How one cell eats another

Physical principles in phagocytic uptake

Robert Endres Imperial College London

http://www3.imperial.ac.uk/biologicalphysicsr.endres@imperial.ac.uk

Where physics meets biology....

Chemosensing and motility

bacteria

amoeba

Eating, uptake, and destruction

Cell packing

Where physics meets biology....

Chemosensing and motility

bacteria

amoeba

Eating, uptake, and destruction

Cell packing

Cell cytoskeleton – very dynamic and versitile for cell-shape changes in phagocytosis, migration, adhesion, and packing

Daunting signalling complexity in phagocytosis

about 140 different molecular species are involved

Allen & Aderem (1996)

Geometric and biophysical aspects of phagocytosis

1. Particle-size independence

Herant et al. (2006)

- 2. Shape dependence
- 3. Elastic properties

Champion et al. (2006,2009)

4. Ligand density

Conceptual Zipper mechanism

for explaining dependence on ligand density

Griffin et al. (1975), Swanson (2008)

Can the Zipper mechanism explain?

Geometric requirements of particle?

Size independence

Shape dependence

Energetic requirements of cell?

Ligand-receptor binding

Surface tension

Membrane bending

Remodelling of cytoskeleton

Mechanistic idea for modelling Zipper mechanism

- 1. Unidirectional engulfment, even without pauses
- 2. Immobilization of proteins and lipids in cups from FRAP

3. Ratchets used before in modelling actin-driven motility

Implementation of zipper mechanism

Ligand-receptor binding induces actin polymerization, making membrane deformation effectively irreversible \rightarrow ratchet.

Ratchet model in action

- 1 Membrane deformation near particle is stabilized.
- (2) Membrane deformation far from particle is retracted later.

Model for cell membrane

Cell-membrane energy:

membrane deformations

height profile h(x,y)

membrane curvature

Ligand-

Engulfment for wide range of parameters

A Surface tension Cup shape constraint K Parameter range Bending K Fold change of 0.01 0.1 10 100 Standard C Parameters (SP) Particle size Particle shape and orientation 7 µm not engulfed!

Bistability: a means of decision making?

Energetic requirements:

Active zipper

Active zipper easily engulfs small and large particles

Energetic requirements:

Active zipper

Passive zipper

Small, 1.5 µm-radius particle

Large, 3 µm-radius particle

Active zipper easily engulfs small and large particles Passive zipper ONLY engulfs small particles - slowly with highly variable cups

3D imaging with confocal microscopy

COS-7 cell

Phagocytic cup

Experimental implementation of two zippers

Active zipper: cells expressing wild-type Fcy receptor

Passive zippers

cells expressing signalling-dead mutant receptor cells transfected with cytochalasin D

Cup height and variability

Variability of cup shape

Passive zipper produces more variable cup shapes than active zipper initially.

Engulfment time

Simulation **Experiment** В Α Small particles 60 WT-FcyR Small particle WT-FcyR+CytoD Active zipper Passive zipper Surface engulfed (%) Surface engulfed (%) Y282F/Y298F-FcyR Time (min) Time (min) C D Large particles WT-FcyR -Active zipper Large particle Surface engulfed (%) Surface engulfed (%) Passive zipper 4 6 Time (min) 4 6 Time (min) 10 8 10 2

Active zipper engulfs significantly faster than passive zipper

Outlook: role of contraction in cup closure and shape

Applied pressure profile

Need to calculate pressure from model for acto-myosin cytoskeleton and signalling

Myosin inhibitor ML-7 turns phagocytosis off

ML-7 is an inhibitor of myosin-light-chain kinase → perturbation of myosin-II

Domain structure of myosins

Motor proteins show diverse N- and C-terminus tails

Regulate membrane tension, purse-string contraction, pseudopod extension, transport, e.g. of membrane, and cell elasticity.

Domain structure of myosins

Motor proteins show diverse N- and C-terminus tails

Regulate membrane tension, purse-string contraction, pseudopod extension, transport, e.g. of membrane, and cell elasticity

Myosin 1G – new role in phagocytosis

Recruited to cups

Required for uptake of large particles

Downstream of kinase PI3K

Myo1G and actin colocalise

Myosin 1G – dynamic linking of actin and lipids

Conceptual model: PI3K produces PIP₃ lipids, a second messenger for Myo1G and cup closure

Myosin 1G – dynamic linking of actin and lipids

Conceptual model: PI3K produces PIP₃ lipids, a second messenger for Myo1G and cup closure

Role of Myo1G motor?

1) Radial force for cup closure

Transport of PIP₃ to cup rim
 Side view

Summary of phagocytosis work

• Implemented a 3D ratchet model for Zipper mechanism.

Ratchet
Stationary
Pawl
Tooth

 Particle size does not matter for active zipper, but for passive zipper.

 Biochemical signalling pathways added by evolution for additional robustness?

Shape and orientation matter for active zipper:
 Potentially important for host-pathogen interactions and efficient drug design.

 Current model does not close cups well, contraction by motor proteins necessary?
 Wave-like nature of actin polymerization?

Coccoid and helical shapes

Acknowledgements

Biological Physics group:

- Sylvain Tollis (Postdoc)
- Anna Dart (Postdoc, experiment)
- Gerardo Aquino (Postdoc)
- Diana Clausznitzer (PhD)
- Luke Tweedy (PhD)

Collaborators:

- Gadi Frankel
- Brian Robertson
- Vania Braga
- Tony Magee/Martin Spitaler
- Sally-Ann Cryan (Dublin)
- Thierry Soldati (Geneva)

Tollis S, Dart A, Tzircotis G, Endres RG, BMC Syst Biol 4: 149 (2010); http://arxiv.org/abs/1011.0370.

£££:

