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i 

Abstract 

In the aeroengine industry, simulation models have become the driving force behind the 

optimisation of any new engine design. This approach delivers significant time and cost 

benefits to engine manufacturers but it is not risk-free. Increasing reliance on simulation 

means that inaccurate predictions can have a greater impact than ever before. That is 

why the final design models should be fully validated prior to full-scale production. 

In the field of structural dynamic analysis, predictions from a Finite Element Model 

(FEM) of the whole engine are used to optimise the engine’s design. Traditionally the 

validation of such FEM could only take place once the first engine prototypes were 

available for testing. This occurs late in the design cycle when any redesign would 

inevitably incur serious cost and time penalties. 

This thesis presents a novel methodology to validate a complex assembly model by 

validating only a few of its constituent components using supermodels as the reference. 

The virtual nature of this approach means that the assembly models are validated early 

in the design cycle, well ahead of manufacture. Moreover, the cost of model validation in 

a virtual environment is a fraction of that required when using physical testing as the 

reference. This methodology is successfully applied to a series of industrial Case 

Studies. Practical application of this approach also highlights the need to include the 

effects of component joints when validating assembly models. 

Finally, supermodels are central to the assembly model validation strategy proposed. 

The development of supermodelling techniques invariably requires physical testing and 

appropriate methods to discriminate between valid and invalid supermodels. The 

traditional deterministic approach to model validation is not suitable for supermodels. 

For this reason, a robust probabilistic approach for the validation of supermodels is 

described in this thesis and demonstrated using an industrial Case Study. 
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Chapter 1 - Introduction 

1.1  Preamble 

Engine failure caused by excessive vibration is an expensive reality for the aviation 

industry. Even when the levels of vibration are not safety-critical they can still have a 

detrimental effect on important aspects such as noise emissions or passenger comfort. 

As a result, achieving an acceptable vibration response is a primary concern for any 

new engine design. 

The traditional design-test-redesign loop is not viable in the current market. The 

increasing pressures to deploy new products in short periods of time at a much reduced 

cost means that designs must be “right first time” and that the amount of testing must be 

kept to an absolute minimum. It is no surprise, then, that simulation tools have become 

the major driving force in the design of new engines. In the field of structural dynamics, 

the Finite Element Modelling technique has established itself as the industry standard 

for the prediction of the dynamic response of aeroengines. 

The increasing reliance on Finite Element Models (FEM) during the engine design 

phase means that inaccurate predictions can lead to severe design flaws. That is why 

engine manufactures need to validate the models used during the design phase before 

the final design is released into full-scale production. Moreover, it is common for the 

aviation authorities to demand convincing evidence of the validity of those models 

before any new engine design is cleared for flight. 

The traditional approach to validating the structural model of an engine is to compare its 

predictions against measurements from a set of physical tests. However, engine 

prototypes are only available at very late stages in the development programme. This 

means that the validation of the engine’s structural model typically has to wait until the 

final engine design is practically frozen. If the structural model is found to be inaccurate 

at this stage, it is possible that the engine design is flawed and a redesign might be 
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required. Any change to the design at this point will escalate the cost of the project and 

will seriously compromise the deadline for entry into service. 

In an ideal scenario the engine’s structural model would be validated early in the design 

cycle, at a stage where design changes are still feasible and affordable. Nonetheless, 

the early stages of the design cycle are characterised by a total lack of manufactured 

prototypes. This rules out the possibility of using physical testing as the source of 

reference data for model validation. 

This thesis presents a novel methodology to validate the structural models of complex 

assemblies, such as aeroengines, during the early stages of the design cycle. The 

reference data for validation is now provided by highly refined models, referred to as 

“supermodels”, which serve as virtual substitutes for the manufactured parts and are 

readily available early in the design cycle. 

It is important to point out that the use of supermodels as the reference data for the 

validation of complex assembly models does not rule out the need for physical testing. 

Supermodelling techniques are still under development and certain phenomena, such 

as the effects of assembly joints, remain very difficult to model accurately. The 

development of supermodelling techniques will inevitably require comprehensive 

research programmes for which physical testing will still be the cornerstone. However, 

this research can be carried out independently of any engine development programme, 

thereby removing physical testing from the critical path. 

The focus of this work is on the validation of structural models used to predict the 

dynamic behaviour of jet engines. Nonetheless, the methodologies presented can be 

easily applicable to other industries where the structural dynamic response of their 

products is critical and the expected time-to-market is short. 

1.2  Traditional Model Validation Approach 

The design of a new engine always starts with a clear set of technical requirements. 

These are usually agreed between the engine manufacturer, the airframe manufacturer 

and the final customers (e.g. airlines, air forces, etc.). These requirements will no doubt 

include: fuel consumption, engine weight, thrust, vibration levels, etc. It must not be 
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forgotten that the final engine design must also comply with the latest safety and 

environmental legislation before it can cleared for flight. 

In order to gain a competitive advantage, engine manufacturers strive to come up with 

designs that meet or exceed the technical requirements while keeping the engine costs 

to a minimum. It is also important to consider the benefit of a reduced time-to-market to 

secure early sales. 

