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Abstract

The ability to perform vibration analysis of complex industrial structures using
finite element analysis (FEA) has led to a critical role for the finite element (FE)
model in the design process of such structures. However, the conventional design
process rarely allows for the experimental validation of the model within the time
frame of the design cycle. This is because the building of the physical hardware
is usually not completed until very late in the cycle. This thesis addresses this
problem with a proposed improvement to the overall model validation process and
with developments for the specific validation tasks of generating the FE model and
determining how well it correlates with test data.

The proposed improvement to the model validation process is to replace the
test data with another FE model called a ”super-model”, which can be produced
at a much earlier stage than any hardware for testing. The intention is to validate
the modelling method, instead of the model, by showing that a ”super-model” can
reproduce the test data very accurately. For assemblies of components that are too
large for current computer capacity a physical model reduction method is proposed
that will produce a design model with about one tenth the DOFs of the ”super-
model” while retaining a reasonable estimate of its modal characteristics. A new
method that allows the simultaneous display of both the mode shape correlation
and the frequency comparison is presented along with new correlation methods for
both mode shapes and FRFs.

The effectiveness of these developments is demonstrated with a case study for an
assembly of two components of a real industrial structure. The ability to replace
the modal test data with the results from an analysis using a ”"super-model” is
clearly demonstrated along with the advantages of the physical model reduction
technique and the new correlation methods. However, it is concluded that further
research is needed to improve the robustness of the reduction technique—at least
until available computer power allows for an analysis of an assembly of ”super-

models”.
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Basic Terms, Dimensions and Subscripts
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Chapter 1

Introduction

The design process for industrial structures generally includes three primary envi-
ronmental quantities: static loads, temperatures and dynamic loads. This research
is concerned with the most complex of these issues: the dynamic load environment
or the specific area of structural vibration.

The highly competitive environment for the design and manufacture of in-
dustrial structures has led to the demand for ever shorter design cycles for such
structures. This reduction in time for the design has put increased pressure on the
primary tool used to aid the design—the finite element (FE) model. Because of
this, the FE model used for design must be generated much more quickly and to a
much higher standard than ever before. Further, in order to be able to use a valid
model—one that has been correlated with test data from the real structure—the
model validation process must also be completed much more rapidly.

The primary focus of this thesis is the development of valid FE models within
the direct design cycle loop. A central feature to achieving this is an improvement
in the overall model validation process. Additionally, two of the key tasks within
the model validation process—generating the initial FE model and determining
how well it correlates with the test data—are addressed.

While the developments presented in this thesis can be generalized to most

industrial structures, the concentration here is on the design and analysis of the



Chapter 1 Introduction

non-rotating components of gas turbine engines. Accordingly, the structural dy-
namic design process and finite element modelling discussions are tailored to gas
turbine engine components. Although the model validation and correlation topics
are presented for general structures, the case studies presented are for gas turbine

engine components and assemblies of components.

1.1 The Structural Dynamic Design Process

In general the structural dynamic design process for industrial structures is made
up of three chronological stages: (i) preliminary design, (ii) detailed design and
(i7i) final design. Figure 1.1 shows the details of activities for both design and
analysis for each of the three stages. The finite element analyses (FEA) that

accompany each design stage are: (i) preliminary design (PD) analysis, (i) detailed

Preliminary Design Detailed Design Final Design

\ | | —
\ \ \ -1

Time

Design Activities

Design Requirements

Environment Definition Environment Refinement

Component Sizing

Component Optimization
Manufacture Prototype
Test Prototype

Component Refinement
Manufacture Final Design
Test Final Design

Release to Production

Analysis Activities

Build PD FEM
FEA of PD FEM

PD FEM to DD FEM
FEA of DD FEM

Model Validation
(ideally done here)

DD to FD FEM (optional)
FEA of FD FEM (optional)

Model Validation
(usually done here)

Figure 1.1: Structural Dynamic Design
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design (DD) analysis and (iii) final design (FD) analysis for which there are three
corresponding FE models.

The design activities generally precede the analysis activities, since the design
generates input data for the analysis. As a particular design progresses through
the three stages, the analyses generally progress as well with the FE model be-
ing modified to incorporate any environmental or design changes that have been
made. At the end of the detailed design stage the design and corresponding FE
model are usually considered to be ”final”. Accordingly, the design geometry and
corresponding FE model are deemed unchangeable or ”frozen” so that the design
may be manufactured to the final specifications. This is necessary since in general
it may take from a few weeks to several months to manufacture the design de-
pending on many factors—some of which are: the complexity of the geometry; the
ability to form the material; and the manufacturing method(s) (machine, forge,
weld, braze or cast). With the design frozen, the final design stage is in general for
the manufacture and release to production of the design. However, occasionally
refinements are made to the design at this stage in order to address any unforeseen
issues that arise from either analysis or manufacturing. The final design stage is
also used to trouble-shoot any unforeseen vibration problems that are discovered
during development testing of the design. Accordingly, the design may be changed
at this stage to alleviate such undesirable vibration problems.

The validation of the FE model is ideally done in the detailed design stage
but it is often not performed until the final design stage due to the significant
amount of time required to manufacture the design which is necessary to furnish
the required test data. Performing the model validation this late in the design
process significantly limits the benefit of using a validated model to guide the
design away from potential vibration problems. Furthermore, once the design has
been manufactured, making design changes may be very expensive to implement
and may cause significant delay in the release of the design to production. For these

reasons, a new strategy to improve the model validation process is warranted.

3
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1.2 Finite Element Model Validation

The ability to perform vibration analysis of complex industrial structures using
finite element analysis (FEA) has led to a critical role for the finite element (FE)
model in the design process of such structures. The recent growth in the capabilities
of FEA has led to the replacement of a small percentage of vibration testing with
FEA. However, the requirement remains that critical components must be shown,
by test, to be acceptable from a vibration standpoint. Furthermore, before FE
models for such components can be used to assess design modifications, they must
first be validated using test data.

The validation of an FE model for vibration analyses has proven to be a sig-
nificant contributor to cost reduction of vibration testing, since once validation is
achieved the FE model may be used to avoid further costly vibration tests. In fact,
often the first step in a field failure investigation is to access the integrity of the
FE model used for the design against all the available vibration data. Although
this is not a rigorous validation of the FE model, it is done to determine if another
test—usually a modal test—is necessary. This often proves inconclusive since the
data available is usually operational engine response data for a very limited number
of transducers. This renders the task of model validation very difficult since the
forcing functions in a running engine are largely unknown and difficult to simulate.
Further, trying to correlate frequency response functions (FRFs), or in this case
operating deflection shapes (ODSs), can be much more difficult than correlating
mode shapes due to the nature and amount of damping that must be assumed
for the analytical model and the frequency shifts between the test and analytical
responses. Accordingly, a modal test is usually required in order to validate the FE
model. Since the total expense for a combination of FE analyses and modal test(s)
is far less than that for a single "build and run the engine test”, the validation
of the FE model using modal test data is logically the preferred course of action.

After the FE model is validated it can then be used to guide the necessary design
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changes.
The complete model validation process consists of the tasks shown in Figure

1.2. The process begins with a design which can be either for a component or

:\ Build Test 3 Upper Path
Prototype |
77777777777777777777777777777777 | I |
Design Plan Test
Lower Path
FE Model Correlation OK |

Not OK

Detailed Design
Model

Figure 1.2: Model Validation

for an assembly of components. Ideally, the upper path of the process—build and
test—and the lower path—model, correlate and update—are performed in parallel.
However, it is often deemed too costly to build a prototype during the design cycle
and therefore the final design is used instead although this is usually available only
at the very end of the cycle. The test that is performed is generally a modal test,
as previously mentioned. The FE model that was used to guide the design is also
used to plan the modal test. This is referred to as "test planning” and involves the
selection of the transducer locations, the excitation locations and the suspension
locations. In the past, the test planning task was performed by an experienced
test engineer. However, recent research has automated test planning by providing
a computer program to assist the test engineer in much of the work [2, 3, 4].

Once the modal test has been completed, the degree of correlation between the
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FE model and the test data can be assessed. This is usually done using modal
data but can also be done using FRFs (see Chapter 5). Depending on the degree
of correlation between the FE model and the test data, the FE model may need
to be changed or updated in order to improve the correlation. Although this
may be done manually, a significant amount of research has been done to develop
automated model updating procedures [5, 6].

In the past decade or so, there has been a significant amount of research focused
on the individual model validation procedures of modal testing, test planning and
model updating. Therefore, the focus of the research presented here is on improving
the overall model validation strategy and process as well as the tasks within the

process for modelling and correlation.

1.3 The Essential Problem with the Model
Validation Process in Practice

The problem with the conventional model validation process is that often the build
and modal test tasks require such a significant amount of the design cycle time that
the final design is manufactured prior to the first opportunity to perform the model
correlation and updating tasks. In such circumstances, the knowledge acquired
from updating (in the form of the areas of weakness in the model) comes so late in
the process that it is often not used to help improve the FE models or FE modelling
techniques. Furthermore, there is no way of knowing before manufacturing the
design how accurately the initial FE model, which was used to assess and to guide
the design, really represented the actual vibration characteristics of the physical
structure. The initial FE model might, in fact, be a poor representation of the
physical structure and therefore might provide misleading information about the
potential for in-service vibration problems. Worse, the ability to assess risk for

vibration, which is a major goal for flight-worthy structures, might be significantly
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and adversely affected. Because of the significant amount of time consumed in
building the hardware, it is often the case that only when vibration problems arise
during final design testing can the FE model correlation and updating tasks be
completed. The validated FE model is then used to help determine the necessary
design modifications so that the vibration problem is alleviated.

There is a clear need for a new model validation strategy or process which will
allow for the completion of the FE model correlation and updating tasks within
the design cycle time, thereby providing a validated model in time for it to have an
impact on the design of the physical structure. In this way, a design with minimal

risk for vibration may be obtained.

1.4 FE Modelling and Correlation

Two important tasks in the model validation process are (i) the creation of the
initial FE model and (ii) the process for determining how well it correlates with
measured data. The ability to improve or update the initial FE model is strongly
dependent on the effective completion of both of these tasks. The initial FE model
must at least be a reasonable representation of the physical structure: that is, it
must be able to predict modes close enough to the test modes so that the initial
correlation is sufficient to guide the updating process. Further, the correlation tools
must be capable of assessing the degree of correspondence between the analysis and
test modes despite the presence of noise and other errors inherent in the testing
process.

There has been a significant amount of knowledge gained over the past twenty
years or so on how to create an accurate FE model. However, the focus here is
on the specific area of how to model an assembly of two or more substructures
with the least number of DOF's necessary to predict the required number of modes
of the assembly accurately. Interest may be in the dynamics of either (i) one of

the components ,(ii) a portion of the assembly, or (7ii) the entire assembly. The



Chapter 1 Introduction

latter two cases will be affected by the "interface effect” which is the change in
character of the component modes after the components have been assembled. A
major problem is trying to determine which of the modes of each component are
important in defining the modes of the assembly. The problem areas common
to all three cases are (a) the interfaces or the joints between the structures and
(b) the modelling of complex geometric shapes. The difficulty with joints is in
trying to create a linear model that simulates both their stiffness and damping
characteristics. The complex geometric shapes pose the problem of determining
how best to model them as efficiently as possible. What is needed is a methodology
using existing modelling and reduction techniques that will, for any of the cases,
produce a practical size (least number of DOFSs) linear model with the proper
modal characteristics.

The ability to determine how well the FE model correlates with the test data is
a significant part of the model validation process. There has been, and continues
to be, a great deal of effort spent on model correlation. The current techniques
for assessing correlation can sometimes be misleading by indicating poor numerical
correlation when the modes visually appear to be identical. Further, there is a need
for a better way to correlate frequency response functions (FRFs) in the event that

the test data are too noisy to extract the mode shapes accurately.

1.5 Research Objectives

The overall objective of the research presented in this thesis is to improve the
model validation process so that the design of the structure may benefit from

using a validated FE model. The specific objectives for this research were:

(i) to develop a new strategy for model validation such that a validated model

can be obtained within the design cycle time,
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(ii) to develop techniques to model, reduce and simplify an assembly of structures
resulting in a model which is both adequate and practical for use in the design

cycle, and

(iii) to develop new correlation techniques to help overcome the aforementioned

shortcomings of the current techniques.

1.6 Thesis Overview

The next four chapters address the specific objectives in the order they were pre-
sented above. It is important to mention that Chapter 2 is much shorter than
Chapters 3, 4 and 5. This is because Chapter 2 presents the concept for the overall
improvement of the model validation process, whereas the latter chapters present
the detail to support the developments for specific tasks within the process. Chap-
ter 6 brings all the developments together to demonstrate them in a case study of
a real structure and Chapter 7 concludes the thesis.

Chapter 2 presents the proposed new strategy to improve the model valida-
tion process. The chapter begins with an overview of the tasks involved in the
conventional model validation process. Then, the proposed new strategy for im-
proving the model validation process—replacing the test data with a very detailed
FE model called a ”super-model”—is presented followed by a case study to demon-
strate the feasibility of the proposal. The chapter ends with general conclusions
about the advantages of the proposed new strategy.

Chapter 3 addresses basic finite element modelling methods. The chapter
begins with a general introduction to FE modelling followed by the classification
of engine structures and the different levels of models used. Next, a detailed
discussion is presented on the different type of elements, and their respective usage
with specific techniques presented for modelling with beam and shell elements.

This is followed by a comparison of four different model types for a generic turbine
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engine casing to illustrate the effects on the modal characteristics of the choice
of model type. The chapter ends with methods for modelling different structural
features of particular interest and some closing remarks.

Chapter 4 is concerned with the specific concepts involved in assembling mul-
tiple components to form a larger structure. The chapter begins with a general
introduction to the problems encountered for performing dynamic analysis of as-
semblies of components. Then the specific topics of modelling joints and the dy-
namic interaction of components—interface effects—are discussed in detail. Next,
a new physical model reduction technique is presented for application to each com-
ponent so that after the components are assembled a model of practical size is
obtained. The chapter ends with general conclusions about structural assemblies
and the new model reduction method presented.

Chapter 5 discusses the techniques used to determine how well the FE model
correlates with the test data. The chapter begins with a general introduction to
model correlation followed by a detailed review of the currently-available corre-
lation methods. Next, the details of correlating frequency response functions are
discussed and a new method for this is presented. Then the particular difficul-
ties encountered in performing correlation on the mode shapes for axisymmetric
structures are discussed followed by a presentation of two new methods to help
overcome these difficulties. The new correlation methods are demonstrated with
a case study of a real structure. The chapter ends with general conclusions about
the new correlation methods presented.

Chapter 6 presents a practical case study used to demonstrate the improve-
ments this research has made to the model validation process. The case study is
for an assembly of two real, relatively complex, adjacent engine casings. The study
begins with super-models for each casing individually and the two assembled to
demonstrate that all three models can reproduce the test data quite accurately.
The validated super-models are then used to show how the different features—

flange holes, scallops and casing holes affect the modal characteristics of the struc-
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ture. Next, the casing super-models are reduced to demonstrate the capability of
the proposed physical model reduction technique. The new correlation methods
introduced in Chapter 5 are used throughout the study to demonstrate their effec-
tiveness. The chapter ends with general conclusions about the effectiveness of the
new methods contributed by this research.

Chapter 7 begins with general conclusions about the research presented in
this thesis. Then a summary of the contributions of this research to the specific
area of model validation is presented. The thesis is concluded with suggestions for

future work followed by statements of closure.
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Chapter 2

New Strategy for Model
Validation

2.1 Introduction

The ability to validate an FE model of a structure—prove that the model pre-
dicts a selected number of modes accurately—has been used extensively for many
years in industry. However, this ability—model validation—is all too often used so
late in the design process that its effectiveness in guiding the design is significantly
limited. This is generally due to the fact that the time required to build or to man-
ufacture the physical structure is so long that there is no opportunity to validate
the structure until the final stage of the design process. Occasionally, a prototype
structure of a preliminary design may be built to validate critical components, but
only if a strong business case can be presented to justify the cost to the program.
This is because the preliminary design status of the prototype will not allow it to
be used in service and, also, significant short-cuts are usually used to manufac-
ture the prototype parts so that they can be done quickly and inexpensively while
retaining the primary characteristics that are to be demonstrated by the test.

There are two consequences of the placement of the validation of the FE model

12
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so late in the design process: (i) the models used for design may not be sufficiently
accurate to guide the design away from vibration problems and (7i) the lessons
learned from the validation process, in the form of modelling techniques, may not
be used to improve the modelling procedure. For these reasons, it is contended
that a new strategy for model validation is needed. Accordingly, a new strategy is

proposed in the following section of this thesis.

2.2 The Improved Model Validation Process

The proposed new strategy for model validation, which constitutes a central feature
in this thesis, is to replace the reference test data from a physical test structure
(against which the FE model is compared) with another FE model called a ”super-
model”, as shown in Figure 2.1. The test data for each component of the structure
is replaced with its "super-model” and then the model correlation and updating
tasks are performed using the two component FE models. The FE model of the
entire structure is obtained by assembling the component FE models that were
each validated using their corresponding ”super-model”. This approach removes
the need to build a physical test structure, and to plan and perform a modal test

from the validation process in the direct design cycle loop. This does not mean to

13
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Figure 2.1: Improved Model Validation Process

Yes
‘No _ | Component Component
Data ? - F=
Acquire/Build Test Existing
o Test
Component
ffffff >+ Plan Test
Geometry ;
Super ‘ . oK
FE Model Correlation
Not OK

Adjust Valid
Refine Component

Super Model

Figure 2.2: Super Model Component Validation

14



Chapter 2 New Strategy for Model Validation

suggest that modal testing can or should be omitted from the whole process, only
that it be removed from its present time-critical position in the model validation
process so that a validated FE model may be obtained within the design cycle
time. It is proposed that modal testing be used extensively outside the design
cycle loop of the model validation process, as shown in Figure 2.2, to help learn how
to model difficult features—joints and complex geometries—and then to use the
lessons learned to improve the "super-model”. This will enable better prediction of
the potential for in-service vibration problems before the design is finalised, thereby
allowing design changes to be implemented so that potential vibration problems
can be avoided.

The ability to replace the test data with a ”super-model” has significant ad-
vantages. Tests are often limited in frequency range and spatial resolution by the
capabilities of the test equipment used and the time available for testing. Also,
performing tests for multiple boundary conditions is not only time-consuming but
can also be very difficult due to the interaction of the test article with the test appa-
ratus that it is mounted on. With the capabilities of FE analysis and the currently-
available (and ever-increasing) computer power one can explore much greater fre-
quency ranges as well as multiple boundary conditions with relative ease. Further,
the model updating problem, which has historically been under-determined due to
the fact that the number of measured DOF's is necessarily relatively small when
compared with the number of analysis DOFs, will now be over-determined because
the number of (pseudo) measured DOFs can be very large when compared with

the number of analysis DOFs [5].

2.3 Replacing Test Data with a Super Model

In order to be able to replace the test data—mnatural frequencies and mode shapes—
with those from the eigensolution of a super-model, it must be shown that a super-

model can reproduce or correlate with the test data with sufficient accuracy. For
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the purpose of this exercise, ”sufficient accuracy”, for all the modes to be included,
is defined as natural frequency differences of less than 3 % and MAC values
greater than 0.9.

Consider the cross-section geometry for the turbine casing shown in Fig. 2.3.
The figure shows that the section of the casing is conical with forward and aft
flanges, both of which have bolt holes for attaching to adjacent casings. Two
important features to note are the additional bolt holes on the inner side of the
casing. The first hole is a short distance aft of the forward flange and the second
hole is just forward of the aft flange. The areas around both bolt holes are scalloped
in the circumferential direction, as shown in Figure 2.4, which is a view looking aft
to forward down the engine axis of a circumferential section of the casing. Similarly,
Figure 2.5 is a view looking forward to aft of a circumferential section of the casing.
The flange holes for the aft and forward flanges are shown in Figure 2.4 and Figure
2.5 respectively. The case studies in Chapter 6 will show that these features—bolt

holes and scallops—can be very important to obtaining good correlation.
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<—— View A

View B ——>

Engine Aft ———>

Figure 2.3: Cross-section of Turbine Engine Casing

Figure 2.5: View B of the Bolt Holes for the Forward Flange

The test data (provided by Rolls-Royce) for this casing were taken for the free-
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free condition and consisted of 18 measurements of radial accelerations equally-
spaced about the circumference at 2 axial locations (near the forward and aft
flanges). The test frequency range was between 0 and 700 Hertz for which the
modal analysis produced 9 modes.

The cross-section of the initial FE model for the turbine casing is shown in
Figure 2.6. The model was generated from the design drawings using the nominal

dimensions. The cross-section model consisted of 124 nodes and 69 elements which

Figure 2.6: Cross-section of Initial FE Model for the Turbine Engine Casing

was then spun about the axis of symmetry with 216 elements in the circumferential
direction. The significant number of elements in the circumferential direction were
necessary in order to model the bolt holes and scallops. The result was the 3-D,
8-noded, hexahedron solid model with 26,784 nodes, 14,904 elements and 80,352
DOF's shown in Figure 2.7. The commercial program MSC/NASTRAN was used
to obtain the free-free natural frequencies and mode shapes for the first 20 modes.

The correlation between the test data and the analysis was assessed using the
modal assurance criterion (MAC) but with a new way of simultaneously displaying

the frequency correspondence and mode shape correlation. The new method is
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Figure 2.7: Initial FE Model for the Turbine Engine Casing

called the frequency-scaled MAC (FMAC) and is presented and discussed in detail
in Chapter 5. The FMAC is obtained by plotting circles whose diameters are
proportional to the MAC values. This is done for both the experimental auto-
MAC and the MAC matrices which are overlaid on the same plot using black and
red circles respectively. The FMAC in this case is plotted with the percentage
frequency difference between analysis and test on the y axis and the experimental
mode number on the x axis. In this way the difference between the size of the
circles for the auto-MAC (perfect MAC=1) and the MAC provides a visual scale
to assess the mode shape correlation and the percentage frequency difference (on
the y axis) shows the degree of frequency correspondence.

The correlation for the initial FE model for the turbine casing is shown by the
FMAC plot in Figure 2.8. The experimental auto-MAC is shown by the black
circles and the MAC is shown by the red circles. The correlation is seen to be very

good with MAC values very close to 1.0 and frequency differences between about
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+1.5% and +5.5% for all 9 of the experimental modes. It is important to mention
the consistency of the frequency differences with about a 2 % variation about an

average at +3.5%.
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Figure 2.8: FMAC for Initial Turbine Engine Casing Model

Although the correlation for the initial FE model was very good, the goal of
3% for natural frequency differences was not met for all modes. Further, it is
common practice to check the convergence of the FE model by refining the model—
by increasing the number of nodes and elements—while holding the geometry and
material properties constant. Accordingly, the initial cross-section FE model mesh
was refined, as shown in Figure 2.9, increasing the number of nodes and elements
in the cross-section to 238 and 163, respectively.
The cross-section model was again spun about the axis of symmetry with 216

elements in the circumferential direction. The resulting 3-D, 8-noded, solid model
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is shown in Figure 2.10 with 51,408 nodes, 35,208 elements and 154,224 DOFs.

Figure 2.9: Cross-section of Refined FE Model for the Turbine Engine Casing

Figure 2.10: Refined FE Model for the Turbine Engine Casing
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The correlation for the refined FE model for the turbine casing is shown by the
FMAC plot in Figure 2.11. The experimental auto-MAC is shown by the black
circles and the MAC for the refined FE model is shown by the red circles. The
correlation is seen to be excellent with MAC values very close to 1.0 and natural
frequency differences between about 0% and +2.5% for all 9 of the experimental
modes. Note again the consistency of the natural frequency differences with about

a 1.25 % variation about an average at +1.25%.
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Figure 2.11: FMAC for Refined Turbine Engine Casing Model

In order to show the convergence of the model, the FMAC for the initial model
and the refined model were plotted on the same plot as shown in Figure 2.12. The
experimental auto-MAC is shown by the black circles, the MAC for the initial FE
model is shown by the red circles and the MAC for the refined FE model is shown

by the blue circles. The convergence is shown to be very good with decreases in
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frequency differences from between about 1.5% for modes 3, 5 and 8 and 3.5% for

mode 2 while the MAC values remained unchanged.
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Figure 2.12: FMAC for Initial and Refined Turbine Engine Casing Model

2.4 Conclusions

In the case study presented here it has been shown that a very detailed solid element
FE model called a ”super-model” can match the test data from a physical structure
with excellent accuracy. The consistency of the natural frequency differences is
attributed to the model containing all the pertinent features of the structure, such
as bolt holes and scallops, and that the FE mesh was of adequate density. Further,
the actual physical geometry must have been within reasonable tolerances of the

nominal dimensions that were used to create the FE model in order to obtain the
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excellent correlation that was shown. This is important since it must be possible to
produce an accurate super-model using only the design dimensions and without the
aid of the physical structure. This is a necessary condition for the new validation
strategy—replacing the test data with a super-model—to be successful.

In order to maximize the benefit from using a super-model, a review of some
basic FE modelling methods will be undertaken to help determine where improve-

ments to the super-model may be achieved.
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Chapter 3

Finite Element Modelling
Methods

3.1 Introduction

The topic of finite element (FE) modelling methods is quite encompassing. How-
ever, the focus here is on the methods used to represent the geometry of a structure
using finite elements for linear vibration analysis. The approximate methods cur-
rently used to model the various complex geometric shapes that exist in industrial
structures may eventually become obsolete—in particular for detailed design anal-
ysis. This, it is envisaged, will happen when the available computer power reaches
the necessary level such that the complex geometric features may be modelled to a
much higher degree of accuracy than is currently possible. The current trend is to
use tetrahedron elements and commercially-available automated mesh-generating
software to construct three dimensional (3-D) FE models of components [7, 8].
However, current computer power is not yet generally adequate to model, for ex-
ample, an entire gas turbine engine by assembling numerous of these very detailed
component models. Further, for preliminary design models, where the details and

features have not yet been designed, an approximate model is considered to be
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more appropriate. Accordingly, there is still a need for approximate modelling
techniques and most likely will be for an estimated five years or so.

