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ABSTRACT

The existence of small dimensional variations between blades on the same rotor or
stator is called mistuning and causes a phenomenon which can drastically change the
vibration characieristics of the mistuned assembly from those of the corresponding
tuned system. This thesis aims to improve the basic understanding of the response
characteristics of mistuned bladed systems and reports both deterministic and staristical

studies on this topic.

An exact analytical solution, applicable to any number of blades, is presented for the
Jorced vibration of tuned bladed disc assemblies which are modelled using a lumped-
parameter technique. This method of analysis is also extended for alternate and single-

> mistuning cases. The latter case is considered to be a result of a blade with a

crack and it is modelled using experimentally-derived crack-dependent stiffness and
damping properties. This study led to the formulation of a general method for fatigue

life prediction of engineering components subjected to dynamic loads.

Although such deterministic results are useful in many respects, their application is
limited because of the inherent randomness of structural properties of blades due to
manufacturing tolerances. As a first step towards the statistical solution of the
mistiuning problem, an analytical method is developed to investigate the effects of
random variations in stiffness and/or damping properties on vibration characteristics of
a single-degree-of-freedom system. Cumulative probability distributions of damped
natural frequencies and frequency response functions of such systems are obtained
directly from the corresponding probability density functions of stiffness andlor

damping properties.

The general random mistuning problem is addressed using statistical sampling theory.
Blade-to-blade variations are considered to be random with a Gaussian distribution
and answers to some very Important mistuning-related questions are sought on a
statistical basis. The findings of this thesis help to reconcile conflicting conclusions
which were previously reached by many researchers on both qualitative and
quantitative matters related 1o the consequences of mistuning, most notably the

identification of critical blades and the increase in forced response due to mistuning .

Finally, a method to determine acceptable blade-to-blade variations for blade response
levels to remain within A% of the tined system or design values is developed. This

method is successfully used to find the relationship between the allowable response

increase due to mistuning and the allowable manufacturing toleranc
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NOTATION

Crack length

Cross-sectional area

Initial crack length

Viscous damping coefficient
Coefficient of dispersion (Standard deviation/Mean)
Material constant

Young's modulus

General force signal

Magnitude of engine order excitation
ith functional relation

jth blade's first cantilever frequency
Mean of blades' first cantilever frequencies
V-1

Blade stiffness

Cracked blade stiffness

Sectorial disc stiffness

Grounding stiffness

High frequency blade stiffness

Stress intensity factor

Critical stress intensity factor

jth plade stiffness

Low frequency blade stiffness

Modal stiffness

Shroud stiffness

Iength

Number of degrees of freedom
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m, M Blade mass

My Sectorial disc mass

m, Modal mass

n Material constant, Number of functional relations or equations
N Number of blades

Ne Fatigue life

ND Nodal diameter

ny Number of data within a subinterval

Np Number of subintervals

N Number of modes

Ng Sample size

p Probability density function (pdf)

P Cumulative density function (cdf)

m Sample mean of response amplitude

r Engine order of excitation

R Stress ratio

8 Number of excitation frequencies, distance in Appendix IV
t Time

u Number of unknown structural parameters

v Total number of unknowns

w Number of coordinates at which real and imaginary parts of the response

levels are known, thickness in Appendix IV
X Independent variable in chapter 5, response elsewhere
X, ¥,z Response
X, Y, Z Response amplitude
X; i blade response
jth blade response amplitude

Imaginary part of jih blade response amplitude
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Magnitude of jth blade response amplitude

Real part of ji blade response amplitude
Dependent Variable in chapter 5, response elsewhere
Crack shape function

jth disc sector response

jth disc sector response amplitude

Imaginary part of jih disc sector response amplitude
Real part of jif disc sector response amplitude
Receptance

Stress parameter

Jjth element of unknown vector {7}
Hysteretic damping ratio

Cracked blade hysteretic damping ratio
Modal damping

Higenvalue

Interblade phase angle (2nr/N)
Density

Standard deviation

Nominal stress

Excitation frequency

Damped natural frequency
Undamped natural frequency

Natural frequency for the rth mode
Resonant frequency

Viscous damping ratio

Veetors and matrices

(t}

Harmonic force vector



W\WW Force amplitude vector
{q} Response vector

Wm } Response amplitude vector
{R} Residual vector

Real and imaginary parts of j! sector response levels at various excitation

frequencies

{oy]) Correction vector for the unknown vector

{v} Jnknown vector

A} Higenvalue vector

{o} Stress vector

TA] Strain to stress transformation matrix

[B] Response to strain transformation matrix

{13 Hysteretic damping matrix

(K] Stiffness matrix

M Mass matrix

51 Matrix which contains the derivatives of the functional relations with respect

to unknown structural parameters and response levels.

Dynamic stiffness matrix
[od Receptance matrix

[yl Eigenvector matrix
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CHAPTER 1

INTRODUCTION

About This Chapter

This chapter describes the nature of the problem, gives a  brief review of related

literature and outlines the objectives of this thesis.
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1.1 The Nature of the Problem

Perhaps one of the most challenging tasks facing today's engineers is the design of
turbomachinery components which require exceptionally high reliability. For example,
a jet engine may contain thousands of blades and a failure of an early stage blade may
cause catastrophic results, hence even the failure of a single blade is not allowable in
many turbomachinery applications. Moreover, trends in turbomachinery technology
have been to increase performance and efficiency and to reduce overall weight often by
increasing operating speeds. Together with weight and dimensional optimization of
turbomachinery components, these modifications have led to an alarming number of
vibration-related fatigue failures and this in turn has made the attainment of the

required reliability an extremely difficult task.

In order to prevent hazardous fatigue failures and to ensure the required reliability, it is
necessary to predict the dynamic characteristics of a bladed disc assembly within
engineering accuracy. However, dynamic analysis of such systems is complicated, the
difficulties involved falling into one of the three main categories:

1) the geometry of the assembly is very complex and interface boundary conditions

(structure-to-fluid, blade-to-disc and blade-to-shroud) are not well defined:

i) the operating conditions are very hostile and the excitation forces are difficult to

evaluate: and

iii)  small dimensional variations, mainly due to manufacturing tolerances, exist
between individual blades on the same stage and this phenomenon can change
drastically the vibration characteristics of mistuned assemblies from those of their

tuned counterparts, thus making the calculations based on tuned system
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unreliable. This blade-to-blade variation, known as mistuning, constitutes the

focal point of this thesis.
There are three main sources of mistuning in bladed disc systems.

i) The first is mechanical mistuning, or the presence of small variations in mass or
stiffness properties of individual blades, which is due mainly to manufacturing
tolerances. However, other factors can also influence this type of mistuning:
uneven wearing of blades during service, leading to mass variations;
discrepancies in material properties mainly due to randomness in heat treatment
processes, leading to stiffness variations and defects and/or fatigue cracks causin g
stiffness reduction.  The existence of this type of mistuning is normally

accompanied by a scatter of individual blade natural frequencies.

i)  The second is damping mistuning, resulting from variations in damping
properties of individual blades. Such differences may occur either due to
variations in blade-to-disc and/or blade-to-blade frictional forces (especially of
blade roots and shrouds interfaces) or due to defects and/or fatigue cracks which
can change both the uniformity and the overall level of energy dissipation in

individual blades,

iii)  The third is aerodynamic mistuning which results from variations in external
forces acting on individual blades due to changes in amplitude and phase angle of

the aerodynamic forces acting on each blade.

It should be noted that the presence of one type of mistuning may activate further

mistuning of some other type. For instance, mechanical mistuning (i) may also produce
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a non-uniform pressure distribution around the blade, (iii). This, in turn, may cause

energy dissipation levels to be different from blade to blade.

It is of paramount importance for engine designers to know the consequences of
mistuning, and particularly the amount of increase in the forced response level over that
of the corresponding tuned system and the critical blade(s) which is(are) more likely to
experience the highest stresses when the system is mistuned. Although many studies
have been made on mistuned assemblies to address these questions and further
consequences of mistuning, various researchers do not seem to agree on many crucial
points. In order to highlight these discrepancies, some of the conclusions which have
been reached in the past on the degree of worsening effect of mistuning have been

listed below:

- "The presence of slight detuning - small blade imperfections, iypical of those found in gas

turbines today - can cause resonant stress level of up 1o 20% above the optimum.” Fwins (1969)

- "The analyses reported here indicate that individual turbine blades in Configuration A may

respond at 1.95 times the response for a perfectly tuned wheel.” Srinivasan and Frye (1976)

= "The maximum factor by which the stress can increase on any blade due to mistuning is

approximately 1/2(1+7\JN/2)." Whitehead (1976)

= "The parvicular arrangement of a set of blades is as imporiant as each blade's individual degrees
of mistune in determining the spread of resonant responses. In the cases studied here, the
spread varied from 66 1o 120 percent of the mean depending on how the given set of blades were

distributed around the disc.” Ewins and Han (1984)

- "The maximum stress in the 100 rotors simulated was 2.18, more than twice as large as for a

tuned disk.” sriffin and Hoosac (1084)

- In a numerical simulation of a 30-bladed disc with random mistuning, an amplitude of more

than 350% relative to the tuned case was found.” Afolabi (1988a)
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Conclusions as to the identity of the critical blade(s) which experience(s) the maximum

response level(s) show a similar trend.

- "The blade experiencing the maximum stress level is not necessarily that of worsi mistune”

El-Bayoumy and Srinivasan (1975

5 . g % p s ¥ g m{m%
) correlating the maximum blade amplitude with the blade's "blade alone” frequency¥was

found that those blade most likely to exhibir the largest vibrations were those that had blade-
alone frequencies nearly equal to the frequency that the system would resonate at if the blades

were identiced.” Griffin and Hoosac (1984)

- "The highest response was always experienced by a blade of extreme mistune.”

Cwing and Han (1984)

- In the specific case studies examined here, the blades having the largest deviation from the
tuned state are more likely 1o be found on the envelopes of min-max response amplitudes.”

Afolabi (1985a)

1.2 Survey of Mistuning Studies

Over the last several decades, hundreds of research reports and papers have been
published on turbomachinery vibration. No attempt will be made here to undertake a
complete review of all the related literature as it is beyond the scope of this thesis. The
interested reader is referred to excellent review articles by Rao (1973), Rao (1977),
Leissa (1981), Ramamurti and Balasubramanian (1984), Rao (1987) on blade
vibration, Srinivasan (1984), Omprakash and Ramamurti (1988) on bladed disc
vibration, Ibrahim (1987) on structural dynamics with parametric uncertainties and, to
the latest survey by Ewins (1991) on the effects of blade mistuning on vibration
response. However, it is proposed to present a review of mistuning studies related to

the forced response effects and to the statistical aspects of the problem.
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From the author's standpoint, mistuning studies on bladed discs fall into two categories:

deterministic studies and statistical studies,

1.2.1 Deterministic Studies

Tobias and Arnold (1957) were the first to consider imperfections in rotating discs and
to study disc vibration under static and rotating conditions, their work providing a
useful early insight into the effects of mistuning. Recognition of the fact that some
blades have higher response levels than their tuned counterparts dates back to
Whitehead (1966) who reported a theoretical investigation of blade mistuning effects
on blade vibration induced by wakes. He considered purely aerodynamic coupling
between blades and suggested that the worst blade's amplitude can increase up to
17201 s_&ﬂw times that of the tuned system where N is the total number of blades on a
disc. Ten years later (1976), he published another paper in which he incorporated the
presence of mechanical coupling between blades through root fixings and showed that

the upper limit would be 1/2(14+4/N/2) with mechanical coupling.

Wagner (1967) developed a model for turbomachinery vibration with a flexible disc
and blades consisting of lumped masses and springs and demonstrated the existence of
large variations in maximum blade stresses. Dye and Henry (1969) proposed a simple
but representative lumped parameter model for bladed discs and studied the effects of
various types of mistuning patterns. They found that the case of single blade mistuning
was the most dangerous pattern leading up to 180% stress increase, an observation in

fine with Whitehead's work,

Ewins' contributions to the understanding of bladed disc vibration and mistuning
effects have been remarkable. Ewins was amongst the earliest researchers (1966) who
studied the effects of mistuning and developed a receptance method to analyse tuned

and mistuned bladed discs by coupling disc, blades and shrouds. Later, in 1969, he
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reported a detailed study of the vibration characteristics of detuned systems and
estimated the amount of maximum resonant response increase for light damping. He
also proposed a method for the experimental simulation of the excitation which exists
under operating conditions. A summary of the vibration characteristics of bladed disc
assemblies was reported in 1973. He also conducted experimental studies on a bladed
disc model and simulated engine order excitation using air jets in a spinning rig Ewins
(1976). The study made by Ewins and Rao (1976) took into account the effect of
damping levels on the forced response analysis of bladed discs. In 1980, Ewins
reported a comprehensive review of the major techniques used in bladed disc vibration
analysis and of mistuning effects. Ewins and Han (1984) analysed the effects of
several mistuning configurations and a blade with extreme mistune was found to
experience the highest response levels. This conclusion was also shared by Afolabi
(1982) and (1985a). However, in his latest papers, Afolabi reported that contrasting
characteristics could be observed in bladed disc response at different segments of the

eigenvalue spectrum [Afolabi (1985b, 1988b)].

El-Bayoumy and Srinivasan (1975) analysed the influence of mistuning on blade
vibration using an axisymmetric plate model for the disc and a lumped parameter
model for the blades. They reported that the amount of overstressing due to mistuning
depends on the frequency distribution and the deviation of blade cantilever frequencies
from the mean value. Later, Srinivasan and Frye (1976) conducted experiments on
two different engines and presented experimental results. The phenomenon of double
modes and mode splitting was addressed by Stange and MacBain (1983) who carried
out experiments using holographic interferometry and strain gage measurements under
rotating and nonrotating conditions in order to determine the resonant response
amplitudes and modal characteristics of a deliberately mistuned bladed disc. Later,
MacBain and Whaley (1984) extended the work of Tobias and Arnold (1957) and

Ewins (1969) and derived an analytical expression for the maximum forced resonant
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response.  Fabunmi (1980) studied the vibration response of a mistuned axial
compressor rotor under various harmonic excitations. He estimated the mass, stiffness
and damping parameters of his theoretical model by analysing holographically-

measured modes of the rotor.

The influence of imregularities between individual blades' contact surfaces was
addressed by Muszynska and Jones (1981 and 1983), Griffin (1980), Sinha and
Griffin (1984), Griffin and Sinha (1985), Menq et al. (1986) and Wang and Yau
(1990). They pointed out that a major part of the damping in bladed disc systems is
supplied by friction and suggested that mistuning caused by such irregularities in

friction force could lead to significant variations in individual blade response

Considerable research has been devoted to aeroelastic aspects of mistuning and a short
summary will be given here. The model proposed by Whitehead (1966) was further
developed by Srinivasan (1980) to incorporate mechanical coupling and he made a
series of parametric studies with emphasis on mistuning. Imregun (1984) investigated
the effects of mistuning on flutter by using a lumped parameter structural model and
two-dimensional unstalled cascade aerodynamics theories for flat plates. Srinivasan
and Fabunmi (1984) proposed a model to define the blades' properties at several
spanwise stations. Kaza and Kielb (1982a, 1982b, 1984, 1985), Kielb and Kaza
(1983, 1984) and Kaza et al. (1987) investigated mistuning effects on the stability of
bladed disc systems. Initially, they used a simple blade section model in their analysis.
Later, they formulated the aeroelastic equations of motion for an arbitrarily mistuned

cascade with flexible, pretwisted and nonuniform blades. Crawley and Hall (1984)
suggested an inverse design procedure for determining the minimum amount of
positive mass mistuning required to ensure a given stability margin. Bendikson (1984)
used a perturbation method to study the effect of mistuning on the flutter boundary. It

is worth noting that, unlike those drawn from structural mistuning studies, aeroelastic
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investigations have been consistent in predicting that mistuning has a stabilizing effect

on flutter,

1.2.2 Statistical Studies

Although deterministic studies are useful in understanding the effects of mistuning, the
answers to practical mistuning-related questions can only really be found on a statistical
basis: that is to say, in terms of blade population characteristics rather than individual
blade properties. Statistical investigations of the mistuning problem are relatively new

and can broadly be divided into two groups:

1) analytical studies, where the structural parameters are considered as actual

statistical variables and,

i) numerical studies, where statistical results are generated from deterministic data
in which structural parameters are selected by random sampling from a given

population.

i) Analytical Studies

Bliven (1969) considered random structural imperfections of elastic beams and derived
statistical properties of the transverse vibration natural frequencies based upon a
lumped parameter approach. Huang (1982) proposed a method for estimating the
mean and variance of the natural frequencies and the response amplitudes of blades.
He modelled a bladed disc as a closed ring composed of a stiffened string supported by
transverse springs. He assumed the natural frequencies of the blades to be random
variables and derived differential equations for the motion of the bladed disc in terms
of these random coefficients. He suggested a spectral method to solve the resulting

equations. Sinha (1986) used an approximate analytical technique to calculate the
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statistics of the forced response levels of a mistuned bladed disc assembly. His method
was based on the assumption that the response levels of mistuned blades were linear
combinations of the random parameters and that the distribution of response levels was
saussian. This method was later improved to include some higher-order terms by
Sinha and Chen (1989) but the simplifying assumptions were still retained. Another
analytical method for predicting the cumulative probability and probability density
functions of natural frequency and response levels of single-degree-of-freedom (SDOF)
individual blades was provided by Singh (1988). Later, Singh and Ewins (1988)
extended this work to a multi-degree-of-freedom (MDOF) spring-mass-dashpot system
simulating a bladed disc. Kissel (1988) and Pierre (1990) studied the effects of
random disorder on the dynamics of one-dimensional periodic or nearly-periodic
structures and showed the existence of strong vibration localization because of such
randomness. Wei and Pierre (1990) applied various methods such as an analytical
first-order statistical perturbation method, a numerical Monte Carlo simulation
technique and a hybrid method to find the statistics of the response amplitudes of

mistuned blades,

i) Numerical Studies

Sogliero and Srinivasan (1979) proposed a method for calculating the failure
probability of mistuned rotors subjected to stationary Gaussian white noise excitation.
They determined the blade cumulative damage using a method based on the §5-N curve.
Griffin and Hoosac (1984) used a numerical simulation technique for the statistical
investigation of mistuning effects on the response of large bladed disc assemblies and
they determined the cumulative probability distribution of the resonance response
levels. This analysis was further extended by Basu and Griffin (1986) who also
included aerodynamic coupling and who studied the effects of changing various system
parameters such as flowing gas density, the number of blades on the disc and the engine

order of excitation. Recently, Griffin (1991) suggested a strategy for determining the
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number and the position of critical blades which should be instrumented in a typical

turbomachinery vibration rig.

1.3 Objectives of the Research

The overall objective of this research is to improve our basic understanding of the
response characteristics of mistuned bladed disc systems. Although the vibration of
mistuned bladed disc assemblies has been studied by many authors, there are still a
number of unanswered questions. Accordingly, the specific objectives of this thesis are

to address questions such as:

1) Which are the critical blade(s) on an assembly - ie., those experiencing the

maximum stress level(s)?
1)  What is the maximum amount of stress increase due to mistuning?

iif)  What is the expected life of a blade under vibration when a defect in one of the

blades starts to propagate?

iv) The blade distribution on a stage being a statistical process within prescribed
tolerance limits - what are the statistical characteristics of forced response levels
for a given degree of mistuning? and - what is the probability of the maximum

blade response being between two prescribed limits?

v)  What degree of blade-to-blade variation should be imposed for A% allowable

response increase with respect to the tuned system?

It should be noted that question (iv) is the statement of direct problem for mistuning

studies while (v) is that of the inverse problem.
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1.4 Preview of the Thesis

This thesis aims to improve the basic understanding of the response characteristics of
mistuned bladed systems and presents new methods for determining the vibration

response and fatigue life of mistuned blades via direct and inverse methods.

Chapter 2 presents an exact analytical solution for the forced vibration of tuned bladed
disc assemblies which are modelled using a lumped-parameter technique. The method
of analysis developed for tuned systems has been extended to the cases of alternate and
single-blade mistuning in chapter 3. Single-blade mistuning was considered to be of
interest because it would arise as a result of a fatigue-cracked blade and was modelled
using experimentally-measured  stiffness and damping changes produced by
representative fatigue cracks. Chapter 4 presents a general method for fatigue life
prediction of engineering components subjected to dynamic loads. It is based on the
determination of the stress intensity factor using frequency response functions. The
application of the method is illustrated in the case of a bladed disc with single blade

mistuning caused by a fatigue crack.

Chapters 5 to 7 are devoted to statistical investigations of the mistunin g problem. As a
first step, an analytical method is developed in chapter 5 to investigate the effects of
random variations in stiffness and/or damping properties on the vibration characteristics
of a SDOF system. The general random mistuning problem is addressed in chapter 6
where statistical sampling theory is used. Blade-to-blade variations are considered to
be random with a Gaussian distribution and answers to some very important mistuning-
related questions are sought on a statistical basis. In chapter 7, an inverse method is
proposed to determine acceptable blade-to-blade variations so that blade response levels
remain within A% of those of the tuned system. Finally, chapter 8 summarizes the
conclusions reached in this study and proposes a number of possible areas for further

research.



CHAPTER 2

AN ANALYTICAL SOLUTION FOR THE FORCED
RESPONSE OF TUNED BLADED DISC
ASSEMBLIES

About This Chapter

It is believed that the understanding of the vibration behaviour of tuned bladed disc
assemblies is vital for that of mistuned systems. Accordingly, this chapter is devored to
an analysis of tuned bladed disc assemblies and presents an exact analytical solution
Jor forced vibration levels of such assemblies represented by a lumped-paramerer
model. The response equations, which are explicit functions of structural parameters,
exciting frequency and interblade phase angle, can be used to determine the response
levels due to any engine-order type of excitation and 1o identify all the resonance and
antiresonance frequencies of the assembly without requiring an eigensolution. It is
further shown that the results obiained are applicable to any number of blades, a
fearure which makes the proposed solution ideal for parametric studies of turbine and

compressor stages.
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2.1 Introduction

The prediction of the vibration properties and forced response levels of turbomachinery
blades is an essential part of bladed disc assembly design. Although more powerful but
expensive analysis techniques exist, it is useful to conduct case studies based on lumped
parameter models since such simple but representative models allow an easy and cost
effective way of determining some invariant properties of the assembly dynamics. The
simplicity of this approach has attracted many researchers and the methods of
determining the natural frequencies, mode shapes and forced response levels of bladed
disc assemblies are now well established. However, when a disc has many blades, say
over 100, the size of the problem may become very large, even for parametric studies
using a lumped parameter model. Perhaps this is the reason why many researchers
have focused their attention on those rotors that have relatively few blades and have

neglected damping (structural and/or aerodynamic) in their work.

The main purpose of this chapter is to address this shortcoming and to present an
analytical solution which is valid for any number of blades. Although analytical
solutions present a natural alternative to costly numerical techniques, the number of
available solutions is very limited. Some approximate solutions for bladed disc
assemblies comprising non-linear friction damping, where linear matrix operations are
not applicable, have been obtained by Muszynska and Jones (1983), Griffin (1980)

and Sinha et al. (1985).

Solution techniques for forced response level predictions of tuned or mistuned rotors do
not differ from each other in principle in the sense that the response of all blades are
computed simultaneously for both cases; an approach which cannot be justified for the
tuned case since all blades have identical responses. Indeed, systems with a circular
symmetry have a special vibratory behaviour which is characterized by patterns of pure

nodal diameters and circles. When such systems are subjected to an r't engine order
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(rEO) excitation, which is believed to be the main source of forcing in bladed disc
assemblies [Armstrong et al. (1966), Whitehead (1966), Ewins (1969)], only the
r nodal diameter modes are excited [Ewins (1973)]. A close inspection of results from
previous studies [Afolabi (1982) Imregun (1984)] suggests that there should be a

simple and closed form expression for response levels to a specific EO excitation.

Although the scope of this chapter is restricted to tuned rotors in order to develop the
methodology, the solution technique presented here has promising implications for
mistuned bladed disc studies. In chapter 3, the same approach is applied for the

analyses of alternate and single-blade mistuning.