The optimisation of an engine design following a design-test-redesign loop is simply too 

expensive and time consuming in today’s market. These days the engine design follows 

a process similar to that described in Figure  1.1. 

The engine design typically starts with a coarse preliminary concept and evolves 

through iteration towards a detailed and highly optimised solution with the bare use of 

simulation models. From the structural dynamics point of view, a simplified finite element 

model of the engine, usually referred to as Whole Engine Model (WEM), is used to 

predict the overall dynamic behaviour of the engine at each design iteration. Figure  1.2 

shows an example of a WEM. The predictions from the WEM are used to drive the 

detailed design of the engine’s components. For instance, the WEM is typically used to 

predict the dynamic loads acting on the different components in the engine under 

normal (e.g. take off, cruise, landing) and abnormal (e.g. fan blade off) operating 

conditions. For a given component, these loads are input into the corresponding highly 

detailed stress model. If the predicted stress levels are too high, the component’s design 

is strengthened. On the contrary, if the stress levels are well below the specified limits, 

the design is lightened to save weight. 

A close look at the WEM in Figure  1.2 reveals that this model only captures the most 

basic characteristics of the engine. The detailed design features (e.g. holes, bosses) are 

completely ignored. This simplification is required to ensure that the model can be 

analysed in a timely manner with the available computing power. Nonetheless, the lack 

of detail in the WEM can have a detrimental effect on the accuracy of its predictions. 

Obviously, if the models used to drive the design of the engine are flawed, the “virtually” 

optimised design might not be so optimum after all. That is why the design optimisation 

loop is typically followed by a test programme whose objective is to validate the engine 

design (i.e. Certification) before its release into production. 
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Figure  1.1. Current engine design cycle. 
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Figure  1.2. Whole Engine Model cross-section. 

Testing an engine design over all potential normal and abnormal operating conditions 

would be prohibitive from a cost and time point of view. Imagine the potential cost of a 

test designed to measure the engine’s dynamic response after an in-flight fan blade off 

event where the engine is still mounted on the wing and subject to the windmill effect. 

That is why it is common practice to take a more indirect approach. Typically, the 

predictions from the final models used during the design cycle are compared against the 

measurements from a limited number of carefully chosen tests. If the predictions and the 

measurements agree well for these tests it is assumed that the models will also provide 

accurate predictions under other engine operating conditions. Since these models were 

used to drive the design, the “virtually” optimised design is considered to be valid and 

full-scale production can start. 

If the predictions and the measurements do not agree well, invalid design decisions 

might have been taken during the design cycle. The normal course of action in this case 

is first to correct the models to better match the measurements. The validated models 

are then used to evaluate the actual performance of the previously thought-to-be 

optimum design under the different engine operating conditions. Typically two different 

scenarios will emerge from this evaluation (i) the engine design is not optimum but still 
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fulfils the minimum technical requirements and (ii) the engine design does not fulfil the 

minimum technical requirements. In the former case, the engine manufacturer will 

decide whether it makes financial sense to incur the inevitable cost and time penalties 

associated with a redesign so that the engine design can be truly optimised. In the case 

where the technical requirements are not met there will be no other option but to 

redesign. 

The number and type of tests used to validate the models are usually agreed between 

the engine manufacturer, the airframe manufacturer, the customers and the aviation 

authorities. When an engine manufacturer consistently demonstrates that its models 

accurately match the test data project after project, it will normally put a request forward 

to reduce the number of tests required in future programmes and hence reduce the 

development costs. There are already a few examples where the aviation authorities 

have cleared a design for flight based purely on model predictions without the need for 

physical testing. These examples are still few and far between and they are typically 

restricted to redesigns of small parts of the engine which original designs were 

previously cleared through testing. Nevertheless, these examples show that the aviation 

industry is increasingly open-minded about reducing the test programmes when an 

engine manufacturer consistently shows that the models used to drive the design are 

valid. 

1.3  Virtual Model Validation 

Let us imagine that we could use fully validated models during the design optimisation 

loop according to the process illustrated in Figure  1.3. On one hand, the “virtually” 

optimised design would be in fact optimum in the real world, hence avoiding costly 

redesigns. On the other hand, the predictions and the measurement would line up once 

the test data becomes available, hence giving strong arguments to the engine 

manufacturer to reduce the amount of testing required in future programmes. 

The implementation of this approach poses a problem though. Where do we get the 

reference data from in order to validate the models? The design optimisation loop is 

typically characterised by the lack of manufactured prototypes. This discards physical 

testing as the reference data for model validation during the design loop. 
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Figure  1.3. Ideal engine design cycle. 

In the field of structural dynamic analysis, Fotsch [1] recently demonstrated that with the 

right modelling techniques and using the appropriate computing power it is possible to 

create Finite Element Models (FEM) whose predictions can rival the accuracy of the 
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measurements from a physical test. Fotsch named these highly refined models as 

“supermodels”. Figure  1.4 shows an example of a supermodel, in this case, the yellow 

component (i.e. Intermediate Casing) in the WEM in Figure  1.2. A closer look at some of 

the regions in this model reveals the high level of mesh refinement so characteristic of 

supermodels. The geometry of the component is captured in great detail. In fact, most 

supermodels will not make any simplification to the geometry of the manufactured 

component. 