With the wealth of finite element modelling that has been performed in the past
two to three decades, one might expect there to be a significant amount of literature
available on FE modelling. However, the ability to generate an accurate FE model
using the smallest number of degrees of freedom (DOFs) is generally considered
a competitive advantage and therefore the techniques used to accomplish the feat
are usually kept within the company that developed them. Accordingly, there is
very little literature available on efficient geometric modelling techniques.

The following sections present the general steps required for the modelling
process in a somewhat chronological order. While the actual order may vary for a
given situation, it is important to focus on the decisions that are required at each

step towards the goal of obtaining a sufficiently accurate and robust FE model.

3.2 Classification of a Structure

The classification of a structure is usually done by determining: (1) how critical
it is to the overall function of the system and (2) the intended function of the
structure within the system. The type of FE model that is to be created and the
amount of detail to use in the model depends on both of these.

The desire to model every component in great detail is usually precluded by
the finite amount of time available for the design process. Consequently, each
component must first be ranked according to how critical it is to the overall function
of the system. Accordingly, the most critical components are modelled in the most
detail and the least critical components in the least detail, thereby making optimal
use of the time available during the design cycle.

The characteristicsc—mesh density and type of element—of an FE model have
a strong dependence on the structure’s function. For example, one would not use

the same mesh density for both a compressor fan blade and an engine casing.
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This is because fan blades usually have a significant amount of twist and thickness
variation requiring a large number of elements in both the radial and chordwise
directions whereas casings are usually cylindrical with modest variations in dimen-
sional features. Further, one would not necessarily use the same element type for
both a compressor disk and an engine casing. This is because the relatively thick
disk is better represented using solid elements whereas the relatively thin casing is
better represented using shell elements, [9], page 398.

Accordingly, classifying a structure is an important first step in the modelling
process and helps to ensure that the most critical components get the most mod-
elling attention and that an FE model consistent with the intended function of the

structure is generated.

3.3 Different Model Levels

The model level refers to the amount of geometric detail represented in the FE
model; the mesh density or number of elements used; and, to a lesser degree, the
type of element used. The level of model that is required is usually dependent on the
level or type of analysis to be performed. Generally, there are three levels of analysis
that are performed—one for each stage of the design process: (i) preliminary design
(PD), (ii) detailed design (DD) and (iiz) final design (FD)—for which there are
three corresponding levels of model. As an example, consider the cross-section of

a simplified engine casing shown in Figure 3.1.

. J

Figure 3.1: Cross-section of Engine Casing

The first level of analysis is called ”preliminary design” (PD) and usually re-

quires a relatively coarse model that is used to make sure that the most fundamental
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modes of the structure are within the desired frequency range. The coarseness of
the PD model also serves the need for rapid turn around of design and analysis
iterations so that an acceptable preliminary design can be obtained rapidly [10].
At this analysis level the element type is often selected to support rapid model
generation. For example, shell elements may be used instead of solid elements
to represent the engine casing. Figure 3.2 shows what a cross-section of a solid-
element PD model might look like for the simplified engine casing shown in Figure
3.1. Note the absence of the fillets at both the front and rear flanges as well as
the omission of the stiffening ring near the centre of the case. The absence of the
aforementioned features may be because they had not been defined at this stage
of the design or because they were deemed to have a small impact on the modal
characteristics of the structure and therefore a saving in modelling time could be

gained.

.

Figure 3.2: Preliminary Design FE Model

The second level of analysis is called ”detailed design” (DD) and generally re-
quires a more detailed model than the PD analysis and may thus include additional
physical features that were omitted from the PD model. The DD model is generally
the one used to confirm that the physical part meets the vibration design criteria
and therefore the part may be released to production. For this reason the DD
model must be of sufficient detail to be able to predict accurately all the modes
within the desired frequency range. Figure 3.3 shows what a cross-section of a
solid-element DD model might look like for the simplified engine casing. Note that
both the front and rear flange fillets are included as well as the stiffening ring near
the centre of the case. There is also a general increase in mesh density compared

with that of the PD model.
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Figure 3.3: Detailed Design FE Model

The third level of analysis is called the ”final design” (FD) or is sometimes
referred to as the ”problem solving” analysis level. This analysis type is usually
only used for in-service vibration problems or to solve particularly difficult cases
that have a known history of requiring a very fine and detailed model. Figure 3.4
shows what a cross-section of a solid-element FD model might look like for the
engine casing. Note the greater detail in all the fillet regions as well as a significant
increase in mesh density when compared with the DD model. Because of the size
of the FD model, it usually requires significant computation time and therefore
is precluded from use as a detailed design model. The FD model may be very
similar to the proposed ”super-model” but with two significant differences: (1) the
”super-model” will be generated in the DD stage of the design so that it can be
used to validate the DD model and (2) the ”"super-model” will include the lessons
learned from test correlation of numerous structures (and thus might be termed a

”smart model”).

Figure 3.4: Final Design FE Model

3.4 Basic Finite Element Types and Usage

The finite element method has been the subject of numerous papers, books and
other publications for many years. Accordingly, there is substantial literature

available on the many different element types [9, 11, 12, 13]. The focus here is

29



Chapter 3 Finite Element Modelling Methods

on the basic types of 3-D structural elements and how they are used in practice
to represent the different features of a structure. The intention is to present a
fundamental guide to basic 3-D structural element usage and to refer the reader
to the above references if a more rigorous presentation is desired.

The table in Figure 3.5 lists the basic 3-D finite element types used for struc-
tural dynamic design. The basic 3-D elements have been grouped here into the
general families—beams, plates/shells and solids. Although there are many ele-
ment formulations available within each group, the grouping was done to facilitate
a general discussion about the merits of the different element types.

Although there are significant differences between shell and plate elements, they
are grouped together here because they require very similar input information to
describe them to an FE program. The primary differences between them are that,
in general, the in-plane and bending displacements for plates are considered to
be mutually independent whereas for shells they are considered to be coupled.
Further, the geometry of a plate is flat whereas shells can be either curved or flat,
[9], pages 329-331. Although not entirely correct it is relatively common practice for
plate elements to be referred to as shells. Accordingly, from here on no distinction
between plate and shell elements will be made and the term shell we be used to

indicate either.
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Basic 3-D Finite Element Types
Type Nodes/DOFs Form
Beam 2 nodes @ 6 DOFs ®e— 0
Plate/Shell 3 nodes @ 6 DOFs
Triangle 6 nodes @ 6 DOFs
Plate/Shell 4 nodes @ 5 DOFs ﬁ
Quad 8 nodes @ 5 DOFs
Solid 8 nodes @ 3 DOFs @
Hexahedron 20 nodes @ 3 DOFs
Solid 4 nodes @ 3 DOFs
Tetrahedron 10 nodes @ 3 DOFs

Figure 3.5: Basic 3-D Structural Finite Element Types
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3.4.1 The Beam Element

The beam element, shown in Figure 3.6, is used to represent features that have
one dominant dimension [14]. Some examples for using beams in gas turbine
applications are for bolts, shafts, reinforcing ribs for casings and flanges for casings

[15, 16].

X
lyy Section Properties
|zz
lyz

Figure 3.6: Beam Element Geometry Definition

The element geometry is specified by two nodes and a vector or third point that
is used to determine the major and minor axes of the beam. Each of the nodes has 6
DOFs—3 translations in the respective orthogonal axis directions and 3 rotations,
one about each orthogonal axis. Additionally, the area (A) and moments of inertia
(Ixx, Iyy, Izz, Iyz) for the beam cross-section are usually specified using the classical
equations for such properties [17]. In general, the properties can be different for
each end of the beam in order to model a tapered section. Also, the centroid of the
beam may be offset from the actual nodes that define each end, thereby providing

the user with more options for modelling complex geometries, [18], pages 511-514.

3.4.2 The Shell Element

The shell element, such as the 4-noded example shown in Figure 3.7, is used to

represent features that have one dimension that is much less than the other two. As
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the name implies the element is based on shell theory and is ideal for representing

shell-like structures such as thin plates, hollow airfoils and engine casings [19, 20].

Figure 3.7: 4-noded Shell Element Geometry Definition

The element geometry is specified by at least 3 apex nodes for a triangular or 4
corner nodes for a quadrilateral, while higher-order elements may have additional
nodes per edge and a node in the centre of the face for a total of 10 and 12 nodes
for the triangle and quad respectively. For the triangle, each node has 6 DOFs—3
translations in the respective orthogonal axis directions and 3 rotations, one about
each orthogonal axis. For the quad, each node has 5 DOFs—3 translations in
the respective orthogonal axis directions and 2 rotations, one about each of the
in-plane orthogonal axes. The third rotation, about the axis normal to the quad,
is generally not allowed. However, there are some formulations that support a
rotational DOF about the normal (sometimes called the drilling rotation), [21].
The shell thickness can either be specified for the entire element (constant for all
nodes) or for each node independently in order to model a tapered section. Also,
the element plane (and therefore the stiffness and inertia) may be offset in the
normal direction from the geometry plane defined by the nodes, thereby providing
the user with more options for modelling complex geometries, [18], pages 581-584.

Figure 3.8 shows how a casing with two flanges might be modelled by using
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4-noded shell elements for the casing and beam elements for the flanges, [12], page
294. The geometry is shown by the dashed lines and the FE model by the solid
lines with filled circles at the node points. Note that the beam elements use the
same nodes as the shell elements at the intersections of the casing with the flanges.
This is shown by the larger concentric circle around the filled circle for each shared
node. In the example shown this approach reduces the number of nodes by 6, and
therefore the number of DOFs by 30, compared with an all-shell element model.
Because of the reduced number of DOFs, this approach is often used for large

models such as a model for a whole turbine engine.
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Figure 3.8: Section of Engine Casing Modelled with Shells and Beams
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Figure 3.9 shows how the same casing might be modelled by using shell elements
for both casing and flanges. Again, the geometry is shown by the dashed lines and
the FE model by the solid lines with filled circles at the node points. Note the 6
extra nodes that are required to model the flanges resulting in 30 additional DOFs

as previously mentioned.

Flange (Shell) Thickness

Flange (Shell) Thickness

Casing (Shell) Thickness

® -- Shell Nodes
L> Z

Theta

Figure 3.9: Section of Engine Casing Modelled with Shells Only

3.4.3 The Solid Element

The solid elements, shown in Figure 3.5, are used to represent features that have
three dimensions of a similar order. However, with care they can be used to model
thin shell-like structures as well. The element geometry is specified by at least 4
apex nodes for a tetrahedron or 8 corner nodes for a hexahedron, while higher-order
elements may have additional nodes per edge and a node at the centre of each face
for a total of 10 and 32 nodes for the tetrahedron and hexahedron, respectively.

Each node has 3 DOFs for the 3 translations in the respective orthogonal axis
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directions, [11], pages 127-128.

Figure 3.10 shows how the example casing might be modelled by using 8-noded
hexahedron solid elements for both the casing and the flanges. In this figure, the
geometry is shown by the red-dashed lines and the FE model by both the solid
(visible) and dashed (hidden) black lines.

® -- Nodes (visible)
z O --Nodes (hidden)
Theta

Figure 3.10: Section of Engine Casing Modelled with Solids (hexahedron)

While the example shown here is for 8-noded hexahedron solid elements, the
recent trend is to use 4 or 10-noded tetrahedron elements for which there is com-
mercial software available for generating the mesh automatically.

Figure 3.11 shows how the example casing might be modelled by using a combi-
nation of 8-noded hexahedron solid elements for both the flanges and 4-noded shell
elements for the casing. This type of model is sometimes referred to as a hybrid
model [22]. The hybrid model requires the use of constraint elements to attach the
shell nodes of the casing to the face of the solid elements of the flanges [23, 24].
While this is not a trivial task there are special elements available in commercial
FEA programs such as MSC/NASTRAN, [18], pages 1065-1067 and ANSY'S, [25],

which help to generate the appropriate constraints with minimal user input.
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-- Solid Nodes (visible)
-- Solid Nodes (hidden)
-- Shell Nodes (visible)
-- Shell Nodes (hidden)

N
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Figure 3.11: Section of Engine Casing Modelled with Solids and Shells (Hybrid)
3.5 Modelling with Shells and Beams

There are a few subtle but relatively important modelling techniques that are
necessary for generating shell /beam and shell models with the maximum accuracy
possible. Most of the difficulties arise in structures that have sudden changes in
geometry such as flanges or junctions where two or more shell-like structures meet
[26]. For such structures it can be difficult to choose the proper shell thickness.
Likewise, for a shell/beam model it can be difficult to determine where it is best to
terminate the shell part of the model and how much of the structure to represent
with a beam.

Figure 3.12 shows the cross-section geometry for three basic shell junctions:
(1) L-shaped (flange), (2) T-shaped and (3) cross-shaped. Although most junc-
tions have fillets to provide a smooth transition between the mating parts, these
have been omitted since in general fillets cannot be adequately represented with
shell/beam or shell elements.

The first junction is L-shaped which is representative of most simple flanges.
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Thickness = t1
Thickness = t1 Thickness = t1
Thickness = t2 Thickness = t2
Thickness = t2 Thickness = 2 Thickness = t2
Thickness = t3
L-shaped (Flange) T-shaped Cross-shaped

Figure 3.12: Cross-section Geometry for Three Basic Junctions

The vertical flange has thickness t1 and the horizontal casing has thickness t2.
The second junction is T-shaped which could represent, say, a case stiffened by a
circumferential rib. The horizontal casing has thickness t2 and the vertical rib has
thickness t1. The third junction is cross-shaped which might represent a T-shaped
casing section with a circumferential rib stiffener. The vertical rib above the casing
has thickness t1, the horizontal casing has thickness t2 and the vertical rib below
the casing has thickness t3.

One way to obtain better insight into the aforementioned modelling concerns
is to consider how the FE analysis program interprets the geometry and thickness
data input by the user. The input data consists of the element geometry and
thickness, either constant for the element or at each node of the element allowing
for a tapered section. Specifying an element thickness is equivalent to specifying
the same thickness for each node of the element. The thickness is defined normal
to each node with half the thickness in the positive normal direction and half in
the negative normal direction. The goal is to obtain the proper stiffness and mass,
not just for each element, but for the entire model. Accordingly, a simple but
effective technique is to use the thicknesses and nodal normals to determine what
the geometry of the shell element would look like by converting a 2-D area to a 3-D
volume or in this case with cross-section models, a 1-D line into a 2-D area. By

determining that the total area or volume of all the elements and their respective
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locations are consistent with the geometry, it follows that the stiffness and mass
will also be consistent with the geometry.

The L-shaped junction was modelled with shells in the conventional way—by
placing nodes along the mean-line as shown in Figure 3.13. The geometry is shown
by the black lines and the shell FE model by the red lines with red circles at the
node locations. The problem is to determine what thickness to use at the node

where the two shell elements meet, shown by the larger green circle.

Thickness = t1 Thickness = t1
Thickness = t2 Thickness = t2
Shell Model Shell Area

Figure 3.13: Shell Fe Model and Corresponding Area for L-shaped Junction

A method that has often been used is to select different thicknesses for each
element at the common node. Accordingly, for the flange element the thickness
would be t1 and for the case element the thickness would be t2. The second diagram
in the Figure shows with blue dashed lines how these thickness choices would be
interpreted by the FE program. The blue dashed rectangle to the upper right of
the common node represents an overlap in material. However, the open rectangle
to the lower left of the common node represents missing material. Fortunately, in
this case the amount of material or area was identical and in practice both the
stiffness and mass would be correct (serendipitous). If a beam element was to
be used for the vertical flange instead of the shell element then the centroid and
section properties should be chosen to be consistent with the geometry from the
top of the flange to the common node (green circle).

Figure 3.14 shows the geometry and shell model for the T-shaped junction. In

this case the thickness needs to be determined for the node that is common to
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three elements with two different thicknesses—t1 for the vertical rib and t2 for the

horizontal casing. The common node is again shown by the larger green circle.

Thickness = t1 Thickness = t1 Thickness = t1

Thickness = t2 Thickness = t2 Thickness = t2 Thickness = t2 Thickness = t2 Thickness = t2

Shell Model Shell Area Corrected for Area
Figure 3.14: Shell Fe Models for T-shaped Junction

The selection of different thicknesses for each element at the common node
would give t1 for the vertical rib element, t2 for the left side horizontal casing
element and also t2 for the right side horizontal casing element. The FE program’s
interpretation of the thickness choices is shown by the blue dashed lines in the
second diagram in the Figure. The two blue dashed rectangles above the common
node represent an overlap in material or area. For this case both the stiffness and
mass would be over predicted. While one might think that the two effects would
cancel, resulting in accurate frequencies, in practice models such as these have
proven to be both too stiff and too heavy.

One solution to this over-prediction of stiffness and mass is shown in the third
diagram in Figure 3.14. The geometry of the vertical rib element has been adjusted
by replacing the common node with a new node shown by the large blue circle at
the top of the casing. The model adjustments were completed by connecting the
common node (green circle) to the new node (blue circle) with a rigid element. In
this way the overlap in material was removed and the correct stiffness and mass
were obtained. When using a beam element for the vertical rib instead of the shell
element the centroid and section properties should be chosen to be consistent with
the geometry from the top of the flange to the new node at the top of the casing

(blue circle).
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The geometry and shell FE model for the cross-shaped junction are shown in
Figure 3.15. The thickness for this case needs to be determined for the node that
is common to four elements, shown by the larger green circle, with three different
thicknesses—t1 for the vertical rib above the horizontal casing, t2 for both the left
and right sides of the horizontal casing and t3 for the vertical casing below the

horizontal casing.

Thickness = t1 Thickness = t1 Thickness = t1
Thickness = t2 Thickness = t2 Thickness = t2 Thickness = t2 Thickness = t2 Thickness = t2
Thickness = t3 Thickness = t3 Thickness = t3

Shell Model Shell Area Corrected for Area

Figure 3.15: Shell Fe Models for Cross-shaped Junction

Different thicknesses were again selected for each element at the common node
and were: t1 for the vertical rib element above the horizontal casing, t2 for both
elements of the horizontal casing and t3 for the vertical casing element below the
horizontal casing. The second diagram in the figure shows how these thickness
choices would be interpreted by the FE program with blue dashed lines. The four
blue dashed rectangles surrounding the common node represent an over-prediction
of both the stiffness and mass that in practice do not cancel each other, resulting
in a model that is both too stiff and too heavy.

The third diagram in Figure 3.15 shows a solution to the stiffness and mass over-
prediction again using rigid elements. The geometry of the vertical rib element
was again adjusted by replacing the common node with a new node shown by the
large blue circle at the top of the casing. Likewise, for the lower vertical casing,
the common node was replaced with a new node at the bottom of the horizontal
casing, also shown by a large blue circle. The common node (green circle) and the

two new nodes (blue circles) were then attached using rigid elements to complete
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the model adjustments. Accordingly, the overlap in material was removed and the
correct stiffness and mass were obtained. If a beam element was to be used for
the vertical rib above the casing instead of the shell element then the centroid and
section properties should be chosen to be consistent with the geometry from the
top of the vertical rib to the new node at the top of the case (blue circle).
Although the examples shown here were for rather simple shell junctions, it
is envisaged that the techniques are applicable to the far more complex junctions

found in real industrial structures.

3.6 Other Modelling Considerations

The selection of the element type—beam, shell or solid—to model a particular
structure is only part of the modelling process. The analyst must also select the
order of the element (number of nodes per element) and the mesh density. Further,
other issues may arise during modelling complex geometries—such as: unaccept-
able element distortions from large aspect ratios, skew or warp—that may require
the analyst to make choices. While automated mesh generators may in the near
future relieve the analyst from having to make some or most of these choices, cur-
rently they are necessary, in most cases, and in particular, for models used for
preliminary design. Accordingly, it is necessary to have a basic knowledge of how

these factors can affect the analytical solution.

3.6.1 Element Order

Most element types are based on an assumed displacement field for which the
displacement within the element is defined in terms of its nodal displacements
which are represented by polynomials, [13], page 72. The order of an element
is determined by the largest order term present in the polynomial. The table in

Figure 3.16 lists the order of the basic elements presented in Figure 3.5.
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In general the more nodes in the element, the higher the order of the polyno-
mial. However, there are at least two exceptions to this. For example, most beam
elements are based on one of the classic beam formulae such as Euler-Bernoulli [27]
or Timoshenko [28] and, although they may have only two nodes, they are capable
of cubic bending displacements but linear axial displacements. Further, a signifi-
cant amount of research has been focused on the low-order (3 and 4-noded) shell
elements in order to improve their (out-of-plane) bending properties to quadratic
order while keeping the number of nodes the same [19, 29]. The improvements are
usually obtained by using additional internal functions. One of the most success-
ful methods is a combination of assumed displacements at the element boundaries
with an assumed stress field within the element, [11], page 422. Formulations
such as these are referred to as mired for which an example is the QUAD4 in
MSC/NASTRAN, [18], pages 587-590. While mixed formulation, low-order, el-
ements can offer quadratic bending capability, their in-plane capability remains
linear. Accordingly, it may be necessary to use a fully quadratic element for struc-

tures where in-plane displacements are deemed important.
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Order of Basic 3-D Finite Element Types
Type Nodes/DOFs Order Form
Beam 2 nodes @ 6 DOFs Cubic o —©°
Plate/Shell 3 nodes @ 6 DOFs Linear *
Triangle 6 nodes @ 6 DOFs Quadratic
Plate/Shell 4 nodes @ 5 DOFs Linear * ﬁ.
Quad 8 nodes @ 5 DOFs Quadratic
Solid 8 nodes @ 3 DOFs Linear
Hexahedron | 20 nodes @ 3 DOFs Quadratic
Solid 4 nodes @ 3 DOFs Linear
Tetrahedron | 10 nodes @ 3 DOFs Quadratic
*some formulations, linear in-plane, quadratic in bending

Figure 3.16: Order of Basic 3-D Structural Finite Element Types
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Selecting the element order, for example, 4-noded instead of 8-noded shells or
8-noded solids instead of 20-noded, may seem obvious when trying to generate
a model with the least number of DOFs. However, choosing the lowest order
for each element type (the one with the least number of nodes and therefore the
least number of DOFs) may not be the best choice, depending on the element
formulation. For example, if one were to use a 4-noded shell element of general
formulation (not mixed), the order would be linear for both in-plane and bending.
In general linear elements have been found to be too stiff in bending and therefore
yield predicted natural frequencies that are considerably too high, [11], page 190.
Accordingly, elements with quadratic order, at least in bending for shells, are
usually preferred. This is substantiated, as previously mentioned, by the significant
amount of research focussed on improving the low-order shell element bending
capabilities so that quadratic order is obtained.

The proper selection of element order is also important for models that combine
different types of elements, for example: beams and shells or shells and solids. In
such cases one should choose elements of as close to the same order as possible.
For example, when combining beams with shells one should choose a shell element
that has at least a quadratic order in bending since the beam has cubic order in
bending. Otherwise, using a shell element with linear bending might restrict the
flexibility of the beam element providing an over-stiff (natural frequencies that are
too high) result. Likewise, when combining shells and solids, one should take care
to match the element orders. If a quadratic-order shell element is chosen, then a

quadratic solid element should be used.

3.6.2 Element Distortion

An ideal element is one that has equal dimensions along all edges and equal angles
at all apexes. For example, triangular shells should ideally be equilateral and

quadrilateral shells should be perfectly square. This can be extended to solids
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as well. However, the modelling of the various geometries that are inherent to
industrial structures rarely allows for the elements to be ideally shaped. The
distortion of elements can cause significant degradation to the accuracy of an FE
model, [11], pages 139-142.

There are four primary forms of element distortion: (1) large aspect ratio,
(2) in-plane skew, (3) out-of-plane warp and (/) excessively acute or obtuse apex
angles. Figure 3.17 shows the primary types of element distortions using the 4-

noded shell as an example.

Large Aspect Ratio In-Plane Skew Obtuse Apex

Inverted Obtuse Apex Acute Apex Out-of-Plane Warp

Figure 3.17: Primary Element Distortion Types for the 4-noded Shell

Fortunately most commercial FE programs provide checks for elements with
excessive distortion. The aspect ratio is found by determining the ratio of the
maximum and minimum lengths across the element. While a maximum aspect
ratio of about 7 is recommended in, [11], page 211, the author has successfully
used values as high as 10 in the models shown in Chapters 2 and 6, and for many

other models. The in-plane skew and excessively acute/obtuse apex angles are
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checked by determining that the angle for each apex is within a required range,
such as between 45 and 135 degrees for ANSYS [25] or less than 180 degrees for
MSC/NASTRAN, [18], page 583. Similarly, the nodes of each face for warped
elements are checked to make sure that they are within a certain tolerance of being
in the same plane. The different commercial FE programs will in general have
different threshold values for aspect ratio, apex angle and warpage but will usually
print warning messages if any of the thresholds are breached. However, for values
that are considered too large the solution may abort.

When modelling complex geometries in practice, there may be elements within
the model that exhibit a combination of the four basic types of distortion shown
in Figure 3.17. For such cases, and particularly for solid elements, a more rigorous
distortion check may be necessary. A distortion parameter (DP) is defined in, [11],
pages 141-142, that may be used for either shell or solid elements. The distortion
parameter calculation will yield DP values between -1.0 and 1.0 with DP=1.0
indicating no distortion. The DP may be zero or negative for excessive distortion

but is considered acceptable for values greater than 0.20.

3.6.3 Mesh Density

It is well documented that increasing the mesh density (number of elements per
unit area or volume) until the elements become infinitesimally small will produce
the real or correct solution. This is assured by the element being able to pass
what is called the patch test. For this test, a patch of elements is subjected
to a constant strain to determine if, after the elements become infinitesimally
small, the resulting stresses are exactly those that would be obtained from the
constitutive behavior of the material. Elements that pass the patch test, it is
argued, are guaranteed to converge to the real or correct solution [30]. Fortunately,
most elements available in commercial FE programs such as MSC/NASTRAN and

ANSYS are rigorously tested using the patch test as well as other tests to ensure
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their robustness and that they do converge to the correct solution. Accordingly, it
has become common practice to expect convergence and reliability of the elements
from the aforementioned commercial FE programs.

The selected mesh density will in general depend on two factors: (1) the ge-
ometry to be modelled and (2) the goal of the analysis, in terms of the natural
frequencies and mode shapes that are desired.

For the geometry it is important to determine what features are to be included
in the model, particularly if there are a large number of any one type. For example,
if for an engine casing there are 120 flange holes around the circumference that are
to be modelled then there must be at least 240 circumferential elements for square
(approximate) holes and about 3 to 5 times that many for round holes. Further, the
modelling of the flange holes may also dictate the mesh density in other directions
in the model due to the thresholds imposed for element aspect ratios and other
distortions.

The desired number of natural frequencies and mode shapes will also affect how
detailed a mesh is required. For example, if for an engine casing only the first few
modes of the second nodal diameter (2-D) family are desired then the mesh in the
circumferential direction can be much less dense than for say the first few modes
of the sixth nodal diameter (6-D) family. This is because the mode shapes for the
2-D modes are characterised by two sine waves around the circumference whereas
the 6-D mode shapes are characterised by six. Unfortunately, prior experience is

often needed to determine what is required from the analysis for a given structure.

3.7 Basic Finite Element Modelling

The capability to generate FE models quickly and accurately is still only available
for the most simple of structures. The desire to keep models as simple as possible
and the general design requirement for quick analysis times has led to the wide-

spread use of shell /beam or shell models for the design of large industrial structures.
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Further, for certain structures a hybrid model involving a combination of shells and
solids is often used. One example of this is for a bladed turbine disk for which the
disk is best modelled using solids and the blade is modelled using shells. However,
with the recent growth in computer power and the development of automated
meshing software, complete solid models are becoming more widely used for design.

In order to illustrate the different modelling methods, a generic turbine casing
was generated using similar dimensions to those of the real turbine casing shown
in Chapter 2. In this way, a direct comparison of the modelling methods could
be obtained without the effects of the features—flange holes, scallops, casing holes
and bosses—possibly causing misleading results. The effects of the features are
investigated in detail in section 3.8 (Basic Detail Feature Modelling).

Although automated mesh generation using triangle shells or tetrahedron solids
is becoming more widely used, a common practice in gas turbine companies for
models of axisymmetric or cyclically symmetric structures is to generate first a
2-D cross-section model, spin or replicate the cross-section model about the axis of
axisymmetry into a 3-D model and then add any asymmetric features. The process
of spinning or replicating a cross-section model to obtain a 3-D model in general
requires that elements from the quad shell or hexahedron families be used. Using
this approach, a node for a beam in the 2-D cross-section model becomes a ring of
beam nodes and elements in the 3-D model. Likewise, a 2-noded shell element in
2-D becomes a ring of 4-noded shell elements in 3-D and a 4-noded quad in 2-D
becomes a ring of 8-noded solids in 3-D. If higher-order elements are to be used,
the 4-noded shells or 8-noded solids can be subsequently converted to higher order
by adding mid-side nodes to each element.

In order to show more detail, only the 2-D cross-section of the geometry and
different models are shown. This is sufficient in this case since the structure being
considered is an idealised turbine casing which is perfectly axisymmetric. Accord-
ingly, each node and element in the 2-D cross-section models corresponds to a ring

of nodes or elements in the 3-D models.
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Figure 3.18 shows the cross-section of the geometry for the generic turbine
engine casing. The casing is seen to be conical (increasing radius from forward

to aft) with forward and aft flanges of different thicknesses and radii. The centre

Figure 3.18: Cross-section of Generic Turbine Engine Casing

casing section has a constant thickness and connects to tapered sections at both
its forward and aft ends.

The generic casing was modelled using the four element types—solids, hybrid,
shells and shells/beams—discussed in section 3.4. Although two element orders are
shown in Figure 3.16 for both shells and solids, the 4-noded quad and 20-noded
hexahedron, respectively, were chosen for the forthcoming example. This is because
MSC/NASTRAN was used for the FE analysis and therefore the mixed formulation
4-noded shell is of quadratic order in bending as is the 20-noded hexahedron solid.
Building on the excellent results shown in Chapter 2 for using a detailed solid
model to replace test data, the 20-noded solid model was used as the reference to
which the other three model types were compared.

The FMAC introduced in Chapter 2 and presented in detail in Chapter 5 will
again be used to compare the analytical predictions. The ability of the FMAC to
display multiple correlations on a single plot will be used to good effect to illustrate

the differences between the results from the four modelling methods.
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3.7.1 Solid-Element Model

The cross-section of the hexahedron solid-element model for the turbine casing is
shown in red in Figure 3.19. Since the solid model can represent the geometry

exactly, the solid black lines for the geometry are hidden from view.

Figure 3.19: Cross-section of Solid Model for Generic Turbine Engine Casing

The cross-section model with 4 nodes per element contained 34 nodes and
16 elements which was then spun about the axis of symmetry with 72 elements
in the circumferential direction. The 3-D, 8-noded, solid model was converted
to a 20-noded solid model (by adding mid-side nodes to all elements) that con-
tained 8,424 nodes, 1,152 elements and 25,272 DOFs. The commercial program
MSC/NASTRAN was used to obtain the free-free natural frequencies and mode

shapes for the first 20 modes.

3.7.2 Combined Shell and Solid-Element Model: Hybrid

The cross-section of the hybrid model for the turbine casing is shown in Figure 3.20.
The geometry is shown by the solid black lines and the FE model by the red lines.
The cross-section model contained 31 nodes and 16 elements which were then spun
about the axis of symmetry with 72 nodes and 72 elements in the circumferential

direction. The part of the model that was 8-noded solid hexahedrons (the flanges)
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Figure 3.20: Cross-section of Hybrid Model for Generic Turbine Engine Casing

was again converted to 20-noded solids (by adding mid-side nodes to all elements).
The result was a hybrid model, made of 4-noded shells and 20-noded solid hexa-
hedrons. The 4-noded shell part of the model had 504 nodes, 432 elements and
2,520 DOF's. The 20-noded solid part of the model had 5,760 nodes, 720 elements
and 17,280 DOFs. Accordingly, the model totals were 6,264 nodes, 1152 elements
and 19,800 DOFs. The shell element part of the model was attached to the solid
element part with constraint elements between the shell nodes which were coinci-
dent with the faces of solid elements. The commercial program MSC/NASTRAN
was used to determine the free-free natural frequencies and corresponding mode
shapes for the first 20 modes.

The correlation for the hybrid model compared to the reference 20-noded solid
model is shown in the FMAC plot in Figure 3.21. The black circles are for the
auto-MAC of the reference model and the red circles are for the hybrid model.
The figure shows excellent correlation between the hybrid and reference model
with MAC values very close to a perfect value of 1.0 and very consistent natural

frequency differences between about -1.5% and +1.0%.
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Figure 3.21: FMAC for Hybrid Model of Generic Turbine Engine Casing

3.7.3 Shell-Element Model

The cross-section of the shell model for the turbine casing is shown in Figure 3.22.
The cross-section model contained 15 nodes and 14 elements which were then spun
about the axis of symmetry with 72 nodes and 72 elements in the circumferential
direction. The result was a 4-noded shell element model with 1,080 nodes, 1,008
elements and 5,400 DOFs. The commercial program MSC/NASTRAN was used
to determine the free-free natural frequencies and corresponding mode shapes for

the first 20 modes.
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Figure 3.22: Cross-section of Shell Model for Generic Turbine Engine Casing

The correlation for both the shell and the hybrid models is shown in the FMAC
plot in Figure 3.23. The black circles are for the auto-MAC of the 20-noded solid

12 [mmmmmmmmm
]LO L Lt _________

% Natural Frequency Difference

Reference Mode #

Figure 3.23: FMAC for Shell and Hybrid Models of Generic Turbine Engine Casing

reference model, the red circles are for the hybrid model and the blue circles are
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for the shell model. The figure shows that the shell model did not correlate as well
as the hybrid model with MAC values very close to 1.0, but with natural frequency
differences between about -6% and +1%. However, except for the first two reference
modes, the natural frequency differences are relatively consistent with a variation

between about -2.5% and +1%.

3.7.4 Combined Beam and Shell-Element Model

The cross-section of the shell /beam model for the turbine casing is shown in Figure
3.24. The geometry is shown by the solid black lines and the FE model by the
red and blue lines. The beam elements for both the forward and aft flanges were
generated using nodes from the shell elements. The ability to offset the beam’s
centroid from the geometry was used. This is shown by the blue lines which connect
the beam centroid at the blue circle to the shell/beam shared node. In this way
the beam geometry is along the shell nodes but the stiffness and inertia properties

are determined about the centroid with a rigid link between the two.

Figure 3.24: Cross-section of Shell/Beam Model for Generic Turbine Engine Casing

The cross-section model contained 11 nodes and 12 elements which were then
spun about the axis of symmetry with 72 nodes and 72 elements in the circum-

ferential direction. The result was a 4-noded shell/beam element model with 792
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nodes, 864 elements and 4,104 DOFs. The commercial program MSC/NASTRAN
was used to determine the free-free natural frequencies and corresponding mode
shapes for the first 20 modes.

The correlation for the shell/beam, shell and hybrid models with the reference
solid model is shown in the FMAC plot in Figure 3.25. The black circles are for
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Figure 3.25: FMAC plot for Shell/Beam, Shell and Hybrid Models for Turbine
Engine Casing

the auto-MAC of the reference model, the red circles are for the hybrid model, the
blue circles are for the shell model and the green circles are for the shell/beam
model. The figure shows that the shell/beam model did not correlate (with the
solid model taken as reference) as well as either the shell or the hybrid models with
MAC values very close to 1.0, but with natural frequency differences of between
about -4% and +9%. Note how the natural frequency difference varies from mode

to mode by more than 9% in some cases, such as from mode 6 to mode 7.
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3.8 Basic Detail Feature Modelling

The modelling of the various geometric features present in industrial structures is
significantly more challenging when using shell and/or beam elements than when
using solid elements. This is because shell and beam elements cannot fully represent
certain 3-D geometries, thereby requiring the analyst to make approximations to
the geometry in the model configuration. In contrast, when using 3-D elements,
there are in general no such geometric approximations to be made. There are
occasions when using 3-D elements that one would use geometric approximations.
For example, if the structure contained one or more very small fillets which, if
modelled accurately, would yield an extremely large model for relatively little gain
in modal data accuracy.

Although shell and/or beam models can only approximate certain 3-D sections,
analysts have learned to use them with good success and have been doing so for
many years. This is particularly evident in the gas turbine engine companies for
whole engine models (WEMs) [31], the aircraft companies for airplane fuselage
models [32] and the automotive industry for models of automobile bodies [33].
Even with the extrapolated growth of computer power, it is envisaged that the
shell and/or beam models will remain in use for design at least until 2005, or
beyond.

The modelling of the basic features is presented for the non-rotating components
of gas turbine engines. However, it is envisaged that the techniques shown can be
generalized for application to many other industrial structures. For example, there
are flanges, holes and sometimes scallops at the perimeter of the different sections
of an automobile body so that it can be assembled. Likewise, an aircraft fuselage
consists of a long cylindrical casing with many circumferential reinforcing ribs that
are not unlike a flange or channel.

Five basic features were considered in this study: (1) flanges, (2) channels, (3)
holes, (/) scallops and (5) bosses. The first two features—flanges and channels—
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were modelled using three of the four modelling methods—solids, shells and shells/beams—
demonstrated in section 3.7. The last three features—scallops, holes and bosses—
were modelled using shells and solids only, since beam elements cannot adequately
represent such features. The hybrid method was omitted because it is generally
used to characterise structures in which the features are modelled with solids and
the rest of the structure with shells. The basic feature models may be combined to
obtain more complex models—for example: bosses with holes, a channel with holes
or a scalloped flange with holes. While the following sections present the modelling
techniques for the different features, a numerical study on how the different features

effect the modal characteristics of a structure is presented in Chapter 6.

3.8.1 Flanges

Flanges are used to attach adjacent engine casings together which is usually done
by using bolts through holes in each of the mating flanges. Figure 3.26 shows the
cross-section for three basic types of flange geometry: (1) simple or straight, (2)
external spigot and (&) internal spigot. The dashed lines show the location of the
bolt holes.

\ N

Simple Flange External Spigot Internal Spigot

Figure 3.26: Cross-section of Geometry for Three Basic Flanges
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3.8.1.1 Solid-Element Models

The solid-element models for the cross-section of the three flange types are shown
in Figure 3.27. The geometry is shown in each case by the black lines and the
FE models by the red lines. The red circles for the nodes at the corners of each
element have been omitted since the corners are clearly visible. The element edges

that form the bolt hole are shown with red dashed lines.

Simple Flange External Spigot Internal Spigot
Figure 3.27: Solid FE Models for the Three Basic Flanges

The figure shows that the models include the fillet between the flange and the
casing. However, it can be seen that the model geometry is not perfect in that
only 5 nodes are used to represent the continuous fillet geometry. The meshes
are very uniform (nearly equal-sized elements) with low aspect ratios and minimal
distortion for all elements. With the mesh density used and the fillet included, the
models are more representative of a detailed design model than either a preliminary

design or a final design model.

3.8.1.2 Shell-Element Models

The shell models for the cross-sections of the three flange types are shown in Figure
3.28. The geometry is shown in each case by the black lines and the FE models by
the red and blue lines with red and blue circles for the node locations.

The figure shows that for the simple flange and external spigot cases the shell

model was generated by placing nodes along the mean-line of the flange and casing.
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Simple Flange External Spigot Internal Spigot
Figure 3.28: Shell FE Models for the Three Basic Flanges

The node or element thicknesses were selected by the geometric dimension normal
to the shell node or element. Note that for both models a node was placed at the
bolt hole centre in anticipation of connecting to an adjacent casing.

The shell model for the internal spigot was generated in a similar way, as shown
in Figure 3.28. However, the nodes for the flange, shown by the red circles, were
placed where the mean-line would be if the extra material for the internal spigot
were removed. The top three elements that form the part of the flange with the
extra material were offset to the correct mean-line of the flange which is shown by
the blue lines and circles. This approach allows for the correct spatial placement of
the stiffness and inertia for the flange. Further, if the nodes (red circles) were placed
at the correct mean-line of the flange (blue circles), then the element where the
flange meets the case would have a geometry which is not physically representative
of the true geometry. Note again that a node was placed at the bolt hole centre

for future connection to an adjacent casing.

3.8.1.3 Combined Beam and Shell-Element Models

Three different approaches were considered for modelling the three types of basic
flange using the shell/beam method. The primary differences between the three
approaches are: (i) where the node for the beam is located and (%) whether a

rigid element is required to attach the beam to the shell. However, they are math-
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ematically equivalent and the choice of one over the other is a matter of analyst
preference.

The shell /beam-element models for the cross-sections of the three flange types
are shown in Figure 3.29 for the first approach. The geometry is shown in each
case by the black lines and the FE models by the red and blue lines with circles at
the node locations. The location of the beam centroid is shown by the large blue
cross-hatched circle. In this approach, the beam element for the flange is generated
using a node from a shell element and the ability to offset the centroid of the beam
from the geometry is used. Accordingly, the beam geometry is at the shell node
but the stiffness and inertia properties are determined about the centroid with
an internal rigid link (supplied by the FE program as opposed to user-supplied)

between the two.

Beam Centroid (Offset)
Area, Ixx. Iyy. Izz. Iyz

s

Simple Flange External Spigot Internal Spigot

Figure 3.29: Shell/Beam FE Models for the Three Basic Flanges: Approach 1

For the second approach the shell /beam-element models for the cross-sections of
the three flange types are shown in Figure 3.30. The location of the beam centroid
is shown by the large blue cross-hatched circle and the nodes (shell or beam) are
shown by the red circles. This approach uses a distinct node for the beam element
located at the beam centroid which is attached to the appropriate shell node on
the engine casing using a rigid element. Accordingly, the beam geometry, stiffness

and inertia properties are defined at the node located at the beam centroid.
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(P Beam Centroid (Offset)
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Simple Flange External Spigot Internal Spigot

Figure 3.30: Shell/Beam FE Models for the Three Basic Flanges: Approach 2

The shell /beam-element models for the cross-sections of the three flange types
are shown in Figure 3.31 for the third approach. This approach uses a distinct
node for the beam element located at the bolt hole centre. The offset capability is
used so that the stiffness and inertia properties are defined at the beam centroid
while the geometry is at the node at the centre of the bolt circle. The FE program
supplies the internal rigid link between the beam centroid and the node at the bolt
hole centre, whereas the user supplies a rigid element to attach the beam node to

the appropriate shell node on the engine casing.

Beam Centroid (Offset)
Area, Ixx, lyy, lzz, Iyz

N

Simple Flange External Spigot Internal Spigot
Figure 3.31: Shell/Beam FE Models for the Three Basic Flanges: Approach 3

The third approach is preferred for modelling components of an assembly so
that nodes can be placed at the bolt holes for attaching to the adjacent casing.
This is important since if one of the first two methods were used the attachment

could not be made at the correct location which could produce misleading results.
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3.8.2 Channels

Some of the uses for channels are to stiffen casings, to hold a row of turbine vanes
in place and to provide a place to attach external structures. Figure 3.32 shows
the cross-section for three basic types of channel geometries: (1) simple channel,
(2) C or fish-mouth and () under-flange. The dashed lines show the location of
the bolt holes for the under-flange channel.

Simple Channel C or Fish-Mouth Under-Flange

Figure 3.32: Cross-sections of Geometry for Three Basic Channels

3.8.2.1 Solid-Element Models

The solid models for the cross-sections of the three channel types are shown in
Figure 3.33. The geometry is shown by the black lines and the FE models by the
red lines. The red circles for the nodes at the corners of each element have been
omitted since the corners are clearly visible. The element edges that form the bolt
hole for the under-flange channel are shown with red dashed lines.

The figure shows that the models include the larger fillets between the channels
and casings but that the smaller fillets have been omitted. However, the chamfers
or bevels have been modelled. The model geometry for the larger fillets is not
perfect in that only 3 nodes are used to represent them. The meshes are reasonably

uniform, except in the fillet regions, with low aspect ratios and minimal distortion
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Simple Channel C or Fish-Mouth Under-Flange
Figure 3.33: Solid FE Models for the Three Basic Channels

for all elements. With the mesh density used and the larger fillets included the
models are more representative of a detailed design than a preliminary design
model. However, they could also be used as a basis for a final design model. A
final design model that included the smaller fillets would demand a much finer

model and might be prohibitively expensive.

3.8.2.2 Shell-Element Models

The shell models for the cross-sections of the three channel types are shown in
Figure 3.34. The geometry is shown by the black lines and the FE models by the
red lines with red circles at the node locations.

The figure shows that the shell models were generated by placing nodes along
the mean-line of each channel and casing. The node or element thicknesses were
selected by the geometric dimension normal to the shell node or element. Note that
for the under-flange model a node was placed at the bolt hole centre in anticipation

of connecting to an adjacent casing.
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Simple Channel C or Fish-Mouth Under-Flange
Figure 3.34: Shell FE Models for the Three Basic Channels

3.8.2.3 Combined Beam and Shell-Element Models

The shell/beam-element models for the cross-sections of the three channel types
are shown in Figure 3.35. The geometry is shown by the black lines and the FE
models by the red and blue lines. The location of the beam centroid is shown by

the large blue cross-hatched circle and the shell nodes are shown by the red circles.

® Beam Centroid (Offset)
Area, Ixx. lyy. Izz, Iyz

Simple Channel C or Fish Mouth Under Flange
Figure 3.35: Shell/Beam FE Models for the Three Basic Channels

The casing part of the models were generated using shell elements by placing
nodes along the mean-line. The node or element thicknesses were selected by

the geometric dimension normal to the shell node or element. For the first two
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models—simple channel and C—the beam elements for the channels were generated
using a node from a shell element and the ability to offset the centroid of the beam
from the geometry. Accordingly, the beam geometry is at the shell node but the
stiffness and inertia properties are determined about the centroid with an internal
(supplied by the FE program as apposed to user supplied) rigid link between the
two. This was referred to as approach 1 in section 3.8.1.

The under-flange channel was modelled using a distinct node for the bolt hole
centre with a rigid element connection to the appropriate shell node. The centroid
was offset from the node at the bolt centre to the proper location. In this way the
connection to an adjacent casing can be made at the bolt hole or correct location.

This was referred to as approach 3 in section 3.8.1.

3.8.3 Scallops

The term scallop, as used here, refers to a structural feature that is discontinuous,
and which for gas turbine engines, is usually in the circumferential direction. There
are three primary uses for scallops: (1) to reduce weight, (2) to control motion such
as restricting mating parts from relative rotation and (3) for load transmission like
gear or spline teeth. Some basic scallop geometries are shown in Figure 3.36 with

both cross-section and axial (looking along the engine axis) views. The dashed
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Cross-section Axial View

Flange Geometry

o

Cross-section Axial View

Gear Geometry

Cross-section Axial View

Complex Geometry
Figure 3.36: Geometry for some Basic Scallops

lines in the cross-section views show the location of the scallops whereas the axial
views show the shape of the scallops in the circumferential direction.

Unless a very detailed solid model is being constructed, it is often the case
that scallops are omitted from the model. This is especially true for the case of
shell/beam-or shell-element models, since some scallops, such as the second and
third examples in the above figure, cannot be adequately represented. However, the
flange is relatively thin in one dimension compared with its other two dimensions,

as shown by the cross-section, and therefore may be adequately modelled using
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shell elements. The dimensions for the second and third examples are of similar
magnitude in all three directions and therefore solid elements should be used.
Accordingly, the first scallop example, for the flange, was modelled with shell
elements and the second and third examples were modelled with solid elements.
Instead of 3-D views of the 3-D models, which can inadvertently hide details, the
models will be shown in 2-D with both a cross-section and axial view like the
geometry was in Figure 3.36.

Figure 3.37 shows the 4-noded shell-element FE model for the scalloped flange.
The cross-section view shows that the model was generated in the conventional
way by selecting nodes and elements along the mean-line of the geometry. The
thicknesses were selected by determining the geometric dimension normal to the
shell at each node location (see section 3.5). The axial view shows how the cross-
section model was spun or replicated in the circumferential direction to represent

the geometry of the scallops.

Cross-section Axial View
Figure 3.37: Shell FE Model for the Scalloped Flange

The hexahedron solid FE model for the gear is shown in Figure 3.38. The cross-
section view shows that the fillets were modelled with 3 nodes and 2 elements which
is consistent with the level of detail for a detailed design model. The axial view
shows how the cross-section model was spun or replicated in the circumferential
direction to represent the geometry of the gear teeth or scallops. Note that includ-
ing the fillets required the teeth elements to be divided into two parts (axial view)
in order to keep the aspect ratios reasonable (less than 10 at the base of the fillet).
One could envisage that increasing the detail in the model of the fillet, to say 5

points, would lead to a much finer mesh in order to keep the aspect ratios of the
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Cross-section Axial View
Figure 3.38: Solid FE Model for the Gear

fillet elements below 10 or so.

Figure 3.39 shows the hexahedron solid FE model for the complex scallop shape.
The cross-section view shows that in this case the fillet was not modelled. The axial
view shows how the cross-section model was spun or replicated in the circumfer-

ential direction to represent the complex geometry of the scallops. The fillet was

Cross-section Axial View
Figure 3.39: Solid FE Model for the Complex Scallop

omitted because the complex shape of the scallop in the circumferential direction
would require an extremely fine mesh near the peak of each arch. However, with
the amount of detail for the scallops, this model would still be considered a detailed

design model.

3.8.4 Holes

Some of the many different uses for holes in structures are: (1) flange holes for
attaching to adjacent structures using bolts, (2) threaded or tapped holes in bosses
for mounting external components and (3) casing holes to allow internal access.
For gas turbine engines there are many applications for casing holes, some of which

are: (1) piping for fuel, oil or bleed air, (2) access to the flow-path for temperature
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and pressure sensors and (3) access to different parts of the engine to assess internal
damage using a small camera (borescope).

Figure 3.40 shows the geometry for some basic holes with both cross-section
and top (looking through the hole) views. The figure shows three basic hole types:
(1) a basic casing hole, (2) a counter-sunk or chamfered hole and (3) a tapped
hole for a bolt (with the threads omitted).

Basic Counter-sunk Tapped

Cross-section

Basic Counter-sunk Tapped
Top View

Figure 3.40: Geometry for some Basic Holes

As for the scallops, unless a very detailed solid model is being constructed, it
is often the case that holes are omitted from the model. This is especially the case
for shell/beam or shell models. If the holes are to be included in the model then
one must decide how much detail is required for each hole.

Figure 3.41 shows a top view of three models, using 4-noded elements, for a
basic casing hole with different mesh densities. The first mesh has 4 nodes around

the hole perimeter (square hole) and 8 total nodes, the second has 8 nodes around
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Figure 3.41: Three Mesh Densities for a Basic Hole

the hole perimeter with 16 total nodes and the third has 16 nodes around the hole
perimeter and 32 total nodes. In most cases a mesh like the second example will
suffice, even for a final design model, whereas a mesh like the third example is
rarely required for vibration analysis. If the holes are small compared with the
surrounding structure it is often found that a mesh like the first example (square
hole) will produce accurate modal data. This is because, as the holes become small
compared with the surrounding structure, the stiffness and mass effects become
more localised and therefore have less effect on the modes of the much larger
structure.

The second mesh density—8 nodes around the hole perimeter—was selected for
the models of each hole type. The basic casing hole was modelled with 4-noded
shell elements whereas the more complex shapes for both the conuter-sunk and
tapped holes required solid elements for which hexahedrons were chosen. In order
to show more detail, the 3-D models will be shown in 2-D with both a cross-section
and a top view like the geometry was in Figure 3.40.