2.2 Model Description

A number of lumped parameter models of increasing complexity, depicted in Figs. 2.1
to 2.3, were used to represent tuned bladed discs. Model A, shown in Fig. 2.1, assumes
the disc to be rigid and represents each blade as a lumped mass, the coupling between
one blade and its neighbours being modelled by springs representing massless shrouds.
Model B, shown in Fig. 2.2, is identical to the original lumped parameter model of a
compressor rotor proposed by Dye and Henry (1969); a single mass being used to
model the blade while the sectorial mass of the disc is lumped at the root, the flexibility
of which is also included. Model C, shown in Fig. 2.3, is an extension of Model B in
that each blade is now represented by two lumped masses and springs. Although
damping is not shown in the models, it can easily be incorporated into the solutions

obtained here as viscous and/or hysteretic type.

The specific values of the lumped parameters used in these models can be calculated
for a given bladed disc assembly using a semi-empirical method described in Afolabi

(1982).
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2.3 A Review of the State-of-the-Art of Forced Response Calculations

A brief review of the existing lumped parameter-based methods to predict the response
levels of bladed discs will be given here since the proposed method is based on the

same modelling principle.

The general equation of motion for a general multi-degree-of-freedom system subjected

to harmonic excitation is given by:

IMI{q} +[CH{q} + ([K] +i[D]) {q} = ()} el (2.1)
If a harmonic solution of the form is assumed

{q) = {4} elot (2.2)
Eq. (2.1) becomes:

(K] +i[D]- @2 M] +iw[C]) {§) = (1) (2.3)

and the response level is obtained from

(4) = ([K] +i[D] - w2 [M] +i o [C] ) 1{}) (2.4)
or
(4 = 12114} = [al{) 2.5)

Although the analytical derivation of Eq. (2.4) is simple, it has several disadvantages as
discussed by Ewins (1984). The major drawback is that its application is too expensive
for large-order systems because it requires the inversion of a system matrix at each

frequency. Alternative equations have been derived by making use of the system's
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modal properties. Customarily, these methods have been derived for special cases that
the system has either hysteretic or viscous type of damping but not both. In the case of
hysteretic damping, Eq. (2.3) is reduced to :
. . . A A -
([K]+1[D] - w? [M]) {q} = {1} (2.6)
Setting the force vector to zero in Eq. (2.6) leads to a complex eigenproblem the

solution of which contains the complex eigenvalues { A} of the form

L o

Ap=wr (T +ing) (2.7

where , and 7, are the natural frequency and the damping loss factor for the rth mode.

Using the eigenvector matrix [y] which satisfies the orthogonality properties:

(WIT (M] [yl = ['mp] (2.8a)
(AT K] [yl =[ke] (2.8b)

Vi Wk
T, BN 2
my{7- @ + 17, ©F)

(2.9)

e |

where Ny, is the number of modes. Once the receptance matrix at a specific frequency
is computed using Eqg. (2.9), the response levels at that frequency can be obtained via

Eq. (2.5).
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Fig. 2.1 Model A.

In the case of viscous damping, a similar procedure is followed but the size of the
complex eigenproblem is doubled in order to make the problem linear. When both
types of damping are present in the model, direct matrix inversion seems to be
appropriate since an expression for the elements of the receptance matrix in the form of

Eq. (2.9) either does not exist or is too lengthy to use.

2.4 Symbolic Inversion of the Dynamic Stiffness Matrix

The receptance matrix [o] can be found by symbolic inversion of the dynamic stiffness

A . . . A,
matrix [Z] and the response levels can be computed easily for a given force vector {f}.
This symbolic inversion constitutes the basis of the formulation presented in this

chapter and a dedicated software package Marhematica [Wolfram (1988)] was used for

this purpose.

2.4.1 Solution for Model A

Introducing both hysteretic and viscous damping to the model shown in Fig. 2.1, the

equation of motion for the jth blade can be written as:

m X+ ¢ Xj+k (1+in) xj+ K (xj- xj.0) + K (%5 - xj41 ) = £(0) (2.10)



WM_ AN ANALYTICAL SOLUTION FOR THE FORCED RESPONSE OF TUNED BLADED DISCS 30

where the external forcing fj(t) here represents a particular EO excitation which is
sinusoidal in time and differs only in phase from blade to blade. It can be shown that

for an r'th EO excitation:

W_WQWH F, el{ot + Bp(j-1) 2.11)
where
27
g, = ~ 212

Fo= magnitude of forcing

N = total number of blades

8, = interblade phase angle of forcing

It is important to note that the interblade phase angle for the i nodal diameter mode of
vibration is the same as 8,. Assuming a harmonic solution and setting F, to unity

allows the equations of motion be written in recurrence form:
AXj+ BXj. + BXjyq = fj = elb(-D) (2.13)

where

mwux%mwmm;%%.m%wméﬁéwxv

B=-K

S

(2.14)

and X is the vibration amplitude for the jt blade. Irrespective of which damping
elements are in the model, Eq. (2.13) takes the same form, the expressions for
coefficients A and B changing with the configuration. The equation of motion in

recurrence form can be written as:
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2] {8} = (1) 2.15)
where
A B 0 00 0O 0O B
A B 00 0 0 0
A B--0 0 0 0
[Z] = . (2.16)
Symmetric A B
A | NxN
[Q1= { X1, X9, X35 Xgp eerreere X 17T .17
WMJ = {1, eifr, i20r 30 eiN-1)6r}T (2.18)
and the solution of Eq. (2.15) is given by:
. A ) vy
(@) =121 () = [od (1) (2.19)

Since the system is tuned we need only to find the response amplitude of any one of the
blade, say Xy:

N I
vﬁ = M Q,www .\S

j=

(2.20)
In order to obtain an analytical formulation for the response level, the receptance
matrix was determined by inverting symbolically the dynamic stiffness matrix of Eq.
(2.16) using Mathematica.

This was performed for a number of discs each with a

relatively small number of blades since the symbolic matrix inversion is much more
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costly than its numerical counterpart. Not surprisingly, all the elements of the
receptance matrix were found to be functions of the coefficients A and B, and very
lengthy expressions were obtained depending on the size of the dynamic stiffness
matrix. Initially, an attempt was made to perform the summation of Eq. (2.20) by
using the generalized force vector m? of Eq. (2.18). However, Mathematica was
unable to simplify the resulting lengthy response expression and it was necessary to
form the vector ﬂwm for each specific EO excitation. The order of excitation was

increased from zero to the maximum possible number which is equal to N/2 for an even

number of blades and (N-1)/2 for an odd number of blades.

Unlike the individual elements of the receptance matrix, the expressions for the
response levels were found to be very simple functions of the coefficients A and B for

each EO excitation. The results for all three test cases are tabulated in Table 2.1 for
each possible EO excitation. The most important finding from these results, and many
others which are not presented here, is that for a given value of interblade phase angle,
0, the solution for blade responses is invariant, which indicates that response levels for
a disc with any number of blades can be expressed as a function of 8. The following

expression was derived by observation of several test cases under varying EO

excitations.

1
~A+2Bcos(8)

P
)
b

Z

X4

The general expression given in Eq. (2.21) for a blade's vibration amplitude is verified
in Appendix I where the same result is obtained analytically using Circulant Matrix
Theory. The magnitude of the response level for rth EQ excitation can be written
explicitly as a function of the structural parameters and the excitation frequency by

substituting Eg. (2.14) into Eq. (2.21):
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Table 2.1 Response levels for Model A.
No of Engine Phase Response amplitude
blades order angle
N r 0,[°] X4y
0 0 1
A+2B
4 1 90 1
A
2 180 1
A-2B
0 0 1
A+2B
6 1 60 1
A+B
2 120 1
A-B
3 180 1
A-2B
0 0 1
A+2B
1 45 1
A+ ﬁ B
8 2 90 1
A
3 135 1
A-\2B
4 180 1
A-2B
1
X4l = : (2.22)

AJtk+ 2K  (1-cos(8)) -m @) + (we +kn )2

The natural frequencies of the system can easily be obtained from Eq. (2.22) by solving

for o to maximise the response level.

2.4.2 Solution for Model B

Having obtained an analytical expression for the vibration response level of the simpler

system, it was decided to repeat the calculations for the extended model, B, which is
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Fis. 2.2 Model B.

shown in Fig. 2.2. As before, blade stiffness k was assumed to include structural
damping while aerodynamic damping was represented by a dashpot attached between
ground and the blade. The following are the equations of motion for the jh blade and

the corresponding disc segment:

m X+ ¢ xj+ k (1411 (x5 - yp)= fi(1)

Mg yj+k (1+1m) (v - %)) + Kgyj + Kg(2y; - yjp1 - yj-0)=0 (2.23)

The harmonic response assumption enables the equations of motion to be written in

recurrence form:

AX;+BY; = elfrGD) = §,

where
A =k - mw? + i(nk+oc)
B =- k(1 +in)
C = 2Ky + kg + k - Myw? + ink (2.25)

D=-Ky
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The dynamic stiffness matrix can be expressed as:

A-B 0 0 0 00 0 O
¢ o6 D o0 00 0 D

A B 0 00 0 0

[Z] = ¢ 0 D0 0 0 (2.26)

e}

Symmetric A

and the response and force vectors are respectively:

(Q1= (X1, Yy X90 Yoo oo, Xy Y M7 (2.27)
(1) = {1, 0, eir, 0, ei20r, 0, ....... , eiN-DB; ()T (2.28)

As mentioned before, since the system is tuned the vibration response levels for one

sector only, say Xy and Yy, need to be determined:

N 2N
Xy = 2 0oy j 1 and Y=, 0 ﬁ (2.29)

Following the approach described in the previous section, simple expressions for
response levels for several discs under all possible EO of excitations were obtained.
The results for two discs with different numbers of blades are given in Table 2.2. As
before, the following functions were found to represent the response levels for Model B

for any interblade phase angle and for any number of blades.

C+2D cos(8,)
- B2+ A(C + 2D cos(8)))

X, (2.30)
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Table 2.2 Response levels for Model B,
No of Engine Phase Response amplitude
blades order angle
N r 8,[°] Xy Y
0 0 CH+20 -1
B2 4+ A(C +2D) -B2 4+ A(C +2D)
6 1 60 C+D B
-B2+AC+D) -BZ+ A(C+D)
-B2+ A(C-D) -B2+ A(C-D)
3 180 C-2D B
-B2+ A(C-2D) -B2+A(C-2D)
0 0 C+2D -8
- B2 + A(C +2D) - B2 + A(C +2D)
1 45 C+v2D -B
B2+ A(C +y2D) | - B2 +A(C +1/2D)
8 2 90 C -B
-B2+AC -BZ+AC
3 135 C-~2D -B
B2+ A(C -y2D) | -B2+A(C-2D)
4 180 C-2D B
-B2 + A(C - 2D) - B2 + A(C - 2D)

o

<
i

i
-
Fuud

2.4.3 Solution for Maodel C

After obtaining the required solutions for the two simpler models, the same approach
was applied to the more general model shown in Fig. 2.3. As before, the equations of

motion are written in recurrence form.

AX;+BY;=af

BX;+CY;+DZ;+GY; +GYj, =b (2.32)

[

www\ﬁ + WMNW -+ mmNTM “+ wumwﬁ,m =}
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Fig. 2.3 Model C.

where a and b represent the proportion of the external force applied to the blade upper
and lower masses in the model such that a+b=1. It was decided to obtain the analytical

solution for the following two cases:

1) external forces are acting on the upper masses only (a=1, b=0)

i1) external forces are acting on the lower masses only ( a=0, b=1)

and the principle of superposition can be applied to provide the solution for the general
case. Again, the receptance matrix was obtained via symbolic matrix inversion and the
response levels, Xy,Y and Z;, were determined by multiplying the receptance matrix
by the appropriate force vectors. Expressions for the response levels for various values
of 8, are not tabulated as previously, to preserve space, and the results obtained as a

function of 8, are presented directly. For case (i), these are:
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D2 - (C +2G cos(0))(E + 2F cos(8,))

o J.ww -
X1x Denom (2.3%)
B(E + 2F cos(8,)) .
Yix = Denom (2.34)
-BD
oo .
21X = Denom (2.35)
where

Denom = B2 (E + 2F cos(8,)) + A (D2 - (C + 2G cos(8))(E + 2F cos(8,)) (2.36)

Similarly, for case (ii), the response levels are:

vﬂmm\ = Mwwvm Awwwﬁ

- A(E + 2F cos(8,))

ﬁ% y a
Yiy = Denom (2.38)
oy = AD (2.39)

Y = Denom

Using the principle of superposition, the total vibration amplitude at each coordinate

can now be written as:

Xp=aXix +bXyy 2.40)
Yi=aYix+bYyy (2.41)

Nw = 8 Mmmvm +h Nww\ AMN‘MMM
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Having found the response levels, it is now possible to obtain the natural frequencies of
the system as well as the antiresonances using transfer functions in each coordinate
direction. For simplicity, we shall derive expressions for the natural frequencies of the
undamped case. It is also worth noting that the antiresonances of the undamped system
can be obtained more easily than can the natural frequencies since the order of the

polynomial in the numerator is less than that of the denominator.

Natural Frequencies of Undamped Bladed Disc

For the undamped case, the coefficiénts in Eq. (2.32) can be written explicitly as:

A=k Am
3 = -k
C=k+K+2K;-AM =T, - AM

D =-K (2.43)
E= K+kg+2Kg- AMg =T, - AMg

where A = 2. Substituting these coefficients into Eq. (2.36) and equating the resulting

oy
o)

expression to zero yields the frequency equation for the r nodal diameter modes.

M +a A2+ agA+a3=0 (2.44)

where

%

ap = {2m cos(8,) (MKq + KMy) - T{Mgm - TymM - kMM }/(mMMy)

i

ay = {2K4 cos(8;) (2Kgm cos(8,) - Tym - kM) - 2K cos(6,)(kMy +Tym) +

+mTok + MgT k - Mgk? - mK2 + T, T,m }/(mMM,) (2.45)
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{2k cos(8,) (KyTy + KTy - Kk - 2K4K cos(8,)) +

[

+ kK? - T Tok + Tok?} imMMy)

The solution of Eq. (2.44) is given in Appendix II. The three real roots correspond to

the zero, one and two nodal circle modes associated with interblade phase angle, 6,.

2.5 Numerical Example

A computer program based on the modal summation technique was written to check the
validity of the Egs. (2.21), (2.30) and (2.31) numerically and the results obtained were
compared with the derived analytical solutions using a hand calculator. Perfect

agreement was obtained in all cases.

Now, we shall focus on some of the numerical results for model C. Again, the system
was assumed to be undamped for the sake of simplicity. Two separate programs were
developed. In the first one, the natural frequencies were determined using an

eigensolution and the response levels were obtained using modal summation. In the

second program, algebraic expressions derived in the previous section were used

directly. The structural parameters used are listed in Table 2.3.

The CPU time required to determine all natural frequencies of a 30-bladed disc via this
first program was approximately 12 minutes on a IBM PC-AT compatible micro
computer. On the other hand, the results from the second program were almost

instantaneous using the same computer. Natural frequencies of the system for several

Table 2.3 Structural parameters for 30-bladed disc.

m =0.115 kg K =24.171%106 N/m
M =0.321kg K, = 8.000%106 N/m
My =0.72 kg Kgq = 2.600%106 N/m

kK =0.317*100 N/m k, =60.000 N/m
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Table 2.4 Some of the resonance and antiresonance frequencies of 30-bladed disc.

Phase Natural frequency [Hz] Antireso-
Nodal nance [Hz]
diameter| angle Eigensolution Analytical solution

First one
8:[°] |0 Circle 1 Circle 2 Circle |0 Circle 1 Cirele 2 Circle jat blade i

3 36 163.57 286.22 1674.19] 163.57 286.22 1674.19| 198.24
4 48 206.14  298.91 1680.18| 206.14 29891 1680.18| 249.92
5 60 23324 324.68 1687.40| 23324 32468 1687.40| 300.74
6 72 246.11 361.74 169552 246.11 361.74 1695.52| 349.33
7 84 251.97 402.17 1704.17] 251.97 402.17 1704.17| 394.75

different nodal diameter patterns as obtained from both methods are presented in Table
2.4, from which it is immediately seen that both sets of results are identical. The first
antiresonance frequency of the blade tip EO response, which cannot be predicted from
an eigensolution, was also calculated from the analytical formulation and is included in

that table.

It was assumed that the external forces were acting at the blade tips (i.e., a=1, b=0 ) and
a 5t EO excitation was applied (i.e., 8,=60°.) The response curves corresponding to
the coordinates X, Y and Z are shown in Fig. 2.4. The response levels obtained from
the two methods are once again identical. In order to plot each curve shown in Fig. 2.4,
the response levels were computed at 450 frequencies. The CPU time required was
about 50 minutes for the first program including an eigensolution. However, the same

results were obtained in about 3 seconds using the second program based on the

analytical solution.
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Fig. 2.4 Response of the 30-bladed disc to 5EO excitation.

2.6 Concluding Remarks

1) An analytical formulation for the calculation of tuned system response levels has
been presented and its validity has been checked using other available prediction

techniques.

i1)  The proposed formulation brings major savings in computational time since it is

based on closed form analytical expressions.

it1)  The analysis of tuned bladed discs with large numbers of blades does not bring
any complexity nor additional computational cost in response predictions

whatsoever,

iv)  Since the proposed analytical solutions of response levels are given as functions
of symbolic coefficients in the equations of motion, both viscous and hysteretic

damping can be included easily into the formulation.
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v)  The analytical solutions for response levels have been found to be a function of
the ratio r/N, more conveniently represented by the interblade phase angle
0,=2nr/N. This has very important implications for the prediction of the response
levels: there is no need to conduct studies by changing r and N individually, a
single parameter 8, can be used to assess the response levels directly. Again, this
represents an enormous saving in computing time since (a) far fewer cases need
to be investigated and (b) the dynamic behaviour of large systems can be deduced

from that of much smaller systems.

vi) The antiresonance frequencies in any coordinate response, which cannot be
identified from an eigensolution, can also be determined using the proposed

formulation,



CHAPTER 3

FORCED VIBRATION ANALYSIS OF MISTUNED
BLADED DISC ASSEMBLIES

About This Chapter

The effects of two types of bladed disc assembly mistuning, namely alternate and single
blade mistuning, are examined in this chapter by extending the method used in chapter
2 for tuned assemblies. Single-blade mistuning is considered to be a result of a cracked
blade and is modelled using experimental data on stiffness and damping changes
produced by fatigue cracks. The results presented in this chapter show that the position
of the critical blade and the amount of resonant response increase over the
corresponding tuned system depend on both the interblade phase angle and the amount
of mistuning present. The results also suggest that, as in the case of tuned bladed discs,
the dynamic behaviour of mistuned bladed discs with large numbers of blades can be

inferred by studying systems with much smaller numbers of blades.




@ FORCED VIBRATION ANALYSIS OF MISTUNED BLADED DISC ASSEMBLIES 45

3.1 Introduction

Vibration-induced fatigue in bladed disc assemblies has always been a primary concern
and dynamic stresses which can cause fatigue failures need to be predicted accurately
for safe and economical design. Among many difficulties in doing so, mistuning and
its consequences still remain as unknown quantities in stress calculations.  Although
studies consistently indicate that mistuning causes large stress increases relative to the
tuned state, the answers to the following two important questions still remain to be
satisfactorily answered:
1) which blade(s) experience(s) the maximum stress level? and

11) what is the maximum amount of dynamic stress increase over the tuned state?

As pointed out in chapter 1, some researchers suggest that the worst blade, the one
experiencing the largest vibration amplitude, is most likely to be the one with the
greatest mistune while others suggest the worst blade to be a "mean” blade. Nor is
there any agreement about the magnitude of the dynamic stress increase over the
corresponding tuned system, either. Many different levels of stress increase have been
suggested: 20% increase by Ewins (1969), 350% of tuned case by Afolabi (1988a) and
a factor of 1/2(1+\/N/2) by Whitehead (1976) where N is the number of blades.
Although different modelling techniques can be expected to give different quantitative
results, qualitatively the results are expected to show the same general trends rather

than being in contradiction as in determining the critical blade.

This chapter deals with two specific types of mistuning, namely alternate and single-
blade mistuning. The alternate mistuning considered here addresses the case where two
sets of identical blades are mounted on a disc in an alternating fashion (Fig. 3.1.a).

Single-blade mistuning, as the name implies, is considered as the case where the
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Fig. 3.1 Mistuning types studied. (Only cantilever frequency variation is shown)

properties of one blade are different from those of others as shown in Fig. 3.1.b. In
both cases, it is assumed that the corresponding disc sectors are tuned. For the alternate
mistuning case, an analytical solution which is applicable to a disc with any number of
blades has been obtained and used for predicting forced response levels. For the
analysis of the single-blade mistuning case, a combination of analytical and numerical

solutions is applied to find the required response levels.

3.2 Description of the Model and Solution Technigue

The basic Dye and Henry (1969) model used in the previous chapter is extended by
including hysteretic and viscous damping to represent both aerodynamic and structural
sources of energy dissipation. Referring to Fig. 3.2, the equations of motion for the jth

biade and disc sector can be written as:

d

Mg §j + k] (vj - %) + Ky ¥j + Kg Q¥ - ¥j41 - 9.0 = 0 (3.1)
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Fig. 3.2 Lumped parameter model of mistuned bladed disc assembly.

where ﬁ. =k v (1+m Mv and the external force «m@ represents a particular engine order
(EO) of excitation which is sinusoidal in time and differs only in phase from blade to

blade.

The method of solution used in this chapter is similar to that described in chapter 2

where forced response levels were obtained directly via:

@.mv
Once again, symbolic inversion of the dynamic stiffness matrix [Z] constitutes the basis
of the formulation and the dedicated software package, Marthematica [Wolfram

(1988)], was used for this purpose.

Table 3.1 Tuned system model parameters.

1 k TR LT
o ; = 182 Hz

= 60 BaMa_ 1y nN=02% (=10%
. yk/m
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The equivalent tuned system model parameters, summarized in Table 3.1, were used in

both the alternate and single-blade mistuning cases.

3.3 Alternate Mistuning

The Fourier analysis of some research fan data provided by a well-known aero engine
manufacturer showed that a significant degree of alternate mistuning already existed in
more than 80% of the assemblies studied, probably due to dynamic balancing
considerations. This clearly shows that even though alternate mistuning seems to be a
simplistic special case, the understanding of its consequences has important practical
implications. An extensive study on alternate mistuning was carried out by Griffin and
Hoosac (1984) who suggested that building a bladed disc by selecting alternate blades
from two distinct populations which have different mean frequencies could be a
possible way of reducing the worsening effect of mistuning caused by random
mistuning. Results presented in this chapter indicate that some of their findings related
to alternate mistuning are valid under specific circumstances only, and may not be

applicable to the general case.

3.3.1 Formulation
The solution procedure requires the dynamic stiffness matrix to be written in symbolic
form. This can be done by assuming a harmonic solution which allows the equations of
motion be written in the form:

[Z]1{g} = {f} (3.3)

A Ay . s A
where the response vector {(}, force vector {f} and dynamic stiffness matrix [Z] are:

mmw = WN;T%M“N?mfd%wb\wf::;XE*W%ZWM (3.4)

st L
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(}) = Fo {1,0,6"%0 061200 (1G85 HN-D8D) 537 (3.5)

ALBLO 0 0 0--0 0 0
CLO D 0 00 0 D

AgBg 0 00 0 0
171 = CyO D0 0 0 (3.6)

Y ymine tric A 1 B i

Cy NN

respectively, where subscripts | and ¢ refer to low (odd) and high (even) frequency
blades respectively. The solution procedure has already been described in the previous
chapter and analytical results for response levels will be given without further
explanation.  Because of the symmetry inherent in this type of mistuning, the
magnitude of the j blade response level is identical to that of the (j+2)t blade (i.e.,

jl= IXjeal, 1Yl = 1Yj40l). Therefore, we shall give an analytical solution only for the

()t and the (j+1)t blades where j is an odd number corresponding to low-frequency

blades:
.,WWWM Mww,; “+ %Wi AW.H .M,um -2 06%@% wwwg MWE D-4 ﬁ@mwﬁmww %wm Mvu o
X, = Fo - el G-DOr (37)
gkmwm ﬂum e \bwwa ﬁ,m mwmxw -2 %Qﬂ@% wwb MWM,M D-4 @Qmwﬁmwwv %yw MWM o
X1 =Fo . elJfr (3.8)
wm Mwmu - \Wﬁ_ wm ﬁum 2 ann@ﬁw }F wm D L B
Y, = Fo— - el J-Dor (3.9)

B mwm Mwm - \_NWF mwm Auwv +2 ﬁ@wmmﬂv ;brm mw? D - o
Yiz1=Fo A elJor (3.10)
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where

A=B? BE - A BACp - AgBZ Cy+ Ap Ay Cp, Cyy - 4 cos(8) Ay Ay D2(3.11)

Assuming that only the stiffness properties of the two set of blades are different, the

coefficients in the above solution can be written explicitly as:

A =kp-me?+i(nk +wc)

Bp =-kp (1+im)

CL =2Kg+kg+k -Mg? +ink,

Ag =kg-mo?+i(nkg+oc) (3.12)
By = kg (1+i1)

Coy =2 m«m& 4 W%X\T W,ﬁ - gm m@w 41 N Www

A
X
i

D =-K4

Egs. (3.7) to (3.12) show that apart from the structural parameters and excitation
frequency, the response levels of discs with alternate mistuning, like those of tuned
rotors, depend only on interblade phase angle (8, = 2% 1/N) rather than the engine order
of excitation, r, or the number of blades, N, separately. Therefore, the closed form
analytical solution given above is applicable to a disc with any number of blades under

excitation of any EO.

3.3.2 Case Study

First, results obtained from the analytical solution, Egs. (3.7) to (3.10), were compared
with those found numerically by studying discs with small numbers of blades. Identical
results were obtained and, predictably, the analytical solution brought huge savings in

computation time. These equations were then used to find the increase in forced
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response due to alternate mistuning. The normalized magnitudes, obtained by dividing
the resonant response levels of high- and low-frequency blades by that of the equivalent
tuned blade, are plotted in Fig. 3.3 against the amount of mistuning (defined as the ratio
of the cantilever frequency difference of high and low frequency blades to the
cantilever frequency of tuned blade) for various values of interblade phase angle
(0,=21r/N). The critical blade is seen to be the low-frequency blade if 8, is less than
90° and, as 6, increases, the critical blade changes depending on the amount of

mistuning.

These results show that, even for this simple type of mistuning, the position of the
critical blade cannot be related to its cantilever frequency without detailed knowledge
of the excitation characteristics and the amount of mistuning. It is also worth noting
that results presented here are in agreement with previous published work. For
example, Ewins (1969) showed that the critical blade at certain degree of mistuning
may not be the critical one at some other degrees of mistuning. Moreover, Griffin and
Hoosac (1984) found a trend very similar to that given in Fig. 3.3 for 6, = 10°. Results
presented in Fig.3.3 show that this trend is valid for a range of interblade phase angles
only hence it cannot be generalized. Another set of results, obtained with and without
viscous damping, is presented in Fig. 3.4, It is immediately seen that damping has

negligible effect on the results presented for the alternate mistuning case.
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Fig. 3.4 Effect of damping modelling on normalized resonant response for alternate
mistuning case.

3.4 Single Blade Mistuning

Single-blade mistuning is usually considered to be an academic case rather than a
realistic problem. However, a practical problem arises when a defect starts to
propagate in one of the blades of a rotor stage which is otherwise made of nominally-

identical blades. This situation is addressed in this section.

3.4.1 Formulation

Assuming that the first blade is mistuned (Fig. 3.1.b), the dynamic stiffness matrix can

be written as follows:

Ay By O 0 0 00 0 O
¢ o D o 00 0 D
A B O 00 0 0
[Z] = C 0 D0 0 0 313
Symmetric A B
'S INKIN
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where

A=k -me?+i(mki+wc)
Br=-ki(1+imny)

Cr=2Ky+kg+ki-Mgo? +ingk;

A =k-mel+i(nk+wc) (3.14)
B =-k(l+in)

C =2Kg+kgtk-Mgo? +ink

D =-Kq4

k1 and 11, which are functions of the crack depth, represent the stiffness and structural
damping of the first blade while all other parameters of the system are assumed to be

those of the tuned state.

The symbolic inversion technique was applied to Eq. (3.2) in an attempt to find a
general solution. However, it was not possible to obtain a closed-form solution
applicable to any number of blades. Instead, analytical solutions for those discs with a
small number of blades (maximum 12) were found for various EO excitations. The
solution for a 6-bladed disc under 1 EO excitation is given here for illustration

purposes.

X1=Fo(-BOC1+3AB4CC-3AZB2C2C+A3C3C-B5B{D+2AB3BCD-A2BB  C2D-
2AB4D2+AB3BD2+4A2B2CD2-A2BB{CD2-2A3C2D2+3A2B2C, D2-
3A3CC|D2+4AZBB | D3+4A3D4)/B (3.15)

Y =Fo(BOB;-3AB4B,C+3A2B2C2B-A3C3B | +B5AD-2AB3A ,CD+A2BA , C2D-

AB3A|D2-3A2BZBD2+AZBA CD2+3A3CB | D2-4A2BA | D3)/B (3.16)
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Fig. 3.5 Experimental data for frequency and damping changes produced by fatigue
cracks.

where X and Y are the deflections of the first blade and disc sector respectively and B

is given by

B = (BB3-3AB*BIC+3AZB2C?B?-A3C3B%-BOA Cy +3AA | B4CC;-
3A2AB2C2C+A3C3C A -2ABYA | D2-3A%B2BID2+4AB2D2A | C+3A3CB2D2-

2A3C2A | D2+3A2B2A | C D2-3A3A ,CC | D2+4A3A D% (3.17)

3.4.2 Case Study

In order to allow a more realistic assessment of the forced response characteristics of
bladed disc systems when there is mistuning due to a crack defect in a single blade, the
changes in natural frequencies and structural damping values of free-free steel beams
due to the presence of fatigue cracks were investigated experimentally.! Results from
this work are given in Appendix III and are used in the case study presented in this
section. Measured natural frequency reduction versus damping increase for the first
mode of a free-free beam is plotted in Fig. 3.5. This reduction was regarded as a

decrease in blade stiffness since a fatigue crack does not cause any mass changes.

A theoretical model to predict the damping increase due to fatigue cracks in beam-like structures was
proposed by Sanliturk and Imregun (1991).
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As mentioned before, a general analytical solution applicable to any number of blades
could not be found for the single-blade mistuning case. Instead, solutions for discs
with up to and including 12 blades were obtained for various EO excitations. Results
referring to discs with more than 12 blades were computed by numerical inversion of

the system matrix.

One of the consequences of mistuning is that the rth EO excitation excites several
modes, as illustrated for the undamped case of Fig. 3.6 in which the exciting frequency
is normalized to the tuned blade-alone cantilever frequency. However, as shown in
Fig. 3.7, when proportional damping or damping due to a fatigue crack is introduced,
small peaks are suppressed and the response curve becomes smoother, suggesting that
damping is responsible for reducing the effect of mistuning. Forced response levels
computed for odd numbered blades in the case of a 24-bladed disc with a cracked blade
under 5 EQ excitation are plotted in Fig. 3.8. All response levels are close to each
other except those for the cracked blade which is lower due to the high level of

damping introduced to that blade by the fatigue crack. However, the crack tip stresses
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may well be large enough for further crack propagation, a situation which is addressed

in chapter 4.

Although the response levels are found to be dependent on the number of blades, this
dependency is rather weak if the ratio of EO excitation to the blade number (thus,
interblade phase angle 6,) is kept constant. This can easily be seen from the response

levels of the cracked blade plotted for 6,=180° in Figs. 3.9 and 3.10. Results suggest
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that the interblade phase angle can still be used to predict the stare of the response
levels of such bladed disc assemblies. Finally, the normalized resonant response of the
mistuned blade was found in terms of the amount of mistuning for various 8, values
and the results are presented in Fig. 3.11. It is clear that including the damping
produced by a fatigue crack has a marked effect on the maximum response level of a

fatigue-cracked blade.

As in chapter 2, results presented here on alternate and single-blade mistuning also

indicate that the disc assembly with a large number of blades responds in a similar way
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Fig. 3.11 Normalized resonant response levels versus amount of mistuning for
mistuned blade with and without the damping produced by fatigue crack.

to one with only a few blades if 6, is the same for both assemblies, hence one can
deduce that the behaviour of discs with large numbers of blades can be inferred by
studying smaller systems. However, the validity of this argument for the general case
of random mistuning needs to be investigated in detail and this is addressed in chapter

6.

3.5 Concluding Remarks

i) A closed-form analytical solution has been obtained for forced response levels of
alternately mistuned bladed assemblies. The solution is independent of the
number of blades and is applicable to excitation of any EO, which makes the

solution ideal for parametric studies.

1) Results presented in this chapter suggest that, as for tuned bladed discs, a simple

parameter 8, which represents the interblade phase angle, is sufficient to describe
the response characteristics of mistuned bladed discs studied in this chapter (i.e.,

alternate and single-blade mistuning).
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1i1)

iv)

V)

The critical blade on an alternately-mistuned bladed disc depends on the
characteristics of the exciting force. For a given bladed disc, the worst blade
under a certain EO excitation may not be the critical one under some other EO
excitations.  Accordingly, the critical blade cannot be determined according to its

cantilever frequency alone without a priori knowledge of the excitation forces.

Damping caused by a fatigue crack can have a marked effect on the response
levels of the cracked blade. These were always found to be lower than those of
other blades, due to the high level of damping introduced by such cracks.
However, this does not mean that the cracked blade is not the critical one since

further crack propagation is possible,

The specific mistuning patterns studied here can increase the resonance response

levels by up to 20% above that of the corresponding tuned system.



CHAPTER 4

FATIGUE LIFE PREDICTION FOR MISTUNED
ASSEMBLIES

About This Chapter

Mistuning not only increases blade response levels but also the chance of fatigue
failures and, hence, mistuning-related blade farigue is of considerable importance to
turbomachine manufacturers. This chapter deals with the development of a general
method for fatigue life prediction of engineering components subjected 1o dynamic
loads. It is based on the determination of the nominal stress at the crack position using
Srequency response functions and this in turn enables the prediction of dynamic fatigue
life under forced vibration. The implementation of the technique is discussed in the
case of a bladed disc assembly where single-blade mistuning is caused by a fatigue
crack. It is believed that the proposed method has promising implications for safer
designs and also for the prediction of inspection intervals, especially in aero engine

applications where such considerations are of paramount importance.
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i

4.1 Introduction

Many engineering components operate under dynamic loads which make fatigue
resistance a primary design criterion. The designer must ensure that a component or a
structure has an adequate fatigue life, especially when crack propagation is a distinct
possibility. In order to ensure that an undetected crack does not lead to unexpected
failure, the component must be inspected at regular intervals, the length of which is

usually based on past experience rather than predictive methods.

Research in fracture mechanics has provided a number of fatigue life prediction
methods which are based on various crack propagation criteria [Ewalds and Wanhill
(1986), Rolfe and Barson (1977), Pook (1983), Fong (1979), Stanley (1977)]. It is
possible to determine the number of stress cycles required for a crack to propagate from
an initial size 1o a certain value, provided that the nominal stress or the stress field
around the crack is known. However, although crack propagation is usually caused by
forced vibration, the stresses used in fatigue life predictions have traditionally been
determined by neglecting the inertia and damping forces [Findly and Reed (1983),
‘isher and Sherratt (1977)]. In other words, it has been inherently assumed that the
stress i independent of the frequency of excitation, its pattern following that of the
external force. The implications of this assumption are illustrated in Fig. 4.1 where an
impact generates a stress variation of similar shape. Although some publications
[Takezono (1982), Dowling (1983), Alawi (1989) , James (1971) and Sakamato et
al. (1988)] deal with the effects of excitation frequency and/or complex loads on crack
propagation, the problem of including inertia and damping forces into fatigue life
models remains largely unaddressed. The exclusion of these forces may still yield
acceptable results if the frequency of the applied force is much lower than the natural
frequencies of the structure and many high pressure vessel applications fall into this
category. However, for most rotating machinery components, particularly bladed discs,

this is not the case. For such applications, stresses should be determined dynamically
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Fig. 4.1 Implications of neglecting inertia and damping forces in stress analysis.

mcluding not only elastic but also inertia and damping forces. This chapter describes a

method which adopts this latter approach.

4.2 Basic Theory

The relationship between the stress intensity factor Ky and the crack length a is usually
expressed as a shape-dependent function which can be determined either from closed-
form solutions [Paris and Sih (1965), Newman and Raju (1981), Tada et al. (1973)

and Sih (1973)] or from the empirical relationship:

=Y Onpom 72 (4.1)

=

where

|

Y

i

= shape factor,

Gnom = nominal stress
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The crack growth rate can be expressed using semi-empirical formulae

da

N, = Co(AKp)m Paris law [Paris and Erdogan (1963)] (4.2)
Ng

da Co (AKp)m
dN¢ ~ (1-R)Kje-AK]g

Forman equation [Forman et al. (1967)] 4.3

wher

[47

AKjy = stress intensity factor range (Kimax - Kimin)
Kjc = critical stress intensity factor

R

it

stress ratio (Gmin /Cmax )

Cg, n = material constants

Using Eq. (4.3), one can determine the number of stress cycles needed for a crack to

propagate from initial length a, to final length a

i

N e " (1-R)Kjc-AK
CT G {AKp )"

Ag

da (4.4)

The evaluation of the above integral presents no difficulties if the assumption in Eq.
(4.1) is retained, i.e. the nominal stress is considered to be constant irrespective of the
frequency of excitation. However, the stress intensity factor can perhaps be more
correctly defined using the frequency response functions of the component under study,
and these in turn may be crack-dependent. In other words, one can bring two levels of
improvement to the formulation of the stress intensity factor by redefining it as (i)

frequency-dependent and (ii) frequency- and crack-dependent.
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4.3 Determination of the Dynamic Stress Intensity Factor

The response of a structure to harmonic excitation can be found from:

{ m f=lodw) | { ? 1 (4.5)

Mm Hw%mw&mma%a?m%azm@amﬁﬁ.
M? = amplitude of force vector

oW = excitation frequency

[a] = frequency response function (here receptance) matrix

Once the response vector is determined, the required stresses can be calculated from :

{0} = [A] [B] {q) (4.6)

where [B] and [A] are the transformation matrices from responses to strains and strains
to stresses respectively. The stress intensity factor range AKj can then easily be
computed from knowledge of the stress field around the fatigue crack. If the stiffness
and damping properties of a structure are likely to depend on the crack size - as is the
case in many critical applications - Egs. (4.5) and (4.6) should be solved for every

crack length while evaluating Eq. (4.4).

Although this procedure is applicable to any structure, detailed modelling of complex
geometries with fatigue cracks may require prohibitively expensive computing time at
the solution stage. Experimental determination of these stresses provides an alternative.
However, it might be extremely difficult to measure these stresses around the crack for
each loading condition and for varying crack size. One practical solution is to relate

the nominal stress at crack position 1 to the response at point j. That is to say:
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Gnom = Pij(w) 1 gj | 4.7

where Bij(w) is a frequency-dependent (but crack-independent) stress parameter which
relates response to nominal stress. The derivation of Bij(w) for a cantilever beam is
given in Appendix IV and the variations of ﬁ&v ,0(s)) and mggw with respect to

frequency are plotted in Fig. AIV.2.

Hq. (4.7) is equally applicable to both theoretical and experimental data and it presents
some additional advantages over obtaining nominal stress using Eq. (4.6). From a
computational viewpoint, displacement calculations are more efficient than stress
calculations. From an experimental viewpoint, deflection measurements at some point
j away from the crack are much easier than stress measurements near the crack tip.
However, the experimental determination of Bj(w) is probably much simpler than its
numerical counterpart. In a typical vibration measurement, the stress at a critical
location i (i.e. a possible crack location) and deflection at some other point j can easily

be recorded and @mgv can be calculated from their ratio.

Once Bjj(w) is known, Eq. (4.7) can be expressed in terms of the frequency response

functions via Eq. (4.5
w AL o
Onom = mmmﬁv H olw) ww {t} (4.8)

where vector { a(w) w,w represents the transpose of the j column of the receptance

matrix. Substituting Eq. (4.8) into Eq. (4.1) gives the required stress intensity factor:

Ki=Y Bij) Vra i a(w) T (F)1 (4.9)
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Fig. 4.2 Lumped parameter of a bladed disc with a cracked blade.

4.4 Bladed Disc Assembly with a Cracked Blade

It is now proposed to illustrate the above described technique in the case of a bladed
disc with single-blade mistuning. Such a sitnation arises when a defect initiates and
starts to propagate in one of the blades during operation. A lumped parameter model,
shown in Fig. 4.2, is used to represent the bladed disc assembly where all sectors are
identical except for that representing the blade with a fatigue crack. In addition to the
dashpots between blades and ground, which represent aerodynamic damping, hysteretic
damping of the blade material is also included in the model. The equations of motion

for the jtM blade and disc sector can be written as:

m xj + cxXj + kj (1 + M) (x5 - yj) =£5(0)

Mg yj +kj (1 +1)) (vj - %)) + kg yj + Ka 2 yj - yju1 - yj-0) = 0 (4.10)

where the external force fj(t) represents a particular engine order (EQO) excitation at the
jth blade. Assuming simple harmonic motion, the equations of motion for N blades can

be written in matrix form ag
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(@) =1z {1} = (o] {1) @.11)
where

{Q) = (X1, Y1, X2, Y2, X3, Y3,0eeeroenn XN, YT

(1 =Fo (11,00, 1“2, 07, (7N 0, (8 TN oy T

If it is assumed that the fatigue crack is in the first blade, the dynamic stiffness matrix
[Z] is given by Eq. (3.13) since the situation is precisely that derived in the previous
chapter. kj; and mj, both functions of the crack size, represent the stiffness and
structural damping of the first blade. Using Eq. (4.11), the tip response of the cracked-

blade can be written as:

Xy = (4.12)
The stress intensity factor can now be calculated from Eq. (4.9):
2N
Ky =Y Bij(w) ,,\ﬁm MMQ% wmw (4.13)
p=]

Eq. (4.3) can now be used for fatigue life prediction. Neglecting the mean stress, we
have R = Omin/Omax = Kimin/Kimax = -1 and AKj = 2Ky since each vibration cycle

encompasses compression and tension stresses of equal magnitude.

Substituting Eq. (4.13) into Hqg. (4.3) yields:
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2N
Co (2 Bij) \mal D oup ol )"
&;@ ﬁﬁm w
N, N (4.14)
2 (Kre - Y Bije) \ma |2 oup £ 1)
p=1

and re-arranging the above expression for fatigue life results in:

a

2N
. A
(Kic- Y Bij@) \ra 1 Y anp tp 1)
‘ 2 =1 ‘
Ng = Co N da (4.1%)
(2Y Bijte) \ma 1 Y oup Bl
p=1

It should be noted that oty is a function of the crack length and hence it needs to be

evaluated at each integration step.

4.5 Numerical Study

The structural parameters given in Table 3.1 of the previous chapter were also used in

the case of a 24-bladed disc.

When a small defect in any one blade starts to propagate under operation, the stiffness
and damping properties of that blade become crack-dependent, a phenomenon which
makes the assembly markedly mistuned. In this study it is proposed to use the
experimental data given in Appendix HI and plotted in Fig. 4.3 which indicate the
degree of stiffness reduction and damping increase caused by fatigue cracks in free-free
beams. (A reduction in natural frequency can be interpreted as a loss in stiffness since

fatigue cracks do not cause any mass change.)
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Fig. 4.3 Natural frequency reduction and damping increase produced by fatigue crack
for mode 1 of free-free beam.

The cracked blade's response due to unit-amplitude SEO excitation was calculated for
various crack lengths for a narrow frequency interval which included the 5 nodal
diameter mode of the tuned assembly. (It should be noted that a SEO excitation excites
only the 5 nodal diameter mode if the system is perfectly tuned.) The stress parameter
Bij(w) was determined by assuming that the design stress corresponding to this (tuned)
case was 500 MPa. All subsequent nominal stress values were computed using this
reference value and the results are plotted in Fig. 4.4. The stress levels seem to depend
on both the excitation frequency and the crack size and there are three cases to be
considered. In the first case where the (normalized) excitation frequency is much lower
than unity, crack propagation causes the nominal stress to increase relative to the initial
stress level. On the other hand, if the (normalized) excitation frequency is greater than
unity, the nominal stress tends to decrease as the crack grows. In the third case, which
talls in between the two previous cases, the nominal stress first tends to increase, then
reaches a maximum at the new natural frequency of the assembly and finally starts to
decrease again as the fatigue crack grows further. This trend can probably be best
tllustrated by Fig. 4.5 where nominal stress is plotted against normalized crack depth

for various values of the excitation frequency.
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Fig. 4.5 Effects of excitation frequency on nominal stress.

The remaining stages of fatigue life prediction are illustrated step-by-step in Figs. 4.6
to 4.8. The relationship between the stress intensity factor and the crack depth was
obtained using Eq. (4.1%) and is plotted in Fig. 4.6. The crack growth rate was
calculated using material data given in Table 4.1 and the results are displayed in Fig.
4.7 for various values of the excitation frequency. Again, the crack growth rate is seen
to be frequency-dependent. As expected, the maxima in these figures occur when the

excitation frequency coincides with a natural frequency of the mistuned system. Also,
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Table 4.1 Crack growth rate data for a structural steel [Ewalds and Wanhill (1977)].
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Fig. 4.6 Stress intensity factor versus crack size for various values of excitation
frequency.

the fatigue life was calculated for various values of excitation frequency using Hq.

(4.15) and these results are presented in Fig. 4.8,

Finally, it was decided to investigate the extent of the additional effects brought in by
using frequency- and/or crack-dependent nominal stress while predicting fatigue life.
Three further sets of calculations, corresponding to (i) a frequency- and crack-
independent (i.e. constant) nominal stress; (ii) a frequency-dependent but crack-
independent nominal stress and (iii) both frequency- and crack-dependent nominal
stress, were performed. The variation of fatigue life with excitation frequency is
plotted in Fig. 4.9 for all three cases. As expected, the excitation frequency has a
marked effect on fatigue life, the variation of which is remarkably similar to the inverse
of the frequency response function. The effects of including crack-dependency in the
nominal stress calculation is also illustrated in Fig. 4.9 and results suggest that this

effect is crack size-dependent.
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4.6 Concluding Remarks

1) A method for predicting fatigue life under forced vibration has been presented
and it has been shown that the inclusion of frequency- and/or crack-dependence
into the stress intensity factor yields significantly lower fatigue life predictions,
especially when the excitation frequency is in the vicinity of a natural frequency

of one of the modes of vibration.

ii)  The technique has been applied to a bladed disc assembly for the case of single-
blade mistuning caused by a fatigue crack. The findings suggest that the
coincidence of excitation frequency with the new natural frequencies of the
system due to fatigue crack should be avoided for prolonged fatigue life.

iii)  Although the method is illustrated using a lumped parameter model, it is equally
applicable to finite element formulations. However, the computation of the

required stress parameter may become prohibitively expensive for complex

engineering components in which case experimental data can be used.



CHAPTER 5

A PROBABILISTIC ANALYSIS OF SINGLE-
DEGREE-OF-FREEDOM SYSTEM VIBRATION

About This Chapter

In earlier chapters, analyses were based on a deterministic approach in that
predetermined configurations of mistuned bladed discs were studied 1o find the
consequences of mistuning. Although such an approach is useful in many respects, the
application of the findings from such analyses is limited because of the inherent
randomness of the blades’ structural properties due to manufacturing tolerances. In
this chaprer, as a first step towards the statistical analysis of mistuning, the effects of
random stiffness and damping variations on single-degree-of-freedom system vibration
are investigated statistically. An important feature of this study is the determination of
the cumulative probability distributions for damped natural frequency and receptance
frequency response function without having to compute their probability density
distributions since it is shown that those of stiffness and damping can be used directly.
The advantage of this approach is not only in the simplicity of the problem formulation

but also in the substantial reduction of computational requirements which is achieved.
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5.1 Introduction

The most common way of dealing with mistuning-related vibration problems is to use a
deterministic approach where answers are sought for a particular mistuning
configuration which is hoped to be representative enough of the assembly under study.
However, turbomachinery designers need to know the maximum changes in resonant
response level which are due to variations in individual blade properties and these are
somewhat random quantities with quantifiable statistical bounds. It seems, therefore
that it is more appropriate, albeit much more difficult and computationally expensive, to
address the problem wusing a statistical approach. Furthermore, although the
determination of accurate damping values is probably the most important requirement
for reliable forced response calculations, damping is estimated with much lower
accuracy when compared with other modal data, and is a parameter which needs to be
considered as one of the random structural parameters. Examples of statistical analyses
of blade and bladed disc vibrations already exist in the published literature. Griffin and
Hoosac (1984) studied the effect of mistuning on the response levels of large bladed
disc assemblies. Basu and Griffin (1986) extended this work to include the effects of
changing various system parameters such as: gas density, number of blades on the disc,
disc stiffness and engine order of excitation. A probabilistic treatment of natural
frequency and response level variations of individual blades represented as simple one
degree-of-freedom cantilever beams was provided by Singh (1988). Later, Singh and
Ewins (1988) applied the same technique to a spring-mass-dashpot system simulating a
bladed disc. However, both studies focussed on stiffness variations only and hence

damping changes were not included in the analysis as random variable.

The purpose of the present study is twofold. First, it is proposed to investigate cases
where both stiffness and damping properties are random variables. In this respect, the
present work is an extension of Singh's work (1988) in the sense that a single-degree-

of-freedom system is also used here.  Secondly, an alternative mathematical
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formulation is presented: the cumulative probability distributions of damped natural
frequency and receptance frequency response function are obtained directly from the
probability density functions of stiffness and damping distributions without having to
determine the probability density distributions of these two quantities first. One
obvious advantage of this approach lies in the substantal reduction of computing

requirements.

5.2 Theory

A review of probability theory is beyond the scope of this thesis and the interested
reader should consult Parzen (1960) and Lin (1967) for details of these topics. The
main objective here is the determination of the statistical characteristics of a function of
random variables. Indeed, the statistical behaviour of any such function can be
calculated provided that that of the independent variables is known and this is precisely
the situation addressed here: the equation of motion for a single-degree-of-freedom
system provides the target functional relationship and the independent variables are the

structural parameters with known statistical properties.

For the sake of generality, let xy,...,x,, be the n jointly distributed independent random
variables with joint probability density functions (pdf) py, x, (X15--Xp) and let y be the

3o

dependent variable.
y = 8(Xy, ony Xp) 5.1
It is now possible to find the caumulative density function (cdf) (also called cumulative

probability or probability distribution) and the probability density function (pdf) of v,

denoted by Py(y) and py(y) respectively.
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¢

Harmonic Forcing

m

Fig. 5.1 Single degree-of-freedom model.

,mﬁﬁwﬂvn,ﬁwﬁw@mwwwﬁ ,m.a@, ‘‘‘‘‘‘ .M Py, “:%mﬁf e Xpdx . dxy {(5.2)
{1 xn) g e x)SY '
Py(y) = mﬂmﬁ (5.3)
Once Py (y") is obtained, the probability of y to be within two prescribed limits is
Prob(y; £y <y5) = Py(y) - Py(y1) (5.4)

5.3 Application to a Single-Degree-of-Freedom System

Referring to the spring-mass-dashpot model of Fig. 5.1, the damped natural frequency

and the magnitude of the receptance frequency response function are given by

0y = g\ 1-{% = Vk/m - c2/4m?2 (5.5)

1
o =
\k-mw?)? + 02
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Receptance

Fig. 5.2 Receptance as a function of stiffness.

where all symbols have their customary meanings. In Eqs. (5.5) and (5.6) the damped
natural frequency, @y, and receptance, o, are independent variables where wy is a
function of three variables (stiffness, mass and damping) while a is a function of four
variables, the additional one being the excitation frequency. Since the mass properties
and the excitation frequency can be determined with good accuracy, it can be assumed
that random variations exist in stiffness and damping properties only. However, this
assumption brings no loss of generality since Eq. (5.2) is valid for any number of
random variables. Equation (5.6) is plotted in Fig. 5.2 as a function of stiffness, and

again in Fig. 5.3 as a function of both stiffness and damping.

In the following sections, an explicit formulation of the cumulative density functions of
wy and o will be derived for random variations of (i) stiffness only, (ii) damping only
and (iii) both stiffness and damping. Once the cumulative density functions are known,
the corresponding probability density distributions can easily be obtained from Eq.

(5.3).
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Receptarce o

Fig. 5.3 Receptance as a function of stiffness and damping.

5.3.1 Cumulative Probability of Damped Natural Frequency

For case (1), the cumulative probability of the damped natural frequency being less than

certain value, say @, can be found using Eq. (5.2) as
Prob(wg < w) = prlk)dk (5.7)
ik o) S w')

where pg(k) is the (known) probability density function of k. Let us consider the

integration domain in Eq. (5.7).

k/m-cZ/4m?2 <@ or  k<m(w?+ c2/4m?2) (5.8)

wgk)£w or
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now becomes

wﬁ%ww + nm\ﬂ%wv
Prob(wg£w') = prkydk (5.9

O

Applying the same procedure to case (ii), we find:

Prob(owg € o) = pelc)de {(5.10)

2m(k/m-w% )12

Finally, for case (iii) where both stiffness and damping are random variables:

Ui
.
s
st

Prob(wg € o) = @m g_w Py kodk de (
(eorogko<w)

where pg (k,c) is the joint probability density function of stiffness and damping. As

before, inserting the appropriate expressions for the integration limits yields

oo m(o? + c2/4m?)

¥ 1
[
[
e

Prob(wg<w' )= |dc P clk,c)dk (5.



[
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5.3.2 Cumulative Probability of Receptance

For case (i), the cumulative probability of receptance being less than o can be written

a8

Problao<@) = prlk)dk {(5.13)
kol so

where the integration domain can be expressed as

{(k-me?)? + 02c?2}- 12 <o (5.14)

Solving for k gives

k £k; = me? -\ /a2 - 02 (5.15.2)
k > ky = mw? +\/ /o2 - 0?c? (5.15.b)

Using these two expressions, Eq. (5.13) can be rewritten as
k, oo

Prob(c € o) = Prob(k € k) + Prob(k > kp)= | pc(K)dk + | pe(k)dk (5.16)

where ky and ko are defined in Eq. (5.15)

For case (ii), the cumulative density function can be derived in a similar fashion as

feiag

Prob(a <o) = Prob(c>¢y) = pelc)de (5.17)

Yo-(Yo? -(k-mo?)?)12
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And finally, for case (iii)

o f e
Problo £ o) = ) de m ,ﬁxwﬂmﬁi% + | pg clk,c)dk W (5.18)
0 0 K,

4

It should be noted that the limits of the inner integrals are now functions of the damping

parameter .

5.4 Results and Discussion

So far, no assumptions have been made about stiffness and damping distributions. In
fact, any pdf representing the stiffness and the damping populations can be used in
conjunction with the method described here. However, for the purpose of simplicity,
and because of the lack of evidence to the contrary, the stiffness and damping
populations were assumed to be normal. Also, it was decided to make these two
parameters independent of each other in which case pk clk,c)=pg k) x pc(c) since the

individual pdfs are not jointly-distributed.

From the outset, it 1s worth mentioning that the probability distribution of any non-
linear function of normally-distributed random variables is not normal, the deviation
from the normal distribution depending on the degree of the non-linearity of the
function. In our particular case, the damped natural frequency and the receptance are
non-linear functions of the structural parameters and hence their probability

distributions will not be normal.

A computer program was written to evaluate the above cdfs (Eqs. (5.9), (5.10), (5.12),

(5.16), (5.17), (56.18)) in order to illustrate how random wvarlations in structural
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parameters affect the damped natural frequency and receptance frequency response
function. Although a numerical difficulty was encountered while evaluating Eqgs. (5.12)
and (5.18), for which the inner integral limits are a function of the outer variable, a

solution was found eventually.

Unless otherwise stated, the following parameters were used as mean structural
parameters in all numerical examples given here while determining the cdfs and pdfs:
m=1.0 kg, k=1000 N/m and {=0.03. The receptance frequency response function was

~alculated at the nominal system natural frequency.

5.4.1 Effects on Damped Natural Frequency

The cumulative probability distribution of the damped natural frequency was calculated
for various stiffness populations characterized by their coefficient of dispersion, CD,
(which is defined as the ratio of standard deviation to mean) and the results are plotted
in Fig. 5.4.a where the damped natural frequency is scaled such that it is unity at mean
stiffness. The corresponding probability density curves were computed using Eq. (5.3)
and are displayed in Fig. 5.4.b. A close inspection of the curves in Fig. 5.4.b shows
that they are not symmetrical and hence are not normal. However, the deviation from a
normal distribution is not very significant. Further calculations using a range of
damping values showed that the results in Fig. (5.4) were quite general when stiffness

was the only random parameter.

The same process was applied to the case of damping being the only random parameter
and cumulative probability distributions are shown in Fig. (5.5). The main observation

is that damping changes have a very small effect on damped natural frequencies.
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The next step was to investigate the effects of simultaneous variations of stiffness and
damping properties on the damped natural frequency and these results are given in Fig.
(5.6). Once again, damping changes have very little effect, an expected result in the

light of Figs. (5.4) and (5.5).

5.4.2 Effects on Receptance

Since the receptance frequency response function is also a function of the exciting
frequency, My, its cdf and pdf will vary with the exciting frequency. This is illustrated
in Fig. 5.7 where probability density functions corresponding to various values of @,
are plotted when stiffness is the only random parameter. It should be noted that the
receptance axis in Fig. 5.7 is normalized such that unity represents nominal receptance
value at specified exciting frequency. Also, the pdf of the receptance is very sensitive
to the position of ., and the sharp increase visible in Fig. 5.7 is due to a nearby
resonance. Although it is relatively straightforward to obtain the cdf and pdf of the
response at any exciting frequency, changes near resonance are of greatest interest and

attention will now be focussed on this particular situation.
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The cdf and the pdf of the receptance are plotted in Figs. (5.8.2) and (5.8.b) respectively
for the case where the random parameter is stiffness only, the receptance axis being
normalized with respect to the value obtained for nominal stiffness. In this case,
stiffness variations will cause all normalized receptances to be less than unity since the
maximum was only be reached at the nominal value of stiffness when the exciting
frequency coincides with the system natural frequency. As can be seen from Fig
(5.8.b), response levels spread over a wide range, a concentration of response occurring
far away from design value, depending on the standard deviation of stiffness. Further
calculations, not reported here, show that the general appearance of the pdf curves does
not depend on damping, increasing values of which have the effect of slightly shifting

the curves upwards.

The cdf and the pdf of the receptance are plotted in Figs. (5.9.a) and (5.9.b) for the case
where the random parameter is damping only, the receptance axis being normalized this
time with respect to the value obtained for nominal damping. The immediate feature is
the very wide scatter of the response for moderate damping variations. This finding is in
complete agreement with Basu and Griffin (1986) who showed that the mistuning

enhancement ratio - ratio of maximum blade amplitude of mistuned assemblies to that
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(Only k is random variable.)

of the tuned system - is very sensitive to small variations in aerodynamic damping. Fig.
5.9.b also reveals that the amount of response increase due to negative changes of
damping exceeds by far that of response decrease for equivalent positive changes of
damping

Finally, the cdf and the pdf of the receptance are plotted in Figs. (5.10.a) and (5.10.b)

for the case where both stiffness and damping are the random parameters. The

receptance pdfs of Fig. 5.10.b have a rather unusual appearance and they bear no
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5.5 Concluding Remarks

[
o

A probabilistic approach to single-degree-of-freedom system forced vibration has
been discussed and a method to compute the cumulative probability distribution
for damped natural frequencies and response levels for both stiffness and damping

variations has been presented.



A PROBABILISTIC ANALYSIS OF SDOF SYSTEM VIBRATION 91

ii)

111}

v)

Vi)

Although the formulation is valid for any probability density function for the
independent variables, a normal distribution has been assumed for both stiffness
and damping changes and it is found that the corresponding natural frequency and

receptance probability distributions are not normal.

The factor controlling the amount of scatter in the response levels is the standard
deviation and this has practical implications for turbomachinery applications
where the individual blade cantilever frequencies, hence stiffness properties, are
known. However, there is no obvious justification to assume a normal distribution

for damping changes, a topic which merits thorough experimental investigation.

Damping variations have very little effect on the damped natural frequency which

is predominantly determined by stiffness and mass properties.

Small variations in damping change resonant response levels considerably,
negative changes causing large response increases while equivalent positive

changes result in only modest response reductions.

The general appearance of probability density distributions of the response
depend on exciting frequency and the amount of scatter in the structural

parameters.



CHAPTER 6

STATISTICAL ANALYSIS OF RANDOM
MISTUNING: A DIRECT APPROACH

About This Chapter

This chapter deals with the statistical analysis of the forced response of mistuned
bladed discs. Statistical sampling theory is used to calculate the probability and the
cumulative density functions of the mistuned blades’ resonant response amplitudes,
blade-to-blade variations in cantilever frequency being considered to be random with a
Gaussian (normal) distribution. Results presented in this chapter make it possible to
reconcile conflicting conclusions which have been reached by many researchers on both
qualitative and quantitative matters related to the consequences of mistuning, most
notably the identification of critical blades and the increase in forced response due to

mistuning.
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resemblance to the input stiffness and damping pdfs. Their shapes are dominated by the

amount of scatter in the input parameters and may well exhibit more than one peak.
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6.1 Introduction

The traditional way of studying the effects of mistuning is the deterministic approach in
which a predetermined configuration of mistuned blades is studied directly. As
reviewed in chapter 1, the majority of the research made on mistuning effects, including
that described in chapters 3 and 4, falls into this category. Although studies based on
this approach can reveal highly complex dynamic behaviour of mistuned bladed
systems, results from such studies find a very limited application since building a
mistuned bladed disc to specification is almost certainly more difficult than building a
perfectly tuned disc. A preferred alternative is to seek statistical answers to mistuning-
related questions since all steps from manufacturing blades to assembling a bladed disc

are themselves probabilistic processes.

This chapter is concerned with a statistical analysis of the dynamic behaviour of

mistuned bladed discs and the main objectives are to find;

1) the probability and the cumulative density functions of the blade response
amplitudes so that the maximum response and the critical blade can be determined

on a statistical basis: and

i1)  the possibility of predicting the vibration characteristics of bladed discs with large

numbers of blades by studying systems with fewer blades.

6.2 Model Description

The lumped parameter model of chapter 3 will be used in the present statistical
investigation of the mistuning problem. The cantilever frequency of each blade is now

considered as a random parameter, other parameters used in the simulation being
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€

assumed to be constant. Referring to Fig. 3.5, the equations of motion for the it blade
J

and disc sector can be writien as:

o > fj(t) :
Xj + Nwﬁw Xj + Qw {1+ In)(x; - yj) = %w 6.h
Mg .. 2o kg K¢ ‘
m%§+$Aﬁgix;@+%5+ﬁéﬁfﬁia§1uﬁ (6.2)

where Gj (=\[kj/m) is the random variable representing the cantilever frequency of the
jth blade and the external force fj(t) represents a particular engine order (EO) excitation.
The equations of motion in recurrence form can easily be converted into a linear matrix

equation for the steady-state solution for blade and disc sector responses as:

b =121 (F) (6.3)

It should be noted that as a result of the randomness in blade frequencies, the dynamic
e . s ) A
stiffness matrix, [Z], and consequently the steady-state response vector {{}, are also

random quantities.

Except where stated otherwise, the structural parameters shown in Table 6.1 were used
in this investigation. Practical experience indicates that a coefficient of dispersion (CD)
of 3% (CD is defined as the ratio of standard deviation to the mean value) is
representative of blade mistuning in modern gas turbines. Furthermore, experimental
data on the first bending mode natural frequency of blades in typical aeroengines

suggest that the blade population is approximately Gaussian and this assumption is

Table 6.1 Structural parameters.

- KM,
S oy VEMg

27 mw
CDg =3.0 % 1 = 0.2% {=1.0%
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made throughout this study. Also, it is believed that damping values shown in Table

[,

6.1 are typical of such assemblies.

6.3 Theoretical Background

A method to determine the statistical properties of a dependent variable which is a
function of several random variables was outlined in the previous chapter in the case of
a SDOF system with random stiffness and damping parameters. The same method can
be extended and applied to a MDOF system. Supposing that the random function is
given by Eq. (6.3), where the response amplitudes m«mw are dependent and the blade
natural frequencies are independent random variables, it is possible to find the
cumulative distribution function (cdf) and the probability density function (pdf) of any

A
element of the response vector, g, as:

Pg,(@)=Prob(§;<q)= ?ﬂ ,R Er@?@z@@Emzw dg;dgy....dgn(6.4)
M%Mfimz”v ﬁw m m.w

.. dPa.@)
pgy;(d) = m
where PG1.Go.. @Jﬁmm €9,--o8py) 18 the joint probability density function of the blade
first cantilever frequencies and mw is any arbitrary value. If we assume that blade
frequencies are not jointly distributed (this means that if a blade is drawn randomly
from a given population, this does not affect the outcome of the next draw), Eq. (6.4)

can be simplified to:

~ A £

{(g1,-gN)Ai £q) o,

. N
%@%mmv = @@vmmwm@w = % M w Mm@@%mww dg,dg,...dgy (6.6)
_W ..Hn N
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Although the formulation for the pdf and cdf of blade response levels is simple, the
evaluation of the multi-dimensional integral above is very difficult since (i) the
dimension of the integral is equal to the number of blades, and this is usually very large
and (i) the integral domain is very complicated. Therefore, an appropriate statistical
theory had to be used to evaluate the multi-dimensional integral in Eq. (6.6). Statistical
sampling theory [Gibra (1973), Davies (1972), Ealpole and Myers (1985)] was used
for this particular problem since the analytical techniques available are either applicable
to specific cases only or are based on unrealistic assumptions. Consequently, the work
presented in this chapter falls into the numerical studies category of mistuning

investigations.

" . . i A ~ A AN N

When sampling theory is used to predict the statistics of a random variable, say @, it

e y i - ‘ . A A A Ay . N

requires a large sample drawn from the population as q'y, g5, Q'3,....q Ng Where N
. " 4 Ay

represents the sample size. If sampled quantities are rearranged in such a way that q'(y)
Ay Y] By ) N R . N

Sqp £d@3) S5 Ny, sampling theory states that the cumulative density function

iy “ . A
(cdf) of the random variable g is:

Pg,@ ) = Prob@; <) = ;?z% 6.7)

and the sample mean and the variance are, respectively:

(6.8)

(6.9)
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When the cdf is calculated using sampling theory, its accuracy is not good enough to
predict the pdf using Eq. (6.5) because of the derivative involved. Instead, the sample

range 1s divided into Ny subintervals as:

A% g
D max” 9 mi ~
mwmw” _ hﬁ»w/ﬁ min (6.10)

and the value of the pdf is estimated at each subinterval mid-point:

1 1y )

DY i ommnnvimeon 1
PG;) ~x N1 6.11)

where ny is the number of data points which lie within the range Am - &m«\wwmw +AG2).

It should be noted that (Ng-1) or (Ng+1) were used in the denominators of Egs. (6.7,
6.9, 6.11) instead of the more usual Ng. This is due to the finite size of the sample set
and we shall include a comment made by Press et al. (1986)"...if that difference ever
matters to you, then you are probably up to no good anyway - e.g., trying to

substantiate a questionable hypothesis with marginal data...”.

6.4 Sample Size Determination

One of the critical parameters in any numerical simulation of a statistical process is the

sample size Ny on which confidence limits and the accuracy of the statistical findings

strongly depend. As N, gets larger, the accuracy of the estimated parameters improves

s Ny approaches infinity, the results become exact. In practice,

et

and, in the Himit ¢

jav]

however, as time and cost factors have to be weighed carefully, one has to choose a

reasonable sample size while trying to preserve accuracy.
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Finding a compromise between accuracy and a manageable sample size is not always a
straightforward task. Although there are mathematical and statistical guidelines, such
as the central limit theorem and several theorems related to confidence limits, which
can be used to estimate the number of samples required to find the mean of an unknown
population for a given confidence interval, there is no simple analytical way of
predicting the accuracy of the estimated probability density function (pdf). One
possibility is to predict the pdf of a known population for various values of Ng and Ny

and then to compare the predicted pdfs with the exact values. From such comparisons,

it is possible to infer the required Ng and Ny for determining the unknown population.

Such tests were carried out for a normal distribution and the exact and predicted normal
distributions are overlaid for various combinations of Ny and Ny in Fig. 6.1. (It is
desirable to have Ny as small as possible from the computational cost point of view
while a large Ny is required in order to describe the pdf curve at a sufficient number of
points. However, a large Ny also requires a large Ny for the same level of accuracy so it
is necessary to choose an optimum combination of these two parameters.) As can be
seen from Fig. 6.1, exact and predicted values for a normal distribution at 30 points
agree well when the sample size is 20,000. It was concluded that Ny =25,000 and Ny
=20 would provide an acceptable level of accuracy in determining the unknown
distribution of the response levels provided that the distribution curve does not exhibit

many maxima.

6.5 Statistical Properties of the Forced Response (36-Bladed Disc)

All results presented in this section are for a 36-bladed disc subjected to various engine
order excitations. The effects of varying the number of blades on the forced vibration

response of mistuned blades is the subject of a later section.
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Fig. 6.2 Natural frequencies of a 36-bladed disc.

The natural frequencies of a tuned 36-bladed disc were calculated using the structural
parameters of Table 6.1 and they are shown in Fig. 6.2. It is well known that when the
blades are mistuned, the smooth pattern of natural frequency against nodal diameter
curves is disturbed and many of the double modes split [Ewins (1973)]. Similarly,
when minor differences exist between blades on an assembly, mistuned blades do not
experience the same response amplitudes as their tuned counterparts. A typical
example 1s presented in Fig. 6.3.a where the response amplitudes of the first 12 blades
of a 36-bladed disc under 6 engine order (EQO) excitation are plotted. (Responses are
normalized to the tuned resonant response and the excitation frequency is normalized to
the 6 nodal diameter natural frequency of the tuned assembly.) The corresponding
random scatter in the blade first cantilever frequencies, drawn from normal distribution,

is shown in Fig. 6.3.b.

As can be seen from Fig. 6.3.a the maximum response levels for individual blades - also
referred to as resonant responses - occur at different excitation frequencies and attain

different maximum (peak) levels, a characteristic feature of mistuned bladed discs.
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"ig. 6.3 A typical response levels of mistuned blades and corresponding blade

cantilever frequency scatter.

Therefore, finding the resonant responses of all the blades requires the computation of
the individual blade responses over a frequency range encompassing all resonances.
The determination of this frequency range is not straightforward since it depends both
on the amount of mistuning and, as will be shown, on the EQ of excitation. After
considering various amounts of mistuning and EO excitations, that range was found by
trial-and-error.  Blade responses over this frequency range were calculated and the
maximum amplitude for each blade was recorded together with the corresponding
excitation frequency. As mentioned earlier, approximately 25,000 data points were
necessary to estimate the probability density function of an unknown population with

reasonable accuracy and this in turn necessitated the determination of blade responses
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for 700 36-bladed discs. The calculations, including those for other mistuned bladed
discs with different numbers of blades presented in this chapter, were performed on

IBM RS/6000 530 workstation and took several days to complete.

6.5.1 Relationship Between Blade Frequency and Resonant Response

In order to find a correlation between the blade responses and their cantilever
frequencies, peak response amplitudes, normalized to the tuned resonant response, were
plotted against blade frequency normalized to the mean blade first bending frequency
for various EO excitations (Figs. 6.4.a to 6.4.f.) A simple inspection of these figures
revealed that the relationship between resonant response and blade bending frequency
changed with EO excitation and it was thought that the classification of the resonant
responses with respect to EO excitation could offer some insight into the effects of
mistuning. The resonant response increase due to random mistuning is very small when
the excitation EO is very low (r= 1,2). As the EO increases, the worsening effect of
mistuning also increases and reaches a maximum at which the normalized resonant
response exceeds 2.0 and then tends to decrease again (r= 3 to 9 for this case). For 10
to 18 EO excitations, the relationship between resonant response and blade frequency
does not show any significant variations. In the general case, the identification of the

EQ excitation causing the worst mistuning effect is not straightforward. However,

preliminary calculations, not reported here, showed that the coupling ratio,
was an important parameter, an increase in which caused the worst effect of mistuning

1o be reached under lower EO excitations.

The results presented in Fig. 6.4 suggest that blades with the highest amplitudes under
rth BO excitation are those with individual cantilever frequencies near the rth nodal

diameter (tfND) natural frequency of the tuned bladed assembly, indicated by an arrow

on each figure (Note that IND and 3ND tuned natural frequencies are not shown in

Figs. 6.4.a and 6.4.b since they are below the minimum individual blade frequency).

=
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This is in agreement with the conclusion drawn by Griffin and Hoosac (24) who stated
that "..high responding blades are neither the highest nor lowest frequency blades but
are those whose blade-alone frequencies are near the tuned system frequency..’. One
should also add that the high-response blades can also be those with the lowest
cantilever frequencies (Fig. 6.4.b) when the tuned assembly tND frequency is lower

than the lowest blade cantilever frequency.

