Inference in the Physical Sciences:
  - http://astrosun.tn.cornell.edu/staff/loredo/bayes
  - "The Promise of Bayesian Inference for Astrophysics" & "From Laplace to SN 1987a"
- MacKay, Information Theory, Inference & Learning Algorithms
- Jaynes, Probability Theory: the Logic of Science
  - And other refs at <a href="http://bayes.wustl.edu">http://bayes.wustl.edu</a>
- Hobson et al, Bayesian Methods in Cosmology
- Sivia, Data Analysis: A Bayesian Tutorial



#### Bayes Theorem



## Gaussian distribution

One of the most common distributions in statistics

$$P(x|\mu, \sigma, I) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right]$$

$$\langle x \rangle = \mu$$

$$\langle x \rangle = \mu \qquad \langle (x - \mu)^2 \rangle = \sigma^2$$

All higher cumulants  $\kappa_n$  are zero => mean & variance tell you everything about distribution



#### Gaussians & CLT

#### Central Limit Theorem:

The sum of a n random numbers drawn from a probability distribution of finite variance  $\sigma^2$  tends to be Gaussian distributed about the expectation value of the sum with variance  $n\sigma^2$ 

- Applies asymptotically hence, Limit Theorem
- Means that statistics of large set of random numbers becomes independent of distribution of individual numbers
  - => Gaussian widely applicable

# ICIC Sketch of a proof of CLT

 Consider sum of two random variables x & y z = x + y

Want to know p(z)

$$p(z \ge z_1) = \int_{z_1}^{\infty} dz \, p(z)$$
$$= \int_{-\infty}^{\infty} dy \, \int_{z_1-y}^{\infty} dx \, p(x,y)$$

Transform back to z: x=z-y

$$p(z \ge z_1) = \int_{-\infty}^{\infty} dy \int_{z_1}^{\infty} dz \, p(z - y, y)$$



Comparison gives 
$$p(z) = \int_{-\infty}^{\infty} dy \, p(z - y, y).$$



### Sketch of a proof (II)

$$p(z) = \int_{-\infty}^{\infty} dy \, p(z - y, y).$$

Assuming independence 
$$p(z) = \int_{-\infty}^{\infty} dy \, p_x(z-y) p_y(y),$$

Which is just the convolution of  $p_x(x)$  and  $p_y(y)$ 

Recall from Fourier theory that FT of convolution is a product, so helpful to think in Fourier space

#### Characteristic function

= F.T. of prob distribution

$$\phi(k) = \int_{-\infty}^{\infty} \mathrm{d}x \, p(x) e^{ikx}$$

characteristic function

$$\phi(k) = \int_{-\infty}^{\infty} dx \, p(x) e^{ikx} \qquad p(x) = \int_{-\infty}^{\infty} \frac{dk}{2\pi} \, \phi(k) e^{-ikx}.$$

prob. distribution

So for z have:

$$\phi_z(k) = \phi_x(k)\phi_y(k)$$

**ICIC** Sum of n random variables 
$$X = \frac{1}{\sqrt{N}}(x_1 + x_2 + ... + x_n)$$

p(X) will be convolution of all the  $p_x(x_i)$ 

So characteristic fn is a product

$$\phi_X(k) = [\phi_x(k/\sqrt{n})]^n$$
.

Expand characteristic fn

$$\phi_x(k/\sqrt{N}) = \int_{-\infty}^{\infty} dx \, p(x) e^{ikx/\sqrt{N}} \approx 1 + i \frac{k}{\sqrt{N}} \langle x \rangle - \frac{1}{2} \frac{k^2}{N} \langle x^2 \rangle + O\left(\left[\frac{k}{\sqrt{N}}\right]^3\right)$$

Assume

$$\langle x \rangle = 0,$$

$$\langle x^2 \rangle = \sigma_x^2.$$

 $\langle x \rangle = 0,$   $\langle x^2 \rangle = \sigma_x^2.$  Higher terms ~O(n<sup>-3/2</sup>) & vanish

Then

$$\phi_X(k) = \left[1 - \frac{k^2 \sigma_x^2}{2n}\right]^n \to e^{-\sigma_x^2 k^2/2}$$

 $n \to \infty$ .

