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Logistics and events
* Fire exits
* 1/0O: Tea/coffee/lunch (Blackett 311), toilets
* Breakfast 8.15-8.45 a.m.
* Events:
* Talk by Tom Babbedge (Winton) today ~5 p.m.
* Barbecue tonight 6 p.m. 58 Princes Gate
* Drinks reception 5:30 p.m. tomorrow
* Public engagement lunch, Wednesday
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Outline of course

* Basic principles

* Sampling

* Numerical methods (Parameter inference)
* MCMC

* Hybrid/Hamiltonian Monte Carlo

* Bayesian Hierarchical Models

* Bayesian Evidence (Model selection)

ICIC Data Analysis Workshop:
the Bayesics

Alan Heavens
Imperial College London
ICIC Data Analysis Workshop
8 September 2014
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Outline

* Inverse problems: from data to theory
* Probability review, and Bayes’ theorem
* Parameter inference
* Priors

* Marginalisation

* Posteriors
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LCDM fits the WMAP
data well.
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Inverse problems

* Most cosmological problems are inverse
problems, where you have a set of data, and you
want to infer something.

* - generally harder than predicting the outcomes
when you know the model and its parameters

* Examples

— Hypothesis testing
— Parameter inference

— Model selection
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Examples

* Hypothesis testing
— Is the CMB radiation consistent with (initially) gaussian
fluctuations?
* Parameter inference

— In the Big Bang model, what is the value of the matter
density parameter?

* Model selection

— Do cosmological data favour the Big Bang theory or the
Steady State theory?

— Is the gravity law General Relativity or a different
theory?
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What is probability?

* Frequentist view: p describes the relative
in infinitely long trials

* Bayesian view: p expresses our degree of belief

* Bayesian view is what we seem to want from
experiments: e.g. given the Planck data, what is the
probability that the density parameter of the Universe
is between 0.9 and 1.17
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Bayes’ Theorem

* Rules of probability:

* p(x) +p(notx)=1 sum rule

* p(xy) = p(x]y) ply) product rule

e p(x) =2, p(xy,) marginalisation

* Sum— integral continuum limit (p=pdf)

p(z) = /dyp(ar,y)
* p(x,y)=p(y,x) gives Bayes’ theorem

- — Pely)py)
1cic plvle) p(x)




p(x]y) is not the same as p(y|x)

* x = female, y=pregnant
p(y|x) =0.03
* px]y) =
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The Monty Hall problem:

An exercise in using Bayes’ theorem

You choose

this one

Do you change your choice?

This is the Monty Hall problem
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Bayes’ Theorem and Inference

* If we accept p as a degree of belief, then what
we often want to determine is*
p(8lz)
6: model parameter(s), x: the data

z|0)p(6
To compute it, use Bayes’ theorem »(0lz) = - ;(331)7( :

Note that these probabilities are all conditional
on a) prior information /, b) a model M
p(0|z) = p(0|x, I, M) or p(0|z I M)

I CI EI *This is RULE 1: start by writing down what it is you want to know
I_ RULE 2: There is no RULE n, n>1

Posteriors, likelihoods, priors and evidence

p(z|6) 9
p(0]z) /
/ Ewdence PI’IOI’
Posterior Likelihood L or Model Likelihood

Remember that we interpret these in the context of a model M, so all probabilities are
conditional on M (and on any prior info ). E.g. p(6) = p(6|M)

The evidence looks rather odd — what is the probability of the data? For parameter
estimation, we can ignore it — it simply normalises the posterior. If you need it,

ple) = S el0p(00) o () = [aonwtone) S
IlCIEl Notmg that p(x) = (LL‘|M) makes its role clearer. 5” L (Y ]

In model selection (from Mand M’), p(z|M) # p(x|M’)




Forward modelling p
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the distribution is needed

(al6)

arsco

Nuzsie moment )

With noise
properties we can
predict the
Sampling
Distribution (the
probability of
obtaining a general
set of data).

The Likelihood
refers to the
specific data we
have) -itisn’ta
probability, strictly.

