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Bayesian Hierarchical Models, for more complex problems

If you can, this is how to do it

@ We split the inference problem into steps, where the full model is
made up of a series of sub-models

@ The Bayesian Hierarchical Model (BHM) links the sub-models
together, correctly propagating uncertainties in each sub-model from
one level to the next.

@ At each step ideally we will know the conditional distributions
@ The aim is to build a complete model of the data

@ Principled way to include systematic errors, selection effects
(everything, really)
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Bayesian Hierarchical Models

Often used to learn about a population from many individual
measurements. e.g. we measure the number counts of a population of

galaxies, but the measured fluxes f, have errors. What are the true number
counts?

@ Assume (say) a power-law N oc f~¢
e Many (unobserved) fluxes 6;
e Add noise: f: = 0; + n;
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Number counts

Population parameter(s)

Individual properties

Observables

N
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Latent Variables

Population parameter(s)

0 are true
fluxes,
not directly
observable.
“Latent
Variables”

Individual properties <+«—

Observables
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Ordinary Bayes vs Hierarchical Bayes

@ Population parameter(s)

° Individual properties
° Observables
N

Ordinary Bayes:
p(alf) oc p(fla) p(er)
But we do not know p(f|a)!

Hierarchical Bayes:

p(0, a|f) o p(F|0,00) p(6, )
p(8, alf) o p(f|0) p(0) ) p(a)
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Case study: straight line fitting

Let us illustrate with an example. We

have a set of data pairs (X, ) of noisy

measured values of x and y (in fact for

simplicity we will have just one pair)

Model: y = mx

Parameter: m. + y=mx

°
°
@ Complication: X and y both have errors.
@ How do we infer m?

°

First, apply Rule 1: write down what
you want to know.

It is

p(ml|x,y)
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Straight line fitting

How would you forward model it?

S

CCD
j&

N

@ Break problem into two steps.

Population parameter(s)

Individual properties «—|

X,y are true
values,
not directly
observable.
“Latent
Variables”

Observables

@ There are extra unknowns in this problem (so-called latent
variables), namely the unobserved true values of X and y, which we

will call x and y.

@ The model connects the true variables. i.e.,

y = mx.

@ The latent variables x and y are nuisance parameters - we are
(probably) not interested in them, so we will marginalise over them.
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Hierarchical Bayes vs Ordinary Bayes

@ Ordinary Bayes (for given, fixed x):
p(m[y) o< p(y|m) p(m)
@ Hierarchical Bayes:
p(m|%,9) o p(%, y|m) p(m)

We do not know the likelihood p(%, y|m) directly, and we introduce
the latent variables:

p(m|%, 9) ox / p(%, 9, y|m) p(m) dx dy
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Analysis

@ Let us now analyse the problem. Manipulating the last equation

pWRWM/M&WJWMWHMMWWW

p(m|%, ) o / p(%, y1x. y) ply|x. m) p(x|ar) p(m) dx dy

This splits the problem into a noise term, a theory term, and priors.
We can write all of these down.
@ Here, the theory is deterministic:

p(ylx, m) = é(y — mx)
Integration over y is trivial with the Dirac delta function:
p(mi2.9) ox [ p(x.31x,mx) p(x) p(m) .
@ Integrate, or sample from the joint distribution of m and x:

p(m, x|%, ¥) o< p(%, §|x, mx) p(x) p(m)
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Analysis continued

@ Repeated from last slide:

p(m|k,y) /p()?,f/|x, mx) p(x) p(m) dx.

@ Assume errors in x and y are independent Gaussians, and take

uniform priors for x and m. For simplicity, let us take 02 = 03 =1.

p(miz.9) ox [ & a2 g

@ Complete the square

1 _(=m&+9)?

miR,P) x ——— e 21+ .
plmi%.9) o s
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Results

We have marginalised analytically over x, but if we want, we can
investigate the joint distribution of x and m:

p(x, m[%,9) o p(&, 91x, mx) p(x) p(m) o e~ 2N e=2=m",

3.0

m
0.0 0.5 1.0 1.5 20 25 3.0

Figure: Unnormalised

posterior distribution of the Figure: Unnormalised

slope m, for X = 10, y = 15. posterior distribution of the
latent variable x, and the
slope m.
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Gibbs Sampling

Let us see how we would set this up as a Gibbs sampling problem.
o At fixed x, the conditional distribution on m given x is
°

(7 — mx)?

> ]ocexp —

p(m|%,y) o< exp [—

. o y 1
plmis. )~ (£.5)
is a normal NV(p, 02) distribution (in m).
@ The conditional distribution of x given m is

p(x|m,%,9) o exp [ b Ve mx)? :

2 2
@ After completing the square, this becomes
A X4+ ym 1
p(x|m,%,9) ~ N 5 5
1+m* 1+ m
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Gibbs results

@ Hence we can sample alternately from m and x, using the conditional
distributions, to sample p(m, x|%, ¥), and marginalise over x in the
normal MCMC way by simply ignoring the values of x.
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Figure: Gibbs sampling of
the latent variable x, and
the slope m.

Figure: Gibbs sampling of
the slope m.

