Bayesian Hierarchical Models

Alan Heavens

September 6, 2018

ICIC Data Analysis Workshop

Bayesian Hierarchical Models, for more complex problems

If you can, this is how to do it

BHM

- We split the inference problem into steps, where the full model is made up of a series of sub-models
- The Bayesian Hierarchical Model (BHM) links the sub-models together, correctly propagating uncertainties in each sub-model from one level to the next.
- At each step ideally we will know the conditional distributions
- The aim is to build a complete model of the data
- Principled way to include systematic errors, selection effects (everything, really)

Bayesian Hierarchical Models

Often used to learn about a population from many individual measurements. e.g. we measure the number counts of a population of galaxies, but the measured fluxes \hat{f}_i have errors. What are the true number counts?

- Assume (say) a power-law $N \propto f^{-\alpha}$
- Many (unobserved) fluxes θ_i
- Add noise: $\hat{f}_i = \theta_i + n_i$

Number counts

Latent Variables

Ordinary Bayes vs Hierarchical Bayes

Ordinary Bayes:

$$p(\alpha|\hat{f}) \propto p(\hat{f}|\alpha) p(\alpha)$$

- But we do not know $p(\hat{f}|\alpha)!$
- Hierarchical Bayes:

$$p(\theta, \alpha | \hat{f}) \propto p(\hat{f} | \theta, \alpha) p(\theta, \alpha)$$

•

$$p(\theta, \alpha | \hat{f}) \propto p(\hat{f} | \theta) p(\theta | \alpha) p(\alpha)$$

Case study: straight line fitting

- Let us illustrate with an example. We have a set of **data** pairs (\hat{x}, \hat{y}) of noisy measured values of x and y (in fact for simplicity we will have just one pair)
- Model: y = mx
- Parameter: m.
- Complication: \hat{x} and \hat{y} both have errors.
- How do we infer *m*?
- First, apply Rule 1: write down what you want to know.
- It is

$$p(m|\hat{x},\hat{y})$$

Straight line fitting

How would you forward model it?

- Break problem into two steps.
- There are extra unknowns in this problem (so-called **latent** variables), namely the *unobserved true values* of \hat{x} and \hat{y} , which we will call x and y.
- The model connects the true variables. i.e.,

$$y = mx$$
.

• The latent variables x and y are nuisance parameters - we are (probably) not interested in them, so we will marginalise over them.

Alan Heavens Bayesian Hierarchical Models September 6, 2018 8 / 33

Hierarchical Bayes vs Ordinary Bayes

Ordinary Bayes (for given, fixed x):

$$p(m|\hat{y}) \propto p(\hat{y}|m) p(m)$$

• Hierarchical Bayes:

$$p(m|\hat{x},\hat{y}) \propto p(\hat{x},\hat{y}|m) p(m)$$

We do not know the likelihood $p(\hat{x}, \hat{y}|m)$ directly, and we introduce the latent variables:

$$p(m|\hat{x},\hat{y}) \propto \int p(\hat{x},\hat{y},x,y|m) p(m) dx dy$$

Analysis

• Let us now analyse the problem. Manipulating the last equation

$$p(m|\hat{x},\hat{y}) \propto \int p(\hat{x},\hat{y}|x,y,m) p(x,y|m) p(m) dx dy$$

 $p(m|\hat{x},\hat{y}) \propto \int \frac{p(\hat{x},\hat{y}|x,y)}{p(y|x,m)} \frac{p(x|m)}{p(m)} \frac{dx}{dy}$

This splits the problem into a noise term, a theory term, and priors. We can write all of these down.

• Here, the theory is deterministic:

$$p(y|x, m) = \delta(y - mx)$$

Integration over *y* is trivial with the Dirac delta function:

$$p(m|\hat{x},\hat{y}) \propto \int p(\hat{x},\hat{y}|x,mx) p(x) p(m) dx.$$

Integrate, or sample from the joint distribution of m and x:

$$p(m, x | \hat{x}, \hat{y}) \propto p(\hat{x}, \hat{y} | x, mx) p(x) p(m)$$

Analysis continued

Repeated from last slide:

$$p(m|\hat{x},\hat{y}) \propto \int p(\hat{x},\hat{y}|x,mx) p(x) p(m) dx.$$

• Assume errors in x and y are independent Gaussians, and take uniform priors for x and m. For simplicity, let us take $\sigma_{\rm x}^2 = \sigma_{\rm y}^2 = 1$.