6.5.2 Relationship Between Excitation Frequency and Resonant Response

Another important item of information needed in engine testing is the engine speed (or
frequencies) at which the critical blade(s) will vibrate most strongly. Availability of
such information can obviate the need to monitor instrumented blades for an
unnecessarily wide range of engine speed. The relationship between the maximum
amplitude of each blade and the corresponding excitation frequency is plotted in Figs.
6.5.a 10 6.5.f. The excitation frequency axis is normalized to the TfND natural frequency
of the tuned bladed disc: if the assemblies studied were all tuned, all the points would
coincide at (1.0,1.0). In fact , under very low EO excitations, (Fig. 6.5.a), all the
points are concentrated near (1.0,1.0), showing quasi-tuned assembly characteristics.
Results presented in Figs. 6.5.b to 6.5.d show that increasing the EO causes the
maximum amplitudes to occur over increasingly wider frequency ranges. The highest
responding blades participate in modes with natural frequencies near but slightly lower
than the tuned system's tTND mode. However, this trend is not clear in Figs. 6.5.e and
6.5.1, making it very difficult to decide at which excitation frequency the engine should
be tested under higher EO excitations. This question is further addressed in the next

section.
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6.5.3 Critical Blade and Critical Excitation Frequency

Results presented in Figs. 6.4 and 6.5 help us to visualize the statistical characteristics
of mistuned bladed discs when the mistuning pattern is random. In addition, one can
also detect the blades with the highest responses together with the corresponding
excitation frequencies. However, this information is not very useful for practical
engine tests unless hundreds of bladed discs are to be tested: an extremely costly and

hence very unlikely prospect.

It was thought that more could be learned about the critical blades if the properties of
the 700 maximum-response blades (i.e. one per assembly) were analysed carefully.
Several important characteristics of these blades are shown in Fig. 6.6 which is a plot of
individual blade frequency versus resonant response for each of the 700 critical blades
for various EO excitations. The first and very obvious result is that mistuning always
increases the maximum resonant response levels from those experienced by a tuned
system. The second feature is that every point in Fig. 6.6 represents a critical blade and
the distribution of these points with respect to the blade frequency axis shows that there
is no general rule for identifying the critical blade(s) according to their cantilever
frequencies alone: almost any blade can become the critical blade, depending on the EO
of the excitation and the specific distribution of blades around the disc. This explains
why different blades have been identified as crirical by different authors [El-Bayoumy
and Srinivasan (1975), Ewins and Han (1984) Afolabi (1985a)]. The present results
show that seemingly conflicting conclusions drawn by other researchers concerning the
identification of the critical blade, and the degree of worsening caused by mistuning,
are in fact conclusions derived from studying specific mistuning patterns under specific
EO excitations. The third and final observation is that there is a group of blades
(according to their cantilever frequencies) which are more prone to bear the maximum
response and this range depends on the EO of the excitation. For instance, it is

appropriate to monitor blades whose cantilever frequencies are, in round numbers,
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corresponding to 700 bladed discs simulated. (N=36)

between 90% to 98% of that of the tuned blade when r=3. However, there is no point
in instrumenting the same blades if the engine is to be tested under 18 EO excitation.
This time, blades with frequencies between 97% to 105% of that of tuned blades must

be instrumented.

A better estimate of the critical excitation frequency can be derived from Fig. 6.7 which
shows the correlation between the maximum response amplitude of each critical blade
and the excitation frequency at which that maximum occurs for different EO excitation,
the excitation frequency being normalized to the rND natural frequency of the tuned
system. Another observation which can be made from Fig. 6.7 is that, even for a

constant EQ excitation, the excitation frequency at which the critical blade reaches
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corresponding to 700 bladed discs simulated.

r 700 critical blades
N=36)

resonance changes from disc to disc

range which

wider as the EO increases

. However, it is possible to determine the frequency

must be considered for maximum response. This frequency range gets

and its centre frequency is slightly lower than the TfND

natural frequency of the tuned system.

Many of the characteristics of the critical blade and the critical excitation frequency can

£

be

conveniently summarized by Fig. 6.8 where an excellent correlation between

excitation frequency and critical blade can be observed for various EO excitations.
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6.5.4 Probability and Cumulative Density Functions of Resonant Response

Probability and cumulative density functions (pdf and cdf respectively) are very
important parameters in describing the statistical properties of a population. For our
particular problem, the cdf of resonant responses of mistuned blades can readily be used
to find the probability of the resonant response exceeding a certain value. The pdf, on
the other hand, is very useful for presenting the statistical distribution of resonant

TeSponses.

25,000 resonant response data points under various EO excitation conditions were used
to calculate the probability and cumulative density functions (pdf, c¢df) of the resonant

response and the results are presented in Figs. 6.9.a to 6.9.d. An inspection of the pdfs
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and cdfs in Figs. 6.9.a to 6.9.d reveals that there is no unique distribution which can
describe the statistical characteristics of resonant responses under every EO excitation
when the blades are randomly mistuned. Each pdf or cdf curve shown is different from
the others, a result which implies that any assumption about the pdf of resonant
responses without taking the excitation EO into consideration cannot represent the real

distribution for the practical engineering cases.

Another important point is that none of the calculated distributions is Gaussian. (This
can be seen from the general shape of the pdf, or from the cdf which would be a straight
line if the distribution was normal.)) The true and the corresponding normal
distributions which have the same mean and standard deviation are plotted together in
Figs. 6.10.a and 6.10.b for two different EO excitations. This finding has important
implications for those approaches which are based on the assumption that the response
distribution is normal [Sinha (1986), Sinha and Chen (1989)]. It is important to
emphasize that the mean and the standard deviation used in plotting the normal
distribution were the zrue values found from our numerical simulation. If they had been
calculated by presuming that the distribution was normal, the discrepancy would have
been more pronounced.

The pdf of the resonant response under 6EO excitation and the pdf of blade frequency
are presented in Fig. 6.11. These clearly show that small variations in blade frequencies

cause big scatter in resonant response levels.
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6.6 Effects of Blade Number and Engine Order of Excitation

Previous studies have traditionally been focussed on bladed discs with small numbers of
blades without any justification that results found from such studies would reflect the
behaviour of discs with larger blade numbers. Some researchers concluded that the
effect of mistuning depended on the number of blades on the disc. "...discs with a large
number of blades can respond in quite a different way than those with only a few blades
and that their behaviour cannot be simply inferred by studying the smaller systems...."
Basu and Griffin [1986]. However, our findings so far suggest that the underlying
parameter for the forced vibration characteristics of bladed discs is the interblade phase
angle of the forcing (8, = 2nr/N) rather than the engine order of excitation (r) or the
number of blades (N) individually. It was shown in chapter 2 that 8y was sufficient to
describe the stare of the response levels for tuned bladed discs. Results presented in
chapter 3 confirmed that this approach was also valid for alternate and single-blade
mistuning cases. Therefore, it is now proposed to test the applicability of this finding

for the general case of randomly mistuned assemblies.

First, it was decided to repeat the analysis made earlier for the 36-bladed disc for an
equivalent (constant interblade phase angle)12-bladed disc in order to find if it was
possible to obtain similar results by studying a smaller system. As before, resonant
responses were calculated for 25000 blades and hence 2100 12-bladed discs were
considered. Results are presented in Figs. 6.12.a to 6.12.d for various EO excitations
(r=1,2,3 and 6). A close inspection of these figures reveals that the observed trends are
very similar to those presented in Figs. 6.4.b, 6.4.c, 6.4.d and 6.4.f respectively. This
is perhaps not surprising since the same EO excitation to blade number ratio was
employed in both sets of figures. This ratio is simply the interblade phase angle 6,
multiplied by a constant. If we now turn our attention to the correlation between
resonant response levels and excitation frequency, we also find very similar trends for

the 36- and 12-bladed discs: results in Fig. 6.5 and 6.13 are once again unified by a
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common interblade phase angle. Discs with large numbers of blades seem to respond in

a way very similar to those with fewer blades for the same interblade phase angle.

Further cases exemplifying the relationship between resonant response and blade
frequency are presented in Figs 6.14.a to 6.14.d for discs with different numbers of
blades (N=18,30,48,72) but all where 6; = 60°. The corresponding probability density
functions of the resonant responses are shown in Fig. 6.15 for each case. It is clear that
very similar results are obtained for discs with different numbers of blades when O, is
kept constant. It is pleasing to note that all the results showing the correlation between
resonant response and blade frequency when 6; = 60° are very similar to Fig. 3 of
Griffin and Hoosac (1984) for 72-bladed disc under 5EO (this corresponds to 8, =
259). This difference is believed to be due to different blade to disc coupling ratio used

in the modelling of the bladed disc.

It is worth noting that Basu and Griffin (1986) reached the contradictory conclusion
(t.e. the behaviour of discs with a large numbers of blades cannot be inferred by
studying the smaller systems) by studying the effect of the number of blades only ( and
hence keeping the EO excitation constant). However, if their results are inspected in
terms of the interblade phase angle, the discrepancies disappear: it is seen that they are
in complete agreement with the findings of the present work. Their results indicate that
increasing the number of blades (N) has a similar effect to decreasing the EO of
excitation (r). From the definition of the interblade phase angle (8, =2nt/N), it is
immediately seen that both changes have the same effect of decreasing the interblade

phase angle.
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6.7 Effects of Alternate Mistuning

As mentioned in chapter 3, a significant degree of alternate mistuning may already exist
in bladed disc assemblies, probably due to dynamic balancing considerations. This type
of mistuning was also found to be beneficial from an aeroelastic stability point of view
[Imregun (1984)]. Therefore, a statistical investigation of the alternate mistuning

pattern was considered appropriate.

Unlike the alternate mistuning simulation made by Griffin and Hoosac (1984), where
low- and high-frequency blades were drawn from two distinct populations with
different mean frequencies, the Gaussian-distributed blade population was assumed to
be divided into two groups. Alternate mistuning was simulated by selecting low- and
high-frequency blades alternately from the same blade population. A blade was
considered to be low-frequency if its cantilever frequency was less than the mean value
and vice-versa. Note that this does not require two separate stores for blades. The

effects of such mistuning are summarised in Figs. 6.16.a to 6.16.c where the resonant
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response levels versus blade natural frequency and the corresponding probability and

cumulative density functions are given for the case of 8;=60°. A comparison of Figs.

6.16.a and 6.14 reveals that there is a slight decrease in the resonant response.

6.8 Concluding Remarks

i1)

i)

It has been found that the vibration response characteristics of a randomly
mistuned bladed disc change with the engine order of excitation (r). When r is
small, the worsening effect of mistuning seems to be small. At some intermediate
values of r the worsening effect reaches a maximum and tends to decrease again
as r increases further. The critical value of r seems to be dependent on blade to

disc coupling and this observation warrants further investigation.

The blade experiencing the highest response among N blades on a disc was
determined for every individual assembly. An investigation of the properties of
these critical blades showed that there were no general rules for identifying them
according to blade cantilever frequency alone: the critical blade can be any blade
depending on the EO of excitation. This explains why many apparently-
conflicting conclusions were reached in previous studies In the light of the

tindings presented in this chapter they can be reconciled.

A very good linear correlation has been found between the blades experiencing
the maximum amplitude on every single disc and the excitation frequencies at
which these blades will vibrate strongly. Such information can be used in
deciding which blades to instrument and at which excitation frequency to test
them. Results suggest that there is a range of critical blades classified according
to their cantilever frequencies and as many blades as possible within this range
should be instrumented in a practical engine test. This range depends on the EO

of excitation and it also includes those blades with cantilever frequencies equal to
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iv)

V)

Vi)

vii)

the TND tuned system natural frequency. However, this tND frequency is not

necessarily the mean of that blade frequency range requiring instrumentation.

The resonant response increase over that of tuned system is the most commonly
used parameter to measure the worsening effect of mistuning and conflicting
conclusions on this value have been reached by several authors. These
differences were usually attributed to the different models used in the vartous
studies. However, for the same amount of mistuning and using the same model, it
has been demonstrated that the magnitude of the worsening effect can vary from
an increase of less than 5% to over 110% since this effect depends very strongly

on the EQ of the excitation.

The probability and the cumulative density functions of the resonant response
show that the response distribution is not normal and that the overall shape of the

distribution changes with the EO of the excitation.

As for the tuned bladed disc, and for the alternate and single blade mistuning
cases, a simple parameter, interblade phase angle, is of paramount importance to
study the response characteristics of randomly mistuned bladed discs. The
dynamic behaviour of discs with a large number of blades can be predicted by
studying smaller systems with fewer blades and this offers huge savings in

computation time.

Alternate mistuning was simulated by selecting low- and high-frequency blades
alternately from the same blade population. Results suggest that such mistuning
nay decrease resonant response slightly when compared with that of random

mistuning.



CHAPTER 7

STATISTICAL ANALYSIS OF RANDOM
MISTUNING: AN INVERSE APPROACH

About This Chapter

So far, all mistuning analyses have focused on bladed discs with predetermined
configurations and sought answers to the question "what is the A% response increase
of a mistuned system for B% mistuning?"” However, the question which needs to be
addressed is: "what degree of blade-to-blade variation is acceptable if only A%
response increase with respect to the tuned system response {design value) is
allowable?” Although the statistical analysis presented in the previous chapter can be
used to answer that question indirectly, such studies are expensive and are not practical
since they are based on trial-and-error. An alternative approach is required which can
solve the above-formulated inverse problem to predict the relationship between the
allowable response increase and the amount of mistuning due to manufacturing

tolerances. This chapter is devoted to this purpose.
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7.1 Introduction

One of the basic problems in vibration analysis is the determination of natural
frequencies, mode shapes and response amplitudes of a known structure. A different
class of problems, the so-called inverse problems, are concerned with the construction
of a mathematical model for specified eigenvalues and eigenvectors [Gladwell (1986)].
In the context of this investigation, inverse problems are concerned with the
determination of structural parameters which can satisfy specified responses (design

values) under known excitation conditions.

A particular problem which is of considerable importance to the turbomachinery
industry is the determination of acceptable manufacturing tolerances for an A%
allowable increase in resonant response from that of the tuned system. The current
determination of these tolerances is usually based on past experience rather than on
engineering analysis. Although a statistical analysis based on the direct approach
presented in the previous chapter can be used for this purpose, such a procedure can be
very expensive and lengthy since it requires searching for the required tolerances by a
trial-and-error approach. (The resonant response increase caused by a certain degree of
mistuning needs to be calculated and, if found unacceptable, another solution must be
sought for a different degree of mistuning.) Therefore, what is required is a method
which is able to predict the permissible scatter in the blade cantilever frequencies for an

allowable response increase due to mistuning.

Such a method has been developed and is presented in this chapter for predicting the
permissible variations in blade-alone cantilever frequencies when response levels are
prescribed. The responses were specified randomly within the acceptable limits and the
corresponding distribution of blade cantilever frequencies was determined for many

bladed disc assemblies. The allowable manufacturing tolerances were then estimated
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from the scatter of blade cantilever frequencies obtained in the case of hundreds of

bladed discs.

It is believed that the method developed can be applied to the determination of physical
parameters such as mass, stiffness and damping elements in any structural model if the
response levels are given or known at a sufficient number of coordinates and when the

harmonic forces applied to the structure are known.

7.2 Theoretical Background

The theory presented in this section deals with the determination of the unknown
structural parameters when responses to known excitations are specified at a number of
coordinates. The basic theory is also extended to find the blade cantilever frequencies

when the magnitudes of the blade response levels are known.

7.2.1 Basic Theory

Consider a general mechanical system with m degrees of freedom and u unknown
structural parameters. The equations of motion can be written as:

([K+iD] - 02 [M] + 160 [CDyxm {8}t - (et = (0) (7.1.8)
where all symbols have their customary meanings. The matrix equation given above
can be decomposed into real and imaginary parts, thus giving 2Zm real equations.
Furthermore, one can write these 2m real equations explicitly at s excitation
frequencies which gives n = 2sm functional relations to set to zero for v unknowns

g

(O J=12, ., v) as:

g - Y2 V3o -0 ¥ =0 1=1,2,3,..,n (7.1.b)
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where

g =1is a known function of ¥y, ¥, V3, ..s Yy

Yi> Y2, Y300es Yy = are unknown structural parameters and unknown
response levels

v = 1s the total number of unknowns (unknown structural

parameters (u) plus unknown response levels (n) i.e., v=u+n)

If some (u) of the structural parameters are unknown, n functional relations obtained
from the equations of motion cannot be solved without further information since the
number of unknowns is greater than the number of equations (v>n). However, if the
real and imaginary parts of the response levels are known at w coordinates and at s
excitation frequencies, where w<m and 2sw>u, then the problem will be over-
determined, (n>v=u+2s(m-w)), and a solution can be obtained for the u

unknown structural parameters and the 2s(m-w) unknown response levels.

The unknowns va =1, 2, ..., v) in the above functional relations can be solved
iteratively using the Newton-Raphson Method [Press et al. (1986)] which converges
very rapidly to a root if there is one, or diverges totally, indicating that no root exists in
the vicinity of the search. Let vector {y} contain the initial estimates of unknowns Y-
Each of the functions g; can then be expanded in a Taylor series in the neighbourhood

of vector {7y} as:

g({yh +{6yD) = gi({yD +
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where {07} is a correction vector for the initial estimates. By neglecting second- and
higher-order terms in Eq. (7.2), a set of linear equations can be obtained for {8y} which

moves all functions closer to zero simultaneously. This can be written in matrix form

a5

mewx,\q mmﬁﬁw = ;mewgw (7.3)
where

dgi dg1 dg . 9% 8y g (y)

dy; oy, Iy Yy 51,

Y 9Yp I3 My ’

Si=f ;o yl=Y 1 (Rl=

dy; dY 973 My vy galY)

The matrix [S] and the residual vector {R} are formed using the assumed/corrected
values of the unknown vector {y} and Eq. (7.3) is solved for {dy} which is then added

to the assumed/corrected solution vector as follows:

(yynew = {y}old + {8y} (7.4)

and this process is repeated until convergence is obtained. (How to obtain [S] will be
clearer in the next section since its explicit form for a specific bladed disc problem is

given Appendix V)

A summary of the proposed method is given in Fig. 7.1.
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7.2.2 Determination of a Set of Blade Cantilever Frequencies

The bladed disc model used in chapters 3, 4 and 6 will also be used in the present
investigation. Accordingly, the equations of motion for the ji sector are the same as
before except that the forcing term representing the engine order (EO) excitation now
appears on the left hand side of the equation.

L
Xj + 20G; x; %QZM%BXHJ i) - Lm% = () (7.5.2)

Mg kg mmm ‘ ,
=85+ G (i) () - %)) + =2 yj + 5 Q- yje1 - ¥j1) =0 (7.5.b)

Assuming harmonic responses of the form

xj = Xj ell@) (7.6.2)

yj=Yjel(®@) (7.6.b)

and inserting these into the equations of motion gives:

| Fo ...

- 02X +120GjoXj + GF (1+ im)(Xj - Yj) - =2 el Do) =0 (7.7.2)
ﬁm ky Kg

- ¥ EY + GF (L) (Y- X + 2 Y+ =S Q) - Vi - Y ) =0 (7.7.0)

where 6, = 27tr/N and F is the amplitude of the EO excitation.

The response amplitudes of the jth blade and disc sector at any exciting frequency o

can be separated into real and imaginary parts as:

Xj(ay) = rXjloy) + 1 Xj(o) (7.8.2)
Yi(ay) = RYjle) + i 1Yj(ex) (7.8.b)
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Substituting Hq. (7.8) into Eq. (7.7) and separating into real and imaginary parts gives 4

real functional relations, g;, to set to zero for each sector at every exciting frequency oy

Ess-yesea = - OF RXj(@) - 20Gj o 1Xj(an) + G RXj(an) - M 1Xj(@) - RYj(0Y)

_F 2n(-Dr
£ Y (@) - 2 cos(Ta

)=0 (7.9.a

/‘“\

i

855(-1)+51-3 = - O (Xj(ay) + 28G;j ox rXj(ax) + GF (1Xjlow) + 1 rXjlex) - 1Yjow)

wwg..;
N RYj(0) - aaislwﬂﬁﬁw (7.9.b)

Mg

2

g55(j-1)+50-2 = - W Emﬁéﬁﬁ ®RYj(wy) - 1 1Y) - RXj(ay) + 1 1Xj(ay)
w

mﬁ% ,&,%% RYj(ay) - RYj+1(ay) - RYj1(ap) =0 (7.9.¢)

\w Mg

g5s(j- 14511 = - 01 T 1Y jo) + m i (Yjlay) + 1 rYj(0y) - 1Xj(ax) - 1 X ()
w; Ka

Q\ (ay) + 7 (2 1Yjlaw) - 1Yje1(ay) - 1Yj1(@p) = 0 (7.9.d)

where {=1,2,3,...,s and j=1,2,3,....N and the subscript of g indicates equation numbering.
In addition to response levels of the blades and disc sectors, the cantilever frequency of
each blade, Q% is also unknown in the above equations, a feature which makes the
problem both non-linear (the unknowns are multiplied by each other) and under-

determined. Therefore, additional information is needed to solve the problem.

For our particular problem, no explicit data are available for the values of the real and
imaginary parts of the response levels, the only allowable assumption being that their
magnitudes lie within prescribed limits. Specifying the magnitude of the vibration

level for the M% blade at excitation frequency ay, Kvmg@, brings one additional
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equation relating the real and imaginary parts of the blade response to the magnitude of

the vibration level assumed and can be written as:

2 o ey )
g55-1+5 = RXjloy) + (Xj(ey) - MXjlox) =0 (7.9.¢)

As additional equations of this form do not introduce any new unknowns, their
inclusion can result in the system of non-linear equations becoming determined or over-
determined, depending on the number of excitation frequencies at which the

magnitudes of the blades' vibration levels are specified.

Equation (7.9) now presents 5sN functional relations with (4s+1)N unknowns, the

unknowns being 4sN real and imaginary parts of responses and N blade-alone

frequencies for(=1,2,3,...s and j=1,2,3,..,N. Note that the functional relations to set to
zero in Eq. (7.9) are numbered from 1 to 5sN (This is the reason why '5' appears in the

subscript of g.) All unknowns in Eq. (7.9) can now be written in vector form as:

{Un}

(v} = . (7.10)

where

G; =isthe jth blade's cantilever frequency; and
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{Uj} = [rX (), X1(01), RY 1(09), 1Y 1(01), RX (), 1X1(mr), RY 1(®p),

1Y (@), -, X (@), 1IX1(®g), RY {(®y), 1Y ()} T

It is now possible to find the vector of unknowns, {y}, by using the solution technique
described previously in section 7.2.1: first, a solution is assumed for the unknown
vector {7y} and then a correction vector {&y} is obtained by solving the system of linear

equations given below:

[SIssNx(as+1)N ”mﬁﬁmiwzi = - {R}senxi (7.11)

where
[S] = is the coefficient matrix, the explicit form of which is given in Appendix V;
{8y} = is the correction vector in Eq. (7.10);

it

(R} = {g({yD.g2({y).g3({¥D- gsen({YDIT

The assumed/corrected solution is updated using Eq. (7.4) until convergence is

achieved.

7.3 Structural Parameters

The structural parameters listed in Table 6.1 of the previous chapter were also used in
this investigation, with the exception of the coefficient of dispersion for blade

frequencies which is now an unknown rather than one of the input data, as previously.

Unless stated otherwise, results were obtained for a 12-bladed disc under 27 engine-

order excitation.
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7.4 Some Computational Aspects

When dealing with a non-linear inverse problem, one is faced with several numerical
difficulties such as ill-conditioning, poor convergence, non-uniqueness and non-
existence of the solution. However, it must be said at the outset that our objective here
is not to focus on these numerical problems, but to note them and to find acceptable

solutions with emphasis on the engineering aspects of the problem.

7.4.1 Formation and Balancing of the [S] Matrix

Ag can be seen from Eq. (7.9), the non-linear algebraic equations were numbered from
1 to 5sN. Although numbering these functional relations can be quite arbitrary, this
numbering, together with the resulting ordering of the unknowns in vector {7y}, can
become quite important during the solution stage, an inefficient numbering resulting in
a notbanded [S] matrix which causes the iterative solution either to diverge or to
require extra iterations. Hence, the numbering of the functional relations must be made

in such a way that the matrix [S] is as banded as possible.

Another problem lies in the [S] matrix itself which can be very ill-conditioned. Indeed,
the individual elements of the [S] matrix contain both response (very small numbers)
and structural parameter (relatively large numbers) terms and, hence, the condition
number of the matrix [S] can become very large (Condition number is an indicator of
how much a matrix is ill-conditioned. A matrix is ill-conditioned if its condition

number is too large.)

