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Cell cytoskeleton – very dynamic and versitile for cell-shape  
changes in phagocytosis, migration, adhesion, and packing 

Actin: 

actin                       microtubules                  nucleus 



Daunting signalling complexity in phagocytosis 

about 140  
different molecular  
species are involved 

Underhill	
  &	
  Ozinsky	
  (2002)	
  

Allen	
  &	
  Aderem	
  (1996)	
  



Geometric and biophysical aspects of phagocytosis 

1. Particle-size independence 

2. Shape dependence 

4. Ligand density   

3. Elastic properties 

Herant	
  et	
  al.	
  (2006)	
  

Champion	
  et	
  al.	
  (2006,2009)	
  

D 



Griffin	
  et	
  al.	
  (1975),	
  Swanson	
  (2008)	
  

Conceptual Zipper mechanism 

Time 

for explaining dependence on ligand density 



Outline of (remainder of) talk 

  Can the Zipper mechanism explain the  

    - Geometric requirements of particle? 
         Size independence 
         Shape dependence 

    - Energetic requirements of cell? 
         Ligand-receptor binding 
         Surface tension  
         Membrane bending         
         Remodelling of cytoskeleton 



Mechanistic idea for modelling Zipper mechanism  

1. Unidirectional engulfment, even without pauses 

Corbett-Nelson et al. (2006)‏ 

2. Immobilization of proteins and lipids in cups from FRAP 

bleaching 

Ratchet 

3. Ratchets used before in modelling actin-driven motility 



Ordinary differential equations – biochemical reactions: 

Partial differential differential equations – diffusion: 

Monte Carlo simulations: 

€ 

dn
dt

= k+(1− n)c − k−n

€ 

∂c
∂t

= D∂
2c
∂x 2

+ ......

Accept or reject trial moves 
based on energies for  
equilibrium properties 

Discretization 

Useful modelling techniques 



Implementation of zipper mechanism 

Ligand-receptor binding induces actin polymerization, making membrane 
deformation effectively irreversible  ratchet. 



Ratchet model in action 

1  Membrane deformation near particle is stabilized. 
2  Membrane deformation far from particle is retracted later. 

Time 



Model for cell membrane 

€ 

E =
κB

2
(C1 +C2 −C0)

2dA∫ +ΣA + PV + ELR

bending 

Ligand-
receptor 
binding 

membrane 
stretching 

vesicle 
swelling 

€ 

= 2C 

Cell-membrane energy: 

membrane deformations 
height profile h(x,y) 

membrane curvature 

€ 

C1

€ 

C2



Successful engulfment for wide range of 
parameters 

Cup shape 

Parameter range 

Particle size 

Particle shape 
and orientation 

not engulfed! 



Mechanical bottleneck 
at half-engulfment 

Bimodal  
distribution 
from  
experiments 
with WT-FcR  
after 10 min. 

Simulation                   Experiment 

Model confirms mechanical bottleneck 

Van	
  Zon	
  et	
  el.	
  (2009)	
  

Trajectories for different 
values of membrane-surface  
tension 



Energetic requirements:  
engulfment by active zipper 

Active zipper easily engulfs small and large particles 

Small,  
1.5 µm-radius 
particle 

Large,  
3 µm-radius 
particle 



Engulfment by passive zipper 

Small,  
1.5 µm-radius 
particle 

Large,  
3 µm-radius 
particle 

Passive zipper ONLY engulfs small particles - slowly with highly variable cups 



3d imaging with confocal microscopy 

Fcγ receptor 

Green Fluorescent Protein 

COS-7 cell 

Phagocytic cup 



Image analysis 

(a) Cells expressing wild-type Fcγ receptor = active zipper 

(b) Cells expressing signalling-dead mutant receptor  
(c) Cells transfected with cytochalasin D 

passive 
zippers 

Cup height and 
variability 



Variability of cup shape – exp vs. theory 

Variability 20-40% Engulfment 40-60% Engulfment 

Passive zipper produces more variable cup shapes 
than active zipper. 

Sim. 
Exp. 



Engulfment time – exp vs. theory 

Active zipper engulfs significantly faster than passive zipper 

Experiment Simulation 

Small particle 

Large particle 



Outlook – model of signalling and cytoskeleton  

Cell shape  
for given  
cell-pressure  
profile 

Applied pressure profile: 

Contour length 

Need to calculate pressure 
from model for acto-myosin 
cytoskeleton and signalling 



Summary  
•  Implemented a 3D ratchet model for  
  Zipper mechanism. 

•  Particle size does not matter for active zipper,  
  but for passive zipper. 

•  Biochemical signalling pathways added by  
  evolution for additional robustness? 

•  Shape and orientation matter for active zipper:  
  Potentially important for host-pathogen interactions  
  and efficient drug design. 

•  Current model does not close cups well,  
  contraction by motor proteins necessary? 
  Wave-like nature of actin polymerization? 

Coccoid and helical shapes	
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