 

Figure  1.4. Supermodel details. 

It is perhaps useful to reflect on these developments and to project forward from where 

we are today to anticipate whether and how far they may extend in the future. Can we 

use the predictions from a supermodel of the whole engine as the reference to validate 

the much simplified WEM during the design loop? The answer is: not yet. In the late 

1990s, engineers in the aeroengine industry would be capable of routinely handling 

models of sizes up to a few hundreds of thousands of degrees of freedom (DOF). A 

decade later, this number has increased to a few million DOFs, this is, an order of 

magnitude improvement. Models of this size may be sufficient for first-generation 

supermodels of individual components, however, a supermodel of a whole engine 

containing all of its constituent parts (e.g. casings, blades, vanes, accessories, pipes, 

etc.) will probably require several billion DOFs. Even if future improvements in 
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computing power continue to allow an increase in model size of an order of magnitude 

every ten years, it will still take a few decades until a supermodel of a whole engine 

becomes viable. In the foreseeable future, therefore, the practice of using the maximum 

computing capacity for each component individually may well prove the optimum use of 

resources. 

Can we use supermodels at a component level to validate the WEM? Potentially yes. A 

WEM is constructed by joining together the simplified models of the different 

components in the engine, see Figure  1.2. The individual component models in the 

WEM are typically referred to as component design models. One might expect that if all 

the individual component design models were valid, the WEM would also be valid. This 

means that we could validate the WEM by individually validating each of its constituent 

component design models using their corresponding supermodels as the reference. 

This virtual validation approach could potentially facilitate the validation of the WEM 

during the design cycle as proposed in the process illustrated in Figure  1.3. However, a 

few issues need to be resolved before this approach can be efficiently and reliably 

implemented in practice. 

First of all, a WEM is made up of many component design models. If one wanted to 

validate every single one of the components in the WEM, many supermodels would 

need to be created and analysed. Supermodels usually run on the very limits of current 

computing power. This means that the validation of all individual components could 

result in serious time penalties, hence slowing down the design cycle. A solution to this 

problem would be to focus the validation effort only on those components that have 

most influence on the accuracy of the WEM. Even though this is a very attractive 

solution, it requires the development of methods that allow the identification of such 

components. 

Also, the validation of an individual component design model against its corresponding 

supermodel is not as straight-forward as one might initially think. For instance, a 

component design model could perfectly match the first 20 natural frequencies predicted 

by the corresponding supermodel in a free-free configuration and the model could still 

perform very badly when it is part of the WEM. The reason being that the boundary 

conditions applied to the component design model as part of the WEM are completely 
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different to those in a free-free configuration. New methods must be developed to 

validate individual component design models against supermodels so that they perform 

well when they are part of the WEM. 

Finally, the interfaces between components (i.e. joints) might play an important role in 

the dynamic behaviour of the assembly. The effect of joints must therefore be assessed 

and, if necessary, incorporated into the overall validation process. 

1.4  Research Objectives 

The overall objective of this thesis is to develop methods so that complex assembly 

models used in structural dynamic analysis can be validated early in the design cycle, 

even before manufactured prototypes are available for testing. The virtual nature of the 

proposed validation strategy should be capable of reducing by an order of magnitude 

the cost and timescales currently associated with the validation of complex assembly 

models used in the aeroengine industry (e.g. WEM), which historically have required 

extensive test programmes. 

The specific objectives of this thesis are: 

• To develop methods that reduce the task of validating a simplified assembly 

model (i.e. assembly design model) to the simpler task of validating a much 

reduced number of its constituent components, typically less than one tenth of 

the total number of components in an aeroengine assembly. This reduction will 

facilitate the use of supermodels as the reference for validation. 

• To develop methods that allow the validation of individual component design 

models against supermodels so that that the validated models perform well 

when they are part of the assembly and not just when they are considered in 

isolation. The accuracy of the validated component design models should be 

comparable to the variability expected from the manufactured components. 

• To assess the effects of joints in the dynamic behaviour of assemblies and, if 

necessary, incorporate their effect into the overall validation strategy. 

• To demonstrate the suitability of the virtual validation approach using a complex 

industrial Case Study. 
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• To support the development of supermodelling techniques by proposing 

appropriate techniques for the validation of supermodels against physical test 

data. 

1.5  Scope of Model Validation 

The work presented in this thesis will focus on the validation of complex assembly 

models so that they are capable of accurately predicting the natural frequencies and 

modeshapes of assembled structures made up of many components joined together. 

For lightly damped structures, most common in industry, the natural frequencies and 

modeshapes predicted by a FEM are the result of solving the following eigen problem: 

[ ] [ ]( ){ } 0MK r
2
r =φω−     (1.1) 

where [K] is the model’s stiffness matrix, [M] is the mass matrix while rω  and { }rφ  are 

the natural frequency and modeshape predictions for the r-th mode, respectively. 

The accurate prediction of the natural frequencies and modeshapes of a structure is 

essential for the accurate prediction of the more general forced response: 
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where ( ){ }ωX  is the predicted dynamic response of the structure (in the frequency 

domain) under a set of loads represented by the force vector ( ){ }ωF , rη  is the structural 

damping loss factor of the r-th mode and ω  is the frequency of excitation. The number 

N is equal to the total number of degrees of freedom (DOFs) in the model. 

