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Bayesian Hierarchical Models, for more complex problems
If you can, this is how to do it

BHM

We split the inference problem into steps, where the full model is
made up of a series of sub-models

The Bayesian Hierarchical Model (BHM) links the sub-models
together, correctly propagating uncertainties in each sub-model from
one level to the next.

At each step ideally we will know the conditional distributions

The aim is to build a complete model of the data

Principled way to include systematic errors, selection effects
(everything, really)
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Bayesian Hierarchical Models

Often used to learn about a population from many individual
measurements. e.g. we measure the number counts of a population of
galaxies, but the measured fluxes f̂i have errors. What are the true number
counts?

Assume (say) a power-law N ∝ f −α

Many (unobserved) fluxes θi

Add noise: f̂i = θi + ni
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Number counts

α
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fî

Population parameter(s)

Individual properties

Observables

N
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Latent Variables

α
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fî

Population parameter(s)

Individual properties

Observables

N

θ are true 
fluxes, 

not directly 
observable. 

“Latent 
Variables”
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Ordinary Bayes vs Hierarchical Bayes

α

θi

fî

Population parameter(s)

Individual properties

Observables

N

Ordinary Bayes:
p(α|f̂ ) ∝ p(f̂ |α) p(α)

But we do not know p(f̂ |α)!

Hierarchical Bayes:

p(θ, α|f̂ ) ∝ p(f̂ |θ,�α) p(θ, α)

p(θ, α|f̂ ) ∝ p(f̂ |θ) p(θ|α) p(α)
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Case study: straight line fitting

Let us illustrate with an example. We
have a set of data pairs (x̂ , ŷ) of noisy
measured values of x and y (in fact for
simplicity we will have just one pair)

Model: y = mx

Parameter: m.

Complication: x̂ and ŷ both have errors.

How do we infer m?

First, apply Rule 1: write down what
you want to know.

It is
p(m|x̂ , ŷ)

y

x

y=mx
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Straight line fitting
How would you forward model it?

m

y

x , y^  ^

Population parameter(s)

Individual properties

Observables

N

x,y are true 
values, 

not directly 
observable. 

“Latent 
Variables”

x

Break problem into two steps.
There are extra unknowns in this problem (so-called latent
variables), namely the unobserved true values of x̂ and ŷ , which we
will call x and y .
The model connects the true variables. i.e.,

y = mx .

The latent variables x and y are nuisance parameters - we are
(probably) not interested in them, so we will marginalise over them.
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Hierarchical Bayes vs Ordinary Bayes

Ordinary Bayes (for given, fixed x):

p(m|ŷ) ∝ p(ŷ |m) p(m)

Hierarchical Bayes:

p(m|x̂ , ŷ) ∝ p(x̂ , ŷ |m) p(m)

We do not know the likelihood p(x̂ , ŷ |m) directly, and we introduce
the latent variables:

p(m|x̂ , ŷ) ∝
∫

p(x̂ , ŷ , x , y |m) p(m) dx dy
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Analysis
Let us now analyse the problem. Manipulating the last equation

p(m|x̂ , ŷ) ∝
∫

p(x̂ , ŷ |x , y ,��m) p(x , y |m) p(m) dx dy

p(m|x̂ , ŷ) ∝
∫

p(x̂ , ŷ |x , y) p(y |x ,m) p(x |��m) p(m) dx dy

This splits the problem into a noise term, a theory term, and priors.
We can write all of these down.
Here, the theory is deterministic:

p(y |x ,m) = δ(y −mx)

Integration over y is trivial with the Dirac delta function:

p(m|x̂ , ŷ) ∝
∫

p(x̂ , ŷ |x ,mx) p(x) p(m) dx .

Integrate, or sample from the joint distribution of m and x :

p(m, x |x̂ , ŷ) ∝ p(x̂ , ŷ |x ,mx) p(x) p(m)
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Analysis continued

Repeated from last slide:

p(m|x̂ , ŷ) ∝
∫

p(x̂ , ŷ |x ,mx) p(x) p(m) dx .

Assume errors in x and y are independent Gaussians, and take
uniform priors for x and m. For simplicity, let us take σ2x = σ2y = 1.

p(m|x̂ , ŷ) ∝
∫

e−
1
2
(x̂−x)2e−

1
2
(ŷ−mx)2 dx

Complete the square

p(m|x̂ , ŷ) ∝ 1√
1 + m2

e
− (−mx̂+ŷ)2

2(1+m2) .
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Results
We have marginalised analytically over x , but if we want, we can
investigate the joint distribution of x and m:

p(x ,m|x̂ , ŷ) ∝ p(x̂ , ŷ |x ,mx) p(x) p(m) ∝ e−
1
2
(x̂−x)2e−

1
2
(ŷ−mx)2 .
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Figure: Unnormalised
posterior distribution of the
slope m, for x̂ = 10, ŷ = 15.
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Figure: Unnormalised
posterior distribution of the
latent variable x , and the
slope m.
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Gibbs Sampling
Let us see how we would set this up as a Gibbs sampling problem.

At fixed x , the conditional distribution on m given x is

p(m|x̂ , ŷ) ∝ exp

[
−(ŷ −mx)2

2

]
∝ exp


−

x2
(
m − ŷ

x

)2

2


 ,

i.e.

p(m|x̂ , ŷ) ∼ N
(
ŷ

x
,

1

x2

)

is a normal N (µ, σ2) distribution (in m).
The conditional distribution of x given m is

p(x |m, x̂ , ŷ) ∝ exp

[
−(x̂ − x)2

2
− (ŷ −mx)2

2

]
.

