Investigating Forces for Uptake and Cup Closure –
The Role of Myosins in Phagocytosis

Anna Dart

Fundamental questions about the biophysical and signalling properties of phagocytosis

- Particle-size dependence
- Particle-shape dependence
- Cup closure, particle squeezing
- Actin waves at cup

Integration with modelling

Previous Model

A B

Work by Sylvain Tollis

Future Model

Specific aims

- Model has difficulties with cup closure
- Address the question of cup closure and particle squeezing:
 - By extending the model to include the acto-myosin cytoskeleton
 - And experimentally by investigating the role of myosins

Dieckmann et al., 2010

What are myosins?

- Myosins are actin-based motor proteins with known or predicted roles in many types of eukaryotic motility
- Myosins interact with actin filaments and couple hydrolysis of ATP to conformational changes that result in the movement of myosin and an actin filament relative to each other
- Known functions include cell adhesion, cell migration, cell division (cytokinesis), growth cone extension, maintenance of cell shape and phagocytosis
- Also involved in signal transduction pathways, such as myosin II is required for F-actin polymerisation during CR3-mediated phagocytosis

Domain structure of prototypical myosin II, a conventional myosin

Nature Reviews | Molecular Cell Biology

Actin cross-linking and contractile functions

Domain structure of myosins

All myosins share similar motor domains (shown in *dark green*), but their C-terminal tails (*light green*) and N-terminal extensions (*light blue*) are very diverse. Many myosins form dimers, with two motor domains per molecule, but a few (such as I, IX, and XIV) seem to function as monomers, with just one motor domain.

Domain structure of myosins

- a motor region (head). A core motor (catalytic) domain which interacts with actin and binds ATP.
- a neck region (or 'lever arm') composed of IQ motifs (from none to six) which have the consensus sequence (IQxxxRGxxxR) and bind either light chains or calmodulin.
 - a tail region which is extremely variable in sequence length, domain composition and organisation.

The Myosins

Why look at myosin involvement in phagocytosis?

Myosin-based contractility in phagocytosis

Time-lapse sequences of live macrophages expressing EGFP-actin, showing actin dynamics during FcyR-mediated phagocytosis of IgG-red blood cells.

Myosin-based contractility in phagocytosis

Two possible explanations for ML-7 inhibition are:

- myosin configure
 FcγR and line closure of p
- 2. the tight-f particle flu decrease intraphagos hydrolases

g between the nd subsequent

pushes extrahanism would ntly increase protons and

Myosin II in phagocytosis

Myosin II plays a role in particle internalisation during both FcγR- and CR3-mediated phagocytosis but is only required for actin cup assembly downstream of the CR3.

Olazabal et al., 2002

Myosin X in FcγR-mediated phagocytosis

Myosin X is recruited to phagocytic cups and expression of a truncated myosin X tail inhibits the phagocytosis of large particles (6µm) but not small ones (2µm).

Predicted
Mechanism: Myosin
X binds to PIP3 in
membrane through
its PH domain, the
motor head domain
engages actin
filaments and
moves towards the
barbed ends

Experiments

Investigate cup closure

Role of motor proteins in cup shape and closure:

- J774 macrophages treated with myosin inhibitors blebbistatin,
 ML-7 or BDM. Observe cup shape by confocal and SEM.
- J774 macrophages labelled with myosin-specific antibodies. Use confocal microscopy to look at localisation.
- COS-7 cells transfected with FcγR and GFP-tagged myosins during phagocytic challenge with IgG-opsonised beads. Observe cup shape by confocal microscopy.
- J774 macrophages transfected with siRNA to knockdown specific myosins. Observe cup shape by confocal and SEM.

Blebbistatin-treatment of J774A.1 cells undergoing FcγR-mediated phagocytosis

 Blebbistatin is a small molecule inhibitor showing high affinity and selectivity toward non-muscle myosin II. Importantly, it does inhibit myosin from classes I, V and X.

ML-7-treatment of J774A.1 cells undergoing FcγR-mediated phagocytosis

 ML-7 is an inhibitor of myosin light chain kinase (MLCK) and inhibition of MLCK results in selective perturbation of myosin II function.

ML-7-treatment of J774A.1 cells undergoing FcγR-mediated phagocytosis

WGA
Internal Beads
Total Beads

Myosin IIA recruitment to FcγR phagocytic cups in J774A.1 macrophages

Myosin IE recruitment to FcγR phagocytic cups in receptor-transfected COS-7 cells

Myosin IC recruitment to FcγR phagocytic cups in receptor-transfected COS-7 cells

Myosin VIIa recruitment to FcγR phagocytic cups in receptor-transfected COS-7 cells

Myosin VIIa

Future work

- Identification of the key myosins involved in FcγRmediated phagocytosis
- Confocal imaging of key myosins during the time course of phagocytosis, in particular MyoIE and Myo1G.
- Confocal imaging of phagocytic cups with key myosins knocked down.
- SEM

Future work

 3D-image analysis/reconstruction of phagocytic cup shapes (by Sylvain)