A close look at equation (1.2) reveals that those modes which natural frequencies are 

distant from the frequency of excitation barely contribute to the total response. Also, 

those modes which natural frequency is close to the excitation frequency but which 

modeshape is orthogonal or almost orthogonal to the force vector: 

{ } ( ){ } 0FT
r ≅ωφ      (1.3) 

will have little influence in the total response. 
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As a result, the assembly model is typically only required to accurately predict the few 

modes that significantly contribute to the forced response to be considered valid. 

1.6  Thesis Overview 

Chapter 2  presents a novel methodology that facilitates the validation of an assembly 

design model by validating a reduced number of its constituent components. Sensitivity 

analysis is the backbone of this methodology and that is why this chapter begins with a 

comprehensive review of the most common sensitivity analysis methods in the field of 

structural dynamics. The chapter then describes how sensitivity analysis can be used to 

identify which are the components whose potential modelling errors have the biggest 

effect in the accuracy of the assembly predictions and which should therefore be given 

the highest priority for validation. A simple industrial Case Study is used to illustrate the 

proposed methodology. 

Chapter 3  presents a new methodology to validate component design models so that 

they perform well when they are part of a bigger assembly. The problem of a component 

design model which accurately predicts the component’s behaviour when it is 

considered in isolation but fails to perform properly when the model is part of a bigger 

assembly has already been reported in the literature. The chapter begins with a review 

of the existing solutions to overcome this problem. This is followed by the proposal of a 

novel method to validate a component design model making use of a so-called “hybrid 

assembly model” (i.e. model of the assembly where the original component design 

model is replaced by the corresponding supermodel) as the reference for validation. 

Finally, this chapter reviews the effect of ignoring the interfaces between components 

(i.e. joints) when validating assembly models. A method to incorporate the influence of 

joints in the validation process is also presented. The same Case Study used in the 

previous chapter is used again in this chapter to illustrate the proposed methodologies. 

Chapter 4  describes the validation from start to end of a complex assembly model using 

the methods proposed in the previous chapters. This validation was carried out as part 

of a real engine certification program and hence represents the ideal scenario to review 

the strengths and weaknesses of the proposed methodology in a high-pressure 

industrial environment. 
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Supermodelling techniques are still in their early days and their development requires 

validating supermodels against the measurements from physical tests. Chapter 5  

highlights the shortcomings of the traditional deterministic approach to model validation 

when validating a supermodel using physical test data as the reference. This chapter 

then reviews a probabilistic model validation method which is better suited for the 

validation of supermodels. The suitability of this method is demonstrated using an 

industrial Case Study. 

Chapter 6  begins with a summary of the overall conclusions of this thesis. This is then 

followed by summing up the most important contributions of this research work. The 

chapter concludes with suggestions for future work and some closing remarks from the 

author. 
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Chapter 2 - Prioritisation of Individual 

Components for Validation 

2.1  Introduction 

Typically, the validation of an assembly model (i.e. design model) used to drive the 

design of a complex structure has to wait until there are physical prototypes available for 

testing. This usually occurs at the very late stages in the design cycle when the final 

design is almost frozen. If the models are found to be inaccurate at this stage, the 

design will be based on inaccurate predictions and a redesign might be required. A 

redesign at this late stage will inevitably escalate the cost of the project and will incur 

serious delays. 

Ideally, one would like to validate the assembly design model well within the design 

cycle. This would ensure that the design decisions are based on reliable predictions, 

hence ensuring truly optimised design solutions. Fotsch [1] demonstrated that highly 

refined models, usually referred to as supermodels, are capable of predictions that can 

rival the accuracy of the measurements from physical tests. The virtual nature of 

supermodels makes them the ideal reference for the validation, well within the design 

cycle, of the less refined design models. 

However, the current computing technology limits the use of supermodels to individual 

components modelled in isolation. The creation and analysis of supermodels 

corresponding to complex assemblies (e.g. aeroengine) is not a reality yet. In fact, it 

might be many years until supermodels of complex assemblies become a reality. This 

compels us to find a solution where an assembly design model can be validated using 

the predictions from the supermodels of the individual components in the assembly. 

It is important to keep in mind that complex assemblies can be made up of hundreds of 

components. In such cases, the creation and analysis of hundreds of component 
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supermodels would soon become an overwhelming task. Nevertheless, it is most likely 

that only a few of the constituent components in the assembly will actually play a 

significant role in its overall behaviour. It is those components that must be targeted for 

individual validation, hence reducing the complex task of validating an assembly model 

to the simpler job of validating only a few of its components. 

This chapter will review some of the existing methods for component prioritisation and 

will introduce a novel approach to tackle the problem. As sensitivity analysis is an 

important element of the new method, a review of the most common sensitivity analysis 

methods used in structural dynamics will be presented first. An industrial Case Study will 

also be introduced to better illustrate the application of the proposed methodology. 