Gaussian, so when we FT get a Gaussian.

$$p(X) = \frac{1}{\sqrt{2\pi\sigma_x^2}} e^{-X^2/(2\sigma_x^2)}$$

variance of mean

Central limit theory leads to Gaussian distribution



#### Gaussians & belief

- Alternatively, can ask what distribution is least informative if we know mean and variance
   again leads to Gaussian
- Can show this rigourously from maximum entropy considerations. (in continuous case need extra fn m(x) to insure invariance under parameter change)  $S = -\sum_{i=0}^{N} p_i \log[p_i] \to -\int_{i=0}^{\infty} p(x) \log\left[\frac{p(x)}{m(x)}\right]$
- Maximising S subject to kňown mean μ & variance σ (e.g. by Lagrange multipliers) produces Gaussian

$$Q = -\sum_{i}^{N} p_i \log \left[ \frac{p_i}{m_i} \right] + \lambda_0 \left( 1 - \sum_{i} p_i \right) + \lambda_1 \left( \mu - \sum_{i} x_i p_i \right) + \lambda_2 \left( \sigma^2 - \sum_{i} (x_i - \mu)^2 p_i \right)$$

Recover the standard Gaussian distribution

$$P(x|\mu, \sigma, I) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \frac{(x-\mu)^2}{\sigma^2}\right]$$



#### Why Gaussians?

- Central Limit Theorem: sum of many random numbers has a Gaussian sampling distribution
- MaxEnt: If we know mean & variance, the least informative distribution is Gaussian

#### Gaussian inference

Problem: want to estimate signal s, given n noisy observations {d<sub>i</sub>}

Need model for observations:

$$d_i = s + n_i$$

- Noise: assume  $n_i = (d_i s)$  is Gaussian zero mean & known variance  $\sigma^2$
- Work through Bayes theorem:

$$p(s|\mathbf{d}, I) = \frac{p(\mathbf{d}|s, I)p(s|I)}{p(\mathbf{d}|I)}$$

#### Prior p(s|I)

- How do we choose prior? Often to encode ignorance about s
- Common options?

Gaussian with zero mean and variance  $\Sigma$ . Let  $\Sigma \rightarrow \infty$  at end of calculation

Uniform in range  $[\Sigma_1, \Sigma_2]$ . Again let  $\Sigma_1 \rightarrow -\infty$ ,  $\Sigma_2 \rightarrow \infty$  at end

"Jeffrey's prior",  $p(s|I) \sim 1/s$ . Appropriate if ignorant about scale of s. Equivalent to flat prior on log s

• Here adopt uniform prior:

$$p(s|I) = \frac{1}{\Sigma_2 - \Sigma_1} \text{ if } \Sigma_1 \le s \le \Sigma_2$$



#### Priors

- Can think about priors from perspective of properties of pdf
- Location priors: do I know the origin? => want pdf invariance under translation

$$p(X|I)dX \approx p(X + x_0|I)d(X + x_0)$$
  
  $\approx p(X + x_0|I)dX$ 

=> uniform prior  $p(X|I)=\mathrm{const}$ 



 Scale priors: Am I sure on the units? => want pdf invariance under rescaling

$$p(\sigma|I)dX \approx p(\beta\sigma|I)d(\beta\sigma)$$

$$p(\sigma|I) \approx p(\beta\sigma|I)\beta$$

=> uniform in log prior  $p(\sigma|I) \propto 1/\sigma$ 

$$p(\sigma|I) \propto 1/\sigma$$



 $\sigma \rightarrow \beta \sigma$ 

# ICIC

#### Likelihood $p(\mathbf{d}|s, I)$

We've decided our noise is Gaussian, so for individual datum have

$$p(d_i|s,I) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \frac{(d_i-s)^2}{\sigma^2}\right]$$

For full data set:

$$p(\mathbf{d}|s,I) = (2\pi\sigma^2)^{n/2} \exp\left[-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (d_i - s)^2\right]$$

Fine, but helpful to manipulate analytically

Recall mean 
$$\bar{d} = \frac{1}{N} \sum_i d_i$$
.

$$\sum_{i=1}^{n} (d_i - s)^2 = \sum_{i=1}^{n} (d_i^2 - 2d_i s + s^2) = N(s - \bar{d})^2 + N \sum_{i=1}^{n} \frac{(d_i - \bar{d})^2}{N}$$

Result separates into two parts

data+parameters

data only

$$p(\mathbf{d}|s,I) = (2\pi\sigma^2)^{n/2} \exp\left[-\frac{1}{2\sigma_b^2}(s-\bar{d})^2\right] \exp\left[-\frac{1}{2\sigma_b^2}\langle(d_i-\bar{d})^2\rangle\right]$$

$$\sigma_b \equiv \sigma/\sqrt{N}$$
  $\langle (d_i - \bar{d})^2 \rangle = \sum_i \frac{(d_i - d)^2}{N}$ 

#### Evidence $p(\mathbf{d}|I)$

Evidence plays role of normalisation factor here

$$1 = \int ds \, p(s|\mathbf{d}, I) = \int ds \, \frac{p(\mathbf{d}|s, I)p(s|I)}{p(\mathbf{d}|I)} \qquad \longrightarrow \qquad p(\mathbf{d}|I) = \int ds \, p(\mathbf{d}|s, I)p(s|I)$$

So taking results for prior and likelihood

$$p(\mathbf{d}|I) = \int_{\Sigma_{1}}^{\Sigma_{2}} ds (2\pi\sigma^{2})^{n/2} \exp\left[-\frac{1}{2\sigma_{b}^{2}}(s-\bar{d})^{2}\right] \exp\left[-\frac{1}{2\sigma_{b}^{2}}\langle(d_{i}-\bar{d})^{2}\rangle\right] \frac{1}{\Sigma_{2}-\Sigma_{1}}$$

$$= (2\pi\sigma^{2})^{n/2} \exp\left[-\frac{1}{2\sigma_{b}^{2}}\langle(d_{i}-\bar{d})^{2}\rangle\right] \frac{1}{\Sigma_{2}-\Sigma_{1}}$$

$$\times \int_{\Sigma_{1}}^{\Sigma_{2}} ds \exp\left[-\frac{1}{2\sigma_{b}^{2}}(s-\bar{d})^{2}\right]$$

Recall definition of error function  $\operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$ 

$$\operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

Gives final result for evidence

$$p(\mathbf{d}|I) = (2\pi\sigma^2)^{N/2} \exp\left[-\frac{1}{2\sigma_b^2} \langle (d_i - \bar{d})^2 \rangle\right] \frac{1}{\Sigma_2 - \Sigma_1} \frac{\sqrt{2\pi\sigma^2}}{\sqrt{N}} \frac{1}{2} \left[ \operatorname{erf}\left(\frac{\Sigma_2 - \bar{d}}{\sigma\sqrt{2/N}}\right) - \operatorname{erf}\left(\frac{\Sigma_1 - \bar{d}}{\sigma\sqrt{2/N}}\right) \right]$$



#### Posterior

Combine results in Bayes theorem

$$p(s|\mathbf{d}, I) = \frac{p(\mathbf{d}|s, I)p(s|I)}{p(\mathbf{d}|I)}$$

$$= \left[ p(\mathbf{d}|s,I) = (2\pi\sigma^2)^{n/2} \exp\left[ -\frac{1}{2\sigma_b^2} (s-\bar{d})^2 \right] \exp\left[ -\frac{1}{2\sigma_b^2} \langle (d_i - \bar{d})^2 \rangle \right] \quad \mathbf{X} \quad p(s|I) = \frac{1}{\Sigma_2 - \Sigma_1}$$

$$p(\mathbf{d}|I) = (2\pi\sigma^2)^{N/2} \exp\left[-\frac{1}{2\sigma_b^2} \langle (d_i - \bar{d})^2 \rangle\right] \frac{1}{\Sigma_2 - \Sigma_1} \frac{\sqrt{2\pi\sigma^2}}{\sqrt{N}} \frac{1}{2} \left[ \operatorname{erf}\left(\frac{\Sigma_2 - \bar{d}}{\sigma\sqrt{2/N}}\right) - \operatorname{erf}\left(\frac{\Sigma_1 - \bar{d}}{\sigma\sqrt{2/N}}\right) \right]$$

Gives the posterior

$$p(s|\mathbf{d}, I) = \frac{\sqrt{N}}{\sqrt{2\pi\sigma^2}} 2 \left[ \operatorname{erf} \left( \frac{\Sigma_2 - \bar{d}}{\sigma\sqrt{2/N}} \right) - \operatorname{erf} \left( \frac{\Sigma_1 - \bar{d}}{\sigma\sqrt{2/N}} \right) \right]^{-1} \exp \left[ -\frac{1}{2\sigma_b^2} (s - \bar{d})^2 \right]$$

Taking limit  $\Sigma_1 \rightarrow -\infty$ ,  $\Sigma_2 \rightarrow \infty$ 

$$p(s|\mathbf{d}, I) = \frac{1}{\sqrt{2\pi\sigma_b^2}} \exp\left[-\frac{1}{2\sigma_b^2}(s-\bar{d})^2\right]$$

#### Inference?

Posterior contains everything that we infer about signal

$$p(s|\mathbf{d}, I) = \frac{1}{\sqrt{2\pi\sigma_b^2}} \exp\left[-\frac{1}{2\sigma_b^2}(s - \bar{d})^2\right]$$

Best estimate of signal is peak of posterior

Bayesian 68% confidence interval  $s = \bar{d} \pm \sigma_b = \bar{d} \pm \sigma/\sqrt{N}$ .