After completing the square, this becomes

p(x |m, x̂ , ŷ) ∼ N
(
x̂ + ŷm

1 + m2
,

1

1 + m2

)
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Gibbs results
Hence we can sample alternately from m and x , using the conditional
distributions, to sample p(m, x |x̂ , ŷ), and marginalise over x in the
normal MCMC way by simply ignoring the values of x .

Figure: Gibbs sampling of
the latent variable x , and
the slope m.

Figure: Gibbs sampling of
the slope m.

Gibbs is only one option for sampling. MCMC with
Metropolis-Hastings, or Hamiltonian Monte Carlo, would also be
perfectly viable.
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Question: is this the most probable slope?
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Figure: Noisy data
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Figure: Yes! - there is a
prior on x . . .
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Case Study. BPZ: Bayesian Photometric Redshifts

Figure: Spectrum and broad band fluxes

We follow Benitez (2000), ApJ, 536, 571
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BPZ: Bayesian Photometric Redshifts

Goal

Obtain a posterior for the redshift of a galaxy given measurements of
fluxes in some broadband filters (typically 5).

Model assumptions

Galaxy has a spectrum that is proportional to one of a set of template
galaxies, but shifted in wavelength because of cosmological redshift.

Figure: Spectrum and broad band fluxes
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Specify the model

Data:

f̂: vector of flux measurements f̂α in bands α = 1, . . .N

Parameters:

z : redshift

Latent variables:

f: True fα
T : template
a: amplitude of template ‘brightness’
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Posterior

First write down what we want:

p(z |̂f)

=
∑

T p(z ,T |̂f) Marginalise over templates (discrete set)

=
∑

T

∫
da df p(z ,T , a, f |̂f) and brightness and true fluxes

∝∑T

∫
da df p(f̂|z ,T , a, f) p(z ,T , a, f)

∝∑T

∫
da df p(f̂|f) p(z ,T , a, f). Measurement error only

∝∑T

∫
da df p(f̂|f) p(f|z ,T , a)p(z ,T , a)

p(f|z ,T , a) = δ(f − a t(T , z)) where t(T , z) represents the fluxes of
template T when shifted by z

p(z |̂f) ∝∑T

∫
da p(f̂|at(T , z)) p(z |T , a) p(T , a)

p(z |̂f) ∝∑T

∫
da p(f̂|at(T , z)) p(z |T , a) p(T |a) p(a)
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Posterior redshift distribution

p(z |̂f) ∝∑T

∫
da p(f̂|at(T , z)) p(z |T , a) p(T |a) p(a)

This identifies what we need to know:

t(T , z)): Template T broadband fluxes (without renormalising), when
redshifted by z

p(f̂|f): The error distribution for the fluxes (e.g. f ∼ N (f̂, σ2α))

p(z |T , a): Redshift distribution of sources with template T and
brightness a

p(T |a): Fraction of galaxies with template T , given a brightness a

p(a): Brightness distribution
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Frequentist vs. Bayesian

p(z |̂f) ∝∑T

∫
da p(f̂|at(T , z)) p(z |T , a) p(T |a) p(a)

Frequentist interpretation of likelihood often differs from the Bayesian
posterior only by the prior, which, if uniform, gives the same result:

p(θ|D) ∝ p(D|θ) p(θ)

Here it is not so simple. The maximum of the posterior (MAP:
maximum a posteriori) is not the maximum likelihood, because T is
marginalised over - the answer is very different
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BPZ: likelihood and posterior

Benitez (2000), ApJ, 536, 571
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Weak Lensing BHM: Forward Model or Generative Model

P (d|s, N)P (d|s, N)

NN

dd

P (C)P (C)

CC

P (s|C)P (s|C)

ss

TT

P (t|s, T)P (t|s, T)

P
�
d|t, N̄

�
P
�
d|t, N̄

�

tt N̄̄N

dd

P (C)P (C)

CC

P (s|C)P (s|C)

ss

C = Power Spectrum

s = shear map

N = noise variance  
in each pixel 

d = noisy shear  
estimates in each pixel
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Bayesian Hierarchical Models

Computing the posterior

p(θ|d) may be impossible to calculate directly
e.g. p(cosmology parameters θ|shapes of galaxies d)
Solution: make the problem MUCH harder:
Compute the joint probability of the cosmological parameters and the
shear map

Joint distribution

p(θ | d) =

∫
p(θ,map |d)d(map)

p(θ,map |d) ∝ L(d | �θ,map) p(map|θ)π(θ)
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Joint map, parameter sampling

Figure: From Smail et al. 1997.

Latent parameters

Each pixel in the map is a parameter
10 cosmological parameters, plus 1,000,000 shear values

One million-dimensional probability distribution to calculate. . .
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Sampling in very high dimensions

MCMC: Metropolis-Hastings fails since it is very hard to devise an
efficient proposal distribution

Gibbs sampling: effective if conditional distributions are known

Hamiltonian Monte Carlo (HMC) works in very high dimensions (e.g.
using Stan)

 

Alan Heavens Bayesian Hierarchical Models September 6, 2018 26 / 33



CFHTLenS

Alsing, AFH et al (2016). ∼ 250, 000 parameters; Gibbs sampling
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CFHTLenS results
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CFHTLenS matter maps
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More Complications
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Massive BHM
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BORG and SDSS

Courtesy F. Leclercq.
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Summary of BHM

Bayesian Hierarchical Models are a way to build a statistical model of
the data by splitting into steps

Typically, decomposing into steps exposes what is needed - typically
many conditional distributions

For complex data, this may be the only viable way to build the
statistical model

The decomposition is usually very natural and logical

The model allows the proper propagation of errors from one layer to
the next,

including a proper treatment of systematics

One can often use efficient sampling algorithms to sample from the
posterior - precisely what one wants from a Bayesian statistical
analysis
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