2.2  Validation Strategy 

An assembly (e.g. aeroengine) can be considered as the combination of its individual 

components and the interfaces (joints) between them: 

∑ ∑+= sintJoComponentsAssembly    (2.1) 

For the time being we will assume that the effect of the joints in the behaviour of an 

assembly is negligible and that it is correct to model the connections between 

components as if the assembly was a continuous solid (i.e. rigid links between the 

coincident nodes of adjacent components). It shall be demonstrated in the next chapter 

that this is indeed not a valid assumption. However, it is easier to remove the influence 

of joints at this stage to better illustrate the validation strategy. Moreover, we shall see in 

the next chapter that the proposed validation strategy can easily be expanded to 

accommodate the presence of joints. If the influence of joints is ignored, equation (2.1) 

can be rewritten as: 

∑≅ ComponentsAssembly     (2.2) 

From (2.2) we can assume that if the models of all components in the assembly (i.e. 

component design models) are valid the assembly model will also be valid. Since it has 

been established that the creation of supermodels is feasible at a component level, each 

of the component design models in the assembly could be validated against its 
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corresponding supermodel. Figure  2.1 illustrates this principle where one the component 

design models in a WEM is validated against its corresponding supermodel. 

 

 

Figure  2.1. WEM validation component by component. 

It is important to consider that a complex assembly model such as a WEM can be made 

up many component design models. The creation of supermodels is still not a straight-

forward task. As a result, the validation of all component design models in a complex 

assembly, even though possible in theory, could become a daunting task. 

It is most likely that the presence of modelling errors in some of the component design 

models will have a greater effect on the accuracy of the assembly model predictions. 

For instance, it is hard to imagine that the accurate modelling in a WEM of a pipe 

bracket would have the same effect as the appropriate definition of the front bearing 

support structure. If one could prioritise the components in the assembly according to 

their importance to the overall behaviour, the focus of the validation work could 

concentrate on those which are most relevant. This could massively reduce the task of 

validating complex assembly models to the validation of only a few of its constituent 

components. 

A novel method for component prioritisation will be proposed in this chapter so that the 

most important component design models in an assembly model can be identified for 

individual validation. 
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2.3  Sensitivity Analysis 

Sensitivity analysis is the cornerstone of the methodology developed in this work for 

component prioritisation. For this reason the next few pages are dedicated to review the 

basic concepts of sensitivity analysis in the context of structural dynamics. 

If z(p) is a function dependant on the independent variable (or parameter) p, the value of 

z for values of p close to p0 can be expressed using the Taylor series as: 
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The values of the first two terms on the right hand side of equation (2.3) are typically the 

biggest contributors to the value of z(p). As a result: 
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is usually a good approximation of equation (2.3) 

The term 
dp

)p(dz

0pp=

 in (2.4) represents the first-order sensitivity of function z(p) with 

respect to parameter p when evaluated at p0. A high value of this derivative indicates 

that a small variation in the parameter p will lead to a big change in the value of z(p). 

Conversely, a low sensitivity means that even big changes in the parameter p will not 

have a significant effect on the value of z(p). 

When the function z is dependant on more than one parameter, i.e. z(p1,p2,p3,…) 

equation (2.4) is transformed into: 
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where the first-order sensitivity for each parameter is represented by the partial 

derivative of the function instead of the total derivative as in equation (2.4). Again, big 

changes to a parameter with low sensitivity will have little effect on the value of the 

function z while small changes to a parameter with high sensitivity will have a major 

effect on the value of z. 

Let us now consider that the stiffness and mass matrices in a FEM depend on the 

values of the parameters p1,p2,p3,…: 

[ ] ( )[ ],...p,p,pKK 321=     (2.6) 

[ ] ( )[ ],...p,p,pMM 321=     (2.7) 

The natural frequencies and modeshapes predicted by the FEM depend on the stiffness 

and mass matrices according to equation (1.1) which we recall here: 

[ ] [ ]( ){ } 0MK r
2
r =φω−     (2.8) 

Hence: 

( ),...p,p,p 321rr ω=ω     (2.9) 

{ } { } ( ),...p,p,p 321rr φ=φ     (2.10) 

If we wanted to make sure that the natural frequencies and the modeshapes predicted 

by the FEM are accurate, we should concentrate our effort in making sure that the 

parameters that affect the most the predictions are accurately described in the model. 

Mathematically these are the parameters that result in the highest sensitivities: 
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The following sections describe how to calculate these sensitivities. The simpler case 

where all the modes predicted by the FEM have distinct natural frequencies (i.e. non-

degenerate problem) will be presented first. Later, the methods to calculate the natural 

frequency and modeshape sensitivities will be extended to cover the case where the 

model predicts more than one mode at the same frequency. This case is particularly 

relevant in the aeroengine industry where structures have a quasi axis-symmetric nature 

and most modes appear in orthogonal pairs. 

The topic of sensitivity analysis in structural dynamic analysis is very broad. The 

following pages are only intended to give the reader a primer on the subject so that the 

rest of document can be well understood. Nonetheless, an extensive set of bibliography 

which covers the more complicated aspects of sensitivity analysis will be referenced for 

the interested reader. 