Alternative priors? Infinite Gaussian gives same result.

If didn't know  $\sigma^2$ : assume Jeffrey's prior  $p(\sigma|I) \propto 1/\sigma$ , then marginalise over  $\sigma$ , leads to broader posterior

$$p(s|I) \propto [s - 2s\langle d \rangle + \langle d^2 \rangle]^{-2}$$
.

(connected to Student-t distribution, same maximum, more conservative bound)



#### Toy example

Simple example  $s_{true}=10, \sigma=2$ 

Make a random data set

6.07335, 11.213, 7.86354, 11.2595, 10.5425, 6.5558, 9.20705, 8.04459, 10.2605, 10.9534





#### Straight line fitting

 Same procedure applies for more complicated signals e.g. straight-line fitting

Let signal be linear in time

$$d_i = at_i + b + n_i$$

Likelihood

$$p(d_i|a,b,I) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2} \frac{(d_i - at_i - b)^2}{\sigma^2}\right]$$

- This is multivariate Gaussian in d<sub>i</sub>. Since linear in (a,b) also multivariate Gaussian in (a,b)
- Not normalised in (a,b) so not distribution! Needs application of Bayes Theorem with prior to get probability distribution
- Posterior maximised for same parameters as "least squares" fitting with same errors and covariance
- Same numbers, but different interpretation! (see PS1 Q0)



#### Line fitting

Can use standard routines for line fitting



# ICIC

# General linear models

- Many problems can be reduced to linear by appropriate choice of basis
- Consider  $d(t_i) = \sum_p x_p f_p(t_i) + n_i$

i.e. a sum of known functions of unknown coefficient plus noise. Want to infer  $x_p$  e.g. linear fit has  $f_0(t)=1$ ,  $f_1(t)=t$ 

- Assume zero mean Gaussian noise, possibly correlated  $\langle n \rangle = 0, \langle n_i n_j \rangle = N_{ij}$
- Typically noise can be considered stationary (isotropic) so that  $N_{ij} = N(t_i-t_i)$
- Rewrite in matrix form  $d_i = \sum_p A_{ip} x_p + n_i$   $A_{ip} = f_p(t_i)$
- Likelihood  $p(d_i|x_p, I) = \frac{1}{|2\pi N|^{1/2}} \exp\left[-\frac{1}{2}(d Ax)^T N^{-1}(d Ax)\right]$

# General linear models

As before can rewrite this as data-only and data+parameters terms

depends on data only \_\_\_\_\_depends on data & parameters

$$p(d_i|x_p, I) \propto \exp\left[-\frac{1}{2}(d - A\bar{x})^T N^{-1}(d - A\bar{x})\right] \exp\left[-\frac{1}{2}(x - \bar{x})^T C^{-1}(x - \bar{x})\right]$$

$$\propto \exp\left[-\frac{1}{2}(d - AWd)^T N^{-1}(d - AWd)\right] \exp\left[-\frac{1}{2}(x - Wd)^T C^{-1}(x - Wd)\right]$$

The parameter independent part is just

$$e^{-\chi^2_{\max}}$$

The parameter dependent part makes clear that the likelihood is a multivariate

Gaussian with mean

$$\bar{x} = Wd = (A^T N^{-1}A)^{-1}A^T N^{-1}d$$

and variance C

$$C = (A^T N^{-1} A)^{-1}$$

# ICIC

# General linear models

In the limit of an infinitely wide uniform (or Gaussian) prior on x then the posterior is

$$p(x|\mathbf{d}, I) = \frac{1}{|2\pi C|^{1/2}} \exp\left[-\frac{1}{2}(x - Wd)^T C^{-1}(x - Wd)\right]$$

As before, normalisation cancelled out the e-x2 part

Best estimate of x is the noise weighted mean

$$\bar{x} = Wd = (A^T N^{-1}A)^{-1}A^T N^{-1}d$$

We get errors on x from the covariance matrix  $\langle \delta x_p \delta x_q \rangle = C_{pq}$ 

Covariance matrix  $\sigma_p^2=C_{pp}$  gives errors if we **marginalise** over all other parameters Inverse matrix  $\sigma_p^2=1/C_{pp}^{-1}$  gives errors if we **fix** all other parameters

#### Covariance matrix

Covariance matrix  $\sigma_p^2=C_{pp}$  gives errors if we **marginalise** over all other parameters Inverse matrix  $\sigma_p^2=1/C_{pp}^{-1}$  gives errors if we **fix** all other parameters



For Gaussian distribution, marginalising one or more parameters doesn't shift the best fit values of the others. Not true for a general distribution.