It may be necessary to balance the [S] matrix before the solution stage in order to
overcome the ill-conditioning problem mentioned above. For our bladed disc problem,
the balancing operation was performed by rescaling certain columns and rows of the

[S] matrix. Rows numbered as Ss(j-1)+50 were multiplied by a large number (say,



@ STATISTICAL ANALYSIS OF RANDOM MISTUNING: AN INVERSE APPROACH 135

EX

LT B -

B

e
%
e

[sec]

@ . - 5 B BB E N

TRIMBER GF RN DEE

Fig. 7.2 CPU time required for single iteration for different number of blades.
(Blade responses were specified at 3 excitation frequencies.)

1.OE10). The corresponding rows in vector {R} were multiplied by the same number.
Further elements, located at those columns numbered as 4s(j-1)-+j, were also multiplied

by a large number (say, 1.0E7).

Such numerical techniques, i.e., making the [S] matrix as banded as possible and
balancing it, improved the solution procedure remarkably: first, initially non-
converging cases started to yield a solution; second, the number of iterations required
decreased; and finally, it became possible to use a Pseudo-Inverse routine instead of a
Singular Value Decomposition one, a change which reduced the required computation
time by an order of magnitude. After these improvements, the CPU time required for a
single iteration on an IBM RS-6000 model 530 workstation was recorded for several
cases with different numbers of blades when the blade responses were specified at 3

excitation frequencies and results are presented in Fig. 7.2.

7.4.2 Convergence and Uniqueness of the Solution

Before proceeding any further, it is appropriate to highlight some problems which

occur when solving inverse problems: the iteration process may not always converge to
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Fig. 7.3 Two tuned systems satisfying the specified response levels at one excitation
frequency.

a solution and, even if it does, that solution may not be unique. Therefore, one might

obtain either no solution at all or a solution which can be one of the many possibilities.

In order to understand whether a solution is physically acceptable, let us first consider a
tuned bladed disc assembly. If the magnitudes of all blade responses are specified to be
equal at one excitation frequency only, there will be more than one tuned system which
will satisfy that constraint. This is illustrated in Fig. 7.3 where tuned blade responses
are shown against excitation frequency for two different tuned bladed discs. As can be
seen, both of these tuned systems satisfy the required response level where the two
curves intersect at the specified excitation frequency. Under such circumstances, the
solution may converge to either of these tuned systems depending on the initial guess
for the unknown vector {y}. However, the blade cantilever frequencies of a tuned
system can be found uniquely if the magnitudes of all the tuned blade responses are
specified for at least two excitation frequencies. A typical example for such a case is
given in Fig. 7.4 in which blade response magnitudes were specified at two different
excitation frequencies. The blade cantilever frequencies were initially assumed to be

different from each other and, as can be seen from Fig. 7.4, they all converged to the

same correct value, 182 Hz, after five iterations.
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Fig. 7.5 Iteration for tuned blade frequencies fails when the tuned blade responses
are specified to be greater than the tuned resonant response level.

A case where the iteration would not converge to a solution can also be demonstrated
gasily for a tuned bladed disc system. If all tuned blade response levels are specified to
be greater than the tuned resonant response level, no solution will exist for a set of
blade cantilever frequencies which can yield such response levels. A typical example is
shown in Fig. 7.5, the non-convergence here suggesting that such a system is physically

impossible.
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Fig. 7.6 Iteration for mistuned blade frequencies fails when most of the blade
responses are specified 1o be greater than the tuned resonant response level,

Similar results can also be obtained for mistuned bladed discs. Again, there may not be
a physical system satisfying the assumed magnitudes of mistuned blade response levels.
Some iteration results for mistuned blade cantilever frequencies are presented in Fig.
7.6 showing that a set of blade cantilever frequencies cannot be found if the assumed
response levels are not correct. Preliminary case studies showed that such iteration
failures happen (i) when the response levels for a large number of mistuned blades are
assumed to be higher than the tuned resonant response level, or (ii) when the mean of
the mistuned blade response levels exceeds the tuned resonant response level
However, the iterative solution process for the unknown vector {7y} converges if the
magnitudes of the response levels of a small number of mistuned blades are allowed to
exceed the tuned resonant response level. A typical convergence path is illustrated in
Fig. 7.7, the convergence rate being relatively slow when compared with that for the
tuned system plotted in Fig. 7.4. The reason for this slower convergence is that
although tuned blade cantilever frequencies constituted an adequate guess for mistuned

lade cantilever frequencies, the initial guesses for the real and imaginary parts of the
response amplitudes were extremely poor and there was no simple way of making good

initial guesses for them.
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Fig. 7.7 A typical convergence rate for mistuned blade cantilever frequencies.

As in the case of the tuned system, there may be more than one mistuned system whic

can satisfy the assumed response levels at a given excitation frequency. Of course,
specifying the magnitudes of the mistuned blade responses at several excitation
frequencies increases the possibility of finding a unique mistuned system.
Unfortunately, the designer has no such data available. At a single excitation
frequency, it is possible to choose the magnitudes of mistuned blade response levels
randomly within specified limits. However, if responses are to be specified at several
excitation frequencies, they cannot be drawn in a completely random manner. In order
to make this point clearer, let us consider Fig. 6.3.di of the previous chapter where the
response levels of mistuned blades are plotted against the excitation frequency for a
particular mistuning configuration. Once the response levels are specified at a given
excitation frequency, it is not possible to predict them at some other frequency without
full knowledge of the system parameters. If they are drawn randomly at more than one
excitation frequency, the chance of guessing the correct response levels is extremely
low and the iteration process will usually fail to converge, indicating that there is no
such system. (This is analogous to not being able to find a single-degree-of-freedom
system subjected to harmonic excitation which can satisfy randomly-guessed response

levels at three different excitation frequencies.)
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Table 7.1. Verification of the inverse solution.
Inverse Solution Direct Solution
Blade | Input Qutput | Input Qutput | Differ.
No: | Blade Res.  Blade Freq. | Blade Freq.  Blade Res. %1
(normalized) (normalized mormalized normalized)
1 0.7857 1.0133 1.0133 0.7830 0.34
2 0.9143 0.9942 0.9942 0.9138 0.05
3 1.1766 0.9952 0.9952 1.1761 0.04
4 0.7220 1.0214 1.0214 0.7214 0.08
5 0.7721 1.0129 1.0129 0.7722 -0.01
6 1.0230 0.9942 0.9942 1.0220 0.10
7 0.7830 1.0086 1.0086 0.7828 0.02
8 0.9804 1.0042 1.0042 0.9792 0.12
9 0.9243 0.9973 0.9973 0.9227 0.17
10 1.3000 0.9853 0.9853 1.2954 0.36
11 0.8393 1.0458 1.0458 0.8433 -0.47
12 0.7204 1.0356 1.0356 0.7220 -0.22
Blade response is normalized to the tuned blade's resonant response
level (design value) and the blade natural frequency is normalized to
the tuned blade first cantilever frequency, i.e.,182 Hz. (W, = 2ZND
tuned system natural frequency)

The validation of the results obtained from the inverse solution was straightforward.
The output of the inverse solution (blade cantilever frequencies) was used as input to
the direct solution described in the previous chapter and a one-to-one correspondence
was expected in recomputed and specified blade response levels. A typical example is
presented in Table 7.1 where the difference between the response levels is less than
0.5% in all cases. If necessary, the numerical results can be improved further by

tightening the convergence criteria.

In the next section it will be shown how the required tolerance for the cantilever
frequencies of the mistuned blades was determined in spite of the non-uniqueness of the

solution.
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7.5 Resulls

It is clear from the previous chapter that, for a given A% acceptable response increase
due to mistuning, the allowable manufacturing tolerances would depend on the
excitation frequency, on the engine-order (EO) of excitation, and on the number of
blades. In this chapter, however, we seek to find the allowable manufacturing
tolerances for the blade cantilever frequencies in the worst possible case. It is proposed

to use some of the results found in the previous chapter:

1) a bladed disc with a small number of blades can simulate the dynamic behaviour
of discs with a large number of blades. This is a very important consideration
from computation cost point of view. The number of blades was kept constant at

12 during this study;

ily  for the particular bladed disc assembly being studied, the maximum resonant
response increase due to mistuning happens when the interblade phase angle of
the forcing is about 60° . Therefore, all the results in this chapter were obtained
under second engine order (2EQ) excitation for this 12-bladed disc. This
information was useful since it removed the need for solving the inverse problem

for various engine order excitations, as had been done in the previous chapter;

iii) the most responsive blades among blades from hundreds of bladed discs,
experience the maximum response levels when the excitation frequency is close
to the natural frequency of the tuned system critical mode (the 'critical mode' is
the one corresponding to the critical interblade phase angle.) This mode is the
2ND mode for the 12 bladed disc being studied. This finding from chapter 6
allowed determination of the required manufacturing tolerance by considering

blade response levels at this specific excitation frequency only.
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Fig. 7.8 The magnitudes of mistuned blade response levels are chosen by a "semi-
random” way within a specified range at 2ND natural freqguency of the tuned svstem.

7.5.1 Required Tolerances for 30% Resonant Response Increase

At the 2ND tuned system natural frequency, the magnitudes of all the mistuned blade
responses were chosen in a semi-random manner within a specified range shown in Fig.
7.8 where the response level of the tuned system provides the reference curve. The
upper bound of this range, point A in Fig. 7.8, corresponds to the maximum allowable
response increase of 30% above the tuned resonant response level for this particular
case. Point B represents the resonant response level of the tuned system and point C is
the lower bound which is determined by trial-and-error, as will be explained later.
Sampling of the response levels is termed semi-random because at least 1 and at most 3
(out of 12) blade response levels were forced to lie between points A and B while the
corresponding positions on the disc were totally random. (This was to simulate a
typical case where only a few mistuned blades experience higher response levels than
those of the tuned system.) The worst blade response level was set to the maximum
allowable response level of 30% in order to ensure that every mistuned system
determined had at least one blade experiencing the highest allowable response increase.
The response levels of the remaining blades were randomly selected between points B

and C.
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As mentioned before, setting the lower response bound, point C, was required in order
to simulate the real case although a suitable value for the lower response bound was not
known a priori. After some deliberation, it was recalled that the upper and lower
bounds for mistuned blade response levels would converge towards to the same value
with decreasing mistuning and, in the limit, they would coincide with point B.
Therefore, point C 18 expected to decrease with increasing allowable response increase.
By making use of this information, the lower bound was determined by trial-and-error
as follows: first, a lower bound which is slightly lower than point B was assumed;
then, the value of the lower bound was decreased until a reasonable number of sampled
response levels between lower and upper bounds yield solutions. It should be noted
that the required tolerance for a given allowable upper response level can also be
obtained without setting any limit to the position of point C. However, this would

require much more sample size than necessary when a suitable value is assigned.

After a value for the lower response bound was determined, the magnitudes of the
mistuned blade response levels were specified randomly within these limits (points A,
B and C) as described previously and the solution technique developed in this chapter
was applied to find a mistuned system satisfying the prescribed response levels at the
2ND natural frequency of the tuned system. However, even if such a mistuned system
can be found, the response levels of some of its blades may well exceed the allowable
response increase at some other excitation frequencies. A typical example for such a
situation is illustrated in Fig. 7.9 where the response levels of all 12 blades are shown
against the excitation frequency. It is immediately seen that the response level of one
of the blades exceeds the 30% limit at some excitation frequencies between 1.0 and 1.1
of the normalized excitation frequency. Perhaps more importantly, there is no
guarantee that the maximum response level will not exceed the allowable value when

the same set of blades are rearranged around the disc. All these observations indicate



@ STATISTICAL ANALYSIS OF RANDOM MISTUNING: AN INVERSE APPROACH 144

1.5@
B B e -

a

y y

L ;zs;;qsssssg;ggg;§y§s§¢3g5§ew&wf

F i o o, "

¥ S ™

@

E

]

[

3

s

)

[

N

5

i

b B
PR LY RER BERHCIT ING FREQUENCY
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at some other excitation frequencies.
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fig. 7.10 The Minimum and the maximum blade frequencies for 500 bladed discs
which satisfy 30% response increase.

that a statistical approach with a large enough sample size must be used to address the

inverse problem.

Configurations for 500 bladed discs, each having a blade experiencing a maximum of
30% response increase were determined using the solution technique described in
section 7.2.2. The maximum and the minimum blade frequencies for each bladed disc

were found and are plotted in Fig. 7.10 by normalizing all values to the tuned blade

cantilever frequency of 182 Hz. Using the data of Fig. 7.10, the tolerance value which
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Fig, 7.11 Tolerances obtained form 500 bladed discs determined.

was defined as (Guax-Omin)/2G was calculated for each determined bladed disc
configuration and the results are presented in Fig. 7.11. The tolerance values obtained
from 500 bladed discs show that a blade-to-blade cantilever frequency variation of as
little as 0.73% can cause a 30% response increase. Therefore, to ensure blade response
levels lower than 130% of the tuned system resonant response, the manufacturing
tolerances are required to be tight enough such that the individual blade cantilever

frequencies should be between (1+0.0073)xG.

This result, found from the inverse solution, was checked by using the direct approach.
The acceptable degree of blade-to-blade variation for a 30% response increase, +0.73%,
was used as an input value to the direct solution described in the previous chapter. The
individual blade cantilever frequencies were selected randomly from a normal
population (mean = G = 182 Hz, standard deviation = ¢ = 0.0073xG) and they were
rejected if they were outside the range ( 1+0.0073)xG (e, &,W was rejected if 1t was
outside the range G+0) and this procedure was repeated until all 12 blades' cantilever
frequencies were specified. The direct solutions were obtained for more than 2100 12-
bladed discs and the statistical results are summarized in Figs. 7.12.a and 7.12.b.  As
can be seen, only one blade's response out of 25000 exceeds the 30% limit with a value

of 31.6%.
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Fig. 7.13 Required tolerance in blade-alone cantilever frequency versus allowable
response increase due to mistuning.

7.5.2 Relationship Between Allowable Response Increase and Required Tolerance

The procedure described above for determining the required manufacturing tolerances
for 30% response increase was repeated for various values of allowable response
increase, up to 90%, and the corresponding tolerances were determined. Results are
summarized in Fig. 7.13 and it is seen that the relationship between these two
parameters is almost linear up to 60% allowable response increase, after which the
threshold tolerance values increases very sharply. Thus, if the value of an acceptable
response increase is to be reduced from say 90% to 80% of the tuned system level, the
required tolerance in blade-alone frequency needs to be tightened almost by a factor of
two (le., from +5.4% to +2.8% of blade cantilever frequency.) Therefore, results
presented in Fig. 7.13 suggest that if considerable improvement is to be achieved in
reducing the worsening effect of the mistuning, the blade-to-blade cantilever frequency

variations should be kept to less than 2% in this case so that any further improvement
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(tightening) in manufacturing tolerance decreases the worsening effect of the mistuning

proportionally.

7.6 Concluding Remarks

1)

iii)

A method has been developed for determining the appropriate structural
parameters of a model when response levels are specified at some coordinates

under known excitation conditions.

The method was used to find the required manufacturing tolerance for a specified
allowable worsening effect due to mistuning and the result was verified using the

direct approach described in the previous chapter.

A relationship between the required manufacturing tolerance and the response
increase due to mistuning has been determined by solving the inverse problem for
various values of allowable response increase. The results found here suggest
that for the case studied this relationship is almost linear up to 60% allowable
response increase, after which the required tolerance does not need to be
tightened proportionally. Therefore, if considerable improvement is to be made
in reducing the worsening effect of the mistuning, the manufacturing tolerance
should be lowered to less than 2% in this case. However, it should be kept in
mind that these results were obtained from studying a bladed disc with a given
degree of blade-to-disc coupling ratio and damping properties and, hence, it is

difficult to generalize the numerical values.

Finally, it is believed that the method proposed can also be used for model

updating purposes.



CHAPTER 8

CONCLUSIONS AND SUGGESTIONS FOR
FURTHER WORK

About This Chapter

This chapter is an attempt to summarize and unify the conclusions of the preceding
chapters. One conclusion - inevitable in such a research project - is that there remains
some questions which are still unresolved. Accordingly, some suggestions for further

research are proposed in the light of the present work.
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2.1 Conclusions

The work described in this thesis represents an effort to improve the basic
understanding of the response characteristics of mistuned bladed discs. To this end,
several analytical models based on both deterministic and statistical approaches have
been developed and used with success to conduct qualitative and quantitative studies in

order to understand the consequences of mistuning.

The main findings of this investigation are listed below.

i) The analytical formulation where the response levels are expressed as explicit
functions of coefficients in the equations of motion for tuned and alternate
mistuning assemblies brings huge savings in computational time. Moreover, the
antiresonance frequencies, which cannot be identified from an eigensolution, can

also be determined in any coordinate response using the proposed formulation.

it)  Results on single blade mistuning have shown that high levels of damping can
suppress the effect of mistuning. It has also been found that damping caused by a
fatigue crack in any one blade can have a marked effect on the response levels of

that blade.

iii) A general method for predicting fatigue life under forced vibration has been
developed. It has been found that the inclusion of frequency- and/or crack-
dependence into the stress intensity factor yields significantly lower fatigue life
predictions than estimated fatigue life when they are ignored, especially when the
excitation frequency is in the vicinity of a mode of vibration. The technique was
applied to a bladed disc assembly with a fatigue-cracked blade. The findings

suggest that the coincidence of excitation frequency with the new natural
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V)

Y

vi)

frequencies of the system due to fatigue crack should be avoided for prolonged

fatigue life.

For a given bladed disc, the worst blade under a certain EO excitation may not be
the critical one under some other EO excitations and there are no general rules for
identifying the critical blades according to their cantilever frequencies alone.
This explains why many apparently-conflicting conclusions were reached in
previous studies and these have now been reconciled in the light of the findings

presented in this thesis.

For the same amount of mistuning and using the same model, it has been
demonstrated that the magnitude of the worsening effect can vary from an
increase of less than 5% to over 110% since this worsening effect depends very
strongly on the EO of the excitation (r). When r is 'small’, the worsening effect of
mistuning seems to be small. At some intermediate values of r the worsening
effect reaches a maximum and tends to decrease again as r increases further. The
critical value of r seems to be dependent on blade-to-disc coupling and this

observation requires further investigation.

A very good linear correlation between the blades experiencing the maximum
amplitude and the excitation frequencies at which these blades vibrate strongly
has been found. Such information can be used in deciding which blades to
instrument and at which excitation frequency to test them. Results suggest that
there is a range of critical blades classified according to their cantilever
frequencies and as many blades as possible within this range should be
instrumented in a practical engine test. This range depends on the EO excitation

and it also includes those blades with cantilever frequencies equal to the rfND
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vii)

viii)

tuned system natural frequency. However, this rND frequency is not necessarily

the mean of that blade frequency range requiring instrumentation.

A simple parameter, interblade phase angle 8,=2nr/N, is of paramount importance
when studying the response characteristics of mistuned bladed discs. There is no
need to conduct parametric studies by changing r and N individually since the
combined effects can be found from O, directly. This is a huge saving in
computing time since (a) far fewer cases need to be investigated and (b) the
dynamic behaviour of large systems can be deduced from that of much smaller

systems.

The probability and cumulative density functions of the resonant response show
that the response distribution is not normal and, furthermore, that there is no
unique distribution which can represent the statistical characteristics of mistuned

blade forced response under all EO excitations.

An inverse method has been developed to determine acceptable blade-to-blade
variations for response levels not to exceed A% of the tuned system response.
The method was used to find the a relationship between the required
manufacturing tolerance and the allowable response increase due to mistuning.
The results found in this thesis suggest that this relationship is almost linear up to
60% allowable response increase, after which the required tolerance increases
very sharply. Therefore, if considerable improvement is to be made in reducing
the worsening effect of the mistuning, the manufacturing tolerance should be
lowered to less than 2%. However, it should be kept in mind that results in Fig.
7.13 were obtained from studying a bladed disc with a specific blade-to-disc
coupling ratio and damping properties and, hence, care must be taken in

generalising this result to other assembly configurations.
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8.2 Suggestions for Further Studies

Notwithstanding that a number of achievements have been made towards the
understanding of the mistuning effects, there is still work to be done before the effects
of mistuning can be fully predicted and controlled. Areas which now need particular

attention are:

i) experimental verification of the findings of this thesis in order to clarify certain
important points such as the effect of EO excitation and the interblade phase angle

on the consequences of mistuning;

i1)  a detailed investigation of damping mistuning caused by unsteady aerodynamic

forces as well as blade-to-disc and blade-to-shroud joints;

ii1) the development of an analytical method for the statistical investigation of

mistuning in an attempt to prevent the need for expensive numerical simulations;
iv) the determination of the critical interblade phase angle causing the worst
mistuning effect without having to calculate the resonant response levels of

hundreds of bladed discs for various interblade phase angles and

v)  more accurate modelling of blade and disc geometry.
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APPENDIX 1

CIRCULANT MATRIX THEORY AND APPLICATION
TO A TUNED BLADED DISC

The purpose of this appendix is to derive analytically Eq. (2.21) of chapter 2 which was
obtained by observation in the light of several case studies. Although a short review of
circulant matrices is presented below, the interested reader should consult Davis (1979)

for more details.

AlL1 Eigenvalues and Eigenvectors of Circulant Matrices

A matrix of the form:

Cop €1 L L3 Crolng
Cne1Co C1 € Cp3Chan

Ca2tn1€y ©1 7 Cpafng

[C] = . (ALT)

o XN

is called a circulant matrix of order n. Let r; be a root of the scalar equation 1 = 1 and
let
,

*Emz é . .. »V 1 k Ss
W.w =¢q + ﬁﬂw % cmwu R o vs*m&

1 (AL2)

Then, k; satisfies the following set of equations:
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< + m{,wﬁw - ﬂwﬂw R R & ﬁﬁ;ﬂ = K.w
g + Coti + C1I% + vt Cpot™ = kir
uuw:m wwm M m P .3;»&% »m ew
5 § ,
Cpp + Cpogfj + Cory + vt n?wwww b= ﬁww (AL3)
3 - -
€1+ Cofj + C3T] + oot m@mﬁ ! = ﬁmm !
It is seen that Eq. (AL3) is of the form:
[CHy; =% {y;) (AL4)
It follows that «; is an eigenvalue of [C] with associated eigenvector:
(Wj) = (Lot T (ALS)
ALZ2 Application to a Tuned Bladed Disc (Model A)
The matrix equation which needs to be solved is:
T )
[Z]{q} = {1] (AL6)

I

where [Z], {q} and Www are given by Eq. (2.16), (2.17) and (2.18) respectively. The

size of the square matrix [Z] is N (i.e. n=N) where N is the number of blades. The

scalar equation rN=1 has N distinct solutions which are given below:

;= elf, i=0,1,2,.....,N-1

k]

where

(AL7)
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(ALS)

o=l
|

Circulant Matrix Theory gives the eigenvectors and the eigenvalues of [Z] respectively

as!

;) = (1, 19, ei20j, ¢i36 ., eiN-DOT (AL9)

K= A+ Bel% + 0+ 0+ ...+ 0+ BellN-18 = A + B(el®) +eiN-1D8j) (AL10)
Eq. (AL10) can be further simplified since N; = 2n;

Kj= A + B(el% + e71%) = A + 2B cos(6)) (AL1D)

. . . P - , e . , o o
Note that the jh eigenvector given in Eq. (AL9) is identical to the force vector {f

}
given in Eq. (2.18) for jEO excitation. Therefore, m\ww in Eq. (AL6) can be replaced by

?mw } which gives:

1Z] {4} = {w;) (AL12)

(@) =121 w) (AL13)
Since [Z] is a circulant matrix, it satisfies the following equation:
PARVSER NI (AL14)

Eq. (AlL14) can be rearranged to give:
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‘w;,f. f
mmﬁwi& M) (AL15)

It is seen that the right hand sides of Eq. (AL 13) and Eq. (AL 15) are equal hence:

(@) =t} (AL16)

Inserting the values of {§}, Kj and {y;} yields the required answer:

Nod
e
o

eifj

>

B

“A+2B cos(8))

(ALL1T)

XN ci(N-1)6j

that the response level X is the same as in Eq. (2.21) when

It is seen from Eq. (ALT%

j1s equal to EO excitation, which is the required result.
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APPENDIX 1I

THE ROOTS OF A CUBIC EQUATION

Substituting the coefficients in Eq. (2.43) into Eq. (2.36) and equating the resulting
expression to zero yields the following frequency equation for the r nodal diameter

maodes.