2.3.1  Natural Frequency Sensitivity 

The differentiation of (2.8) with respect to a general parameter p results in: 
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where 
p
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 represents the sensitivity of the squared of the natural frequency with 

respect to changes in the parameter p. For practical reasons we show the sensitivity of 

the squared of the natural frequency instead of the sensitivity of the natural frequency as 

described in (2.11). The relationship between the two is straight-forward: 

p
2

p
r

r

2
r

∂
ω∂ω=

∂
ω∂

    (2.13) 

If (2.12) is pre-multiplied by { }T
rφ , the resultant is: 
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The term { } [ ] [ ]( )MK 2
r

T
r ω−φ  in equation (2.14) is invariably equal to 0 according to 

equation (2.8) as [K] and [M] are both symmetric. Furthermore, if { }rφ  is mass-

normalised: 
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equation (2.14) can be re-written as: 
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where the sensitivity of the natural frequency to changes in a parameter p can be 

expressed as: 
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According to equation (2.18), the natural frequency sensitivity can be explicitly 

calculated as long as the corresponding modeshape and the sensitivities of the stiffness 

and mass matrices are known. 

The modeshape is usually calculated as part of the general eigenvalue solution to 

equation (2.8), hence it is readily available. However the sensitivities of the stiffness and 

mass matrices, 
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p
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 and 
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p
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 respectively, must be computed before the natural 

frequency sensitivity can be calculated. 

In a general case, it can be difficult to explicitly calculate 
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. Therefore it is 

common practice to calculate those terms using the finite difference approximations: 
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which requires a minimum computational effort. 

As a result, all the terms required for the calculation of the eigenvalue sensitivity are 

either readily available or easy to compute, making the solving of the explicit equation 

(2.18) straight-forward. 

In the 1960s, Rosenbrock [2], Morgan [3] and Reddy [4] formulated explicit equations to 

calculate the natural frequency sensitivity which do not require the use of the 

corresponding modeshape. Even though these are ingenious methods they are not 

widely used since, in general, the modeshapes are readily available as part of the 

general solution to the eigen problem (2.8). 

2.3.2  Modeshape Sensitivity 

Equation (2.12) can be reorganised to reflect the modeshape sensitivity problem: 
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In this equation the matrix [ ] [ ]( )MK 2
rω−  on the left hand side of the equation is invariably 

singular as 2
rω  represents one of the matrix’s eigenvalues. Since [ ] [ ]( ) 12

r MK
−

ω−  cannot 

be computed (it is singular), 
{ }
p

r

∂
φ∂

 cannot be explicitly resolved. 

Here we will review in detail two of the most common methods proposed to solve 

equation (2.21), one by Nelson [5] and the other by Fox and Kapoor [6]. 

Starting with Nelson’s method, from the linear algebra it is known that the solution to 

(2.21) will take the general form of: 

{ } { } { }r
r

p
φα−ψ=

∂
φ∂

    (2.22) 

where { }ψ  is an arbitrary particular solution of: 
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Nelson proposed that one of the components in { }ψ  is set to zero. This particular 

solution will be valid as long as the corresponding component in { }rφ  is non-zero. Since 

most components in { }rφ  will be typically non-zero, this choice is straight-forward. As 

one of the components in { }ψ  is zero, the corresponding row and column in the equation 

(2.23) can be eliminated leading to: 
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The reduced matrix [ ] [ ]( )MK 2
rω−  is now non-singular ( 2

rω  is not he eigenvalue of this 

matrix but the full one) which means that the vector { }ψ  can be calculated using the 

following equation: 
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  (2.25) 

The other factor in (2.23) which must be calculated to compute the modeshape 

sensitivity is α . In order to calculate this value, the mass-normalised condition in 

equation (2.15) is differentiated with respect to the parameter p: 

{ } [ ] { } { } [ ] { }r
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Substituting (2.22) into (2.26) and reorganising the equation terms results in: 

{ } [ ]{ } { } [ ] { }r
T
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T
r p

M
2
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M φ
∂

∂φ+ψφ=α    (2.27) 

The major advantage of Nelson’s method is the fact that the solution of the modeshape 

sensitivity is exact. However, the calculation of [ ] [ ]( )
1

2
r MK

−

ω−  in equation (2.25) can be 

computationally expensive. This problem will be exacerbated if there is a requirement to 

calculate the sensitivity of many modeshapes, something very common in practice. 
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The prohibitive cost of the Nelson’s method can be overcome by using the method 

proposed by Fox and Kapoor [6]. The basics of the Fox and Kapoor method are 

reviewed in the next lines. 

The whole set of modeshapes [ ]φ  calculated using equation (2.8) form a subspace of 

linearly independent vectors. As a result, the vector 
{ }
p

r

∂
φ∂

 can be represented as: 

{ } { }∑ φ=
∂
φ∂

=

N

1j
jj

r a
p

    (2.28) 

where the coefficients ja  of the linear combination need to be calculated. 