•

$$p(m|\hat{x},\hat{y}) \propto \int e^{-\frac{1}{2}(\hat{x}-x)^2} e^{-\frac{1}{2}(\hat{y}-mx)^2} dx$$

Complete the square

$$p(m|\hat{x},\hat{y}) \propto \frac{1}{\sqrt{1+m^2}} e^{-\frac{(-m\hat{x}+\hat{y})^2}{2(1+m^2)}}.$$

Results

We have marginalised analytically over x, but if we want, we can investigate the joint distribution of x and m:

$$p(x, m|\hat{x}, \hat{y}) \propto p(\hat{x}, \hat{y}|x, mx) p(x) p(m) \propto e^{-\frac{1}{2}(\hat{x}-x)^2} e^{-\frac{1}{2}(\hat{y}-mx)^2}$$

Figure: Unnormalised posterior distribution of the slope m, for $\hat{x} = 10$, $\hat{y} = 15$.

Figure: Unnormalised posterior distribution of the latent variable x, and the slope m.

Gibbs Sampling

Let us see how we would set this up as a Gibbs sampling problem.

• At fixed x, the conditional distribution on m given x is

•

$$p(m|\hat{x},\hat{y}) \propto \exp\left[-\frac{(\hat{y}-mx)^2}{2}\right] \propto \exp\left[-\frac{x^2\left(m-\frac{\hat{y}}{x}\right)^2}{2}\right],$$

• i.e.

$$p(m|\hat{x}, \hat{y}) \sim \mathcal{N}\left(\frac{\hat{y}}{x}, \frac{1}{x^2}\right)$$

is a normal $\mathcal{N}(\mu, \sigma^2)$ distribution (in m).

• The conditional distribution of x given m is

$$p(x|m,\hat{x},\hat{y}) \propto \exp\left[-\frac{(\hat{x}-x)^2}{2} - \frac{(\hat{y}-mx)^2}{2}\right].$$

• After completing the square, this becomes

$$p(x|m, \hat{x}, \hat{y}) \sim \mathcal{N}\left(\frac{\hat{x} + \hat{y}m}{1 + m^2}, \frac{1}{1 + m^2}\right)$$

Gibbs results

• Hence we can sample alternately from m and x, using the conditional distributions, to sample $p(m, x | \hat{x}, \hat{y})$, and marginalise over x in the normal MCMC way by simply ignoring the values of x.

Figure: Gibbs sampling of the latent variable x, and the slope m.

Figure: Gibbs sampling of the slope m.

 Gibbs is only one option for sampling. MCMC with Metropolis-Hastings, or Hamiltonian Monte Carlo, would also be perfectly viable.

Question: is this the most probable slope?

Figure: Noisy data

Figure: Yes! - there is a prior on $x ext{...}$

Case Study. BPZ: Bayesian Photometric Redshifts

Figure: Spectrum and broad band fluxes

We follow Benitez (2000), ApJ, 536, 571

BPZ: Bayesian Photometric Redshifts

Goal

Obtain a posterior for the redshift of a galaxy given measurements of fluxes in some broadband filters (typically 5).

Model assumptions

Galaxy has a spectrum that is proportional to one of a set of template galaxies, but shifted in wavelength because of cosmological redshift.

•

Specify the model

Data:

 $\hat{\mathbf{f}}$: vector of flux *measurements* \hat{f}_{lpha} in bands $lpha=1,\dots$ N

Parameters:

z: redshift

Latent variables:

f: True f_{α}

T: template

a: amplitude of template 'brightness'

Posterior

- First write down what we want:
- $p(z|\hat{\mathbf{f}})$
- = $\sum_{T} p(z, T|\hat{\mathbf{f}})$ Marginalise over templates (discrete set)
- ullet = $\sum_{\mathcal{T}}\int da\, d\mathbf{f}\, p(z,\mathcal{T},a,\mathbf{f}|\hat{\mathbf{f}})$ and brightness and true fluxes
- $\propto \sum_{T} \int da d\mathbf{f} \, p(\hat{\mathbf{f}}|z,T,a,\mathbf{f}) \, p(z,T,a,\mathbf{f})$
- $\propto \sum_{\mathcal{T}} \int da \, d\mathbf{f} \, p(\hat{\mathbf{f}}|\mathbf{f}) \, p(z,\mathcal{T},a,\mathbf{f})$. Measurement error only
- $\propto \sum_{T} \int da d\mathbf{f} p(\hat{\mathbf{f}}|\mathbf{f}) p(\mathbf{f}|z, T, a) p(z, T, a)$
- $p(\mathbf{f}|z, T, a) = \delta(\mathbf{f} a\mathbf{t}(T, z))$ where $\mathbf{t}(T, z)$ represents the fluxes of template T when shifted by z
- $p(z|\hat{\mathbf{f}}) \propto \sum_{T} \int da \, p(\hat{\mathbf{f}}|a\mathbf{t}(T,z)) \, p(z|T,a) \, p(T,a)$
- $p(z|\hat{\mathbf{f}}) \propto \sum_{T} \int da \, p(\hat{\mathbf{f}}|a\mathbf{t}(T,z)) \, p(z|T,a) \, p(T|a) \, p(a)$

Posterior redshift distribution

- $p(z|\hat{\mathbf{f}}) \propto \sum_{T} \int da \, p(\hat{\mathbf{f}}|a\mathbf{t}(T,z)) \, p(z|T,a) \, p(T|a) \, p(a)$
- This identifies what we need to know:
- $\mathbf{t}(T, z)$): Template T broadband fluxes (without renormalising), when redshifted by z
- $p(\hat{\mathbf{f}}|\mathbf{f})$: The error distribution for the fluxes (e.g. $\mathbf{f} \sim \mathcal{N}(\hat{\mathbf{f}}, \sigma_{\alpha}^2)$)
- p(z|T,a): Redshift distribution of sources with template T and brightness a
- p(T|a): Fraction of galaxies with template T, given a brightness a
- p(a): Brightness distribution

Frequentist vs. Bayesian

- $p(z|\hat{\mathbf{f}}) \propto \sum_{T} \int da \, p(\hat{\mathbf{f}}|a\mathbf{t}(T,z)) \, p(z|T,a) \, p(T|a) \, p(a)$
- Frequentist interpretation of likelihood often differs from the Bayesian posterior only by the prior, which, if uniform, gives the same result:
- $p(\theta|D) \propto p(D|\theta) p(\theta)$
- **Here it is not so simple**. The maximum of the posterior (MAP: maximum a posteriori) is not the maximum likelihood, because T is marginalised over the answer is very different

BPZ: likelihood and posterior

Weak Lensing BHM: Forward Model or Generative Model

C = Power Spectrum

s = shear map

N = noise variance in each pixel

d = noisy shear estimates in each pixel

Bayesian Hierarchical Models

Computing the posterior

 $p(\theta|d)$ may be impossible to calculate directly

e.g. $p(cosmology parameters \theta|shapes of galaxies d)$

Solution: make the problem MUCH harder:

Compute the joint probability of the cosmological parameters and the shear map

Joint distribution

$$p(\theta \mid d) = \int p(\theta, map \mid d) d(map)$$

$$p(\theta, \text{map} | d) \propto \mathcal{L}(d | \theta, \text{map}) p(\text{map} | \theta) \pi(\theta)$$

Joint map, parameter sampling

Figure: From Smail et al. 1997.

Latent parameters

Each pixel in the map is a parameter

10 cosmological parameters, plus 1,000,000 shear values

One million-dimensional probability distribution to calculate...

Sampling in very high dimensions

- MCMC: Metropolis-Hastings fails since it is very hard to devise an efficient proposal distribution
- Gibbs sampling: effective if conditional distributions are known
- Hamiltonian Monte Carlo (HMC) works in very high dimensions (e.g. using Stan)

CFHTLenS

Alsing, AFH et al (2016). \sim 250,000 parameters; Gibbs sampling

CFHTLenS results

CFHTLenS matter maps

Alan Heavens

Bavesian Hierarchical Models

September 6, 2018

More Complications

Massive BHM

BORG and **SDSS**

Courtesy F. Leclercq.

Summary of BHM

- Bayesian Hierarchical Models are a way to build a statistical model of the data by splitting into steps
- Typically, decomposing into steps exposes what is needed typically many conditional distributions
- For complex data, this may be the *only* viable way to build the statistical model
- The decomposition is usually very natural and logical
- The model allows the proper propagation of errors from one layer to the next,
- including a proper treatment of systematics
- One can often use efficient sampling algorithms to sample from the posterior - precisely what one wants from a Bayesian statistical analysis