Figure 3.42 shows the FE models for the three basic hole geometries. The
geometry is shown by the black lines and the FE models by the red lines. The
cross-section models for each hole geometry are shown at the top of the figure and

the top view of the models are shown at the bottom of the figure.
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Top View

Figure 3.42: FE Models for the Basic Holes

The symmetry of each geometry was used by first modelling the part of each
cross-section that is symmetric about the hole centre. This is shown at the top of
the Figure by the red lines for each hole geometry. The cross-section models were
then spun or replicated about their respective hole centres with 8 nodes and 8 ele-
ments around the hole perimeter. The resulting 3-D models are shown in red with
a top view at the bottom of the figure. Note that the hexahedron solid elements
for the bottom of the tapped hole are now wedge shaped (a hexahedron with two
coincident edges). The hexahedron element formulations in most commercial FE

programs accept wedge shaped elements as a special case.
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3.8.5 Bosses

Bosses are used to provide an interface to attach other components to a structure.
They provide three primary functions: (1) a receptive geometry for the mating
component, (2) a means of attachment (usually tapped bolt holes) and (3) suffi-
cient load carrying capacity for the mass of the component to be attached. For
these reasons bosses are usually about 3 to 5 times thicker than the structure
surrounding them.

Figure 3.43 shows both a cross-section view and a top view for two types of
basic bosses. The first is a conventional mount pad for attaching accessories and

the second is a basic pipe attachment.

T T T T

Mount Pad Piping

Cross-section

Mount Pad Piping
Top View

Figure 3.43: Two Types of Basic Bosses

It is often the case that bosses are omitted from the model, unless a very de-
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tailed solid model is being constructed. This is especially the case for shell /beam-
or shell-element models since bosses cannot, in general, be adequately represented.
However, for some bosses, like the first example in Figure 3.43, reasonable results
may be obtained using a shell model. Accordingly, the mount pad was modelled
with 4-noded shell elements whereas the more complex shape for the pipe attach-
ment required solid elements for which hexahedrons were chosen. The 3-D models
will be shown in 2-D with both a cross-section and a top view like the geometry
was in Figure 3.43.

Figure 3.44 shows the FE models for the two basic boss geometries. The left

= ! — FW%% L>

Mount Pad Piping

Cross-section

Mount Pad Piping
Top View

Figure 3.44: FE Models for Two Types of Basic Bosses

hand side of the figure shows that the 4-noded shell FE model for the mount pad

boss was generated with nodes along the mean-line of the casing, shown in red,
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and with offsets for the nodes corresponding to the boss, shown in blue. This
allows for the stiffness and mass to be defined at the proper centroid of the boss.
The thicknesses were selected in accordance with section 3.5—using the casing
dimension normal to the shell for the casing elements and boss dimension normal
to the shell for the boss elements. This model approximates the geometry by
ignoring the fillets and tapped holes.

The right hand side of Figure 3.44 shows a very detailed hexahedron solid model
for the piping boss which incorporates both the fillets, tapped holes and centre hole.
There were 3 nodes along the fillet radii, 8 nodes around the perimeter of the tapped
holes and 40 nodes around the centre hole perimeter. Note the significant number
of nodes and elements required to model the geometry of the various features.
The model contained 766 nodes and 512 elements of which 16 of the elements (at
the bottom of the tapped holes) were wedge shaped (a hexahedron solid with two
coincident edges). A typical application for say a combustor casing with 8 fuel
nozzles would require 8 bosses. Accordingly, using a boss model of this size, the
bosses alone would require 6,128 nodes and therefore 18,384 DOFs. The piping
boss model has sufficient detail to classify it as a final design model.

If a model with significantly less DOFs were required—say, for an assembly of
several components that was to include a reasonable model for the bosses—then an
approximate or coarse model like the one shown in Figure 3.45 could be generated.

In order to reduce the DOF's from the detailed model for the piping boss, the fillets

Cross-section Top View

Figure 3.45: Coarse FE Model for Piping Boss
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and tapped holes were omitted. However, the primary features—the elliptical boss
shape and the centre hole—were retained and modelled with 16 nodes around their
respective perimeters. The coarse model for the piping boss contained 128 nodes
whereas the detailed model contained 766 nodes, resulting in the coarse model
being about 17% of the size of the detailed model. The figure shows that the
primary aspects of the geometry—the elliptical boss shape and centre hole—are

still reasonably approximated with the reduced mesh.

3.9 Closing Remarks

The fundamentals of finite element modelling for structural dynamic design have
been described in a concise and somewhat chronological fashion with emphasis on
the practical aspects of modelling and particular relevance to a class of structure
found in gas turbines and other machines. At first glance, the number and com-
plexity of the tasks involved in obtaining a sufficiently accurate and robust FE
model may seem overwhelming. However, the majority of the tasks have evolved
to a state of at least moderate automation. Unfortunately, with the exception of
the commercially-available mesh generators, the automation developments remain
a protected competitive advantage within the respective companies.

The extensive presentation of approximate modelling methods is in no way
intended to contradict the emergence of the super-model concept, which it is en-
visaged will soon replace the detailed design model for at least a component. The
rapid evolution and lack of detail of the design available during the preliminary
design stage substantiates using an approximate model instead of a super-model
for this stage. Accordingly, the approximate modelling techniques were presented
to assist in obtaining both better preliminary design models and better models
for assemblies of components, which in general is a major goal for companies that
design structures for dynamic environments.

The comparison of the different model types—solid, hybrid, shell and shell /beam—
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for the generic turbine casing showed that the approximate models performed rea-
sonably well when compared with the reference or super-model. This is important
since it is a necessary condition that the approximate model and the reference or
super-model be within a certain threshold of each other in order to be able to
update the approximate model as proposed in Chapter 2. Further, the comparison
indicates the level of accuracy that may be expected from the different model types

when used for preliminary design analysis or for an assembly of component models.
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Chapter 4

Assemblies of Components

4.1 Introduction

The accurate modelling of a single component is just the beginning of the model
validation process, since the goal is, in general, to model an assembly of components
if not an entire system. The modelling of an assembly of components poses an
additional challenge to the analyst in how to model the interface between two
adjacent components. It is often the case that one can assemble two adjacent
component models that individually show good correlation but then obtain an
assembly model with relatively poor correlation [34]. For this reason a significant
amount of research has focused on the modelling of the interface or joint between
two adjacent components [35, 36].

The connection of two adjacent components by means of a joint changes the
modal character of both components by introducing additional mass and stiffness
to each component from the other component. In general, some of the individual
component modes may not be evident in the assembly modes and new modes that
do not correspond to any of the component modes, from either component, will
be encountered. This behaviour is referred to here as the ”interface effect” or the

effect the interface has on the component modes. This effect is important since the
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goal, as previously stated, is to predict the modes of an assembly of components
and therefore it may not be necessary to predict accurately every mode of each
component. It may be that only certain modes of each component need to be
predicted accurately in order that the modes of the assembly can be predicted
accurately.

The modes of each component which are important to the assembly modes are
of particular interest when a model reduction is being considered. The degrees of
freedom (DOFs) that are to be retained for each component may be selected based
on those component modes that are most important for the assembly. In this way
a more effective reduction can be obtained by excluding component modes that
are not, or at least much less, important. The DOF's that are to be retained have
fewer modes to cover and therefore will do a better job representing those modes.

The subsequent sections of this chapter present an overview of the basic joint
types found in gas turbine engine components and a review of some currently-
available modeling techniques. This is followed by a case study using two real
engine casings to illustrate the interface effect. For components or assemblies
of components that are considered too large to analyse with current computer
capabilities, a physical model reduction technique is proposed and demonstrated
using a simple flat plate. As in Chapters 2 and 3, the FMAC, which is presented
in detail in Chapter 5, is used to show the correlation for all the analyses either

between FE analysis and test data or two different FE analyses.
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4.2 Joints

The joint, or place where two structures are connected together, has been known
for many years to be a source of difficulty in modelling. This modelling difficulty
is characterized by obtaining good correlation for two adjacent structures with
data from individual modal tests and then subsequently obtaining poor correlation
with modal test data for the assembly. The interaction of two engine casings at
a joint is often non-linear due to the directional dependence of the stiffness from
the interaction of the two adjacent surfaces. This joint interaction, as shown in
Figure 4.1, is sometimes referred to as "heeling and toeing” because it simulates
the motion of a person’s foot during walking. The linear modelling of such joints
for detailed design analysis generally involves simplifying the connection by rigidly
joining the two faces together. This precludes taking any account of the ”"heeling
and toeing” effect as well as omitting the flexibility of the bolts that hold the
two surfaces together. Accordingly, this type of model is generally considered to

be overly stiff and may produce natural frequencies that are considered to be too

high.
] L L

Figure 4.1: Joint Cross-section, Heeling and Toeing

While more sophisticated linear joint models may be attempted, such as mod-
elling the bolts with either spring or beam elements, such models in general have
been shown to be overly soft and, consequently, may produce natural frequencies
that are considered to be too low. This is again due to the non-linear "heeling and

toeing” effect being excluded from the linear model.
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4.2.1 Basic Joint Types

The number and variety of joints used to connect adjacent components in industrial
structures is quite large. In keeping with the focus of this thesis, the types of joints
used to attach adjacent gas turbine engine components are considered here. From
this subset of joints, six basic types are shown in Figure 4.2: (a) basic flange, (b)
external spigot, (¢) internal spigot, (d) double internal spigot, (e) dog-leg and (f)
V-band.

The figure shows that the basic flange joint (a) is formed by two 90 degree
flanges, with identical bolt hole patterns, that are held together in the axial di-
rection by bolts through their respective holes. In some applications, the two
components may be aligned in the circumferential direction, relative to one an-
other, by using close-fitting dowels in the flange of one of the components and
corresponding holes in the flange of the other. Although the basic flange has the
simplest geometry, it is one of the most difficult to model accurately because with
only the bolts to hold the mating flanges together in the axial direction the mating

surfaces away from the bolts are free to engage in heeling and toeing.
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The external spigot joint is shown in the figure (b) to be similar to the basic
flange but with one of the flanges—the one on the right side in this example—
having overlapping material at the outside diameter (OD) of the other flange. In
this way the bolts through the respective holes of the two flanges hold them together
in the axial direction, while the flange on the right side holds the flange on the left
side on the same centre-line. As with the basic flange, the mating surfaces away
from the bolts are free to engage, however to a lesser degree than the basic flange.
Consequently, the external spigot poses less of a problem for modelling accurately
than the basic flange.

The figure shows that the internal spigot joint (c¢) is similar in concept to the
external spigot but with the overlapping material—in this case from the flange
on the left—at the inside diameter (ID) as opposed to the OD. Accordingly, the
left flange holds the right flange on the same centre-line while the bolts hold the
two flanges together in the axial direction. This is the easiest of the joint types
presented here to model accurately due to the fact that the combined restraints of
the bolts and the spigot prohibits the heeling and toeing of the ID of the mating
flanges. Consequently, the internal spigot can be modelled quite accurately by
rigidly connecting the two mating flanges as will be demonstrated in the case
study in Chapter 6.

The double internal spigot joint (d) can be seen in the figure to consist of two 90
degree flanges that are both mated to a third flange between them that has material
that overlaps both of the 90 degree flanges at their ID. With this arrangement the
double internal spigot holds all three flanges on the same centre-line while the bolts
hold all three flanges together in the axial direction. Like the internal spigot, the
double spigot combined with the bolts prohibits the heeling and toeing of both
the 90 degree flanges, thereby allowing rigid connections between the three mating
surfaces to be used to model the joint quite accurately.

The figure shows that the dog-leg joint (e) is formed, in this example, by a

flange on the left that is part of an upside-down V-shaped casing and an internal
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flange on the right that is part of a conical casing. With only the bolts to hold the
two flanges together, this type of joint is prone to heeling and toeing in a similar
manner to the basic flange. Accordingly, an accurate model is difficult to obtain
for the dog-leg joint.

The V-band joint is shown in the figure (f) to consist of an internal spigot but
with both the flanges having a taper in the radial direction. The V-band is formed
around the exterior of the two flanges so as to hold them together in the axial
direction while the spigot holds the two casings on the same centre-line. There
is a gap in the V-band in the circumferential direction that has an integral nut
on one side and an integral bolt on the other side. The joint can be tightened by
contracting the V-band by twisting the bolt into the nut which through the tapered
flanges will increase the clamp load between the two flanges in the axial direction.
This is the most difficult of the joint types presented here to model accurately due
to the interaction of the V-band with the two flanges. A mistake that is often made
is to ignore the V-band and treat the joint like an internal spigot. However, this
approach has been shown in general to be overly stiff and may produce natural
frequencies that are considered to be too high, thereby making it necessary to

include the V-band in the model.

4.2.2 Overview of Basic Joint Modelling Methods

The models for joints can be divided into several categories but, for the purpose
of a general discussion here, the following were selected: (1) linear, (2) non- linear
and (8) micro-detail. The first two categories—linear and non-linear—are defined
here as those which consider the macro modelling of the joint and, accordingly,
ignore the highly localised effects—material non-linearity and plasticity—of the
contacting surfaces. The micro-detail modelling of a joint is defined here as that
which attempts to include all physical effects of the interacting surfaces using a

very detailed, non-linear, contact model.
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The linear modelling of joints using springs or beams is the most common
approach for detailed design where the desire is to use linear analysis. In general,
such linear models attempt to approximate only the non-linear joint stiffness for
the computation of the undamped modal data and consequently the damping is
not considered. While a reasonable approximation to the non-linear behaviour of
a joint can be obtained with this approach, as shown in [37], in general it is only
possible for a limited number of modes. Another approach for a linear model is
to use generic elements in the form of stiffness matrices as in [38] or flexibility
matrices as in [39], where it is claimed that generic elements can be less complex
to specify compared with spring or beam elements. In order to improve the joint
parameters, model updating was used in [40, 41, 42] for a spring element joint
model and in [43] for a generic element joint model.

The desire to include the damping and/or non-linear stiffness characteristics
from the interaction of the mating surfaces is the goal behind the non-linear mod-
elling of joints. Due to the complexity of the task, it is often the case that as a first
step a non-linear static analysis of the joint is performed, as in [44, 45], in order to
first obtain an understanding of the joint stiffness. There are many approaches to
including the damping in the joint model but most of them are based on a lumped
Coulomb friction model with a combination of spring and damping elements as in
[46]. However, it is claimed in [47] that lumped Coulomb damping models can only
determine the global state of slip/stick and proposes a new method to help in the
understanding of the different slip/stick mechanisms in the contact area.

The micro-detail non-linear joint model takes the next step beyond the non-
linear model (as categorised here) by using a very detailed model of the contact
areas and by including other effects, such as bolt preload and surface finish, as in
[48]. Other models, like those in [39, 35|, have sufficient detail so as to include
the threads in both the bolt and nut, whereas, the material non-linearity of the

contacting surfaces is considered in [49].

85



Chapter 4 Assemblies of Components

4.2.3 Modelling Joints with Beam and Shell Element Flange
Models

If beam or shell (finite) elements are used to model the mating structures’ flanges,
the analyst must be careful in how the spatial separation or gap between the
respective flange FE nodes is modelled. Consider the basic flange joint shown in
Figure 4.3 (a) along with three modelling approaches (b, ¢, d) using, for example,
shell elements. The geometry is shown by the black lines and the FE model is

1

Basic Flange Joint Approach 1: Gap

S| NI | IN

C

Approach 2: Shift Approach 3: Offset
Figure 4.3: Basic Flange Joint Shell Models

shown by the red lines with red circles for the node locations.

The first approach, shown in the figure (b), is to connect the nodes across the

86



Chapter 4 Assemblies of Components

gap from the mating flanges rigidly that are at the centre-line of the bolt holes.
This is shown by the green line and green circles concentric with the corresponding
nodes to be attached. However, if this is done in all 6 DOFSs, the flanges may
experience significant rotational deflections due to the relative translation of the
two flanges which are separated by the distance across the gap. This introduces an
artificial local distortion in each flange that has been shown sometimes to produce
unexpected characteristics in the mode shapes and a scattering effect on the natural
frequencies. Accordingly, the rotational DOF's are sometimes removed in order to
alleviate this problem, leaving a joint model that no longer physically represents a
bolt and that has been shown to be overly soft (natural frequencies considered to
be too low).

A simple but very effective solution to the gap problem, shown in Figure 4.3
(c), is to displace or shift one of the structures in the axial direction so that the FE
nodes of the two mating flanges coincide. The corresponding nodes at the bolt hole
centre of each flange, again shown by the green circles, are then rigidly connected in
all 6 DOFs. This approach has been shown to be a marked improvement on the first
approach. However, for system models formed by assembling multiple component
models, the shifts may cause problems in other areas of the system model such as
interference with other attachments or misalignment of other interfaces.

The third approach uses the offset capability of the shell element shown by the
blue lines in Figure 4.3 (d). In this approach both the flanges have their FE nodes
physically located and coincident at the mating surface. The element neutral
axes for each flange are then offset to their respective mean-lines providing for
the proper specification of their mass and stiffness properties. The corresponding
nodes of each flange at the bolt centre-line are again rigidly connected in all 6
DOFs. This approach removes both the gap problem from the first approach and
the shift problem from the second approach, thereby yielding the best overall model
of the joint.
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4.3 Interface Effects

The effects of the interface on the dynamics of assembled components has been a
source of problems for many years. It is often the case that an assembly of two
independently validated components results in a model that has worse correlation
than either of the two components had individually. This, as discussed in the
previous section, can usually be attributed to the inadequacy of the joint model
since it is the only addition to the assembly model. Having already discussed the
modelling of the joints in some detail in the previous section, the focus here is on
illustrating the interface effect problem and developing a qualitative method for
assessing the effects on the component modes by the joining of the two component
models together.

The FMAC can be used to determine which modes of the component mod-
els correspond to which modes of the assembly model in both mode shape and
frequency. This is referred to as "mode tracking” and demonstrates a unique capa-
bility of the FMAC. While a form of "mode tracking” has been performed for years,
for example when tuning gas turbine compressor blade modes (by manual stiffness
adjustments to shift certain modes out of the operating speed range), in general it
has been done visually and for at most a few modes. However, the FMAC provides

for the quantitative tracking of several modes simultaneously.

4.3.1 Example of the Interface Effect Problem

In order to illustrate the interface effect problem, the turbine casing described in
Chapter 2 was used along with an adjacent (upstream) casing section to form an
assembly. For clarity, the casing from Chapter 2 is referred to here as the ”aft-
casing” and the adjacent (upstream) casing as the ”forward-casing”. The test data
for both casings separately were taken for free-free conditions and consisted of 18
measurements of radial accelerations equally-spaced about the circumference at 2

axial locations (near the forward and aft flanges). The test frequency range for the
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individual casings was between 0 and 700 Hertz for which modal analysis of the
measured FRFs produced 10 forward-casing modes and 9 aft-casing modes. The
assembly test data were taken in a similar manner but the two axial locations at
the mating flanges were replaced with a single location on the forward flange of the
aft-casing, thereby providing 3 axial locations. The frequency range for the modal
test of the assembly was also between 0 and 700 Hz for which the modal analysis
produced 20 modes. All of the test data were provided by Rolls-Royce.

The forward-casing was modelled in the same way as the aft-casing from Chap-
ter 2. The cross-section models consisted of 97 nodes, 49 elements and 124 nodes,
69 elements respectively. The 3-D models for both casings had 216 elements in the
circumferential direction in order to adequately model the different features (flange
holes and scallops). Accordingly, the forward-casing had 20,952 nodes, 10,584 ele-
ments and 62,856 DOF's whereas the aft-casing had 26,784 nodes, 14,904 elements
and 80,352 DOFs.

The cross-section solid element FE models and corresponding FMAC plots for
both the aft- and forward-turbine casings are shown in Figure 4.4 and Figure 4.5,
respectively. The FE model and corresponding FMAC plot shown in Figure 4.4

were previously shown in Chapter 2 as Figures 2.6 and 2.8, respectively.
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Cross-section of FE Model
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Figure 4.4: Cross-section FE Model and FMAC for Aft-turbine Casing
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Cross-section of FE Model
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Figure 4.4 shows that the correlation for the aft-casing is very good with MAC
values very close to 1.0 and natural frequency differences between about +1.5%
and +5.5% for all 9 of the experimental modes. Although the correlation for the
forward-casing, shown in Figure 4.5, is seen to be not as good as for the aft-casing,
it is considered to be good with MAC values for 6 of the first 7 experimental modes
in excess of 0.70 and natural frequency differences between about +1% and +3.5%.

The forward- and aft-casing solid FE models were attached at their common
interface to form a model of the assembly as shown in Figure 4.6. The forward-

casing is shown by the black lines and the aft-casing is shown by the red lines.

Figure 4.6: Cross-section FE Model for the Assembly
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The interface between the forward- and aft-casing cross-section FE models is
shown in detail in Figure 4.7. The forward-casing part is shown by the black lines
and the aft-casing part is shown by the blue lines. The nodes from the forward-

casing on the line of contact are coincident with the corresponding nodes from the

Bolt Axis
Forward S Aft
Casing Casing

Figure 4.7: Interface of the Forward and Aft-casing Cross-section FE Models

aft-casing. As a first approach to a joint model, the nodes from each component

corresponding to the bolt holes, shown by the red circles, were rigidly attached.
The results for applying this first approach for the joint model—attaching at

the bolt holes only—to the assembly model are shown in Figure 4.8. The figure
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Figure 4.8: FMAC for Assembly using Bolt Only Joint Model

shows that the overall correlation is not very good and is much worse than either of
the components individually. Although the correlation for the first 6 experimental
modes is considered very good with MAC values in excess of 0.80 and frequency
differences between -1.5% and +4.0%, the higher modes (7-20) are shown to have
very poor correlation. This is generally attributed to the inadequacy of the joint
model. Since the joint model only attached together the corresponding nodes at
the bolt holes, leaving the rest of the mating surface free, it is inferred from the
poor correlation that the rest of the interface is in reality engaged and not free.
In an attempt to improve the joint model, a second approach added a rigid
attachment between the coincident nodes from both components at the ID of the
mating flanges, as shown by the green circle in Figure 4.7, to the joint model from

the first approach. The results for this second joint model were compared with the
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first joint model as shown in Figure 4.9. The correlation results for the first and
second joint model approaches are shown by the red and blue circles, respectively.

The figure shows that by adding the attachment of the nodes at the ID of the
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Figure 4.9: FMAC for Assembly using Bolt and ID Joint Model

mating flanges the overall correlation improved significantly, especially in terms
of the natural frequency differences. Although the correlation was improved, the
lack of correlation for experimental modes 13 through 17 indicates that the joint
model remains deficient. However, the example clearly illustrates the interface
effect problem that has plagued analysts for many years and has spawned much

research.
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4.3.2 Mode Tracking

The development in the previous section of the two component FE models—
forward-casing and aft-casing—Ilends itself to further analysis. One such analysis
is to compare the analytical modes from the components with the experimental
modes of the assembly. This is done to gain an understanding of the effects that
assembling the two components have on each other and to determine which modes
of the component models correspond with which modes of the assembly in both
mode shape and frequency. This is referred to here as "mode tracking” as it is an
attempt to track the modes, using the FMAC, of each component by both their
shape and frequency to the modes of the assembly [50].

Figure 4.10 shows the FMAC plot that compares the analytical modes of each
of the components with the experimental modes of the assembly. The red circles
are for the forward-casing and the blue circles are for the aft-casing. The black
circles are for the auto-MAC of the experimental modes of the assembly. The
figure shows that nearly all the modes of the forward-casing have positive natural
frequency differences when compared with those of the assembly. This suggests that
the aft-casing had a softening effect on the forward-casing, resulting in a frequency
decrease for the assembly modes compared with the forward-casing. Likewise,
nearly all the modes of the aft-casing have negative frequency differences when
compared with the assembly modes. This implies that the forward-casing had a
stiffening effect on the aft-casing, resulting in a natural frequency increase for the
assembly modes when compared to the aft-casing.

It can also be seen from the figure that the first 4 assembly modes correspond
to modes of each component about equally, with positive frequency shifts for the
forward-casing and negative frequency shifts for the aft-casing as previously noted.
However, the aft-casing modes are seen to be dominant in modes 6 through 14 of
the assembly with the exception of mode 7. The assembly modes 12 and 13 are

shown to correspond very well with two modes of the aft-casing, while modes 15
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Figure 4.10: FMAC Comparing Component Analytical Modes to Experimental
Assembly Modes

and 16 are seen to have almost no correspondence to modes of either component.

4.4 Model Reduction

The current design analysis cycle poses a limit on the number of DOFs of the FE
model in terms of the time required for completion of the analysis. Furthermore,
current computer capability poses a limit on the maximum number of DOFs of
the FE model. Accordingly, the joining of multiple ”super-models” to form an
assembly may result in a model that is currently too large to analyse, thereby
making it necessary to reduce the component ”super-models” to a more practical

size before assembly.
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The model reduction methods are separated here into two groups: (1) matrix
and (2) physical. The matrix methods, as referred to here, are those which reduce
the physical system matrices—stiffness, mass and damping—to much smaller non-
physical matrices. Whereas the physical methods are those which reduce the FE
model of the system to a much smaller FE model but one that is a reasonable
approximation of the full model for a selected set of modes. A significant amount
of research has been documented for the matrix methods but very little has been
documented for the physical methods. Accordingly, the next section presents an
overview of the matrix model reduction methods followed by the introduction of a

new physical model reduction method.

4.4.1 Overview of Matrix Model Reduction Methods

The most common reduction method used in both industry and commercial FE pro-
grams is Guyan reduction (GR) (sometimes called Guyan/Irons) [51, 52]. Guyan
reduction is often referred to as ”static” reduction or condensation since it ignores
the inertia effects of omitted DOFs. If there are applied loads on any eliminated
DOFs, it is an approximate reduction of the stiffness matrix, otherwise it is an
exact reduction. In order to be able to apply loads to omitted DOFs the im-
proved reduced system (IRS) method was introduced as an enhancement to the
GR method [53]. Another improvement on the GR method is the extended Guyan
reduction (EGR) method which is claimed to decrease the errors in the eigenvec-
tors when compared with the GR method while not requiring any matrix inversions
[54]. The succession-level approximate reduction (SAR) method uses a recurrence
relation which has GR and IRS as its first and second levels, respectively, where
the third level, SAR, is claimed to be more accurate than the IRS method [55].
The extension of the IRS method by introducing an iterative algorithm is also
claimed to improve the accuracy when compared with the IRS method alone [56].

The dynamic reduction (DR) method has the advantage of explicitly including an
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approximation of the inertia effects but is more computationally intense than the
GR method and its derivatives [57, 58].

Another approach to model reduction is to use the system eigenvectors to re-
duce the system mass and stiffness matrices. Accordingly, such methods are called
"modal” methods for which the modal reduction (MR) method is the most common
[59]. The MR method is exact for the modes included in the reduction process.
The system equivalent reduction expansion process (SEREP) is identical to the
MR method for reduction but differs in how the expansion to the full set of DOF's
is performed (however, expansion is not the subject of concern here) [60]. The
MR and SEREP methods are claimed to be affected by mode truncation and, con-
sequently, less accurate than the complete mode-type reduction (CMR) method
which was developed to eliminate the mode truncation problem [61]. The obser-
vance of large off-diagonal terms during orthogonality checks of systems that have
been reduced using the MR method led to the development of the hybrid reduction
(HR) method [62]. The HR method is claimed to improve the off-diagonal terms
of the orthogonality check by including the effects of the residual modes (modes
outside the frequency range of consideration) in the reduction.

With the significant number of model reduction methods available it is often a
useful exercise to compare the different methods using a common structural model
and/or test data. The GR, IRS, SEREP and DR model reduction methods are
compared in [63]. Whereas the DR, ERS, EGR and IRS reduction methods are
compared in [64]. In [65], a comparison of the MR, SEREP and HR methods is

presented.

4.4.2 Physical Model Reduction

The physical reduction of a system is defined here as a process that reduces an
FE model of a system to a much smaller FE model that approximates the full-size

FE model with reasonable accuracy for a selected number of modes. This was
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demonstrated in [66] with the reduction of a relatively complex shell-element FE
model to a system of spring-mass models. However, the lack of literature available
for physical model reduction is an indication that it is a reasonably new concept.

There are advantages to using physical model reduction over the more common
matrix methods discussed above. It is often the case that multiple companies par-
ticipate in producing different parts of a structure and consequently must produce
an FE model for their part which will be incorporated into a model of the whole
structure. An example of this is in the gas turbine engine industry where a whole
engine model (WEM) must be provided to the aircraft maker to incorporate into
their model of the entire aircraft. Contained within the FE models for both the
engine and aircraft may be several models of components that were provided by
sub-contractors. The assembly of all the FE models can be a very cumbersome
task and may require slight modifications to where the individual models interface.
For such modifications, the use of physical models rather than mass and stiffness
matrices is preferred to provide the analyst with a qualitative measure of how the
changes will effect the structure. Making such modifications with mass and stiff-
ness matrices generally requires the originator of the model to impose the changes
on their physical FE model and to perform the reduction again, which can be a

very time consuming process.

4.4.2.1 Modal Average Strain Energy Density

The key to physical model reduction as presented here is to determine, for a selected
number of modes, what regions of the FE model are the most important in which
to concentrate the elements. The method proposed here is to use the elemental

strain energy density averaged over the selected number of modes, which is given

by:

w, Uy (4.4.1)
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where u;, is the strain energy density for element ¢, mode r and w, is the weighting
factor for mode r. The FE model is then subdivided into a selected number of

regions, N, of elements with equal accumulative strain energy, which is given by:

NE,

U, = U, v (4.4.2)

i=NE,

where v; is the volume of element i, NFE, and NE, are the beginning and ending
element numbers for the region and £ is the region index with values between 1
and N inclusive. In practice, the user need only select the value for N, which is ef-
fectively the number of elements desired in the reduced model. From this selection
a reduction ratio can be defined as the initial number of elements divided by the
reduced number of elements. The ability to select different weighting factors for
each mode provides for a means of emphasizing modes of interest. This capability
can be especially useful when combined with mode tracking for assemblies to em-
phasise the modes of each component that are the most important to the modes

of the assembly.
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Consider the initial FE model for a flat plate as shown in Figure 4.11. The
figure shows that the shell-element model has a mesh with 40 elements horizontally
by 40 elements vertically, for a total of 1600 elements. The commercial program
MSC/NASTRAN was used to obtain the free-free natural frequencies, mode shapes
and corresponding element strain energy densities for the first 10 (non-rigid body)

modes.

Figure 4.11: Initial Flat Plate 40x40 Shell-Element FE Model

Figure 4.12 shows the modal average strain energy density (MASED) distribu-
tion for the first 10 modes with weighting factors of 1.0 for all modes. The figure
shows that the MASED is symmetric about the plate centre in both the x and y
axes. This is to be expected since the plate is symmetric and contained within the

first 10 modes were two sets of orthogonal mode pairs.
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Figure 4.12: Flat Plate Modal Average Strain Energy Density for 10 Modes
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The initial model was reduced using the MASED method with the reduced size
selected to be 121 (11 horizontal by 11 vertical) elements or a reduction ratio of
about 13. The 11x11 element reduced model is shown in Figure 4.13.

The figure shows that the mesh of the reduced model is symmetric about the
plate centre in both the x and y axes which is consistent with the MASED in Figure
4.12. Note that the regions of high MASED have a higher mesh density than the
regions of low MASED. This is particularly evident near the corners of the plate
which have very low MASED. The commercial FE program MSC/NASTRAN was
again used to determine the free-free natural frequencies and corresponding mode

shapes for the first 10 modes.
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Figure 4.13: Reduced 11x11 Shell-Element FE Model

In order to show the effect of the reduction on the modal characteristics, the
FE analysis results of the initial model were used as a reference against which
the reduced model FE results were compared. Additionally, to show the benefit
of using MASED to select the mesh topology, the results for an equally-spaced
element mesh with the same number of elements as the reduced mesh was also

compared with the reference.
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Figure 4.14 shows the FMAC plot for the correlation comparison of the two
reduced models—MASED selected topology and equally-spaced—with the refer-
ence. The red circles are for the equally-spaced reduced mesh and the blue circles
are for the MASED reduced mesh. The black circles are for the auto-MAC for the
reference model. The figure shows that the MASED mesh in general performed

12 [ m o

10— .

7% Natural Frequency Difference
N
“
o

Reference Mode #

Figure 4.14: FMAC for Reduced 11x11 Element FE Model

better than the equally-spaced mesh. The MAC values for modes 4 through 7 are
significantly better and the natural frequency differences for modes 6, 7 and 10 are
also significantly better. However, the natural frequency difference increased by

about 1.5% for the first mode.
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In order to determine the sensitivity of the modal characteristics to the change
in mesh size and topology, a second reduction was performed using a reduced mesh
size of 36 elements (6 elements horizontally by 6 elements vertically) or reduction

ratio of about 44. The 6x6 element reduced mesh is shown in Figure 4.15. Note

Figure 4.15: Reduced 6x6 Shell-Element FE Model

again that the mesh is concentrated in the regions of high MASED.
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The FMAC plot comparing the correlation of both the 6x6 MASED reduced

model and 6x6 equally-spaced model is shown in Figure 4.16. The figure shows

7% Natural Frequency Difference
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Figure 4.16: FMAC for Reduced 6x6 Element FE Model

that the MASED-reduced model again performed much better than the equally-

spaced model. Although the MAC values decreased slightly for modes 4 and 5 the

natural frequency differences for modes 3 through 10 are significantly better than

those of the equally-spaced model by as much as about 6% for modes 6, 7 and 9.

Note again that the natural frequency difference for the first mode increased by

about 1.5%.

The correlation of the 11x11 and 6x6 MASED reduced models were both com-

pare with the reference model and each other, as shown in Figure 4.17, to show

the change in modal characteristics between the two reduced models. The figure
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Figure 4.17: FMAC Comparing 11x11 Reduced Mesh with 6x6 Reduce Mesh

shows, as expected, that the 11x11 mesh (red) in general performed better than
the 6x6 mesh (blue). This is particularly the case for modes 6, 7 and 10 where
the natural frequency differences improved by as much as about 6% for mode 10.
However it is noted that the 6x6 mesh performance is quite good when considering

it has more than 3 times the reduction ratio of the 11x11 mesh.

4.5 Conclusions

A concise review of the basic problems encountered when connecting adjacent
component FE models together to form an assembly model has been presented.

Although the review of the types of joints and currently-available modelling tech-
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niques focused on gas turbine engine hardware, it is envisaged that the basic un-
derstanding and general approach are applicable to a wide range of industrial
structures. Despite the presentation in the literature of a few effective linear joint
modelling techniques for specific joint types, it is evident that further research is
needed to develop a more general linear joint modelling method.

The importance of the joint model for the accurate prediction of the assembly
modal characteristics has been demonstrated by a case study using two real engine
casings. The assembly modal characteristics were shown to be quite sensitive to
the assumptions used in the bolted-flange joint model for the interaction of the
mating flange surfaces away from the bolt location. The ability to determine
which component modes correspond to which assembly modes, referred to as mode
tracking, using the FMAC provided insight into the effects that assembling the
two components had on each others modal characteristics. It is envisaged that
further research into mode tracking may provide a guide for the improvement of
joint models.

The new physical model reduction technique, based on the modal average strain
energy density (MASED), was shown to produce a more accurate FE mesh when
compared with an equally-spaced mesh with the same number of DOFs. An FE
model for a simple flat plate was reduced by a factor of about 44 while a reason-
able approximation of the modal characteristics for the full model was obtained.
Although the method was demonstrated on a simple flat plate, it will be used in

Chapter 6 (Case Study) to reduce the FE models of two real engine casings.
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5.1 Introduction

Correlation plays a key role in the model validation process because the initial FE
model cannot be updated or improved without first performing correlation. Fur-
thermore, for each iteration of the updating task the correlation must be obtained.
The first result from performing correlation is to establish the correspondence be-
tween modes from the analysis set and modes from the test data which are usually
referred to as the ”correlated mode pairs (CMPs)”. The correlation techniques
used must be able to determine the CMPs despite the existence of noise and other
errors inherent in the testing process. Further, reliable correlation techniques for
other quantities, such as frequency response functions (FRFs), must be available
when the test data are too noisy for accurate mode shape extraction.

The modal assurance criterion (MAC, [67]) is the most widely-used method for
correlation measure of mode shapes between those from the finite element model
and those from the modal test. However, it has been shown that it can sometimes
be quite misleading by indicating poor correlation between modes that appear
visually to be the same and, conversely, by indicating good correlation between

modes that appear visually to be different. This behaviour has led to the devel-
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opment of numerous variations of the MAC, either as stand-alone improvements
or to be used in conjunction with the MAC to aid in correlation, with the goal of
making assistance from mode shape animation unnecessary. Although there has
been much work performed in this area since the MAC’s presentation in 1982 and
its previous form called the mode shape correlation coefficient (MSCC) presented
in 1977, a robust correlation tool is still to be found.

After discussion of the different correlation methods available, some examples of
the methods are shown using a simple beam. This is followed by the presentation
of three new developments. The first is a new plot format that allows for the
simultaneous display of the mode shape correlation, the degree of spatial aliasing
and the natural frequency comparison (section 5.3). The second is an extension of
the new plot format to display the correlation of test frequency response functions
(FRFs) with analytical mode shapes (also section 5.3). The third is to compensate
for the particular difficulties that arise in performing correlation for axisymmetric
structures (section 5.4). The chapter ends with some general conclusions about

the new developments presented.

5.2 Overview of Correlation Methods

In this review, the MAC and its related correlation methods have been separated
into three categories, and are presented in the following three sub-sections. The
first section is for the MAC and related methods which perform vector correlation
and therefore only require the mode shapes or eigenvectors to be compared. The
second section is for the methods which employ a mass or pseudo-mass matrix to
obtain different orthogonality checks. The last section is for the techniques used

to correlate frequency response functions (FRFSs).
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5.2.1 Vector Correlation

This section describes various methods for assessing the degree of correlation be-
tween two vectors or, in the case of mode shapes, two sets of eigenvectors. While it
is easier to obtain mode shapes from the analytical model than FRFSs, the converse
is true for the experimental data, which require significant processing of numerous
FRFs in order to extract the mode shapes. However, acquiring experimental mode
shapes has become less labour-intensive and more reliable through the develop-
ment of advanced modal analysis software. This, along with the ready availability

of analytical mode shapes, has led to the popularity of vector correlation methods.

5.2.1.1 Modal Assurance Criterion

The modal assurance criterion (MAC) between two modes ¢¢ and @7 is given

by [67]:

N ¢a €T *
k=1 "ki*kj
MAC(¢¢, ¢%) = S (5.2.1)
’ J N a fpa * N T Ar *
k=1 q/)kz ki k=1 ¢kj¢kj

where the modes to be compared need not be similarly scaled (or normalized).
The MAC has been described as the coherence of two vectors or a measure of the
least-squares deviation about a straight-line plot of two vectors. A result of MAC
= 1 indicates perfect correlation, while 0 indicates no correlation.

Some of the deficiencies of the MAC, which have been described by various
authors, are: Lieven and Ewins [68] point out that the MAC gives no information
as to why the correlation is poor; Mitchell [69] conveys that the MAC is not
sensitive to small but significant changes in mode shape; Blaschke and Ewins [70]
state that the MAC is not sufficient for locating modeling errors; and Brechlin,
Bendel and Keiper [71] point out that the MAC can yield misleading results when
using rotational DOFs.
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The MAC has been found by this author to be sensitive to node lines or near-
null deflections. For example: when comparing two modes that appeared visually
to be well correlated but dominated by Y and Z motion, a MAC of 0.2 was obtained
using X, Y and Z components. However, when the near null X motion terms were
removed, a MAC of 0.8 was obtained. This behaviour leads the analyst to trust
in the MAC only when it renders relatively high values, say greater than 0.6, and
to rely on backup methods, such as visualization, when lower MAC values are

obtained.

5.2.1.2 Modal Scale Factor

The modal scale factor (MSF) between two modes ¢ ¢ and 1  is given by [67]:

N
k=1 wging

= (5.2.2)
k=1 ViV

MSF(4i,¢7) =

where the modes to be compared must be of like scale. It is described as the
slope of the best straight line fit through a plot of the modal coefficients, but
gives no indication of the quality of the fit to the straight line. Where the MAC
gives a quantitative comparison of two mode shapes, the MSF gives a qualitative

comparison and therefore is not useful for assessing the degree of correlation.

5.2.1.3 Coordinate Modal Assurance Criterion

The coordinate modal assurance criterion (COMAC) for a degree of freedom (DOF)

k is given by [68],

2
i Ok
COMAC), = =T (5.2.3)

m m
j=1 Pk Pk j=1 Pk; Pk
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The modes used may be arbitrarily scaled but first the MAC must be used to
determine the correlated mode pairs. The COMAC can be described as the MAC
with a rearrangement of the vectors to be compared. Where the MAC compares two
modes at specific DOFs, the COMAC compares a DOF for specific correlated mode
pairs. It is an attempt to identify the DOF's of the structure which have relatively
poor correlation for all correlated mode pairs and which therefore contribute to low
MAC values. A result of COMAC=1 for a particular DOF means that DOF has
perfect correspondence for all the correlated mode pairs. A result of COMAC=0
for a particular DOF means that that DOF has no correspondence for any of the

correlated mode pairs and therefore may be contributing to low MAC values.

5.2.1.4 Extended Coordinate Modal Assurance Criterion

Hunt [72] asserts that the COMAC cannot detect common test data errors such as
scaling or polarity and therefore the extended coordinate modal assurance criterion
(ECOMAC) was developed to overcome these deficiencies. The ECOMAC is given
by,

o Y Vi
ECOMAC) = (5.2.4)
2m

Like the COMAC, the modes to be compared must first be paired by the MAC but
conversely, must be of unit scale. Where the COMAC weighted each DOF the same
regardless of magnitude, the ECOMAC considers the relative magnitudes of each
DOF and thus the modes with the larger deflections will dominate the value of the
ECOMAC. The numerical interpretation is the opposite of that which applies to
the COMAC. A result of ECOMAC=0 for a particular DOF means that DOF has
perfect correspondence for all correlated mode pairs. A result of ECOMAC=1 for
a particular DOF means that DOF has no correspondence for any of the correlated

mode pairs and therefore may be contributing to low MAC values.
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Another form of the ECOMAC, which was also named COMAC, is described
by [70],

m
j=1 @/)I%j @/)Ifg

2m

COMAC, =1 (5.2.5)

where the requirements and characteristics are identical to the ECOMAC, but the
numerical interpretation is the same as the original COMAC. Therefore, a result
of COMAC=1 for a particular DOF means that DOF has perfect correspondence
for all correlated mode pairs. A result of COMAC=0 for a particular DOF means
that DOF has no correspondence for any of the correlated mode pairs and therefore

may be contributing to low MAC values.

5.2.1.5 Coordinate Modal Error Function

The coordinate modal error function (COMEF) for a degree of freedom (DOF) k
is given by [73],

1
COMEF; = —  (WMy;) (EMy) (5.2.6)

WMy =i U (5.2.7)

=1

vy v o

EMy; = o
kj

(5.2.8)

The modes used must be consistently scaled and must have been pre-determined

to be correlated mode pairs using the MAC. Like the COMAC, it is an attempt
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to identify the degrees of freedom of the structure which yield poor correlation
and therefore contribute to low MAC values. However, this method attempts to
weight small deflections with relatively small factors such that node lines and near
boundary nodes have less effect than in the COMAC. The numerical result is in %
error and can be positive or negative. The larger the absolute number, the greater
the error, with the sign indicating the direction of the error away from the chosen

reference mode set.

5.2.1.6 Inverse Modal Assurance Criterion

Mitchell [69] observes that the MAC is dominated by the anti-nodes of the mode
shapes and therefore is not sensitive to small mode shape changes. To overcome

this, he proposes the inverse MAC (IMAC) which is given by,

1 2

N -1 -
k=1 Pk Pk

N -1 -1
k=1 P Pk

IMAC(¢%, 67) = (5.2.9)

o O oL
where, like the MAC, the modes to be compared need not be similarly scaled.
This is an attempt to focus the MAC on the node lines and away from the anti-
nodes or maximum deflections by using the numerical inverse of each discrete
DOF of the eigenvector. The IMAC is useful for detecting differences in nodal line
position and therefore differences in that feature of the mode shapes. However, it
is not a straight forward measure of correlation but could be interpreted as a nodal
line motion index. Additional work is necessary to relate the IMAC value to the

physical mode shape changes.

5.2.1.7 Scaled Modal Assurance Criterion

Brechlin, Bendel and Keiper [71] state that the MAC does not adequately handle

modes which contain both translational and rotational DOFs. They defined the
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scaled modal assurance criterion (SMAC) between two modes ¢¢ and ¢f as:

¢ '[S] ¢F *

SMAC(¢5,¢7) = (¢¢ T[S] g2 ) oF T[S] ¢¢

(5.2.10)

specifically, to handle a mixture of translational and rotational DOFs. Because
rotational deflections are of different units to translational deflections, and as a
result the numerical values of the corresponding elements of the vector can be very
different in magnitude, the MAC tends to be dominated by one or the other of
the DOF types. This is overcome by using a weighting matrix [S] which effec-
tively resolves the magnitude differences between the translational and rotational
deflections.

Due to the difficulty in measuring rotational DOF's, current industry practice
is to use translational DOFs only when performing correlation between experi-
mental and analytical modes. Therefore, the SMAC would most likely be used to
compare only analytical mode shapes. However, the SMAC may prove quite useful
when comparing mode shapes between two FE models modeled with shell elements

because of the significant extra information provided by the rotational deflections.

5.2.1.8 New Modal Assurance Criterion

The new modal assurance criterion (NMAC) [70] starts with the MAC as given in
Equation 5.2.1 and determines which DOF contributes the most to reducing the
MAC value for each mode pair. This is done by removal of successive DOF and
monitoring for the greatest increase in MAC value. The result is improved MAC
values because the DOF's which contributed the most to lowering the MAC values,
have been removed.

The NMAC, while aiding in improving the MAC values, also identifies the
DOFs which contribute to low MAC values as does the COMAC and ECOMAC.

However, the NMAC has the advantage of not requiring normalization of the mode
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shapes or prior determination of correlated mode pairs.

5.2.2 Orthogonality

This section describes various methods that use orthogonality in comparing two
mode sets. A basis for convergence of an eigensolution is to check that the eigen-

vectors obtained are orthogonal with respect to the mass matrix as given by:

[6°]" [M][¢"] = [I] (5.2.11)

where [Iy] is the "numerical” identity matrix. In practice, [Iy]| will differ from
the "true” identity matrix [I] with the off-diagonal terms being relatively small
numerical values rather than zero. The allowable size of the off-diagonal terms is
set by the eigensolver’s convergence criteria.

In an analogous computation, the correlation between two sets of eigenvectors
can be assessed by determining [Iy] and setting correlation criteria for the allowable
size of the off-diagonal terms. The analytical mass matrix is generally used since
it is much easier to obtain than is the experimental mass matrix.

The number of measured DOF's is usually much smaller than that for the analyt-
ical model. Therefore, an expansion of the experimental eigenvectors to analytical
size or a reduction of the analytical mass matrix to experimental size, using a
technique such as SEREP [60], is required to obtain eigenvectors and a mass ma-
trix which have comparable DOFs. Although SEREP does not explicitly require a
mass matrix, the expansion-reduction procedure makes orthogonality checks more

computationally-intensive than vector correlation methods.

5.2.2.1 Normalized Cross Orthogonality

The normalized cross orthogonality (NCO) check [74] is given by:
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of T[Ma] ¢ *
(o7 T[Ma] &7 ) ¢f T[Ma] ¢

NCO(¢7, ¢5) = (5.2.12)
where [M,] is an analytical mass matrix that has been either retained at ”a”
analytical size or reduced to ”x” experimental size. Similar to the MAC, the modes
to be compared need not be similarly scaled (or normalized). The results are values
between 0 and 1, with NCO=1 indicating perfect correlation and 0 indicating no
correlation. Ideally, for good correlation the off-diagonal terms should approach

Zero.

5.2.2.2 Pseudo Orthogonality Check

The pseudo orthogonality check (POC) is given by [75, 76, 77],

POCZ] = f,gimgld)% (5213)
k=1 [=1

The POC uses an analytical mass matrix and can be done at either ”"x” experi-

mental DOFs or at the 7a” analytical DOFs. For either set of DOFs a reduction
or expansion process such as SEREP must be used to achieve the proper reduced
mass matrix or expanded eigenvectors. Ideally, all off-diagonal terms must be very
near null for perfect correlation but values as high as 0.1 are accepted for some
applications. In practice, off-diagonal terms may be quite small (less than 0.05)

and the vectors still may be relatively uncorrelated.

5.2.2.3 Coordinate Orthogonality Check

Avitabile and Pechinsky [78] developed the coordinate orthogonality check
(CORTHOG) to identify how the individual DOFs contribute to the orthogonality
check produced by the POC. This is achieved by taking the element-by-element

119



Chapter 5 Model Correlation

difference between the POC and the expected values obtained from analytical

orthogonalization and normalizing by the maximum difference between them. The

CORTHOG is given by:

KMl PRl

n n
k=1 =1 PeMa®l  Prmip 9l

CORTHOG! = (5.2.14)

where kl defines the DOF pair and 4j defines the mode pair.

The CORTHOG is claimed to provide insight into the DOFs which are the
best and least correlated between two mode sets. It is asserted that near-null
modal deflections may have a large effect on the POC off-diagonal terms and
that obtaining POC off-diagonal terms near null does not necessarily indicate true

correlation.

5.2.2.4 SEREP-Based Normalized Cross Orthogonality

The SEREP mass matrix reduced cross orthogonality (SCO) is given by [79]:

2

or T[T [g1Y) ¢
(o7 T(o1*To1t) o7 ) ¢f T(le*]*T[9°]") 5

SCO(¢7, ¢5) = (5.2.15)
where [¢?]" is the generalized pseudo inverse of [¢*] . This is similar to the NCO
with the exception that the analytical mass matrix is not explicitly used in favour
of the SEREP-reduced mass matrix. Therefore, like the MAC, only the eigenvec-
tors are required and this makes the SCO much easier to implement than other
orthogonality methods. While either the analytical or experimental mode shapes
may be used for the SEREP-reduced mass, the analytical mode shapes are usually
chosen to avoid the introduction of noise and other test uncertainties from the
experimental mode shapes into the computation.

The SCO is claimed to be more sensitive than the MAC to actual differences in
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mode shapes, by yielding higher values when comparing two similar mode shapes

and lower values when comparing two dissimilar mode shapes.

5.2.3 Frequency Response Function Correlation

This section describes the methods used for correlating frequency response func-
tions (FRFs). The use of FRFs for correlation instead of eigenvectors is attractive
because experimental FRFs are much more easily obtainable than experimental
eigenvectors, which require significant data processing of numerous FRFs. Further,
the data processing (curve fitting) performed by the modal analysis can introduce
significant errors into the resulting mode shapes, especially when the modal den-
sity is high. However, since FRF's contain the responses from many experimental
modes simultaneously, a significant frequency shift from the experimental to ana-

lytical frequencies for just a few of the modes may result in poor correlation.

5.2.3.1 Frequency Domain Assurance Criterion

The frequency domain assurance criterion (FDAC) is given by [80]:

2
jo1 Hi () Hij (W)
FDAC(w*,w®), = (5.2.16)
j=1 Hﬂ(“’a)Hﬂ(wa) j=1 ka(wx)ka(Wx)

where H*(w®) is the analytical FRF at the analytical frequency w®, H*(w®) is the
experimental FRF at experimental frequency w” and k is the excitation DOF for
both the analytical and experimental FRFs.

The FDAC is analogous to the MAC and therefore yields values between 0
and 1. A result of FDAC = 1 indicates perfect correlation, while 0 indicates no

correlation.
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Pascual, Golinval and Razeto [81] point out that a shortcoming of the FDAC is
that it allows the pairing of FRF's that are 180 degrees out-of-phase and in order to
have any physical meaning the two FRFs should be at least in the same semi-plane

as the excitation force. They propose a new FDAC as the cosine between two

FRFs which is given by,

He (wa) T Hm(wz)

FDAC(w*,w®) = Ho(wn)  He (")

(5.2.17)

The new FDAC has values between -1 and 1, with a negative value indicating the
two FRF's are out-of-phase. An FDAC=1 indicates perfect correlation between the
two FRFs.

5.2.3.2 Frequency Response Scale Factor

The frequency response scale factor (FRSF) is given by [81]:

He(w?) "[W] H*(w")

FRSF(W @) =~ oa) 7] Bo(wn)

(5.2.18)

where H%(w”) is the analytical FRF at analytical frequency w®, H"(w") is the
experimental FRF at the experimental frequency w® and [W] is a weighting matrix.

The FRSF is analogous to the MSF and therefore yields values between -1 and
1. Where the FDAC gives a quantitative comparison of two FRF's, the FRSF gives
a qualitative comparison and therefore is not useful for assessing the degree of

correlation.
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5.2.3.3 Frequency Response Assurance Criterion

The frequency response assurance criterion (FRAC) is given by [82, 83]:

m a x * 2
i=1 ij(wi)ij(Wi)

?;1 H]('lk(wi)H]“lk(wi)* 211 ka(wi)ka(Wi)*

FRAC(j); = (5.2.19)
where H®(w;) is the analytical FRF at frequency w;, H*(w;) is the experimental
FRF also at frequency wj, j is the response DOF and £ is the excitation DOF.
The FRAC is analogous to the COMAC and therefore yields values between
0 and 1 for each DOF. A result of FRAC=1 indicates perfect correlation, while 0
indicates no correlation. Heylen and Avitabile [83] point out that interpretation of
FRAC values can be difficult. For lightly damped structures, which exhibit large
maximum to minimum amplitude ratios, the FRAC may yield relatively low values
while visually the FRFs appear to correlate quite well. To help compensate for

this they suggest the use of the logarithm or absolute value of the FRAC.
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5.2.4 Examples

The following four figures show examples of the correlation methods—vector, or-

thogonality and FRF—discussed in the previous sections.
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Figure 5.1: Vector Correlation Examples
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Figure 5.3: Orthogonality Examples
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A simple cantilevered beam FE analysis was used to produce the analytical
data and a slightly perturbed (from the reference) cantilevered beam FE analysis
was used to provide the reference (pseudo experiment) data.

The next two sections—MAC in the Frequency Domain and Axisymmetric

Structures—present the three new correlation developments.
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5.3 MAC in the Frequency Domain

The Modal Assurance Criterion (MAC [67]) has been used as a measure of correla-
tion between test-derived and analytically-predicted mode shapes for many years.
The fact that the MAC considers only mode shapes usually means that a separate
natural frequency comparison must be used in conjunction with the MAC val-
ues in order to determine the correlated mode pairs. The mode shape correlation
has generally been displayed as a MAC matrix plotted against experimental mode
number on the horizontal axis and analytical mode number on the vertical axis.
The frequency correspondence is usually displayed with a separate plot such as the
experimental natural frequency versus the analytical natural frequency.

The auto-MAC, which compares a set of mode shapes with themselves, is used
to determine if the number and/or selection of the chosen measurement DOFs are
sufficient to be able to distinguish the modes from each other. The existence of
off-diagonal correlation terms in the auto-MAC is an indication of spatial aliasing.
If the MAC shows off-diagonal correlation it cannot be determined without the
auto-MAC whether this is due to spatial aliasing or to genuine correspondence
between the two modes. Thus, the MAC, the auto-MAC and the natural frequency
comparison plots are all used to determine the overall correlation/correspondence
of the modes.

This thesis presents a way of plotting the MAC, auto-Mac and natural frequency
comparison simultaneously such that the mode shape correlation, the degree of
spatial aliasing and the natural frequency comparison can all be obtained from
one plot. The new plot format, called the FMAC, is naturally extended to the
correlation of frequency response functions (FRFs) using the Frequency Domain
Assurance Criterion (FDAC, [81]). The advantages of the new plot method are

shown by a case study of a real structure.

128



Chapter 5 Model Correlation

5.3.1 Evolution of the FMAC: MAC Plot with Frequency

Scales

An example of a conventional MAC plot for a simple plate is shown in Figure 5.5.
The use of the different colour-filled or shaded rectangles to indicate the MAC
values is shown to be quite useful. Since the MAC gives no information about
the natural frequency correspondence and can sometimes show good correlation
between modes that have significant frequency separation, a natural frequency

comparison plot is used as shown in Figure 5.6. Accordingly, the two plots are
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Figure 5.5: Original MAC plot
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Figure 5.6: Frequency Comparison

used together to determine the mode shape correlation and natural frequency com-
parison for each mode. However, neither the MAC in Figure 5.5 or the natural
frequency comparison in Figure 5.6 indicates which mode pair corresponds to which
natural frequency pair.

Further, the MAC can show correlation between off-diagonal mode pairs such as
experimental mode 5 and analytical mode 8 in Figure 5.5. In order to determine
whether the off-diagonal correlation is real or is due to spatial aliasing (if the
number and location of the chosen measurement points are sufficient to be able to

distinguish the modes) the auto-MAC, shown in Figure 5.7, is used.
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Figure 5.7: Auto-MAC of Experimental Modes

In reference [84] it was shown that it was necessary to be able to compare two
different sets of MAC values, which led to a "new” MAC plot that used symmetric
symbols with a size proportional to the MAC value instead of the colour-filled or
shaded rectangles. The first version of the "new” MAC plot is displayed in the
conventional way with the experimental mode number on the horizontal axis and
the analytical mode number on the vertical axis as shown in Figure 5.8. However,
centred on the coordinates of each mode number pair a circle is drawn with a
radius proportional to the value of the relevant MAC. Additionally, to provide a
visual scale, a dashed box representing perfect correlation (MAC =1) is plotted
for each mode number pair. The relative size of the circle to that of the dashed
box illustrates the MAC value relative to a perfect value of 1. This proved very
useful for overlaying MAC plots for comparison, as is shown in Figure 5.8 with
the auto-MAC of the experimental modes represented by the black circles and the
MAC represented by the red circles.

It has been a goal of many researchers in the area of model correlation to find
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Figure 5.8: The New MAC plot

a way to display the natural frequency information along with the MAC values
to get an immediate measure of both the mode shape correlation and natural
frequency comparison. This new way of displaying the MAC values, as shown in
Figure 5.8, led to replacing the mode numbers on the horizontal and vertical axes
with their respective natural frequencies, resulting in the type of MAC plot shown
in Figure 5.9 called the FMAC. With the auto-MAC for the experimental modes
being represented by the black circles and the MAC by the red circles, the natural
frequency separation is shown by the vertical separation between the black and
the red circles. The addition of the frequency separation lines, in this case 10%,
gives a visual scale for the amount of frequency difference between the test and
analytical modes. The change in circle size from the black to the red circles gives a
visual measure of the change in the MAC value from the perfect value of MAC=1.

The figure also shows the modal density or the relative frequency spacing of the
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Figure 5.9: FMAC: MAC plot with frequency scales

modes. In addition to assisting in the display of frequency separation between the

test and analytical modes, the auto-MAC shows the extent of the spatial aliasing

[85]. Note that double modes are shown by concentric circles.

The FMAC plot as shown in Figure 5.9 displays all the information needed to

assess the correlation. However, when considering a large frequency range (con-

taining a large number of modes) it may be difficult to judge the natural frequency

separation at the lower end of the range for example, between 0 and 300 Hz in

Figure 5.9. For this reason an alternative FMAC plot was developed using a per-

centage frequency difference scale on the y-axis in place of the analytical frequency.
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Figure 5.10 is an FMAC plot with percentage frequency difference plotted on
the y-axis for the same flat plate used in the FMAC plot of Figure 5.9. The figure
shows that the frequency separation of the measured and predicted modes can
be determined quite accurately. However, it should be noted that, in general, as
the frequency resolution is increased (the y-axis scale is decreased) the amount of

aliasing information that can be shown is decreased.
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Figure 5.10: FMAC with natural frequency difference on the y-axis
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In the particular case of structures with modes that have close natural frequen-
cies (high modal density), or for structures with double modes from symmetry, a
plot of the FMAC shows the modes nearly on top of each other. For this reason,
a further variation of the FMAC with natural frequency difference on the y- axis

was developed with the measured mode number on the x-axis. Figure 5.11 shows
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Figure 5.11: FMAC with natural frequency difference on the y-axis and measured
mode number on the x-axis

the FMAC with natural frequency difference on the y- axis and measured mode
number on the x-axis for the flat plate example. The figure shows that all the
modes can now be clearly distinguished and that again the frequency separation

can be determined quite accurately. This form of the FMAC can be very useful
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for axisymmetric structures that have multiple sets of orthogonal mode pairs [50].

5.3.2 Frequency Domain Correlation

The use of frequency response functions (FRFs) for correlation instead of eigen-
vectors is attractive because experimental FRFs are more easily obtainable than
eigenvectors, which require significant data processing of numerous FRFs. Such
data processing (curve fitting), performed by the modal analysis, may introduce
significant errors into the resulting mode shapes, which is particularly the case
when the modal density is high. Further, there are occasions when test data are
too noisy to extract the mode shapes accurately leaving only the FRFs avail-
able for correlation. The primary tools used for the correlation of FRFs are the
Frequency Response Assurance Criterion (FRAC) and the Frequency Domain As-
surance Criterion (FDAC). However, a third tool introduced here as the Modal
FRF Assurance Criterion (MFAC) can be used as an intermediate step between
the MAC and FDAC.
The FRAC is defined by [82, 83]:

m a T * 2
i=1 ij(wi)ij(Wi)
i1 Hij(wi) Hj, (wi)” iz Hi (wl)ka(wz)*

1= ¥

FRAC(j), = (5.3.1)
where H%(w;) is the analytical FRF at frequency w;, H*(w;) is the experimental
FRF also at frequency w;, j is the response DOF and k is the excitation DOF.
The FRAC is analogous to the COMAC [68] and therefore yields values between
0 and 1 for each DOF. A result of FRAC=1 indicates perfect correlation, while 0
indicates no correlation. Since FRFs contain the responses from many experimental
modes simultaneously, a significant discrepancy in natural frequency between the

experimental and analytical values for just a few of the modes may result in poor

FRAC values.
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The FDAC is given by [81]:

2
?:1 ka(wa)ka(wz)
FDAC(w*,w®) = (5.3.2)
j=1 H?k(wa)ka(wa) j=1 ka(wx)ﬂfk(wx)

where H*(w?®) is the analytical FRF at the analytical frequency w®, H*(w?®) is the
experimental FRF at experimental frequency w® and k is the excitation DOF for
both the analytical and experimental FRFs. The FDAC is analogous to the MAC
and therefore yields values between 0 and 1. A result of FDAC = 1 indicates
perfect correlation, while 0 indicates no correlation.

The MFAC is introduced here with the following definition [85]:

LW H ()
MFAC(w*, w®), = (5.3.3)
j=1 05 (W) (we) i H (w) H ()"

where ¢%(w®) is the analytical mode shape at any analytical frequency, w®, and
H?”(w") is the experimental FRF at any experimental frequency, w”. The MFAC
is analogous to the MAC and therefore yields values between 0 and 1. A result of
MFAC = 1 indicates perfect correlation, while 0 indicates no correlation.

The MFAC and FDAC have a distinct advantage over the FRAC in that they
allow for the spatial comparison of the analytical mode shapes to the experimental
FRFs and the analytical FRFs to the experimental FRFs, respectively, at differ-
ent frequencies and therefore the frequency shift does not affect the correlation.
The MFAC and FDAC plotted with frequency scales are natural extensions of the
FMAC plot.

The MFAC has a distinct advantage over both the FDAC and the MAC in that
it allows for the comparison of the two data sets with the greatest fidelity—the

analytical mode shapes and the experimental FRFs. The analytical mode shapes,
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unlike the corresponding FRFs, require no assumptions about damping. Similarly,
the experimental FRFs, unlike the corresponding mode shapes, require no post-
processing of the measured data. However, the MFAC is only useful for relatively
lightly damped modes since the analytical mode shapes are real quantities from an
undamped eigen-solution and the experimental FRFs are complex quantities due
to the inherent damping in the structure.

The MFAC and FDAC plotted with frequency scales are natural extensions of
the FMAC plot. Accordingly, both the FDAC and MFAC were compared to the
FMAC in the case study that follows.

5.3.3 Case Study: Combustor Casing

The case study is for a combustor casing for which an FE model and both mode
shape and FRF test data were available. Figure 5.12 shows the MSC/NASTRAN
finite element model for the combustor casing. The shell model contained about
3700 nodes (18,500 DOFs) and was used to calculate the first 19 modes. Test data
were taken (previously at Imperial College) for 2 rings of 12 equally-spaced points
in the radial direction and 1 ring of 12 equally-spaced points in both the radial and
axial (along the engine axis) directions. Therefore, a total of 48 FRFs were taken
from which 14 mode shapes were generated. The corresponding analytical FRFs

were generated using the FE model.
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Figure 5.12: MSC/NASTRAN Model of Combustor Casing

The FMAC plot is shown in Figure 5.13. The auto-MAC for the experimental
modes is shown by the black circles, the MAC is shown by the red circles and the
frequency lines are for a spread of 10%. The frequency shift (vertical from the
black to the red circles) is within  10% for all modes except the mode at about
100 Hz. A degree of spatial aliasing is shown by the auto-MAC at experimental
frequencies of about 70 Hz, 170 Hz and 260 Hz. The corresponding MAC values,
with respective frequency shifts, show that it is indeed aliasing and not genuine
correspondence.

Figure 5.14 shows the Frequency Domain Assurance Criterion (FDAC), in the
new plot format, for the FRF correlation in this case. The FDAC values were
determined by comparing the analytical FRFs at their resonant frequencies to

the experimental FRFs at their resonant frequencies, a response vector which is
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Figure 5.13: FMAC plot for Combustor Casing

sometimes referred to as the Operating Deflection Shape (ODS). The auto-FDAC
for the experimental ODSs is shown by the black circles, the FDAC is shown
by the red circles and the frequency lines are for a spread of 10%. Note the
resemblance to the FMAC plot shown in Figure 5.13. The correlation is comparable
to the FMAC. The auto-FDAC shows the spatial aliasing and for the experimental
frequencies at about 70Hz, 170 Hz and 260 Hz the corresponding FDAC values
confirm that it is aliasing and not genuine correlation. The frequency shift (vertical
from the black to the red circles) is within  10% for all ODSs except at about 100
Hz.

The Modal FRF Assurance Criterion (MFAC) plot is shown in Figure 5.15.

The MFAC values were determined by comparing the analytical mode shapes at
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Figure 5.14: New Plot Format for FDAC of FRFs

their natural frequencies to the experimental FRFs at their resonant frequencies
(ODSs). The auto-MFAC for the experimental mode shapes is shown by the black
circles, the MFAC between the analytical mode shapes and the experimental ODSs
is shown by the red circles and the frequency lines are for a spread of 10%. Note
the resemblance to both the FMAC plot shown in Figure 5.13 and the FDAC plot
shown in Figure 5.14. The correlation is comparable to both (the FMAC and
FDAC) and for frequencies at about 100 Hz, 170 Hz, 260 HZ and 310 HZ it is not
as good as the FMAC or FDAC, which is probably due to the damping present in
the FRF's and not in the mode shapes. The off-diagonal correlation shown by the
auto-MFAC for the experimental frequencies at about 70 Hz, 170 Hz and 260 Hz

is again confirmed to be aliasing and not genuine correlation by the corresponding
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MFAC values. The frequency shift (vertical from the black to the red circles) is

again within  10% for all frequencies except at about 100 Hz.
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Figure 5.15: MFAC of Mode Shapes versus FRF's

Note that the lack of spatial aliasing (off diagonal correlation) shown in Figures
5.13 through 5.15 indicates that the use of 2 axial (and 12 circumferential) stations
was sufficient to distinguish the modes from one another. This is also demonstrated
in the case study in Chapter 6 where 3 and 2 axial stations were used for the

combustor and turbine casings, respectively.

142



Chapter 5 Model Correlation

5.4 Axisymmetric Structures

The prediction of the vibration properties for an axisymmetric structure using an
FE model will result in most of the modes existing as orthogonal pairs. The two
modes of each orthogonal pair will have identical natural frequencies and mode
shapes of the same basic pattern but with different spatial phase angles of the
diametral nodal lines that make the modes orthogonal. The spatial phase relation-
ship between any two pairs of orthogonal modes will be arbitrary. However, the
actual physical or "real” structure is usually only quasi-axisymmetric due to its in-
herent geometric or material imperfections. The modes of the "real” structure will
contain considered-to-be-orthogonal mode pairs: the modes of each pair will have
relatively close frequencies and mode shapes whose spatial phase angles make the
modes effectively orthogonal. However, the spatial phase relationship between any
two pairs of considered-to-be-orthogonal modes will be fixed. This arbitrary ver-
sus fixed spatial phase relationship for the analytical versus experimental modes,
respectively, can cause relatively low MAC values to be obtained for modes that
appear to be well correlated in a visual comparison.

The imperfections of the "real” structure, as well as test data noise, may pro-
duce measured modes that are dominated by one or two diametral orders but
which also have non negligible contributions of other diametral orders. However,
the modes predicted by the axisymmetric FE model will by definition contain only
one diametral order. This difference in diametral order content can also cause
relatively low MAC values for modes that visually appear to be well correlated.

Two methods are presented below to help improve the numerical correlation
of the MAC for quasi-axisymmetric structures. The first method, mode shape
rotation, addresses the arbitrary FE spatial phase angle problem and was first
presented in [86]. The second method, Fourier decomposition, addresses the pres-
ence of multiple harmonics in test data mode shapes and was developed in this

research. Both methods were presented in [87]. For quasi-axisymmetric structures
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that exhibit both characteristics, the two methods are combined.

5.4.1 Mode Shape Rotation

This method advocates rotating the analytical mode shape of each mode pair about
the axis of axisymmetry by an amount such that the MAC between the experimen-
tal and analytical mode gives a maximum value. By using trigonometric functions
to describe the mode shapes, and decomposing each mode into its harmonic com-
ponents, the initial spatial phase angle of each component for each mode can be
determined. The rotation about the axis of axisymmetry of the analytical mode
shapes is obtained by shifting the initial spatial phase angle of the primary di-
ametral component for each mode shape. For a pair of considered-to-be-correlated
modes, a shifted spatial phase angle can be calculated in order to maximise the

MAC value between the modes. For further details see reference [86, 87].

5.4.2 Fourier Decomposition

This method proposes Fourier decomposition of the analytical and experimental
mode shapes, respectively, and performing a MAC correlation on a reduced set of
the Fourier indices instead of the individual displacement amplitudes at measured
DOFs. The quasi-axisymmetric imperfections can be removed by using only the
indices with the dominant amplitudes for each mode.

Consider a set of eigenvectors described in a cylindrical coordinate system with
the DOFs equally spaced around the circumference of one ring. The discrete Fourier
series for the eigenvectors, 1., where ¢ defines the DOF and r defines the mode
number, is given by [88]:

[N/2] [N/2]

Vir = agr + agrcos(k0;) + brrsin(kb;) (5.4.1)
k=1 k=1

Here, N is the number of discrete DOFs, 6; is the circumferential location of the i®
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DOF and £ is the harmonic number or index. The upper summation limit [N/2] is
interpreted as N/2 if N is even and (N-1)/2 if N is odd. Further, if N is even, by/»
is omitted. The a and b coefficients are called the discrete Fourier cosine and sine

transforms respectively, and for equally-spaced 0; are defined for each mode by:

N
1
r = 7 r 42
dor = - . (& (5.4.2)
1 .
anjpr =~ (1) 7y (5.4.3)
N
5 N
Ur = o7 _ Vircos(kb;) (5.4.4)
5 N
bkr = N _ LZ)ZTSZTL(]CHZ) (545)

where 1k < N/2. The MAC between the Fourier indices of two modes—one

from analysis, A%, and the other from experiment, A7—is given by:

2

MAC(A2, A7) = Ar T A (5.4.6)
TR (ArT Ar) (AT T A -
where
A? = Aopy veeee 7aN/2T7b1T7 """ ;bN/QT a (547)
and
A;E = AQsy veeee 7aN/257b187 """ 7bN/25 T (548)

When the a and b coefficients for all indices are used, the discrete Fourier series
are exact representations of both the amplitude and phase of the original mode

shapes at the discrete locations 6; . Therefore, using all the Fourier indices in
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the MAC or Fourier MAC results in an identical solution to the MAC obtained
using the mode shape deflections directly. Test experience has shown that quasi-
axisymmetric structures can occasionally have two different nodal diameter orders
present in one mode. Thus, only the two indices with the largest amplitudes for
each mode are retained for use in the Fourier MAC, while the exclusion of the other
indices serves to filter out the asymmetric imperfections of the "real” structure as
well as test data noise.

The DOFs to be used by the Fourier MAC are first separated into rings of
equally-spaced points around the circumference as shown on the left side in Figure
5.16. The DOFs in each ring are then grouped by cylindrical coordinate direction
as shown on the right side in Figure 5.16. Each group of DOFs is decomposed
separately into its Fourier indices. The Fourier MAC uses both a and b coefficients
so that both the amplitude and phase of the modes are represented. Otherwise,

modes of the same diametral order could not be distinguished.

Ring Groups

ORadial, Tangential & Axial DOFs

»

[ORadial DOFs
/\Tangential DOFs
< Axial DOFs

(00

Figure 5.16: One ring of measured DOF's separated into groups by DOF type
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Using the amplitudes of the indices given by,
AMPy, = a;, + b2, (5.4.9)

where k defines the harmonic number and r defines the mode number, the first two
primary indices can be determined for each test and analytical mode. The retained
indices for all DOF's and all rings can then be assembled into one vector for each
of the test and analytical mode shapes. The assembly order (both sequence and
total number of elements) must be consistent, for both test and analytical mode

shapes, with respect to Fourier index, DOF and ring.

5.4.3 Case Study: Assembly of Two Turbine Engine
Casings

The case study is for an assembly of a front and middle turbine engine casing
for which an FE model and extensive test data (provided by Rolls- Royce) were
readily available. Figure 5.17 shows the MSC/NASTRAN finite element model for
the front and middle casing assembly. The shell model contained 10 rings of 60
nodes each (600 total nodes) and was used to calculate the first 20 modes. Test
data were taken for 3 rings of 20 equally-spaced points in the radial direction

but only for the first 20 modes.
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Figure 5.17: MSC/NASTRAN Model for Assembly of Two Casings

The Fourier decomposition was performed for both analytical and experimental
mode sets using the experimental locations and radial deflections for each ring. The
results, shown in Figures 5.18 and 5.19, are displayed on a plot of mode number
versus Fourier index number or diametral order.

Figure 5.18 illustrates the harmonic content and relative participation of each
ring for the first 20 analytical modes. Note the relatively large magnitude of the
indices for modes 13 and 14. This is because the analytical mode shapes were
normalized including all translational DOFs instead of just the radial deflections
and it illustrates that modes 13 and 14 have more motion in the radial direction
compared with the rest of the modes. The figure also shows which of the modes
are orthogonal pairs. By matching the Fourier index value for adjacent modes and
then comparing the relative symbol sizes for the respective rings, the orthogonal

modes can be determined.
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Figure 5.18: Fourier indices for the analytical modes
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Figure 5.19 illustrates the harmonic content and relative participation of each
ring for the first 20 experimental modes. Since only the radial DOFs were mea-
sured, the relative size of the symbols indicate the harmonic content of the radial
deflection of the mode shape for each ring. The figure shows a significant increase
in noise for the test data modes compared with the analytical modes by multiple

indices having contributions to most of the modes.
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Figure 5.19: Fourier indices for the experimental modes

151



Model Correlation

The comparison between the standard MAC and the MAC with mode shape
rotation is illustrated in Figure 5.20. The figure shows a definite improvement in
the correlation for experimental modes 4, 9 and 10 with respective increases in
MAC values of from 0.35 to 0.61, 0.45 to 0.77 and 0.44 to 0.71. This demonstrates
that mode shape rotation helped to improve the correlation by aligning the spatial

phases between the analytical and experimental modes.
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Figure 5.20: Comparison of MAC versus MAC with mode shape rotation
Figure 5.21 illustrates the comparison between the MAC and the Fourier MAC

using the first two primary indices.
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The truncation effectively removed noise and other associated
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improved the correlation for most of the experimental modes. Modes 1, 2, 4 and 8

showed the greatest improvement with respective increases in MAC values of from

0.35 to 0.61, 0.67 to 0.79, 0.35 to 0.50 and 0.46 to 0.61. This is supported by Figure

5.19, which shows that most of the experimental modes have contributions from

multiple indices.

test errors from the mode shapes which can have significant impact on the MAC

For further details on how noise and test errors can effect the MAC see

values.

reference [84].

Figure 5.21: Comparison of MAC versus Fourier MAC using 2 indices
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The comparison between the MAC and the Fourier MAC (using the first two

primary indices) plus mode shape rotation is shown in Figure 5.22. This Figure

shows that the combination of mode shape rotation with Fourier truncation in-

creased the MAC values for all mode pairs with one exception, experimental mode

3 and analytical mode 4. The modes most affected were 1, 4, 8, 9 and 10 with

respective increases in MAC values of from 0.31 to 0.63, 0.35 to 0.85, 0.46 to 0.82,

0.45 to 0.86 and 0.44 to 0.82. This clearly demonstrates the benefits of combining

the two methods to help improve correlation.
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Figure 5.22: Comparison of MAC versus Fourier MAC using 2 indices plus rotation
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5.5 Conclusions

The review of the available correlation methods highlighted some of the advan-
tages and disadvantages of the various methods. Although orthogonality and FRF
methods were discussed, vector methods remain the most widely used because they
require only the mode shapes as input. This is aided by the development of ad-
vanced modal analysis software which makes obtaining experimental mode shapes
much more reliable and efficient. In certain circumstances some of the stand-alone
vector methods may prove superior to the MAC for mode shape correlation, but
in general no clear successor to the MAC has been found.

The new format for displaying correlation, the FMAC, was shown to be very
useful in combining the information from the frequency comparison with that of the
MAC and the auto-MAC. In addition to combining the three sources of information
(MAC, natural frequency and auto-MAC) onto one plot, the new plot format also
shows modal density and helps to determine whether the high off-diagonal MAC
values are from true correlation or spatial aliasing. The two alternative forms of
the FMAC plot (with natural frequency difference on the y-axis) were shown to
enhance the FMAC so that the frequency error could be shown very accurately and
modes very close in frequency (high modal density and double modes for symmetric
structures) could be distinguished from each other. It is envisaged that the FMAC
may be used very effectively whenever there is a need to compare two or more sets
of modal data (natural frequencies and mode shapes) with a reference set of modal
data.

The extension of the new plot format to the correlation of FRF's using both the
FDAC and the newly-introduced MFAC was also shown to be quite promising. In
the industrial case study shown, both the FDAC and MFAC correlation yielded
comparable information to the MAC correlation. This result is significant in that
if either the FDAC or MFAC correlation can be used instead of the MAC then the

costly post-measurement modal analysis, which can introduce significant errors, of
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the experimental FRF's to determine the mode shapes can be avoided. Additionally,
for lightly damped modes the MFAC could be used instead of the FDAC to avoid
the analysis and assumptions required for determining the analytical FRF's, thereby
using the data with the greatest fidelity from both test and analysis for correlation.

In the case study shown to illustrate the problems associated with validating
(quasi) axisymmetric structures, Fourier analysis of mode shapes using the first
two primary indices was shown to help to improve the correlation between test and
analytical mode shapes significantly. Mode shape rotation was also shown to help
improve the correlation, as previously documented in reference [86, 87]. However,
the combination of Fourier analysis and mode shape rotation was shown to be the
most effective option to the extent that their combined use is highly recommended
for the correlation of the modes of axisymmetric structures. Accordingly, the
combination of the two techniques were used for all the FMAC plots shown in the

case study in Chapter 6.
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Case Study

The contributions of this research will be demonstrated with a case study for an
assembly of two real gas turbine engine casings. The first is a combustor casing that
is considered to have a very complex geometry and the second is a turbine casing
that has a geometry that is considered to be moderately complex. The two casings
will be first considered individually and then as an assembly. A super-model for
each component will be generated and validated using test data. Then, the two
component models will be assembled using a joint model and also validated using
test data.

Having validated the super-models for both the components and the assembly,
the analytical modes of each component will then be compared to the experimen-
tal modes of the assembly to determine how the component modes track to the
assembly. This will be followed by a study to determine the effects that the dif-
ferent features—flange holes, scallops and casing holes with bosses—have on the
correlation. These are valuable uses for the super-model as much insight can be
gained about which component is the most dominant in the assembly and which
features are the most important to either of the components or to the assembly.
Both of these can be used to help guide the development of an approximate design

size model either directly or by reducing the super-model.
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The reduction of each component super-model will be presented next in order
to demonstrate the physical model reduction technique. The knowledge gained
from the mode tracking exercise will be used to guide the choice of the reduction
targets for each of the components. The reduction will be done for the compo-
nents individually which will consider only their respective component modes with
weighting factors of 1.0. This will be followed by the connection of the two reduced
models together using a joint model to form a reduced model of the assembly.

The FMAC will be used throughout to demonstrate its ability to show clearly
the mode shape correlation, frequency correspondence and the degree of spatial
aliasing simultaneously. Further, the FMAC will be used to compare the multiple
correlations for the convergence checks and to show the effects that the different

features have on the correlation.

6.1 Combustor Casing

The cross-section geometry for the combustor casing is shown in Figure 6.1. The

holes are shown by the red lines and the scallops by the blue lines. The figure

Outer Casing

),

Inner Casing
Inner Flange
Aft ———>

Figure 6.1: Cross-section of Combustor Casing Geometry

shows that the combustor casing has both an outer and inner casing. The outer
casing is relatively cylindrical and the inner casing spans about the middle third
of the outer casing. The forward flange is a basic or straight type and the aft

flange has both an internal spigot and a C channel (with a fish mouth shape) on
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its inside diameter. There is an inner flange just forward of the aft flange that also
has a C channel just above the radial part of the flange which is scalloped. The
outer casing has two rows of piping type bosses, each equally-spaced around the
circumference, that have holes which go through both the outer and inner casings
as shown by the red dashed lines. All three flanges have bolt holes.

Figure 6.2 shows the geometry of the features with four different views. The
axial view, looking forward to aft, of a section of the forward flange shows some
of the 120 bolt holes that span its circumference. The axial view, looking aft to
forward, of a section of the aft flange shows some of the 120 bolt holes that span
its circumference. Further, the view shows some of the inner flange scallops and
bolt holes which numbered 36 around the circumference. The last two views are
from the radial direction in which the aft direction is towards the top of the page.
The two rows of bosses which numbered 18 and were equally-spaced around the
circumference are shown with a radial inward view of a section of the outer casing.
The radial outward view of the inner casing section shows the casing hole pattern
that repeats around the circumference. The total number of holes for the forward
pattern (bottom in view) was 18 small holes, 9 mid-size holes and 4 large holes.

The total for the aft pattern (top in view) was 18 small holes.
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Outer Casing Bosses

Inner Casing Holes

Figure 6.2: Combustor Casing Feature Geometry
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The super-model was generated using hexahedron solid elements for which the

cross-section model is shown with red lines at the top in Figure 6.3. The geometry

. The cross-section model contained 211 nodes and 111,

mes

hown by the black li
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Figure 6.3
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4-noded elements which was then spun about the axis of axisymmetry with 240
nodes and elements in the circumferential direction. The features were incorporated
next by removing elements for both the holes and scallops. The resulting 8 noded
hexahedron solid model, shown at the bottom in Figure 6.3, contained 51,840
nodes, 25,365 elements and 155,520 DOFs. MSC/NASTRAN was used to extract
the first 20 free-free natural frequencies and mode shapes.

The modal test data was taken (previously at Imperial College) at three rings
of 12 equally-spaced transducers in the radial direction. The first ring was located
on the outside diameter of the forward flange. The second ring was located on the
outside diameter of the outer casing at the forward junction of the inner and outer
casings. The third ring was located on the outside diameter of the aft flange. The
modal test produced 36 FRFs from which the modal analysis was able to determine
contained 12 modes.

Figure 6.4 shows the FMAC plot (in percentage frequency difference versus
experimental mode number format) for the correlation of the combustor casing
super-model with the test data. The black circles are for the auto-MAC of the
experimental modes and the red circles are for the MAC between the experimental

and analytical mode shapes. The figure shows that the correlation is excellent
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Figure 6.4: FMAC Plot for Combustor Casing Super Model

with MAC values for all modes very near 1.0 and with frequency differences for all
modes between about +1.7% and +4.3%. Note the consistency of the frequency
differences with a variation of about 1.3% about a line at +3%.

In order to check the convergence of the model for the combustor casing, a
second model was created by refining the first model with two elements through
the thickness and a general increase in mesh density. The cross-section of the

refined model is shown in Figure 6.5.
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Figure 6.5: Cross-section of Combustor Casing Refined Super Model

The refined cross-section model contained 403 nodes and 273, 4-noded elements
which was again spun about the axis of axisymmetry with 240 nodes and elements
in the circumferential direction and then the holes and scallops added. Figure 6.6
shows the resulting 8 noded hexahedron solid model which contained 99,600 nodes,
64,930 elements and 298,800 DOFs. MSC/NASTRAN was again used to extract

the first 20 free-free natural frequencies and mode shapes.
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Figure 6.6: Refined Combustor Casing 3-D Super Model

Figure 6.7 shows the FMAC plot for both the initial and the refined super-

models. The black circles are for the auto-MAC of the experimental modes, the
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red circles are for the initial super-model and the blue circles are for the refined

super-model.
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Figure 6.7: FMAC Plot for Initial and Refined Combustor Casing Super Models

The figure shows that the frequency differences decreased from the initial to
the refined model between about 1% to 2% while the MAC values remained very
near 1.0 for all modes. The frequency differences for all modes of the refined model
were between about +1.0% and +3.2%. Note again the consistency of the frequency
differences with a variation of about 1.1% about a line at +2.1%. Further, the
decrease in variation from 1.3% for the original mesh to 1.1 % for the refined

mesh is indicative of convergence.
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6.2 Turbine Casing

Figure 6.8 shows the cross-section of the geometry for the Turbine casing. The

red lines show the bolt hole locations. The figure shows that the turbine casing is

Figure 6.8: Cross-section of Turbine Casing Geometry

conical with an increasing radius from forward to aft. The forward and aft flanges
are both of the basic or straight type and both have bolt holes with their locations
indicated by the red lines. There are five C channels on the inside diameter of the
casing. There are also two radial ribs on the inside diameter of the casing—one
near the forward flange and the other about midway between the forward and aft
flanges. The outside diameter of the casing has two stiffening rings—the first is at

about one quarter axial span and the second is at about three quarters axial span.
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The geometry of the features is shown in Figure 6.9 with two different views.
The axial view, looking forward to aft, of a section of the forward flange shows
some of the 120 bolt holes that span its circumference. The axial view, looking
aft to forward, of a section of the aft flange shows some of the 120 bolt holes that

span its circumference.

Aft Flange

Figure 6.9: Turbine Casing Feature Geometry

The cross-section of the hexahedron solid element super-model is shown at the

top of Figure 6.10 with red lines and the geometry with black lines.
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Cross-section Model
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3-D Model

Figure 6.10: Turbine Casing Super Model
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The cross-section model contained 112 nodes and 56, 4-noded elements which was
then spun about the axis of axisymmetry with 240 nodes and elements in the cir-
cumferential direction. Next, the flange holes (the only non-continuous features)
were added by removing the appropriate elements. The resulting 8-noded hexa-
hedron solid model, shown at the bottom of Figure 6.10, contained 26,640 nodes,
13,200 elements and 79,920 DOFs. The first 20 free-free natural frequencies and
mode shapes were extracted using MSC/NASTRAN.

The modal test data were taken (previously at Imperial College) using two rings
of unequally-spaced radial transducers that were chosen by test planning. The first
ring had 8 locations and was located on the outside diameter of the forward flange.
The second ring had 11 locations and was located on the outside diameter of the
aft flange. The modal test produced 19 FRFs from which the modal analysis
determined that there were 11 modes.

The FMAC plot (in percentage frequency difference versus experimental mode
number format) for the correlation of the Turbine casing super-model with the test

data is shown in Figure 6.11.
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Figure 6.11: FMAC Plot for Turbine Casing Super Model

The figure shows that the correlation is again excellent with MAC values for all
modes very near 1.0 and with frequency differences for all modes between about
+2.2% and +5.6%. The consistency of the frequency differences is again very good
with a variation of about 1.7% about a mean at +3.9%.

The convergence of the model for the turbine casing was also checked by refining
the first model with two elements through the thickness and a general increase in
mesh density. The cross-section of the refined model is shown at the top of Figure

6.12.
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Cross-section Model

3-D Model

Figure 6.12: Refined Turbine Casing Super Model

The refined cross-section model contained 242 nodes and 161, 4-noded elements
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which was spun about the axis of axisymmetry with 240 nodes and elements in
the circumferential direction and then the flange holes were added. Shown at
the bottom of Figure 6.12 is the resulting 8 noded hexahedron solid model which
contained 58,080 nodes, 38,160 elements and 174,240 DOFs. MSC/NASTRAN
was used to extract the first 20 free-free natural frequencies and mode shapes.
The FMAC plot for both the initial and the refined super-models is shown in
Figure 6.13. The red circles are for the initial super-model and the blue circles are

for the refined super-model.
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Figure 6.13: FMAC Plot for Initial and Refined Turbine Casing Super Models

The figure shows that the frequency differences decreased between about 1%
to 2.5% from the initial to the refined model while the MAC values remained very
near 1.0 for all modes. The frequency differences for all modes of the refined model

were between about +0.4% and +3.0%. Note the consistency of the frequency

172



Chapter 6 Case Study

differences with a variation of about 1.3% about a line at +1.7%. Further, the
decrease in variation from 1.7% for the original mesh to 1.3% for the refined

mesh is indicative of convergence.

6.3 Assembly of Combustor and Turbine Casings

The initial hexahedron solid element super-models for the combustor and turbine
casings were connected together at their mating flanges to form the model for the
assembly. The cross-section for the assembly model is shown in Figure 6.14. The
combustor casing is shown by the black lines and the turbine casing by the red

lines.

Figure 6.14: Assembly Cross-section Super Model

The cross-section model contained 323 nodes and 167, 4-noded elements which
was then spun about the axis of axisymmetry with 240 nodes and elements in the
circumferential direction. The features were incorporated once again by removing
elements for both the holes and scallops. The resulting 8-noded hexahedron solid
model, shown in Figure 6.15, contained 78,480 nodes, 38,565 elements and 235,440
DOFs.
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Figure 6.15: Assembly 3-D Super Model

The cross-section of the joint model between the internal spigot of the aft flange
for the combustor casing and the forward flange for the turbine casing is shown in
Figure 6.16. The combustor casing is shown by the black lines, the turbine casing
by the red lines and the centre line through the bolt holes by the black dashed line.
The joint model was constructed by rigidly connecting the coincident nodes shown
encircled in blue. The coincident nodes at the top and bottom of the bolt holes
were connected in all three DOF's for every node around the circumference (square
holes). The coincident nodes in the corner of the internal spigot and the corner
of the radial rib were connected in the radial and axial DOFs only, also for every
node around the circumference. The rigid connections decreased the total number
of DOFs by 2,400 (2 cross-section nodes at 3 DOFs and 2 cross-section nodes at 2
DOFs both by 240 circumferential nodes) to 233,040. The first 20 free-free natural
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frequencies and mode shapes were extracted using MSC/NASTRAN.

Bolt Axis
Combustor Turbine
Casing Casing
\
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Figure 6.16: Assembly Cross-section Joint Model at the Mating Flanges

The modal test data were taken (previously at Imperial College) using three
rings of 12 equally-spaced transducers in the radial direction. The first ring was
located on the outside diameter of the forward flange of the combustor casing. The
second ring was located on the outside diameter at the aft flange of the combustor
casing. The third ring was located on the outside diameter of the aft flange of the
turbine casing. The modal test produced 36 FRFs from which the modal analysis
was able to determine 12 modes.

Figure 6.17 shows the FMAC plot (in percentage frequency difference versus
experimental mode number format) for the correlation of the assembly super-model
with the test data. The black circles are for the auto-MAC of the experimental
modes and the red circles are for the MAC between the experimental and analytical
mode shapes.

The figure shows that the correlation is excellent with MAC values for all modes
very near 1.0 except for experimental mode 10 with about 0.90. The frequency

differences for all modes were between about +1.3% and +4.3%. The consistency
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Figure 6.17: FMAC Plot for Assembly Super Model

of the frequency differences is excellent with a variation of about 1.5% about a
line at +2.8%.

The refined model of the assembly for the convergence check contained 151,440
nodes, 90,295 elements and 454,320 DOFs. Unfortunately, the model proved too
large to run on the computers available. However, from the correlation for the
initial assembly model and the convergence of the individual component models, it
is envisaged that the convergence of the assembly model would yield MAC values
unchanged from the initial model and frequency differences with a variation of

about 1% about a line at +2%.
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6.3.1 Mode Tracking

A useful means for understanding the modal behaviour of both the components and
the assembly is to use the FMAC to track the modes of the component structures
to the corresponding modes in the assembly, which was referred to in Chapter 4 as
”"mode tracking”. This gives insight into how important each of the components is
to the modes of the assembly and can be used as a guide for creating design-size
models, either directly or by reducing the super-model. In this way the most im-
portant components can be given the greatest attention in modelling or reduction,
resulting in a better and more efficient assembly model than would normally be
obtained from giving equal attention to all components.

Figure 6.18 shows the comparison of the analytical combustor and turbine
casing component modes with the experimental modes of the assembly. The
combustor-to-assembly correlation is shown in red and the turbine-to-assembly
correlation is shown in blue. It can be seen from the figure that 6 of the combustor
casing modes correlate very well with modes of the assembly with MAC values
0.9 and natural frequency differences between about +3% and +6%. The turbine
casing is shown to correlate well with 4 modes of the assembly with MAC values
0.9 but with natural frequency differences between about -18% to -24%. However,
assembly modes 2, 3, 6 and 7 are seen to not correlate very well with modes of
either of the components. The combustor casing is considered to be dominant in
the assembly because 6 of the 12 modes were predicted quite accurately with just
the model of the combustor casing.

The figure also shows that nearly all the modes of the combustor casing have
positive natural frequency differences when compared with those of the assembly.
This suggests that the turbine casing had a softening effect on the combustor
casing resulting in a frequency decrease for the assembly modes when compared
with the combustor casing. Likewise, nearly all the modes of the turbine casing

have negative frequency differences when compared with the assembly modes. This

177



Chapter 6

Case Study

7% Natural Frequency Difference

e Lo
L LN G,,,
,,,,,,,,,,,,,, 00 o0 e
,,,@ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
,,,,,,, @ g
I o - ©
e
0 2 4 6 8 10 12

Experimental Mode #

Figure 6.18: FMAC Plot for Mode Tracking Component Modes to Assembly

implies that the combustor casing had a stiffening effect on the turbine casing

resulting in a natural frequency increase for the assembly modes when compared

to the turbine casing.

178



Chapter 6 Case Study

6.4 Effects of Features on Modal Characteristics

In order to show how the addition of the different structural features (such as flange
holes, scallops and casing holes with bosses) affects the correlation, an analysis was
performed with all the features removed (axisymmetric) and then each feature was
added individually for subsequent comparisons with the one with no features. The
flange and casing holes were removed from the model by including the appropriate
elements that were previously removed to create the holes. The scallops and bosses
were removed from the model by deleting the appropriate elements. Finally, an
analysis including all the features was compared with the analysis with no features.
This was done for each component individually as well as for the assembly of the
two. The FMAC was used to show the correlation between each analysis and the

test data as well as the change in the correlation between the different analyses.
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6.4.1 Combustor Casing

The FMAC plot for the model with no features is shown in Figure 6.19. The Figure
shows that the correlation is quite good with MAC values very close to 1.0 for all
experimental modes and natural frequency differences between about +5.2% and
+9.2%. The frequency differences were very consistent with only a 2% variation

about a mean at +7.2%.
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Figure 6.19: FMAC Plot for the Combustor Casing: No Features

180



Chapter 6

Case Study

Figure 6.20 compares the model with the flange holes added (both flanges)
to the (axisymmetric) model with no features. This figure shows that including
of the flange holes significantly decreases the natural frequencies, up to about
4% for modes 5 and 6, of 6 of the 12 modes. The correlation is shown to be
good with MAC values very close to 1.0 for all experimental modes and natural
frequency differences of between +4% and +9%. Note that by adding the flange

holes alone the frequency difference variation increased to about  2.5% while the

mean decreased
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Figure 6.20: FMAC Plot for the Combustor Casing with Flange Holes
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The FMAC plot comparing the model with the scallops added (inner flange)
to the (axisymmetric) model with no features is shown in Figure 6.21. The figure
shows that the scallops significantly decreased the frequencies of 6 of the 12 modes
(up to about 4.5% for modes 7 and 8). However, the scallops had nearly no effect on
modes 11 and 12. The correlation is shown to be good with MAC values very close
to 1.0 for all experimental modes and natural frequency differences between +3.8%
and +7.2%. Adding the scallops alone decreased both the frequency difference
variation to about 1.7% and the mean to about +5.5%.
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Figure 6.21: FMAC Plot for the Combustor Casing with Scallops
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Figure 6.22 compares the model with the case holes (through both inner and
outer casings) and bosses added to the (axisymmetric) model with no features.
The figure shows that the correlation is good with MAC values very near 1.0
for all modes but adding the case holes with bosses had minimal effect on the
frequencies of the 12 modes. The greatest change was about -1.5% for modes 3
and 4. However, there was almost no effect (< 0.5%) on modes 5, 6, 9 and 10. The
addition of the casing holes and bosses decreased the mean frequency difference to

about +6.7% while the variation remained unchanged at about 2%.

10 prmmmm = m o

G

O
O

o

O
@)
O

7% Natural Frequency Difference
N

8 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
R O auto—MAC
O No Features
i O Bosses & Holes
0 JER) /Y JR) LN N N JEY
N N N NN N
71 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
ol Lo __ Lo __ L ___ o N J
0 2 4 6 8 10 12 14

Experimental Mode #

Figure 6.22: FMAC Plot for the Combustor Casing with Holes and Bosses
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The model with all the features compared with the (axisymmetric) model with
no features is shown in Figure 6.23. The figure shows that the addition of all the
features significantly decreased the natural frequencies, up to about 6% for modes
7 and 8, of 10 of the 12 modes. However, the natural frequencies for modes 11
and 12 only decreased by about 1%. Note that adding the features had nearly no
effect on the MAC values. The resulting correlation with all the features added is

excellent, as mentioned above.
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Figure 6.23: FMAC Plot for the Combustor Casing: None and All Features
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6.4.2 Turbine Casing

The FMAC plot for the model with no features (axisymmetric case) is shown in
Figure 6.24. The figure shows that the correlation is quite good with MAC values
very close to 1.0 for all experimental modes, except mode 5 with a MAC value of
about 0.5. The frequency differences are between +4.2% and +7% and are very

consistent with only about a  1.4% variation about a line at +5.6%.
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Figure 6.24: FMAC Plot for the Turbine Casing: No Features
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Figure 6.25 compares the model with the flange holes added, which were the
only features, with the (axisymmetric) model with no features. The figure shows
that the flange holes significantly decreased the frequencies of 6 of the 12 modes,
by up to about 3.5% for modes 3 and 6 through 9. Note that the MAC value for
mode 5 increased to about 1.0 from the value of 0.5 obtained with no flange holes.

The resulting correlation with the flange holes added is very good, as mentioned

above.

10

7% Natural Frequency Difference
N

Figure 6.

——————————————————————————————————— O auto—MAC
O No Features
77777777777777777777777777777777777 O Flange Holes

A N N [N

N NN AN
,,,,,,,,, i e S B
0 2 4 6 8 10 12

Experimental Mode #

25: FMAC Plot for the Turbine Casing with Flange Holes
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6.4.3 Assembly of Combustor and Turbine Casings

The FMAC plot for the model with no features (axisymmetric case) is shown in
Figure 6.26. This figure shows that the correlation is very good with MAC values
very close to 1.0 for all experimental modes, except mode 10 with a MAC of about
0.8. The frequency differences are between about +5.2% to +7.8% and are very

consistent with only a  1.3% variation about a line at +6.5%.
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Figure 6.26: FMAC Plot for the Assembly: No Features
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Figure 6.27 compares the model with the flange holes (all four flanges) added
to the initial (axisymmetric) model with no features. The figure shows that the
addition of the flange holes significantly decreased the frequencies, by up to about
3.5% for modes 4 and 5, of 5 of the 12 modes. The MAC values remained near 1.0
for all modes except modes 10 and 11 with values of about 0.5 and 0.7 respectively.
Adding the flange holes alone decreased the mean frequency difference to about

+5.2%, however the variation increased to about 1.5%.
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Figure 6.27: FMAC Plot for the Assembly with Flange Holes
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The comparison between the model with the combustor scallops added (inner

flange) and the

The figure shows that the scallops significantly decreased the frequencies, by up
to about 4.5% for modes 6 and 7, of 5 of the 12 modes. However, the scallops
had nearly no effect on modes 4, 5 and 8 through 10. Note that the MAC values

remained about

frequency difference variation to about

+5.4%.
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(axisymmetric) model with no features is shown in Figure 6.28.

the same for all modes. The addition of the scallops increased the
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Figure 6.28: FMAC Plot for the Assembly with Scallops
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Figure 6.29 compares the model with the case holes (through both inner and
outer casings of the combustor) with bosses added to the (axisymmetric) model
with no features. The figure shows that the case holes with bosses had minimal
effect on the frequencies of the 12 modes. The greatest change was about 1% for
mode 1. However, the case holes with bosses had no effect on mode 12 and nearly
no effect on modes 8 and 9. The MAC values again remained about the same for all
modes. Adding the case holes and bosses decreased the mean frequency difference

to about +6.1% and increased the variation to about 1.5%.
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Figure 6.29: FMAC Plot for the Assembly with Holes and Bosses
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The comparison between the model with all the features and the (axisymmetric)
model with no features is shown in Figure 6.30. The figure shows that with all the
features added the frequencies decrease significantly, by up to about 6% for modes
7 and 8, of 10 of the 12 modes. However, the frequency for modes 10 and 11 only
decreased by about 1.5%. The MAC values remained unchanged for all modes.

The resulting correlation with all the features added is excellent, as mentioned

above.
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Figure 6.30: FMAC Plot for the Assembly: None and All Features

191



Chapter 6 Case Study

6.4.4 Summary of Feature Effect Results

The results of the effects of the different structural features on the correlation
are summarised in Figure 6.31. The figure lists the natural frequency difference
variation and mean for each model that was analysed. In order to display clearly
all the results, it was necessary to separate the data into two parts. However, note
that the "no features” and ”all features” columns are provided in both parts of the

summary to simplify the task of making comparisons.

Natural Frequency Differences (variation, mean)

No Flange All
Model Features Holes Scallops Features
Combustor  2.0%,+7.2%  2.5%,+6.5%  1.7%,+5.5%  1.3%,+3.0%
Turbine 1.4%,4+5.6% 1.7%,+3.9% NA 1.7%,4+3.9%
Assembly 1.3%, 4+6.5% 1.5%, +5.2% 2.1%, +5.4% 1.5%,4+2.8%

No Casing Holes All
Model Features and Bosses Features
Combustor  2.0%,+7.2%  2.0%, +6.7% 1.3%, +3.0%
Turbine 1.4%,45.6% NA 1.7%,4+3.9%
Assembly 1.3%, +6.5% 1.5%, +6.1% 1.5%,4+2.8%

Figure 6.31: Summary of the Feature Effect Results
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6.5 Physical Model Reduction of Engine Casings

The reduction of any model generally requires certain compromises, some of which
are the exclusion of selected features and geometry approximations. While there
are many ways to generate approximate models of complex structures, as was
shown in Chapter 3, the combination of beams, for the features, and shells, for the
casings, has been used here. As this modelling approach was shown in Chapter 3 to
be the least favourable, in terms of correlation, it is an ideal choice to demonstrate
the benefits of selecting the best possible DOF's for a given mesh size. While the
super-model may represent the maximum number of DOF's for the model of a given
structure, the beam/shell model may represent the least number of DOFs for the
same structure. In this way the physical model reduction technique was given the
greatest possible challenge.

The application of the modal average strain energy density (MASED) reduction
technique presented in Chapter 4 to either of the rather complex casings considered
here, in their entirety, may yield results that are not very useful. This is because the
modal average strain energy density tends to concentrate in the areas of the major
features, such as the flanges and channels, and consequently very few elements
would be left for the major casing sections. Accordingly, the technique was applied
to the major sections of the casings since the geometry of the included features
demands sufficient detail that if decreased may cause significant compromises to
the geometry.

It is important to mention that the MASED method, in its current form, selects
a subset of the elements considered for reduction without regard for the type of el-
ement. Accordingly, the reduction of the solid-element super-models to beam /shell
models is a three-step process of which the MASED method is one of the steps.
The MASED was first used to determine the subset of the super-model elements to
retain for the desired reduced size. Next, the subset or reduced set of solid elements

was converted to shell elements using the methods presented in Chapter 3. The
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last step was to determine the section properties of the solid-element features—
flanges and channels—for the beams. This can be achieved in numerous ways but
was accomplished here by using the computational capability in MSC/NASTRAN,
called the grid point weight generator, to determine the section properties of the
cross-section model for each of the features.

By converting the different features from solid elements to beam elements it
was necessary to omit certain features, such as the flange holes, scallops and casing
holes. Although the study presented above makes a case for including at least the
flange holes and scallops in a super-model, it is generally an unavoidable conse-
quence that they are omitted for a reduced model. However, since the MASED
method was applied to the super-model that contained all the features, the effect
the features had on the modal average stain energy density will be present in the
reduced model. This is referred to here as the ”residual” feature effect and is

another advantage of the MASED method.

6.5.1 Combustor Casing Model Reduction

The modal strain energy density for each element of the combustor casing super-
model was computed using MSC/NASTRAN for the first 20 flexural modes for the
free-free condition. The MASED for the first 20 modes is shown in Figure 6.32.
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Figure 6.32: MASED for Combustor Casing Super Model

The figure shows that by including 20 modes in the modal average, the MASED
distribution in the circumferential direction is very close to uniform for elements
that are away from the casing holes. However, there is a moderate axial variation
with the maximum being at the forward flange.

The physical model reduction was performed using the MASED approach with
a weighting factor of 1.0 used for each of the 20 modes. Since the flanges were to
be modeled with beam elements, they were excluded from the reduction. Because
of the complexity of the geometry the reduction was performed in three stages.
The super-model was first divided into three zones, as shown in Figure 6.33. The
target reduction ratio was chosen to be between 10 to 20 for each zone. Selecting
a greater reduction ratio, especially for zones B and C, would be most likely to

result in compromises made to the geometry. Furthermore, the mode tracking
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results described above showed that the combustor casing was dominant in the
assembly modes, which suggests that a less aggressive reduction ratio than might

ordinarily be used would be prudent to maintain a higher level of accuracy.

/one A

/one B

Figure 6.33: Combustor Casing Cross-section Super Model Reduction Zones

The reduced beam /shell model cross-section for the combustor casing is shown
in Figure 6.34 superimposed on the super-model. The casing shell-elements are
shown in red and the beam centroids are shown by the blue circles with the offsets
represented by the blue lines. The cross-section of the super-model is shown by

the black lines.
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Figure 6.34: Combustor Casing: Cross-section of Reduced and Super Models
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)
4////////4/

Figure 6.35: Combustor Casing Reduced Beam/Shell 3-D Model

Figure 6.35 shows the resulting 3-D model with 40 circumferential elements.
The figure shows that the mesh is nearly equally-spaced in the circumferential
direction but has a moderate spacing variation in the axial direction. This is
consistent with the MASED distribution as shown in Figure 6.32.

The super-model for the combustor casing had 216 cross-section nodes and 240
circumferential nodes, whereas the reduced beam/shell model had 43 and 40 nodes
respectively. Considering the difference in the number of DOF's per node, between
the solid-element super-model with 3 and the beam/shell-element model with 6,
the total number of DOF's was decreased from 155,520 to 10,320, giving a reduction
ratio of about 15.

The FMAC plot in Figure 6.36 shows a comparison of the correlation with the
test data for both the reduced model, in blue, and the super-model in red. The
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Experimental Mode #

FMAC Plot for the Combustor Casing Reduced and Super Models

figure shows that the correlation for the reduced model is good with MAC values

0.9 for all modes but with natural frequency differences of between about +3% and

+9%. The super-model is seen to have a much smaller natural frequency variation

of between about +1.7% and +4.3%. However, when considering that the super-

model had about 15 times the number of DOFSs, the natural frequency variation

for the reduced model is considered to be very good and can be understood by

reviewing Figure 6.21 of the feature effects study above. From that figure it can be

seen that by including the scallops on the aft inner flange, the natural frequencies

for the first 8 modes of the combustor casing decreased significantly, by up to about

5% for modes 7 and 8. Accordingly, the natural frequency variation in the reduced

model can be attributed largely to the omission of the scallops from the model.
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6.5.2 Turbine Casing Model Reduction

MSC/NASTRAN was again used to determine the modal strain energy density for
each element of the turbine casing super-model for the first 20 flexural modes for
free-free boundary conditions. The modal average strain energy density for the first

20 modes of the turbine casing super-model is shown in Figure 6.37. This figure

Figure 6.37: MASED for Turbine Casing Super Model

shows that by using 20 modes in the modal average, the MASED distribution in
the circumferential direction is again very close to uniform. The axial variation is
again moderate, with the maxima occurring at the forward and aft flanges.

The physical model reduction was performed using the MASED approach with
weighting factors of 1.0 for each mode. The flanges and channels were to be mod-
elled using beam elements and, consequently, were excluded from the reduction.

With moderate geometry variation, the goal for the reduction ratio was set to
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be between 25 and 35. Although this is more aggressive than that used for the
combustor casing, the mode tracking results from above indicate that the turbine
casing modes contribute much less to the assembly when compared with the com-
bustor casing. Accordingly, a greater reduction of the turbine casing model should
be possible with less risk of decreasing the accuracy of the assembly model.

The reduced beam/shell model cross-section for the turbine casing is shown in
Figure 6.38 on top of the super-model. The casing shell-elements are shown in red
and the beam centroids are shown by the blue circles with the offsets represented

by the blue lines.

Figure 6.38: Turbine Casing: Cross-section of Reduced and Super Models

The 3-D model with 40 circumferential elements is shown in Figure 6.39. The
figure shows that the mesh has a moderate axial spacing variation but is nearly
equally-spaced in the circumferential direction. This is again consistent with the

MASED distribution as shown in Figure 6.37.
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Figure 6.39: Turbine Casing Reduced Beam/Shell 3-D Model

The super-model from above had 111 cross-section nodes and 240 circumferen-
tial nodes compared with the reduced model with 11 and 40 nodes, respectively.
Taking into account the difference in the number of DOFs per node, the decrease
in the total number of DOFs was from 79,920 to 2,640 for a reduction ratio of
about 30.

Figure 6.40 shows the FMAC plot which compares the correlation with the
test data for both the reduced model, in blue, and the super-model in red. The
correlation is seen in the figure to be good with MAC values 0.8 for all modes
and natural frequency differences of between about -3.5% and +5.5%. The figure
shows again that the super-model had a much smaller natural frequency variation of
between about +2.2% and +5.6%. However, the natural frequency variation for the

reduced model is still considered to be very good, especially when taking account
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Figure 6.40: FMAC Plot for Turbine Casing Reduced and Super Models

of that the super-model had about 30 times the number of DOFs. An explanation
of the reduced model frequency variation can be obtained by reviewing Figure
3.25 from Chapter 3. That figure compares, for a generic casing with two flanges,
three different modelling methods—shell/beam, shell alone and hybrid—against
a very detailed reference solid model. From the figure it can be seen that, when
compared with the reference solid model, the shell/beam model demonstrated very
similar natural frequency variations to those from the comparison shown here for
the reduced model compared with the super-model. Accordingly, the increase in
the natural frequency variation is attributed mostly to the change from a solid to

a shell/beam type model for the reduced model.
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6.5.3 Assembly of the Reduced Component Models

The reduced model for the assembly was obtained by attaching the two reduced
component models together at their mating flanges using a rigid joint model. How-
ever, since the reduced mating flanges were represented by beam elements, the
mating nodes had a gap between them making it necessary to add rigid elements
to bridge the gap.

Figure 6.41 shows a cross-section of the joint model between the aft flange of
the combustor casing and the forward flange of the turbine casing. The model
for the reduced casings is superimposed on the joint model that was used for the
assembly super-model. The shell models are shown by the lines and circles that
coincide with the mean-line of the casings. The off-set beam element centroids are
shown by the dashed lines and the two circles with the ”X” in the middle. The
rigid elements are shown by the green lines connecting the shell nodes to the extra

node, also shown in green, at the bolt hole centre-line.

Bolt Axis
Combustor ® Turbine
Casing .| Casing
) Y
o—d !

Figure 6.41: Cross-section of Joint Model for the Reduced Assembly

All 6 DOFs (3 translations and 3 rotations) of each node of the rigid elements

were used so that the physical joint, which can transmit both translational and
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bending loads, could be modelled adequately. The reduced assembly model had
12,960 DOF's compared with the super-model which had 235,440 DOF's, reflecting
a reduction ratio of about 18.

The correlation for both the reduced and super-models of the assembly are

compared in the FMAC plot in Figure 6.42. The figure shows that the correlation
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Figure 6.42: FMAC Plot for Assembly Reduced and Super Models

for the reduced model is good with MAC values 0.8 for all modes and with
natural frequency differences of between about +3% and +9%. The super-model
is seen to have a much smaller natural frequency variation (between about +1.3%
and +4.3%) as was previously noted for the individual component super-models.
However, when considering that the super-model had about 18 times the number
of DOFs, the natural frequency variation for the reduced model is considered to be

very good. As for the component reduced models, the natural frequency variation
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here can be attributed to the omission of certain features from the reduced model.
From Figure 6.28 of the feature effects study above, it can be seen that by adding
the scallops to the aft inner flange of the combustor casing part of the assembly
model, the natural frequencies for modes 2, 3, 6, 7 and 12 all decreased significantly,
by up to about 4% for modes 6 and 7. Consequently, the omission of the scallops can
be identified as a possible cause for the largest part of the greater natural frequency
variation for the reduced model. It is no coincidence that the assembly model
comparison parallels that of the combustor casing alone, as the mode tracking
study indicated that the combustor casing was the dominant component in the

assembly.

6.6 Residual Modes and Reduced Assemblies

One of the advantages of the new model validation strategy presented in Chapter
2 is that once the super-model has been obtained, it can be used to overcome some
of the limitations of a conventional modal test. The test frequency range is one
of the limitations that it is often desired to overcome. The lack of correlation of
an assembly is often attributed to the inability of the component FE models to
predict certain high-frequency modes, some of which may get driven to much lower
frequencies in the assembly as a result of connecting the mating components. It is
argued in [32], that the component FE models are less accurate for the higher modes
due to their limited mesh densities. Accordingly, the super-model can be used as a
reference or virtual test data set and the modes for any desired frequency range can
be generated. In this way, the reduced models can be compared with the reference
for a much larger frequency range than would be afforded by a conventional modal
test. This comparison can give insight into what is termed the ”residual mode”

effect.
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Figure 6.43 shows the FMAC plot that compares the reduced model for the
combustor casing with its corresponding super-model for the first 26 modes.

The figure shows that the reduced model performs quite well for about the first
16 modes. However, for the higher modes (17-26), the correlation becomes much
worse and is very poor for modes 24 through 26. This clearly shows the limits of

the reduced model for the prediction of the higher frequency modes.

7% Natural Frequency Difference

0 3 6 9 12 15 18 21 24 27
Reference Mode #

Figure 6.43: FMAC: Combustor Casing Reduced and Super Models, Higher Modes

Similarly, for the turbine casing the FMAC plot in Figure 6.44 shows the com-
parison between the reduced and super-models for the turbine casing for the first 26
modes. In this figure, the correlation is seen to be very good for the first 20 modes
but for modes 21 through 26, is almost non-existent. Again, the high freuquency
limits of the reduced model have been clearly shown.

It is important to mention that this is not a reflection on the performance of
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Figure 6.44: FMAC: Turbine Casing Reduced and Super Models, Higher Modes

the reduced models. This study is intended to lend support to the lack of the high-
frequency or residual mode capability of the reduced models being at least part
of the cause for the increase in the natural frequency differences for the reduced
assembly model. However, it can be said that the two comparisons in Figures 6.43
and 6.44 further illustrate that the reduced models performed very well when one
considers only the first 20 modes were used in the MASED, and reduction ratios

of 15 and 30 were achieved for the combustor and turbine casings respectively.
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6.7 Conclusions

6.7.1 Super Models

The ability to reproduce the test data using a super-model was clearly demon-
strated for two adjacent real turbine engine casings. Further, the two casings were
connected using a rigid joint model to form an assembly model that was also shown
to reproduce the test data with excellent accuracy. The convergence of the refined
component models to a higher degree of accuracy than the initial models demon-
strated the robustness of the models. The consistency of the natural frequency
variations in all cases is attributed to the models possessing accurate geometry,

adequate mesh density and details of the most significant features.

6.7.2 Effects of Features on Correlation

In the study presented here, the effects of the different detail design features on the
degree of correlation was clearly shown. It is important to mention that the MAC
values were in general unchanged by the addition of the different features but that
the natural frequency differences were affected, in some cases significantly. The
flange holes and scallops had the greatest effect by decreasing the natural frequen-
cies of some modes by between about 2% and 4%. The case holes with bosses had
a lesser effect by showing natural frequency decreases of about 1%. However, when
all the features were included, the natural frequencies decreased between about
4% and 6% for more than half the modes considered. The features affected the
assembly properties by about the same amount as they affected the components
individually. With a goal of predicting natural frequencies to within, say, 5%, it
is clear that features such as flange holes and scallops should be considered, either
directly with a detailed model or approximately with an enhanced coarse (shell)
model. However, an argument could be made that casing holes with bosses could

be ignored, at least for casings with similar geometries to those presented in this
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study.

6.7.3 Physical Model Reduction

The reduction of the super-models using the MASED physical model reduction
technique was shown to be very effective. While the omission of most of the
features in the reduced models was necessary, the degree of correlation obtained
remained high with MAC values 0.8 and natural frequency differences < 10% for
the modes considered. An important point to make is that the reduction used the
modal average strain energy from the super-models which did, of course, include all
the features. Consequently, the FE mesh topology had a built-in "residual feature
effect” from the features, even though they were not physically included in the
reduced models. The high degree of correlation that was obtained is attributed, in

part, to this advantageous characteristic of the method.
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Conclusions and Future Work

The ability to generate an accurate FE model for structural dynamic analysis at any
phase of the design process may be thought to be a relatively simple task. Some
might believe that as computer power grows so must the modelling capability.
However, in practice this is not generally the case as most analysts, at least in
the aerospace industry, will confirm that their models for large structures have not
improved significantly in the last 5 years or so. This unfortunate circumstance is
attributed, at least in part, to deficiencies in the model validation process that this
thesis seeks to remedy.

The tasks for developing valid FE models for structural dynamic design using
the proposed new model validation strategy—the super-model—have been devel-
oped and presented in a concise and logical manner. This was done to emphasise
the inter-dependence of the two primary tasks—FE modelling and correlation—
and to illustrate how important they are, together, to the success of the model
validation process.

The detailed conclusions for the research topics considered in this thesis have
already been presented at the end of each chapter. The following three sections
present the overall conclusions, summarise the contributions of this work and offer

suggestions for future work. This is followed by some closing remarks.
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7.1 Conclusions

7.1.1 New Model Validation Strategy

The success of the new model validation strategy proposed in this work relies on
the ability to match the test data accurately using a super-model. This ability has
been clearly demonstrated for three different gas turbine engine casings with rela-
tively complex geometries. Each of the casings was modelled from design drawings
without any geometric measurements being taken from the physical structure. This
is important since during the design process the physical hardware will generally
not be available at the stage when the models must be constructed. The correla-
tion results showed that the test data could be consistently matched by predictions
based on the model with excellent accuracy. This achievement is significant in that
it allows for the validation of the FE model within the design process (without re-
course to measurements) so that it can be used to better guide the design of the

physical structure.

7.1.2 FE Modelling

The modelling techniques for both approximate and super-models were presented
in some detail to illustrate the number and importance of the choices that are nec-
essary to create an accurate FE model. It was emphasised that it is important for
the analyst to have a basic understanding of the limitations of each element type in
terms of order and distortion tolerance in order to determine how best to use them
in practice. The basic techniques presented for using beam and shell elements were
shown to help improve the modelled geometry, and therefore the mass and stiffness
distributions, to be more representative of the actual structure. Additionally, it
was shown that by using the beam and shell element modelling techniques pre-
sented that it was possible to represent a reference or super-model with sufficient

accuracy, which is necessary for the approximate model to be updated.
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7.1.3 Physical Model Reduction

A new physical model reduction technique using the modal average strain energy
density has been developed and presented here, and has been shown to be very
effective. It was demonstrated that a super-model could be reduced by a factor
as high as 30 times while retaining a reasonable approximation of the modal char-
acteristics of the super-model for a significant number of modes (16 to 20 in the
case studies shown). The differential reduction of different components, taking
account, of how these individual component modes are influential in the assembly
modes, using mode tracking, was shown to further enhance the reduction process.
The ability to determine, using the super-models of the components and of the
assembly, which of the components is the most dominant in each of the assembly
modes has been shown to allow for the concentration of the most elements in the

dominant component, thereby providing a more efficient model.

7.1.4 Model Correlation

The review of the available correlation methods depicted that the vector correlation
methods are, in general, more widely used than either orthogonality or FRF-based
methods. Furthermore, in certain cases some of the stand-alone vector methods
(such as the NMAC) may prove superior to the MAC for mode shape correlation,
but in general the MAC parameter remains the method of choice, mainly because
it has not been improved upon for general applications.

The FMAC format of presentation of correlation parameters, developed in this
thesis, has been shown to be very effective at simultaneously displaying all the nec-
essary correlation information—the MAC, the natural frequency correspondence
and the degree of spatial aliasing. Two alternate forms of the FMAC were shown
to provide for a more detailed view of the frequency correspondence for modes
close in frequency. The ability of the FMAC to display multiple correlations on

a single plot was shown to be a very useful and powerful tool for assessing the
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change in modal characteristics between the different correlation sets. A natural
extension of the FMAC to the correlation of FRFs and mode shapes using the
MFAC, introduced in this thesis, was shown to be quite promising in that the data
with the most integrity—the test FRF's and the analytical mode shapes—may be
used for correlation, thereby avoiding the modal analysis of the test FRFs.

The use of a truncated set of Fourier indices for the correlation of (quasi)
axisymmetric structures was shown to help significantly improve the correlation. In
some cases, the improvement was shown to be very significant and when combined
with mode shape rotation provided a means for extracting the most meaningful
correlation possible from (quasi) axisymmetric structures. It was demonstrated
that by combining the Fourier truncation and mode shape rotation techniques the
MAC values, between test and analysis mode shapes, could be as much as doubled
for about half of the experimental modes. This is a significant achievement in that
it effectively transforms what appears, at first, to be a poorly-performing model

into a good-performing model.

7.2 Summary of Contributions

(1) A new model validation strategy has been introduced which proposes replac-
ing the traditional modal test data used in the classical model validation
process with the analytical results from a very detailed FE model called a
super-model. The demonstration that this is possible forms the basis for the
improvement of the model validation process and gives rise to new possibili-

ties, some of which are described below.

(2) The use of the super-model in place of test data removes many of the lim-
itations of a conventional modal test, such as the limited frequency range
and number of measured DOFs. Furthermore, multiple boundary conditions

can be explored with relative ease. The super-model when used as the refer-
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ence for updating a design size model, provides information from significantly
more DOFs than a modal test and, accordingly, renders the error location
and model updating processes over-determined, which may be a significant

advantage for obtaining an updated design model in much less time.

The current modelling trend is to generate a very detailed or super-model
using automated mesh generating software. However, there is still a need
for good approximate modelling techniques for preliminary design and early
detailed design models when there may be no electronic form of the design
available. While there is a significant amount of literature available on the
FE method, there is relatively little published information on how to use
the available elements and techniques in practice. This unfortunate circum-
stance is somewhat aided by the automation of mesh generation in commer-
cial software where the ease of use can be misinterpreted by the analyst into
meaning reliable and robust, which may not be the case. Accordingly, ap-
proximate modelling techniques remain necessary and those presented in this
thesis should help to avoid the most common problems associated with most

poorly performing models.

In the analysis of assemblies containing many components it remains impor-
tant to be able to simulate the modal characteristics of a much larger model
using relatively fewer DOFs. The physical model reduction technique using
the modal average strain energy density introduced in this thesis provides a
means to reduce large super-models to much smaller approximate but phys-
ical (as opposed to numerical) models. The technique has been shown to
be very effective at making the most efficient use of a reduced number of
elements by the reduced model retaining an adequate representation of the
modal characteristics of a super-model for a significant number of modes (16

to 20 in the case studies shown).
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(5)

The introduction of mode tracking of component modes to corresponding
assembly modes has been shown to aid model reduction. By using mode
tracking prior to performing reduction to rank the importance of each com-
ponent to the assembly modes, the reduction ratios for each component can
be selected optimally. In this way, the selected reduced number of total ele-
ments for the assembly can be placed where they are most needed, resulting

in a more efficient model.

The natural frequency correspondence has often been overlooked in correla-
tion procedures in favour of the mode shape correlation. The introduction of
the frequency-scaled modal assurance criterion (FMAC) for performing cor-
relation has remedied this by providing a way of displaying the mode shape
correlation, natural frequency comparison and degree of spatial aliasing on
a single plot that is relatively simple to construct. Furthermore, the FMAC
has been shown to be very useful for comparing multiple correlation sets to

gain insight into changes in modal characteristics.

The development of using a truncated set of Fourier indices for correlation
of (quasi) axisymmetric structures was shown to help to eliminate some of
the frustration often encountered when performing numerical correlation on
such structures. When combined with mode shape rotation, the technique
was shown to improve the correlation significantly. Before this development,
the numerical correlation of (quasi) axisymmetric structures could often show
poor results for modes that visually appeared to be similar or sometimes

identical.

The modal frequency response assurance criterion (MFAC) was introduced
so that a direct comparison could be made of the most readily-available
information from each source—FRF data from the test and mode shapes

from the analysis—and, consequently, the modal analysis of the test FRF's
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could be avoided. This can present a significant advantage, especially when
the test data are relatively noisy, a situation which tends to introduce errors

in the mode shapes resulting from the modal analysis.

7.3 Suggestions for Future Work

Joint Modelling

Although the modelling of joints was not addressed in depth in this thesis, the
demonstration of the effects of the interface on the modal characteristics of as-
sembled structures clearly indicates that an accurate joint model is needed. The
review of the available literature on joint modelling revealed that in general most
of the published work focused on very specific joint types and applications. What

is needed is a more general methodology for modelling joints.

Physical Model Reduction

Model reduction was presented in this thesis with the view towards reducing a
super-model to a more practical size for use in an assembly of multiple components.
However, one could envisage using the reduction techniques in the model validation
process to reduce the super-model directly to create a validated design-size model
and avoid the task of model updating. For this use, the physical model reduction
technique would need to be enhanced to include the preservation of geometric fea-
tures, such as complex shapes and inter-connections. Other improvements might
be to consider the different element types and provide for a direct and possibly
more accurate conversion from one element type to another. These improvements

could significantly increase the robustness of the technique.

Model Correlation
While the FMAC is considered to be a significant advance in model correlation it

still uses the MAC to compare mode shapes. There have been numerous attempts

216



Chapter 7 Conclusions and Future Work

to improve the MAC with varying success. Although the MAC remains, in general,
the most common parameter for comparing mode shapes, it still has weaknesses.
Some of these were addressed in this thesis for the particular case of axisymmetric
structures. However, more work on correlation is warranted to find a more robust

tool to replace the MAC.

7.4 Closure

The overall objective of this research was to improve the model validation process
so that the design process could benefit from using a validated FE model. This
was accomplished by the introduction of the super-model into the model validation
process to replace test data. Further improvements were presented for various tasks
within the model validation process for FE modelling and correlation. While even
the most well received research is not completely self-contained, it is believed that
the research presented in this thesis makes significant steps towards obtaining the
efficient and timely development of validated FE models for structural dynamic

design.
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