If (2.28) is substituted in (2.21) the resultant equation is: 
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If equation (2.29) is pre-multiplied by any { }jφ  other than { }rφ  and considering the 

equations (2.15), (2.16) and (2.18), the coefficients aj for any j other than r can be 

calculated according to: 
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In order to resolve the term ar the mass orthogonality condition (2.15) will be considered, 

similarly to Nelson’s method. Substituting (2.28) into (2.26) and considering the 

orthogonality condition in equation (2.15), ar can be calculated according to: 
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rr p
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2
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a φ
∂

∂φ−=     (2.31) 

Considering the equations (2.28), (2.30) and (2.31), the Fox and Kapoor method to 

calculate the modeshape sensitivity can be written as: 
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         (2.32) 

According to the equation (2.32), all the modes that can be predicted by the FEM need 

to be calculated to compute the modeshape sensitivity of the r-th mode. Unfortunately, 

the calculation of all the modes that can be predicted by a FEM is computationally 

prohibitive. Just consider that the total number of modes that can be predicted by a FEM 

is equal to the total number of DOFs in the model, typically thousands or even millions. 

This does not mean that the method proposed by Fox and Kapoor cannot be used in 

practice. A close look at equation (2.32) reveals that the contribution of a mode j to the 

sensitivity 
{ }
p

r

∂
φ∂

 is modulated by the factor 
2
j

2
r

1

ω−ω
. The addition of modes in (2.32) 

which are distant (in terms of natural frequency) from the mode of interest { }rφ  will have 

little effect on the accuracy of the calculations. In practice, only a few modes (L) whose 

natural frequencies jω  are close of the natural frequency of the mode of interest rω  

need to be included to ensure a good approximation of the modeshape sensitivity: 
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         (2.33) 

According to equation (2.33) the modeshape sensitivity of the r-th mode can be 

calculated explicitly using the natural frequencies and modeshapes of only a few modes. 

The computational efficiency of this method typically makes it the preferred choice for 

the calculation of the modeshape sensitivities. 

For the interested reader, there are other methods that have been proposed in recent 

years for the calculation of modeshape sensitivities. The works by Ojalvo and Zhang [7], 

Wang [8], Liu and Zhao [9], Géradin and Rixen [10] and Balmés [11] in the 1990s are 

amongst some of the most relevant contributions. 
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MAC Sensitivity 

The sensitivity 
{ }
p

r

∂
φ∂

 is a vector with as many components as DOFs in the model. It is 

difficult to infer from that vector the overall sensitivity of the modeshape to parameter 

changes. 

One method to correlate two different modeshapes at an overall level is the Modal 

Assurance Criterion MAC [12]: 
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=φφ    (2.34) 

The MAC is a scalar value that provides an overall estimation of the difference between 

two modeshapes. A MAC of 0 means that the two modeshapes are completely different 

in shape. A MAC of 1 indicates that the two modeshapes have the same shape. 

According to equation (2.4), for small changes in the parameter p the following 

approximation is valid: 
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The MAC correlation between the original modeshape { }rφ  and that subject to a 

parameter perturbation { }r~φ  is: 
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Obviously, the higher the eigenvector sensitivity 
{ }
p

r

∂
φ∂

 the more different { }rφ  and { }r~φ  

will look like, hence reducing the value of the MAC. One can take advantage of this 

feature to evaluate the modeshape sensitivity at an overall level. Equation (2.37) 

represents the MAC sensitivity of the modeshape { }rφ  to changes in the parameter p. 
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          (2.37) 

The overall modeshape sensitivity can now be evaluated using a scalar rather than a 

vector. Please notice the use of the absolute values in equation (2.37). This is due to the 

fact that any change in the original modeshape { }rφ  will invariably reduce the value of 

the MAC. Subsequently the MAC sensitivity is always negative. 

2.3.3  Repeated Natural Frequencies 

The calculation of the natural frequency and modeshape sensitivities of a given mode 

using the equations described above is only valid when the natural frequency of the 

mode is distinct, this is, there is not any other mode with the same natural frequency. 

Most non-rotating machines are characterised for having all their modes at distinct 

natural frequencies and hence this is not an issue. However, most structures in the 

aeroengine industry have a quasi axis-symmetric or cyclic symmetric shape which 

means that most of the modes occur in orthogonal pairs. 

We will now illustrate with a simple example why the methods described above are not 

suitable for calculating the natural frequency and modeshape sensitivities of a mode 

with a non-distinct natural frequency. Let us consider the simple axis-symmetric disk in 

Figure  2.2 (a) made of standard steel with a radius of 10 mm and a thickness of 0.25 

mm. Figure  2.2 (b) shows the corresponding FEM made of shell elements while Figure 

 2.3 shows the predicted out-of-plane displacement for the first 2 non-rigid body modes 

of the disk in free-free configuration. These two modes occur at exactly the same 

frequency and have the same 2D shape. The only difference is that they are rotated 

2
90°

 with respect to each other to ensure orthogonality. 
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          (a)                                                                       (b) 

Figure  2.2. Simple disk. (a) Geometry and (b) corresponding FEM. 

 

-1.0 mm

1.0 mm

0.0 mm

31.40 Hz 31.40 Hz

Out-of-plane 
displacement

 

Figure  2.3. Simple disk. Modal predictions, first 2 non-rigid body modes. 