M +ay A+ ay At ay=0 (AILD)

the solution for three real and distinet roots is

. 1 2n 1 i
wﬂw =2 ,,Me Q CQVAMAV + ..ME mﬁv - Mx a1 (AIL2)
— 1 1 e
Ay = »N,,L@ n@mm@& -3 (AILD
N 1 47 1 ‘
Ay = -0 cos(30 +73ay) - 33 (AIL4)
where
R
Ccos() = === (AILS)
3ay - mw
R = 5 (AILG)
@wwmm - M‘wmm - me

Q= = (AIL7)
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APPENDIX III

NATURAL FREQUENCY AND DAMPING CHANGES
PRODUCED BY FATIGUE CRACKS'

(The experimental data presented in this appendix are used in chapters 3 and 4.)
791

NATURAL FREQUENCY AND DAMPING CHANGES
PRODUCED BY FATIGUE CRACKS

M., IMREGUN and K. Y. SANLITUREK
Departrent of Mechanical Engineering
Imperial College of Science, Technology and Medicine
Exhibition Road, London, SW7 2BX, UK.

Abstract

The changes in the natuwral frequency and structural domping of free-free beams due to
the presence of fatigue cracks have been investigated experimentally. It has been shown
thar the presence of a fatigue crack in such beams decreases the natural frequencies
considerably and increases the damping by an order of magnitude when the initial
damping is light. 1t is hoped thar results from this study will allow o more realistic
assessment of forced response characteristics of bladed-disk systems, especially when

there is mistuning due to a crack defect in a single blade.

1. Introduction

Reliable design of engineering components requires a thorough understanding of the
mechanisms involved in fatigue crack formation and growth. Non-destructive westing
{(NDT) studies have shown that many physical parameters correlate with the nature and
amount of defects present in a structure (refs 1, 2). For vibration analysis in
particular, damping values and natural frequencies of a structure are known o be very
sensitive 1o cracks (refs 3-8) but there is a lack of reliable experimental data to provide
guidelines as to how these variations occur. The vibration amplitudes introduced in the
measurements of one or both of these properties are usually so small that the stresses
produced are negligible.  Therefore, damping level and/or natural frequency
measurements in order o detect the presence of possible defects are shown 10 be quick

and atractive methods in NDT (refs 6-8),

! Reproduced from the Proceedings of the 15™ International Seminar on Modal Analysis, Leuven,
Belgium, 19-21 September 1990, pp. 791-803.
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There is also a growing interest in the predicton of dynamic fatigue life using crack
growth rate data. Although fatgue-life prediction methads are also well established
(refs 9-12), almost all of them reguire predetermined stresses or strains around a
fatigne crack. Prediction of these stresses or swrains usually brings no complication
provided that the frequency spectrum of the applied force is far below the natural
frequencies of the structure under study so that a static force assumption is adequate.
Unformunately, for most rowting machinery components, this is not the case. For such
applications, dynamic stresses or strains should be determined via vibration analysis
which in turn requires stiffness and damping variation produced by fatgue cracks.
Another important engineering area, where stiffness and damping variation caused by a
fatigue cracks is of paramount importance, is the determination of the dynamic
characteristics of systems comprising elements with defects . This problem will be

addressed shortly in a forthcoming paper.
2. Theory : Damping Measurements
Damping is the removal of energy from a vibratory system and a convenient way of

quantifying is w introduce the specific damping ratio vy, defined as the ratio of the

energy lost 1o the peak potential energy stored in the system during each cycle. The

specific damping ratio is related to other commonly uzed damping parameters by:
ve2n/Q=28=2nn=4n{

where ) ts the amplification factor, 8 is the logarithmic decrement, and 1y and { are the

wefficient and damping ratio respectively.

hysteretic damping

Damping estimation methods can be broadly divided into two groups: namely, time
ping 5 : 3

dormain methods and frequency domain methods.

2.1 Time Domain Methods
As the name implies, ime domain methods make use of the measured transient response

signal directly. There are four well established wehniques.

(i) The logarithmic decrement method: the logarithmic decrement, defined as the natural
logarithrn of the ratio of any two successive amplitudes, gives an estimate of damping

from simple measurements of successive oscillation amplitudes. The application of this
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method w continuous structures requires the isolation of the particular modes of interest
using a very narrow band filter.

{i1) The envelope method: this method is a refined version of (i) where an exponential
envelope is fited through all available oscillation peaks. Damping is then estimated

from the rate of decay of this envelope.

(1i1) Complex exponental method: this is a method based on multi-degree of freedom
curve-fitting in time domain. As the method is based on the system's impulse response
function, its present application is limited to the models incorporating viscous damping

only.

(iv) Ibrahim's tme domain method (refs 13, 14) : this method allows the
determination of all modal parameters from a set of free vibration measurements in a
single analysis. However, it may not be the most appropriate technique if damping is of

primary interest {ref 15},

2.2 Freguency Domain Methods

Basic methods in this group include half power point method, circle-fit method, line-
fit method and power spectrum method, the first three methods being based on the
frequency response functons (FRF) of a structure. The half-power point method,
perhaps the sirnplest technique of all, predicts the damping level of the mode concerned
using the natural frequency of that mode and two other frequencies at the half power
points. (The half power points on an FRF are two points on either side of a natural

frequency with magnitudes of | /N2 times that of the resonance peak.)

The circle- and line-fitting methods have almost become the standard wols for extracting
modal parameters from mensured FRFs. The circle-fit method uses the fact that »
Nyquist plot of an FRF wanslates into a circle around resonance, the diameter of which
provides a measure of the damping. A plot of the imaginary part of the inverse FRF
against frequency on the other hand gives a straight line which forms the basis of the

line-fit method. The damping level is then estimated from the slope of that line.

A new method of damping measurement, the power spectrum method, was proposed by
Cawley and Sarsentis (ref 8). The impulse time history of a soructure is recorded and
divided into a series of sub-records each of which is subjected o a Fourier Transform.

The resonant peaks of such successive records in frequency domain are plotted against
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Fig.{1) Test specimen (Al dimensions sve in mm and not to scale)

time and the structural damping for each mode is obtained from this decay curve. The

echnique does not require the transient signal o die away within the measurement time.
Experimental Procedure

3.1 Description of Test Specimen

t on freely-supported rectangular

Experiments reported in this study were carried

bars. As shown in Fig. (1), the st specimens were rectangular mild steel bars with

-

nominal dimensions of 400 x 19.0 x 12.7 mm. The dimensions of the bars we

howed clear and w

chosen such that the resuling FRPs Lseparated modes which were

easy 1o identify. Farigue cracks were produced under cyclic loading by using a 60 kN

capacity of Dowty hydraulic testing machine.

yssible w

There is no doubt that testing as many specimens as

ore reliable data. However, as time and cost factors had o be weighted carefully, it

was decided to consider 20 specimens only,

3.2 Description of the Experimental Setup

The two experimental setups shown in Fig, (2) were used throughout the investigation

for FRF measurernents. In the first case the structure was excited via an hammer, The

signals from the accelerometer and force gauge were amplified and fed into a spectrum
analyser, the output of which was fed into a micro computer for subsequent modal
analysis. In the second case, a sine wave was generated by a frequency response
analyser, amplified through a power amplifier and used w exciie the struciure via an
Kmméngmm@% shaker, The magnitude and phase of the amplified signals of force gauge
and accelerometer were recorded by the analyser at each discrete frequency and

wransferred 1o the computer for post-processing.
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3.3 Preliminary Tesls

Before angmpting to measure the natural frequencies and vibration damping levels of the
bars, it was necessary 1o decide which type of excitation 1o use and which analysis
method 1o apply for modal parameter identification. However, from the outset, it is
worth mentioning that the purpose of these preliminary tests was not 1o find the
limitations, advantages and shortcomings of various measuring techniques and analysis

methods but 1o select the best options for this particular application.

1t was decided 1o carry out preliminary tests on a test bar free of defects in order o
assess the repeatability of the measurements. The initial idea of testing clamped-free

bars was dropped because of the non-repeatability of clamping conditions.

One of the bars was tested first using sine excitation via a shaker. A washer was
soldered to the bar for shaker attachment and the bar was supported on loops of fine
siring which were positioned at the nodes of the first flexural mode of vibration. The
srnallest shaker, foree pauge and accelerometer available were attached very near the
ends of the specimen for a point measurement in the direction of the smaller thickness.
Initial measurernents were made with a large frequency siep to locate the first four
natural frequencies. Zoom measurements were then carried out around each of these
natral frequencies for accurate determination of the modal parameters. Measured data
were analysed by using both circle- and line-fiting technigues which gave almost

identical results and these are listed in Table 1

Another set of measurements were carried out using impact testing, the excitation and
response points and supporting strings’ positons remaining at the same locations a$
before. Because of the very high frequency resolution required to analyse this lightly-
damped rectangular bar, zoom measurernents had to be made around each resonance.
FREs obtained from those measurements were then transferred to an IBM PC
compatible microcomputer and the modal parameters for the first four modes were
identified using once again circle- and line-fitting techniques. Results are given in

Table 2.

As can be seen from Tables 1and 2, natural frequencies obtained via sine sweep
measarements are Jower than those acquired by impact testing. This is almost cenainly
due to the mass effect of the force gauge attached 1o the bar. On the other hand,
damping levels obtained from sine sweep measurements are much higher than those
given by impact testing. It is believed that the main reason for pbtaining high level of
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damping using sine sweep is the interaction between the specimen, the shaker and the

force gange.

After identifying the natural frequencies and damping levels of the test bar using two

different measurement technigues, it was decided 10 focus on impact testing for the

remainder of the experimental programme.  Since every method of measuring  the

damping was bound 1o introduce some additdonal %Eg%mam, a method which gives lower

levels of damping seems 1o be preferable from this view point.

Although zoom measurements in impact testing seemed appropriate for the purpose of
acquiring reliable data, this procedure was very time consuming (four modes per each
ant about 800 tappings for the 20-bar set

bar and at least five averages for each mode me
with and without fatigue cracks). It was therefore decided to investigate the possibility
of using some other wehnigue of damping identificarion. One possibility was o apply
an exponential window to the time histories of response and force signals prior w the
d by this windowing

Fourier ransform and o subtract the artificial damping introduc

levels for each

right at the end. This procedure could have given the correct damping

mode from a single measurement. However results were unrepeatable since the adde

v than the true damping

damping due to exponental windowing was significantly high
i the structure, Another possibility of determining the modal damping from a single

measurement was to apply the power spectrum method of reference (8). In this

ve segments of free time

H

method, a Hanning window is applied 1o each of the success

response data before carrying out a Fourier transform and it is claimed that this causes
the leakage 1o be contained within the .ﬁ@aiﬁx ﬁarzw ciose to the resonance.

se. FR

s obtained from

results, however, showed that this was not the

Experimental
shown in Figs

with and without | wmé:m windows ar

an actual rransient re
{3a) and (3b). In the first case, a zoom measurems

SpONS

1t was carried out such a way that

that no windowing was

the response signal died away within the measurement time so

necessary. In the second case, a typical measurement without zoom was made (because
of very low level of damping the signal did not die away within the measurement time)
and a Hanning window was applied to the time signal before carrying out a Fourier
Transform. The mue FRF, plotied “ig. {3a), shows no noise at all while the FRF

obtained from the windowed signal exhibits clear signs of leakage with a rotally

distorted shape. This finding is &ma verified in reference (16)
After this second round of preliminary tests, it was decided to carry out the rest of the

experiments using impact testing with frequency zooming in spite of the process being
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slow. This decision was taken in the light of repeatability and the introduction of the
least arnount of artficial damping. In order to achieve a further reduction in artificial
damping supporting strings were moved to the nodal lines of the mode being measured.
The identification of these nodal lines was very easy by moving the tapping position of

the hammer and observing the resulting FRF at the same time.

Impact measurements were then carried out for all 20 bars and the acquired FRF data
were analysed w determine natural frequencies and damping levels for the first four
modes of vibration using both circle- and line-fiting techniques which again gave very
similar results. As can be seen from Table 3, natural frequencies and damping levels of
the defect-free bars differ slightly from one bar to the next. Natural frequency vartations
are believed to be caused by minor differences in bars’ geometric properties while
variations in damping levels are probably due o small differences in surface properties

{grease, finish et

3.4 Fatipue Crack Formation snd Testing of Bars with Cra

There is no donbt that one of the most important factors affecting the vibration properties
of o bar with a defect is the location of the crack. Although it would be desirable to
make measurements on bars with different crack locations, this would be very costly
and it was therefore decided 1o fix the crack position at some location away from the

nodal Hnes of the first four modes of vibration as shown in Fig, (4).

An initial notch of about 0.5 mm depth was introduced on each bar using a saw-cut. A

very J?%@ saw cutter was then used 1o sharpen the tp of the nowh. Cracks with

various depths were formed by subjecting the bars to three-point bend fatigue foading in
a Drowty 650 kN hydraulic testing machine,

the cross section of the bars could not be conrrolled, it was not possible to predict the

ince the exact profile of the notches across

number of cycles required for crack initiation under a given level of 1 loading. The
relationship berween the amplitude of stress applied, the number of cycles required for
crack initiation and the crack growth rate were determined using an iterative method.
For this purpose, bar no 20 was loaded first into the testing maching. A stress level of
250 MIN/m? was applied first, The frequency of the sinusoidal excitation was kept at 30
Hz throughout crack formation.  After 300,000 stress cycles, there was no sign of
crack initiation, probably because of the size of the initial notch being 100 small, Then
the stress level applied was increased and the specimen was kept under load for another

0,000 cycles. If there was still no sign of crack initiation, the stress level was
increased further. At the end of this process, it was found that about 43,000 cycles
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crack initiation at 350 MN/m? stress level. Since the applied swess

were required

was displacement controlled, the force required for the same deflection with a crack w
less than that without a crack. Thus, the area loss due to crack propagation was

accomplished by the decreasing force applied.

In order o have a different crack depth for each bar, the desired depth was marked on

each bar prior w stress Toading. Fatigue erack growth was then observed through an

optical instrument mounted on a two-dimensional raverse. Loading was stopped as

soon as the crack depth had reached the required level, The number of cycles required
for farigue crack formation on each bar is given in Table 4 msmﬁxi with the equivalent
crack depth and percentage cross section removed. (The equivalent crack depth was
measured after all the vibration measurements were m@m%wﬁg,w The area around %m

fatigue crack was heated using a torch until the colour of the heated area changed 1o blue
(tempered) and the bars were then soaked into liquid nitrogen and broken using the

same hydraulic testing machine.

ack on dynamic

Since the scope of this study is w investigate the effects of fatigue
properties of a structure, care was taken 1o carry out all vibraton measurernents under
as identical conditions as possible, However, there were still some factors which made

First of all, the fatigue

measurements much more difficult when the bars had crach

cracks caused some degree of norelinearity which in turn depended on th depth

Sevondly swigh all modes were initially well-separated and in one direction only

@mma@ crach

caused coupling between coordinate directions. These problems created

considerable difficulty during measurements and subsequent analyses. For minimising
11

i1

the errors and non-linearity effects, the magnitude of the impact force was kept as sma

cin one direction in order

as possible and special pare was taken to apply the impact fore

of these difficulnes, zo

not to excite the modes in the other direction. Becaus
=ral times. Once

measurements  for some of the modes had to be N‘ﬁﬁwmxd sev
atisfactory FREs were obtained, the natural frequencies and damping leve Is for the first

four modes of 20 fatigue-cracked bars were obtained via modal analysis and resulis are

o

listed in Table 5. After all vibration measurements were completed, the bars we

broken for crack depth and area determination as described before.
4. Resulis

The percentage natural frequency change for each mode ( 100 * (Owimout crack = @with

crack) ! @without crack ) 18 plotted against the percentage cross section removed (100 *
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Crack area / Total area) in Fig. (5). The naturai frequency decrease is very small up 0
20 % cross section removed, from which point it increases parabolically with increasing
crack depth and this observation is valid for each mode. The susceptibility of the natural
frequency of a particular mode ro being affecied by a crack is certainly related to the
crack position and to the stress pattern of cach mode. A close inspection of Figs. (4}

and (%) reveals that it also depends on the proximity of the crack 1o high stress arsas.

Another set of resulis is presented in Figs, (6a) o {6d) where the variaton of
damping with crack depth is shown. Unlike the natural frequency, the damping
increases with increasing crack depth. Once again, the effect of the fatigue crack up 1o
20 % cross section removed is negligible, the resulting damping being comparable to
initial damping levels. However, after that point there is a sudden increase and a
maximur is reached around 80 % removed cross-section. The trend then levels off and
damping starts to decrease again, indicating that the opposite surfaces lose rubbing
action during vibration. As for the natural frequency, the susceptibility of the damping
level of a particular mode being affected by a crack is retated to the proximity of the

crack to high stress areas.

The information in Fips. (5} and (6) is replotted in Fig. (7) in a different forman
defining the relationship between the natural frequency reduction and damping increase
caused by fatigue cracks, this perhaps being the most useful form for the mathemartical
modelling of fatigue crack effects. Remembering that the fatigue cracks cause almost no
mass change to the bars, any frequency reduction can be interpreted as a modal stiffness

change for each of the modes measured.

Finally, it i worth noting that although this experimental study was conducted with 20
rectangular bars, resuits in Figs. (8) wo {7) refer to 18 bars oenly., Two specimens,
Nog 11 and 18, were excluded from the final analysis. Bar No 11 was accidentally
deformed plastically during the adjustment of the cyclic load while No 18 exhibited
uncharacteristic behaviour. When the specimens were broken it was seen that No 18
had two distinet crack surfaces, the reason being that during crack generation under
cyclic Ioading this bar had to be removed from loading and reloaded again. At that tme,
it was thought that this would not effect the crack behaviour. However, results clearly

show that it did.
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&, Concluding Remarks

(i) Before attempting any measurements on bars with and without fatigue cracks, it was
necessary 1o find out the rnost suitable method of measurement. The critical parameter
was the level of energy dissipation which showed marked variations depending on the
measnrement setup and technique used. Although exact damping levels of the bars
were unknown, it is believed that measurements which gave both repeatable and lower
damping values were the best for the purpose of this work since the amount of artificial

damping was kept as a minimun,

(i) The natural frequency and damping level changes produced by fatigue cracks were
investigated experimentally. Tt is belisved that this type of data leading to dynamic
fatigue crack growth rate is very useful for life predictions of beamn-like structures such

as turbomachinery blades.

(ii1) It was further found tha
crack is one of the primary factors affecting change in damping

~position of the fatig
levels,

-the presence of a marked (more than 20% of wial depth) fatigue crack in a structure

decreases the structure’s natural frequencies considerably and inereases s energy

dissipation by an order of magnitude if the initial damping is light.
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Table 3. Matural frequencies and damping

804

Table 1. Natursl freguency and dampiong levels of test boy
using yine sweep lesting

Mode Damping 1 [%]
H 0.142
2 1080 H.280
3 AT4 0.548
4 3463 1172

Table 2. Maural frequencies and damping levels of fest bor using
tmpact Testing

Wode Froquency [Ha) Dampingn (%)
1 412 $.050
9 1131 0070
3 2198 0,080
4 3593 0.1%0

fatipue cracks

tevels of bars withoul

Bar Mode 2 Mode 3
Mo 6o [Hz) Hy (%] Wy ikl "y (%]
i 4139 {3004 .0 22542 00158 2,134
2 14108 0046 | 11251 0.065 | 2186.35 055 9.125
3 $12.5 0044 | 11308 0os4 ] 11975 0087 0025
4 14199 0.042 1 11340 0.063 | 2085 0058 a2
4 41004 D046 | 11244 2.062 0084 | 33713 0130
& 4120 0.044 0,062 Q058 | 38R0 0133
[ R0 0.045% Q066 | 2 ooy 1 3sB02 02
% 1411y MO 11184 GO 2 0063 | 35842 023
9 14182 0.040 | 11380 0058 | Z D055 | ¥TLe Bl
RN 0047 | 11286 0.070 | 21933 Coen | 35844 DO
11 AUBE 0052 30 0065 | 21818 n0ss 35668 0148
14132 G043 1 11315 D061 | 22005 0088 | 35950 0457
14182 0041 | 1129.% 0063 | 21953 0.057 876 0118
14 laiz, 0.040 293 0.083 | 21950 0085 | E6S D24
15 1419 0041 | 11990 G068 1 21943 0057 | 35844 0116
16 14138 0041 | 11938 0061 ] 22032 0.056 | 36000
v 14106 004% | 11230 0062 | 218832 o063 | 35720
12 14126 0.043 1 113 Q68 | 21976 D063 | 3005
19 4133 0043 0 11351 0085 | 23018 Q062 | B9
20 4123 0042 | 11306 0.068 | 21972 Q060 | 35905
Min {4098 0080 | 11230 0088 | 21818 pos: ] BTLY O oo
Max | 4152 0052 | 1138.0 0.070 | 22108 G063 | MiItd 0asY
Mean] 412.3 0045 | 11299 hed | 21957 0088 | 35878 037
50 11361 Q008 1 3784 0.003 1 7.232 0003 | 11482 0011

8 D = Swandard deviation
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Tatle 4, Deseription »f Tatigue cracks on bars

805

. Wi, of stroes croles Eapubwalens crach Area veevesred
Bar No npplicd depits () [E]

H o 0.59 44
2 HIHO0 1.32 139
3 RO 1.59 1252
4 TH0G 1,85 14.57
5 TOD 218 1101
6 BAG00 293 2307
7 120000 370 29,13
& 123060 KR 284
9 120000 430 33.86
10 $22000 4.6 3822
it Piastn deformstion seournd during fatiges crack formation.
12 JOH00 534 41,49
13 0000 550 4331
14 HODOO 3.7% 45,29
13 109000 668 52,60
% 150000 6,55 5338
i 114000 7.5% 5945
18 198000 800 £3.00
19 157000 9.60

20 SUTH00 940 1402

Taple § MNatural frequencies and damping levels of bars

with a fatigue orack

Bur oda § Mode 2 Mede 3 Mode 3

ST T R S (R BagHzy Dy 1] wanz) Ty VR
1 4182 005 11433 006 R0 006 1 35913 .13
3 4087 007 11342 406 21842 6.0 35672 .17
3 41486 008 11ans 097 21930 Q.07 | 35800 814
) 4124 413 11928 007 21860 447 | 35905 019
5 #08.0 D28 1124.1 0.09 IR Q.10 | 35680 .14
& 4071 {40 [ FaRy 412 2186.0 417 1 25680 821
7 404.2 050 11935 0,20 FaNLR] f.25 | 3550 0.36
§ 4050 281 13234 .21 2ETRT 428 | 35650 333
9 | 40335 1.04 11318 Q.28 21854 434 1 WILE 036
JU IR Lin {123 030 21659 .38 | 35433 0%7
1 Phagtic Deformation ootred during fatigi crack lormation

12§ 3908 133 117 032 21558 943 | 3803 5.53
3§ 900 116 11163 0.33 21517 0.40 § 34933 £.47
34 ] 38832 5.57 1116.4 0.42 21504 050 1 34960 071
151 3783 160 FRE VAL 0.83 21582 nEY 1 B465T %1
16 | 388 150 1172 9.4% 214832 D64 ] S0 043
37§ 618 .58 1104.9 [ bt .72 34120 173
15 ] M54 082 19950 a.1% 20652 @31 355240 433
19 | 3e60 a7 10862 298 WL 122 ] sl 0.96
sy | 3447 536 10930 1.0¢ W 1.89 | 33720 137
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APPENDIX IV

DERIVATION OF Bjj(w) FOR A CANTILEVER BEAM

m;%gw referred in chapter 4 is defined as the ratio of the stress at point i to the response

at point j.

&?mﬁ&

Bij(w) = P (AIV.1)

/ wﬁmw

The deflection equation per unit force for a uniform cantilever beam shown in Fig.

AIV.1 is given by Bishop and Johnson (1979):

B (sinAL+sinhAL)(cosAs-coshAs)-(cosAL+coshAL)(sinAs-sinhAs)

‘ , AIV.2)
q(s) 2EIA3(1+cosAL+coshAL) M M
where
-y
vmﬁ - %
v El

Fig. AIV.1 A cantilever beam.
(Cantilever beam's dimensions : 19.0%12.7#400 mm, s; = 17.0 mm, s; =400 mm)
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Fig. AIV.2 q(sj), o(sy) and B;;(w) versus frequency.

and all variables have their customary meanings. The stress at the beam surface can be
found from:
_Ew d2q(s)

o(s) = 2 ds?