@ Gibbs is only one option for sampling. MCMC with
Metropolis-Hastings, or Hamiltonian Monte Carlo, would also be
perfectly viable.
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Question: is this the most probable slope?

5 10 15

Figure: Yes! - there is a

Figure: Noisy data prior on X ...
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Case Study. BPZ: Bayesian Photometric Redshifts

z = 3.50
0.0 ® °
[)] @
g 05/ ¢
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1.5
0.5}

Wavelength X (A)

Figure: Spectrum and broad band fluxes

We follow Benitez (2000), ApJ, 536, 571
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BPZ: Bayesian Photometric Redshifts

Obtain a posterior for the redshift of a galaxy given measurements of
fluxes in some broadband filters (typically 5).

Model assumptions

Galaxy has a spectrum that is proportional to one of a set of template
galaxies, but shifted in wavelength because of cosmological redshift.

Alan Heavens Bayesian Hierarchical Models September 6, 2018 17 / 33



Specify the model

f: vector of flux measurements f,, in bands « = 1,... N

Parameters:
z: redshift

Latent variables:

f: True £,
T: template
a: amplitude of template ‘brightness’
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Posterior

First write down what we want:

p(z|f)
= Y, p(z, T|f) Marginalise over templates (discrete set)
=31 [ dadf p(z, T, a,f[f) and brightness and true fluxes

(
x Y1 [ dadfp(f|z, T,a,f) p(z, T,a,f)
o« Y7 [ dadf p(f|f) p(z, T, a,f). Measurement error only
o Y1 [ dadf p(f|f) p(f|z, T,a)p(z, T,a)
p(flz, T,a) = 6(F — at(T,z)) where t(T, z) represents the fluxes of
template T when shifted by z

p(z|f) < X7 [ dap(f|at(T,z)) p(z| T,a) p(T,a)
p(z[f) o< X7 [ dap(flat(T, 2)) p(z| T, a) p(T|a) p(a)
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Posterior redshift distribution

o p(z[f) o< 37 | dap(flat(T,z)) p(z|T,a) p(T|a) p(a)
@ This identifies what we need to know:

e t(T,z)): Template T broadband fluxes (without renormalising), when
redshifted by z

o p(f|f): The error distribution for the fluxes (e.g. f ~ N (f,02))

@ p(z|T,a): Redshift distribution of sources with template T and
brightness a

@ p(T|a): Fraction of galaxies with template T, given a brightness a

e p(a): Brightness distribution

Alan Heavens Bayesian Hierarchical Models September 6, 2018 20 /33



Frequentist vs. Bayesian

o p(z[f) oc X [ dap(flat(T.2)) p(zI T, 2) p(T]a) p(a)
@ Frequentist interpretation of likelihood often differs from the Bayesian
posterior only by the prior, which, if uniform, gives the same result:

e p(0|D) x p(D|6) p(6)

e Here it is not so simple. The maximum of the posterior (MAP:
maximum a posteriori) is not the maximum likelihood, because T is
marginalised over - the answer is very different
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BPZ: likelihood and posterior
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Weak Lensing BHM: Forward Model or Generative Model

@ C = Power Spectrum

P (s[C) s = shear map

N = noise variance
in each pixel
P(d|s,N) d = noisy shear
estimates in each pixel
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Bayesian Hierarchical Models

Computing the posterior

p(0]d) may be impossible to calculate directly

e.g. p(cosmology parameters f|shapes of galaxies d)

Solution: make the problem MUCH harder:

Compute the joint probability of the cosmological parameters and the
shear map

Joint distribution

p(6]d) = / p(6, map | d) d(map)

p(6, map | d) o< £(d |4, map) p(map|d) =()
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Joint map, parameter sampling

Figure: From Smail et al. 1997.

Latent parameters

Each pixel in the map is a parameter
10 cosmological parameters, plus 1,000,000 shear values
One million-dimensional probability distribution to calculate. ..
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Sampling in very high dimensions

o MCMC: Metropolis-Hastings fails since it is very hard to devise an
efficient proposal distribution

@ Gibbs sampling: effective if conditional distributions are known

e Hamiltonian Monte Carlo (HMC) works in very high dimensions (e.g.
using Stan)
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CFHTLenS
Alsing, AFH et al (2016). ~ 250,000 parameters; Gibbs sampling
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CFHTLenS results

SN Planck 2015
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CFHTLenS matter maps
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More Complications

The Forward Process.
Galaxles: Intrinsic gaaxy shapes to measured mage:
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Massive BHM

galaxy

PSF, instrumental noise cosmology .
characteristics
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BORG and SDSS

Courtesy F. Leclercq.
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Summary of BHM

@ Bayesian Hierarchical Models are a way to build a statistical model of
the data by splitting into steps

@ Typically, decomposing into steps exposes what is needed - typically
many conditional distributions

@ For complex data, this may be the only viable way to build the
statistical model

@ The decomposition is usually very natural and logical

@ The model allows the proper propagation of errors from one layer to
the next,

@ including a proper treatment of systematics

@ One can often use efficient sampling algorithms to sample from the
posterior - precisely what one wants from a Bayesian statistical
analysis
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