Qualitative inference Designing attractors for biological models

Daniel Silk

IoSSB 2011

Imperial College London

Imperial Collège London IoSSB 2011 Daniel Silk 1 of 12

Desired and expected behaviour

Synthetic biology

Systems biology

Adapted from C.P. Barnes[†], D. Silk[†] & M.P.H Stumpf. Bayesian design strategies for synthetic biology. Interface focus. (2011)

Imperial College

Motivation - Systems biology

Oscillating expression of Hes1 plays a central role in regulating vertebrate embryo segmentation.

Motivation - Systems biology

 Traditional qualitative approaches can fail when fitting to complex behaviour.

Motivation - Synthetic biology

- What structures and parameter combinations give rise to desired types of behaviour?
- In particular, can we design and build a biological circuit that exhibits chaos?

Encoding the desired behaviour

• Lyapunov exponents, $\{\lambda_i\}$ encode the qualitative behaviour of the model.

The unscented Kalman filter for qualitative inference

The unscented Kalman filter for qualitative inference

Oscillations in a Hes1 regulatory model

Silk, D. et al. Designing attractive models via automated identification of chaotic and oscillatory dynamical regimes. Nat. Commun. (2011).

Controlling Chaos

Silk, D. et al. Designing attractive models via automated identification of chaotic and oscillatory dynamical regimes. Nat. Commun. (2011).

10

UKF iteration

Chaos in coupled repressilators

Regions of chaos

Chaotic behaviour

 The smallest perturbation leads to decoupling of repressilator trajectories.

Acknowledgements

Many thanks to

Michael Stumpf Paul Kirk Chris Barnes Tina Toni Simon Moon

Margaret Dallman Anna Rose