Case study: the mean

* Given a set of N independent samples {xi} from the
same distribution, with gaussian dispersion o, what is
the mean of the distribution pt = {x)?

* Bayes: compute the posterior probability p(f|{x;})

* Frequentist: devise an estimator fi for p. Ideally it
should be unbiased, so (fi) = p and have as small an
error as possible (minimum variance).

* These lead to superficially identical results (although
they aren’t), but the interpretation is very different

IéIC—I| Bayesian: no estimators - just posteriors
1

Set up the problem
* What is the model for the data, V?

s M:x=u+n

* Data: a set of values {x}, i=1...N

* Prior info I: noise <n>=0 <n’>=0? (known);

gaussian distributed
* O:the mean, u

e Rule 1: what do we want?

* p(u | {xi})

e See Jonathan’s lectures for the solution

State your priors

* In easy cases, the effect of the prior is simple

* As experiment gathers more data, the likelihood tends to get
narrower, and the influence of the prior diminishes

* Rule of thumb: if changing your priort to another reasonable
one changes the answers a lot, you could do with more data

¢ Reasonable priors? Noninformative* — constant prior

* scale parameters in [0,00) ; uniform in log of parameter
(Jeffreys’ prior*)

* Beware: in more complicated, multidimensional cases, your
prior may have subtle effects...

T 1 mean the raw theoretical one, not modified by an experiment

* Actually, it’s better not to use these terms — other people use them to mean different
things — just say what your prior is!

jIcIc!




From Sivia & Skilling’s Data Analysis book. 1S THE COIN FAIR?
Model: independent throws of coin. Parameter 6 = probability of H
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The effect of priors

Priors = “It’s likely to be nearly fair”,

” ou

It’s likely to be very unfair”
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Sivia & Skilling 22

* VSACMB
experiment

(Slosar et al 2003)

Priors: Qa=0

10 < age £ 20 Gyr

h=0.7+0.1

There are no data in
these plots —it is all
coming from the prior!

p(bh) =
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Inferring the parameter(s)

* What to report, when you have the posterior?

* Commonly the mode is used (the peak of the
posterior)

* Mode = Maximum Likelihood Estimator, if the priors
are uniform

* The posterior mean may also be quoted, but
beware

* Ranges containing x% of the posterior probability of
the parameter are called credibility intervals (or
Bayesian confidence intervals)
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Errors

« If we assume uniform priors, then the posterior is proportional to the likelihood.

If further, we assume that the likelihood is single-moded (one peak at 90) , we can
make a Taylor expansion of InL:

In L(w;0) = In L(x3 00) + 3 (00 — f00) 2550 (0 — Oop) + - -

L(SB; 9) = Lgexp [—%(Qa — HQQ)HQB(HB — eoﬂ) +.. ]

where the Hessian matrix is defined by these equations. Comparing this with a
gaussian, the conditional error (keeping all other parameters fixed) is
1
Oq = 777
H(l(l
Marginalising over all other parameters gives the marginal error

Oaq = (H_l)aa
i1cic!
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Multimodal posteriors etc

* Peak may not be gaussian S

* Multimodal? Characterising it
by a mode and an error is

probably inadequate. May

have to present the full

2 :; FrlomBPZ:é
posterior. = // : : u 7

* Mean posterior may not be
useful in this case — it could
be very unlikely, if it is a valley
between 2 peaks. P

Bruzual & Charlot

Icic! -2k

Non-gaussian likelihoods: number
counts

* Aradio source is observed with a telescope which can
detect sources with fluxes above So. The radio source
has a flux S1 = 2Sp (assume it is precisely measured).

What is the slope of the number counts?

(Assume N(S)dS « S dS)

Can you tell anything?

aN/as (/575 ("0 )
0 100

oo
Sy, (i)
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Summary

* Write down what you want to know. For
parameter inference it is typically:

p(OlxIM)
* Whatis M ?
e Whatis/are @ ?
* Whatis/?

* You might want p(M/x /)...this is Model
Selection - see later
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