(AIV.3)

where w is the thickness of the cantilever beam. Using{s

.3), the stress

parameter Bij(®w) can be written as:

) R cosAL+coshAl , .
2w [ (-cosAsi - coshAs;) - i L sinhAL. (-sinAs; - sinhAs;) |
Bijlw) == . cosil4coshAL | . , (ALV.4)
[ (coshs;j - coshiAs)) - L sinhL. (sinAs;j - sinhAsj) ]

The variations of q(s;) ,o(sy) and fij(w) with respect to frequency are plotted in Fig.

ATV 2.
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APPENDIX V

ELEMENTS OF THE MATRIX [S]

»

The elements of the matrix [S]sgnxa(s+1)N are given by

@mwm

S =
Yiric ,
. Mic

For{=1,2,3,...,s and j=1,2,3,..,N the non-zero elements of the [S] matrix in Eq. (7.11)
are:

0855(j-1)+50-4 O855(j-1)+51-4

=20y 1Xj(op+ 2GR X (wy)-1 1Xj(en)-rYjla)+1 1Y (o)

ONVas(j-1)+j 9G;
0856(j- 14504 O85s(-1)+5k4 o o
= = - ] + Gj

MNag(j-1)ratrj-3  IRXj(ON)

0855(j-1)+5-4  985s(-1)+50-4 )
T = T oxqay - 266 @-MGj
Vas(j-1)+44+j-2 1Xj(ay,

0855(j-1)+5-4  O85s(j-1)+5t-4

: DeSkd 2
MNag(j-1)+dtrj-1  ORYj(W) ]

0855(j-1)+51-4  985s(j-1)+51-4

Nas(-1y+dj  O1Yj(@)

2

0g55(j-1)+513 985s(j-1)+51-3

- . el of HN . . ; X s_,;ux . M\
I 2G: 20y RXj(en)+2Gj (X (an)+n RX(an)-1Yj(0n)-1 R Y j(ex)

mmﬁag 1513 @mmw? 1+583 9
Ss(-1+5E3 Y85 3 o
MVaeri tvadrein  ORXi(@y) 26G; ar +NG;
V45(j-1)+40+j-3 RAJRUY,

08551453 OBSs(G-1+53 o o
: = = - o} + Gj
MNas(j-1)diri2  OTXj(an) ,
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0855(j-1)+5-3  O8S5s(j-1)+51-3
W - Pt e «W\MQ
OY4s(j-1+dbi-1

2
]

ORYj(c)

0855(j-1)+53  OB5s(j-1)+51-3
drYj(on)

y)
5 =-G?
OV45(5-1)+4b+j

Og5s(j- 14512 O8Ss(j-1)+51-2 L Y ) 1 Y X £ 1 o)
-, o B 4 wNv =z ﬂ»& - m : R& " me . ﬂ& N w . A»M\\
OVas(j-1)+j oG JARE] i j i

0855(j-1)451-2  O8S5s(j-1)+51-2 )

0855(-1)+512  O8Ss(j-1)+51-2
orXj(ay)

OVag(j-1)+40+-2

985s(j-1)+5k2  985s(j-1)+5i-2

oRYjay) @

OY4s(j-1)+4t4+-1

0855(-1)+52  985s(j-1)+51-2 G2
- e ar X = - Ty
Mas(-1+4iej  O1Yj(0w) ]

Ogss(j-1)+51-2  O8ss(j-1)+5-2 Ky

Mas(2p+arei2  ORYj1(@y) — m

0g55(-1)+5k2 98ss-Dest2  Kg

Nisjraej  ORYjei(@)  m

0g55(j-1)+5-1  9855(j-1)+50-1 | | |
‘ = 3G, =26 (1Yjlay) +n rYjlay - (Xjlow) - 1 rXjlay)
i

Mas(i-1)+j

0855(-1)+50-1  OL55(j-1)+51-1 G2
- s ) g ¥ >
Mag(j-1)+dtris  IRXj(ax) .

0855(-1)+50-1  O8S5s(j-1)+50-1 o2
e = e ru_uw

Nag(-1+aiej-z 9Xjlaw)
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085s(j-1)+5-1  O8Ss(j- 14501

2

- e =G

OVas-1)yraij-1  ORYj(w) i

O855(j-1)+50-1  OL55(-1)450-1 5 My ks Ka
e éw:

=- ] 7+ Gj +
g P

MNag-1yadrei OV () m "~ m

0gss(j-1)+5t1  O8ss(-D+st1 Kg

o1Yj.1(ey) m

Oas(j-2)+464+j-1

O8ss(-1)+sk1 985sG-D+sk1 Kg

MNasjrdtsjr1  OrYjer(wy) — m

95s(- 145, 98ss(i-1)+SH
MNag(j-1)+40+j-3  ORXj(ax)

= 2 rXjlay)

O85g(j-13+50  O8Ss(j-1)+51

- = - = 2 1X;(c
Maggi-tyramiz OXjlon ! o



References 179

fomey
[

Jo—
Lad

T

[10]

REFERENCES

Afolabi, H. D. (1982)
"Vibration of Mistuned Bladed Disc Assemblies”, Ph.D Thesis, Imperial Colege,
University of London.

Afolabi, H. D. (1985a)
"The Frequency Response of Mistuned Bladed Disk Assemblies”, Proceedings of
ASME on Vibration of Blades and Bladed Disk Assemblies.

Afolabi, H. D. (1985b)
"The Eigenvalue Spectrum of a Mistuned Bladed Disk”, Proceedings of ASME
on Vibration of Blades and Bladed Disk Assemblies.

Afolabi, H. D. (1988a)
"A Note on the Rogue Failure of Turbine Blades”, Journal of Sound and
Vibration, Vol. 122, No.3, pp 535-545.

Afolabi, H. D. (1988b)
“Vibration Amplitudes of Mistuned Blades”, Trans. ASME, Journal of
Turbomachinery, Vol. 110, Apr., pp 251-257.

Alawi, H. (1989)
“Fatigue Crack Growth Prediction Under Random Peaks and Sequence
Loading”, ASME, Journal of Engineering Materials and Technology, Vol.111,
pp.339-344, Oct.

Armstrong, E. K., Christie, P. I. and Hague, W. M. (1966)
"Natural Frequencies of Bladed Discs”, Proccedings of the Institute of
Mechanical Engineers, Vol. 180, Part 31

Basu, P. and Griffin, J. H. (1986)

"The Effect of Limiting Aerodynamic and Structural Coupling in Models of
Mistuned Bladed Disk Vibration”, Trans. ASME, Journal of Vibration,
Acoustics, Stress and Reliability in Design, Vol. 108, Apr., pp 132-1396.

Beliven, D. O. (1969)
"On Frequencies of Elastic Beams with Random Imperfactions”, Journal of
Frnanklin Institute, Vol. 287, No.4, Apr., pp 294-304.

Bendiksen, O. O. (1984)
"Flutter of Mistuned Turbomachinery Rotors”, Trans. ASME, Journal of
Engineering for Gas Turbines and Power, Vol. 106, Jan., pp 25-33.

Bishop, R. E. D. and Johnson, D. J. (1979)
"The Mechanics of Vibration”, Cambridge University Press.



References 180

[16]

[19]

[20]

b
o

Crawley, E. F. and Hall, K. C. (1985) "Optimization and Mechanism of
Mistuning in Cascades", Trans. ASME, Journal of Engineering for Power, Vol.
107, Apr., pp 418-426.

Davies, O. L. and Goldsmith P. L.(1972)
"Statistical Methods in Research and Production”, Oliver & Boyd press.

Davis, P. J. (1979)
"Circulant Matrices”, John Wiley and Sons Puplication, New York.

Dowling, N. E. (1983)
"Farigue Life Prediction for Complex Load Versus Time Histories”, ASME,
Journal of Engineering Materials and Technology, Vol.105, pp.207-214, July.

Dye, R, C. F. and Henry, T, A, (1969)

"Vibration Amplitudes of Compressor Blades Resulting from Scatter in Blade
Natural Frequencies”, Trans. ASME, Journal of Engineering for Power, July, pp
182-188.

Ealpole, R. E. and Myers R. H.(1985)
"Probability and Statistics for Engineers and Scientists”, Macmillan Publishing
Company.

El-Bayoumy, L. E. and Srinivasan, A. V., (1975)
"Influence of Mistuning on Rotor-Blade Vibration”, AIAA Journal, Vol.13, No.
4, Apr., pp 460-464.

Ewalds, H. L. and Wanhill, R, J. H. (1986)
“Fracture Mechanics”, Edward Arnold Lid.

Ewins, D. J. (1966)
"The Vibration of Bladed Discs”, Ph.D Thesis, University of Cambridge.

Ewins, D. J. (1969,)
"The Effect of Detuning Upon the Forced Vibration of Braded Disks”, Journal of
Sound and Vibration, Vol. 9, No. 1, pp 65-79.

Ewins, D. J. (1973)
"Vibration Characteristics of Bladed Disc Assemblies”, Journal of Mechanical
engineering Science, Vol. 12, No. 5, pp 165-186.

Ewins, . J. (1976)

"An Experimental Investigation of the Forced Vibration of Bladed Discs due to
Aerodynamic Excitation”, Proceedings of ASME on Structural Dynamics
Aspects of Bladed Disk Assemblies, Dec., pp 15-27.



References 181

[24]

[29]

[30]

Ewins, D. J.(1973)
"Vibration Characteristics of Bladed Disc Assemblies”, Journal of Mechanical
Engineering Science, Vol.15, No.3, pp.165-186.

Ewins, I J. (1984
"Modal Testing: Theory and Practise”, Research Studies Press Ltd., England.

Ewins, D. J. (1980)
"Bladed Disc Vibration: A Review of Techniques and Characteristics”, Int.
Conf. of Recent Adv. Struct. Dynamics, Southampton, UK, pp 187-210.

Ewins, D. J. (1991)
“The Effects of Blade Mistuning on Vibration Response - A Survey”, IFToMM
4th International Conference on Rotodynamics, Prague, Czechoslovakia, Aug.

Ewins, D, J. and Han, Z. 8. (1984)
"Resonant Vibration Levels of a Mistuned Bladed Disk”, Trans. ASME, Journal
of Vibration, Acoustics, Stress and Reliability in Design, Vol. 106,pp 211-217.

Ewins, D. J. and Rao, Y. V. K. 8. (1976)

"A Theoretical Study of the Damped Forced Vibration Response of Bladed
Discs”, Proceedings of ASME on Structural Dynamics Aspects of Bladed Disk
Assemblies, Dec., pp 57-71.

Fabunmi, J. A. (1980)
"Forced Vibrations of a Single Stage Axial Compressor Rotor”, Trans. ASME,
Journal of Engineering for Power, Vol. 102, Apr., pp 322-328.

Findly, W. N, and Reed, R. M. (1983)
"Fatigue of Autofrettaged thick Tubes: Closed and Open Ended,; As-Received
and Honed", Journal Eng. Materials, Vol.105, PP. 195-205, July.

Fisher, B. C. and Sherratt, ¥. (1977)

"A Fracture Mechanics Analysis of Fatigue Crack Growth Data for Short
Cracks”, Fracture Mechanics in Engineering Practise, Edited by Stanley P,
Applied Science Publisher Lid, London.

Fong J. T. (1979)
"Fatigue Mechanisms”, American Society for Testing and Materials.

Forman, R. G., Kearney, V. E. and Egle, R. M. (1967)
"Numerical Analysis of Crack Propagation in Cyclic Loaded Structures”,
ASME, Journal of Basic Engineering, Vol.89, No.3, pp.459-464.

Gibra, L N. (1973)
"Probability and Sratistical Inference for Scientists and Engineers”, Prentice-
Hall, Inc.



1

Refer

%
i

nees 182

[40]

[43]

[44]

[46]

sladwell, G. M. L. (1986)
"Inverse Problems in Vibrations”, Martinus Nijhoff Publishers.

Griffin, J. H. (199D

"Optimizing Instrumentation When Measuring Jet Engine Blade Vibration”,
ASME, Presented at the International Gas Turbine and Aeroengine Congress
and Exposition, Orlando, FL, June 3-6, 91-GT-71.

Griffin, J. H. (1980)
"Friction Damping of Resonant Stresses in Gas Turbine Engine Airfoils.”,
Trans. ASME, Journal of Engineering for Power, Vol. 102, Apr., pp 329-333.

Griffin, J. H. and Hoosac, T. M. (1984)

"Model Development and Statiscal Investigation of Turbine Blade Mistuning",
Trans. ASME, Journal of Vibration, Acoustics, Stress and Reliability in Design,
Vol. 106, pp 204-210.

Griffin, J. H. and Sinha, A. (1985)

"The Interaction Between Mistuning and Friction in the Forced Response of
Bladed Disk Assemblies”, Trans. ASME, Journal of Engineering for Gas
Turbines and Power, Vol. 107, pp 205-211.

Huang, W. H. (1982)
“Vibration of Some Structures with Periodic Random Parameters”, AIAA
Journal, Vol. 20, No. 7, pp 1001-1008.

Ibrahim, R. A. (1987)
"Structural Dynamics with Parameter Uncertainties”, ASME, Appl. Mech. Rev.
Vol.20, No. 3, pp 309-328

Imregun, M. (1984)
“Structural and Aeroelastic Vibration Analysis of Bladed Systems” Ph.D Thesis,
Imperial College, London.

James, L. A. (1971

"The Effects of Frequency Upon the Fatigue Crack Growth of Type 304
Stainless Steel ar 1000 F”, Stress Analysis and Growth of Cracks, Proceedings
of the National Symposium on Fracture Mechanics, Part 1, pp.218-230.

Kaza, K. R. V. and Kielb, R. E. (1982a)
"Coupled Bending-Bending-Torsion Flutter of a Mistuned Cascade with
Nonuniform Blades”, NASA Report No. TM-82813, May.

Kaza, K. R. V. and Kielb, R. E. (1982b)
"Flutter and Response of a Mistuned Cascade in Incompressible Flow”, AIAA
Journal, Vol. 20, No.8, Aug., pp 1120-1127.



References 183

[47]

[48]

[49]

[50]

[57]

Kaza, K. R, V. and Kielb, R, E. (1984)
"Flutter of Turbofan Rotors with Mistuned Blades”, AIAA Journal, Vol. 22, No.
11, Nov., pp 1618-1625.

Kaza, K. R. V., and Kielb, R. E. (1985)
"Vibration and Flutter of Mistuned Bladed-Disk Assemblies”, AIAA Journal of
Propulsion and Power, Vol. 1, No. 5, Sept-oct., pp 336-344.

Kaza, K. R. V., Mehmed, O., Williams, M. and Moss, L. (1987)
"Analytical and Experimental Investigation of Mistuning in Propfan Flutter.”,
NASA Report NO. TM-88959, Apr.

Kielb, R. E. and Kaza, K. R. V. (1983)

"Aeroelastic Characterstics of a Cascade of Mistuned Blades in Subsonic and
Supersonic Flows", Trans. ASME, Journal of Vibration, Acoustics, Stress and
Reliability in Design, Vol. 105, Oct., pp 425-433.

Kielb, R, E. and Kaza, K. R, V. (1984)

"Effects of Structural Coupling on Mistuned Cascade Flutter and Response”,
Trans. ASME, Journal of Engineering for Gas Turbines and Power, Vol. 106,
Jan., pp 17-24.

Kissel, G. J. (1988)
"Randomly Disordered Periodic Structures”, Proc. 3rd International Conference
on Recent Advances in Structural Dynamics, 18-22 July, pp 45-54.

Leissa, A. (1981) "Vibrational Aspects of Rotating Turbomachinery Blades”,
ASME, Appl. Mech. Rev. Vol.34, No. 5, pp 629-635

Lin, Y. K. (1967)
"Probabilistic Theory of Structural Dynamics”, McGraw-Hill Company, New
York, USA.

MacBain, J. C. and Whaley, P. W. (1984)

"Maximum Resonant Response of Mistuned Bladed Disk”, Trans. ASME,
Journal of Vibration, Acoustics, Stress and Reliability in Design, Vol. 106, pp
218-223.

Mengq, C. -H., Griffin, J. H. and Bielak, J. (1986)

"The Influence of a Variable Normal Load on the Forced Vibration of a
Frictionally Damped Structure”, Trans. ASME, Journal of Engineering for Gas
Turbines and Power, Vol. 108, pp 301-305.

Muszynska, A. and Jones, D. L. G. (1981)
"A  Parametric Study of Dynamic Response of a Discrete Model of
Turbomachinery Bladed Bisk", An ASME, Publication, 81-DET-137.



References 184

[60]

[61]

[62]

[64]

Muszynska, A. and Jones, D. L. G. (1983)
"On Tuned Bladed Disk Dynamics: Some Aspects of Friction Related
Mistuning”', Journal of Sound and Vibration, Vol. 86, No. 1, pp 107-128,

Newman, J. C. Jr. and Raju, L §. (1981)
"An Empirical Stress Intensity Factor Equation for the Surface Cracks”,
Engineering fracture mechanics, Vol.15, pp.185-192.

Omprakash, V. and Ramamurti, V. (1988)
"Analysis of Bladed Disk - A Review", The Shock and Vibration Digest, Vol. 20,
No. 11, pp 14-21.

Paris, P. C. and Erdogan, F. (1963)
"A Critical Analysis of Crack Propagation Laws”, Journal of Basic Engineering,
85.4, pp.528-534, Dec.

Paris, P. C. and Sih, G. C. (1965)
"Stress Analysis of Cracks”, American Society of Testing and Materials, STP
381, pp.30-83.

Parzen, E. (1960)
"Modern Probability Theory and Its Application” John Wiley and Sons,Inc.,
New York, London, Sydney.

Pierre, C. (1990)
"Weak and Strong Vibration Localization in Disordered Structures: A Statistical
Analysis”, Journal of Sound and Vibration, Vol. 139, No.1, pp 111-132.

Pook, L. P. (1983)
"The Role of Crack Growth in Metal Fatigue"”, The Metal Society, London.

Press, W. H., Flannery, B. P., Teukolsky, S. A. and Vetterling W. T. (1986)
"Numerical Recipes: The Art of Scientific Computing”, Cambridge University
Press.

Ramamurti, V. and Balasubramanian, P. (1984)
"Analysis of Turbomachine Blades - A Survey”, Shock and Vibration Digest,
Vol. 16, No. 8, pp 13-28.

Rao, J. 8. (1973)
"Natural Frequencies of Turbine Blading - A Survey”, Shock and Vibration
Digest, Vol. 5, No. 10, pp 15-22.

Rao, J. 8. (1977)
"Turbine Blading Excitation and Vibration”, Shock and Vibration Digest, Vol.
9, No. 3, pp 3-14.



References 185

[70]

[76]

[79]

[80]

Rao, J. 8. (1987)
"Turbomachine Blade Vibration”, Shock and Vibration Digest, Vol. 19, No. 5,
pp 3-10.

Rolfe, S. T. and Barson, J. M. (1977)
"Bracture and Fatigue Control in Structures: Application of Fracture
Mechanics”, Prentice Hall Inc.

Sakamoto, H., Takezono, S. and Nakano, T. (1988)
"Effect of Stress Frequency on Fatigue Crack Initiation in Titanium”,
Engineering Fracture Mechanics, Vol.30, No.3, pp.373-382.

Sanliturk, K. Y. and Imregun, M. (1991)

“Theoretical Modelling of the Damping Produced by Fatigue Cracks”,
Proceedings of the 9th International Modal Analysis Conference, Florence, Italy,
pp 1370-1374.

Sih, G. C. (1973)
"Handbook of Stress Intensity Factors”, Institute of Fracture and Solid
Mechanics", Lehigh University, Bethlehem.

Singh, M. P. (1988)
"Turbine Blade Dynamics: A Probabilistic Approach”, ASME, Vibrations of
Blades and Bladed Disk Assemblies, Book No. H00335.

Singh, M. P. and Ewins, D. J. (1988)

"A Probabilistic Analysis of Mistuned Bladed Turbine Disc”, Proceedings of
Inst. Mech. Engrs. International Conference on Vibrations in Rotating
Machinery, Heriot-Watt University, Edinburgh, Sept., pp 143-150.

Sinha, A. (1986)
"Caleulating the Statistics of Forced Response of a Mistuned Bladed Disk
Assembly”, AIAA Journal, Vol. 24, No.11, Nov., pp 1797-1801.

Sinha, A. and Chen, S. (1989)

"A Higher Order Technique o Compute the Statistics of Forced Response of a
Mistuned Bladed Disk Assembly”, Journal of Sound and Vibration, Vol. 130,
No. 2, pp 207-221.

Sinha, A. and Griffin, J. H. (1984)

"Effects of Static Friction on the Forced Response of Frictionally Damped
Turbine Blades”, Trans. ASME, Journal of Engineering for Gas Turbines and
Power, Vol. 106, pp 65-69.

Sinha, A., Griffin, J. H. and Kielb, R. E. (1985)
"Influence of Friction Dampers on Tortional Blade Flutter", ASME, Journal of
Engineering for Gas Turbines and Power, No. 85-GT-170.



References 186

[81]

[86]

[87]

[88]

[89]

[90]

Sogliero, G. and Srinivasan, A. V. (1980)
"Fatigue Life Estimates of Mistuned Blades Via A Stochastic Approach”, AIAA
Journal, Vol. 18, No.3, Mar., pp 318-323.

Srinivasan, A. V. (1980)
"Influence of Mistuning on Blade Torsional Flutter”, NASA Report, No. CR-
165137.

Srinivasan, A. V. (1984)

"Vibrations of Bladed-Disk Assemblies - A Selected Survey”, Trans. ASME,
Journal of Vibration, Acoustics, Stress and Reliability in Design, Vol. 106, pp
165-168.

Srinivasan, A. V. and Fabunmi, J. A. (1984)
"Cascade Flutter Analysis of Cantilevered Blades”, Trans. ASME, Journal of
Engineering for Gas Turbines and Power, Vol. 106, Jan., pp 34-43,

Srinivasan, A. V. and Frye, H. M. (1976)

"Effects of Mistuning on Resonant Stresses of Turbine Blades”, Proceedings of
ASME on Structural Dynamics Aspects of Bladed Disk Assemblies, Dec., PP
57-71.

Stange, W. A. and MacBain, J. C. (1983)

"An Investigation of Dual Mode Phenomena in a Mistuned Bladed Disk”, Trans.
ASME, Journal of Vibration, Acoustics, Stress and Reliability in Design, Vol.
105, July, pp 402-407.

Stanley, P, (1977)
"Fracture Mechanics in Engineering Practise”, Applied Science Publishers Itd.,
London.

Tada, H., Paris, P C. and Irwin, G. R. (1973)
"The Siress Analysis of Cracks Handbook”, Del Research Corporation,
Hellertown.

Takezono, 8. and Satoh, M. (1982)

"Effects of Stress Frequency on Fatigue Crack Propagation in Titanium’,
ASME, Journal of Engineering Materials and Technology, Vol.104, pp.257-
261, Oct.

Tobias, S. A. and Arnold, R. N. (1957)

“The Influence of Dynamical Imperfection on the Vibration of Rotating Disks”,
Proccedings of the Institute of Mechanical Engineers, Vol. 171, No.2, pp 669-
690.

Wagner, J. T. (1967)
"Coupling of Turbomachine Blade Vibrations Through the Rotor”, Trans.
ASME, Journal of Engineering for Power, Vol. 89, No. 4, Oct., pp 502-513.



References 187

[94]

[96]

Wang, J. H. and Yau, H. L. (1990)

"Design of Blade-Shroud to Minimize the Sensitivity of Response to Preload
Mistuning”, IFToMM 3rd International Conference on Rotodynamics, Lyon,
France, Sept., pp 535-540.

Wei, S. T. and Pierre, C. (1990)
“Statistical Analysis of the Forced Response of Mistuned Cyclic Assemblies”,
AIAA Journal, Vol. 28, No. 5, May, pp 861-868.

Whitehead, D. 8. (1966)
"Effect of Mistuning on the Vibration of Turbomachine Blades Induced by
Wakes”, Joural of Mechanical Engineering Science, Vol. 8, No. 1, pp 15-21.

Whitehead, D. 8. (1976)

"Research Note: Effect of Mistuning on Forced Vibration of Blades with
Mechanical Coupling”, Journal of Mechanical Science, Vol. 18, No.6, pp 306-
307.

Wollram, 8. (1988)
"Mathematica: A System For Doing Mathemarics”, Addison-Westley Company.