#### Chi Squared

- The exponential part of a Gaussian always takes the form exp(-χ²/2)
- In the Likelihood, we have  $\chi^2 = \Sigma_i (data_i model_i)^2/\sigma^2$
- For fixed model,  $\chi^2$  has a  $\chi^2$  distribution with number of degrees of freedom  $\nu = N_{\rm data} N_{\rm parameters}$
- The distribution peaks at  $\chi^2 = \nu \pm \sqrt{2\nu}$
- Chi squared too big or small can be sign of poor model (overfitting or too many parameters)
- Frequentist arguments, but useful rule of thumb

#### Poisson processes

- Poisson processes occur when counting discrete events.
- Can occur in two different ways:
  - Course measurements where "bin" events and can only report number of events in one or more finite intervals (counting process).
  - Fine measurements where count individual events (point process)
- Poisson statistics obey two key properties:
  - (1) Given an event rate *r*, the probability for finding an event in an interval d*t* is proportional to the size of the interval

$$p(E|r,I) = r \, \mathrm{d}t.$$

(2) Probabilities for different intervals are independent

#### Poisson distribution

Poisson probability distribution

$$p(n|\lambda, I) = \frac{\lambda^n}{n!} e^{-\lambda}$$

Moments

$$\langle n \rangle \equiv \sum_{n=0}^{\infty} np(n|r,I) = rT = \lambda$$
  
 $\langle (n - \langle n \rangle)^2 \rangle = \langle n \rangle = \lambda$ 

- So single parameter describes Poisson distribution
- (M→∞ limit of Binomial distribution, for N successes in M trials)
- Can derive from Maximum Entropy as least restrictive distribution given known expectation for number of events in fixed interval (see Sivia Chap 5).



#### Poisson inference

 Let's say we measure n events in an interval of time T and we want to infer the event rate r

$$p(r|n, I) = \frac{p(n|r, I)p(r|I)}{p(n|I)}$$

Likelihood

$$p(n|r,I) = \frac{(rT)^n}{n!}e^{-rT}$$

- For prior two common options:
  - r known to be non-zero. Its a scale parameter

$$p(r|I) \propto 1/r = 1/[r \log(r_u/r_l)]$$

- r can be zero. Uniform prior

$$p(r|I) = 1/r_{u}$$

Taking scale parameter prior, we get posterior

$$p(r|n,I) = \frac{Te^{-rT}(rT)^{n-1}}{(n-1)!}$$

Best estimate of rate is then  $rT = n \pm \sqrt{n}$ 

$$rT = n \pm \sqrt{r}$$

(uniform prior would give n+1)



#### Inferences for rate $p(r|n,I) = \frac{e^{-rT}(rT)^{n-1}}{(n-1)!}$

$$p(r|n,I) = \frac{e^{-rT}(rT)^{n-1}}{(n-1)!}$$

n=0 have no information to make inference



n=100 posterior becomes close to Gaussian

$$rT = n \pm \sqrt{n}$$

#### Poisson rates

- Backgrounds: n = b + s
  - can fix or infer known or unknown background rate
  - e.g.  $n_b$  from  $T_b$  spent observing background and  $n_s$  from  $T_s$  observing (b+s)
  - See Loredo articles for detailed examples
- Spatial or temporal variation in signal (or background) e.g. s = s(t)
- e.g. counts of cosmic rays over sky, neutrinos
- Arrival statistics of individual rare particles e.g. UHECR



#### Conclusions

- Gaussian distributions are everywhere! Arise from Central Limit Theorem; arise when all you know is mean & variance.
- Gaussian linear model equivalent to "generalised least squares" => many toolkits work for Bayesian analysis
- Poisson statistics important for discrete events e.g. counting problems, arrival statistics
- Can view distributions as statements about what you believe

   often make most ignorant choices, but don't have to
   especially for priors.
- Framework is general and explicit about assumptions.
   Makes it easy to modify assumptions to fit specific problems.