If we rotated the nodal lines of both modes by the same arbitrary angle, the resultant 

two modes would also be a perfectly valid solution to the eigen problem in equation (2.8) 

and the modeshapes would fulfil the orthogonality conditions in equations (2.15) and 

(2.16). This means that the position of the nodal lines of the orthogonally paired modes 

is totally arbitrary. 
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What happens if the mass in the small area represented in Figure  2.4 is slightly 

decreased by 1%? The disk is no longer axis-symmetric. Now modes 1 and 2 have 

slightly different frequencies (i.e. frequency split) and the position of the nodal lines is 

not arbitrary anymore, see Figure  2.5. One of the nodal lines in mode 1 now lies exactly 

at the position where the mass was reduced. In the case of mode 2 the position where 

the mass was reduced coincides with an anti-node. 

Material density 
reduced by 1%

 

Figure  2.4. Simple disk. Parameter perturbation. 

 

31.40 Hz 31.41 Hz

-1.0 mm

1.0 mm

0.0 mm

Out-of-plane 
displacement

 

Figure  2.5. Simple disk. Predicted modes 1 and 2 after parameter perturbation. 
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Imagine that we wanted to assess the change in the modeshape of mode 1 due to the 

small mass change, or in other words, the modeshape sensitivity of mode 1 with respect 

to a parameter change. A look at Figures  2.3 and  2.5 reveals that the modeshape 

corresponding to mode 1 is practically the same before and after the parameter change. 

The only difference is that the modeshapes are rotated with respect to each other. As 

the nodal lines before the parameter change are positioned randomly, one would expect 

a low value of the modeshape sensitivity to the parameter change. However, if we 

performed a MAC correlation between the modeshape of mode 1 as illustrated in Figure 

 2.3 and the modeshape after the parameter change illustrated in Figure  2.5, the MAC 

value would be low, hence implying that that modeshape change is significant. In other 

words, the calculated modeshape sensitivity would be high. Moreover, as the nodal lines 

before the parameter change are positioned randomly the value of the MAC is also 

random. Obviously, this solution cannot be correct. 

In the early 1980s Adelman and Haftka [13] proposed a solution to calculate the natural 

frequency sensitivities of all modes that share the same natural frequency. This solution 

is described next. 

Let us consider a rectangular matrix [ ]φ  containing a set of m orthogonal modeshapes 

which share the same natural frequency. The value of m is equal to the total number of 

modes which share the same frequency (m is typically equal to 2 for axis-symmetric 

structures): 

[ ] [ ]m21 .....φφφ=φ     (2.38) 

This selection of modes is not unique. As explained above with a simple disc, there are 

an infinite number of mode combinations [ ]φ  that fulfil the equation (2.8) and the 

orthogonality properties in equations (2.15) and (2.16). One of those subsets, [ ]Π , will 

anticipate the modeshapes that result from introducing a parameter change in the 

model: 

[ ] [ ][ ]Hφ=Π      (2.39) 
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where H is a transformation matrix. In general the transformation matrix will be different 

for every parameter since it is unlikely that two parameters will cause the modes to split 

in the same way. Just consider the case of the disc, if the mass change had occurred at 

a different position, the nodal lines would have rearranged in a different way. 

By definition, the r-th mode in the equation (2.39): 

{ } [ ]{ }rr hφ=Π     (2.40) 

must fulfil the general equation (2.8): 

[ ] [ ]( ){ } { }0MK r
2
r =Πω−     (2.41) 

Substituting equation (2.40) into equation (2.41) results in: 

[ ] [ ]( )[ ]{ } { }0hMK r
2
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Differentiating equation (2.42) with respect to a parameter p: 
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Pre-multiplying (2.43) by [ ]
T

φ  and using the orthogonality equations (2.15) and (2.16) 

results in: 
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Equation (2.44) is an eigen problem where the only unknowns 
p

2
r

∂
ω∂

 and { }rh  are the 

eigenvalue and eigenvector respectively. 

The term 
p

2
r

∂
ω∂

 represents the natural frequency sensitivity of a mode { }rΠ  defined by 

(2.40). There are as many solutions to (2.44) as the multiplicity of the original 

modeshapes. Each of the solutions corresponds to one of the new split modes. 
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There is an interesting case where the solution to equation (2.44) is degenerate 

(repeated roots) and the eigenvector { }rh  is not unequivocal. In practical terms this 

means that the parameter change does not provoke a split of the modes. This can be 

easily explained using the example of the simple disk above. Imagine now that the mass 

perturbation is uniformly distributed around the region defined in Figure  2.6. Since the 

change is also axis-symmetric the resultant modes from the change will have the same 

frequency. As it will be explained in subsequent sections of this chapter, this will never 

be the case in the methodology presented here for component prioritisation, and 

consequently no further attention will be paid here to this particular issue. The interested 

reader is referred to Friswell [14] for further information on how to deal with this problem. 

 

Material density 
perturbation

 

Figure  2.6. Simple disk. Axis-symmetric parameter perturbation. 

In the case of the calculation of the modeshape sensitivity, a few authors have proposed 

different methods over the years. For instance, in the late 1980s and early 1990s, Zhang 

and Wei [15], Ojalvo [16], Mills-Curran [17] [18] and Dailey [19] extended the traditional 

Nelson’s method described above while Lallement and Kosaneck [20], Juang et al [21], 

Bernard and Bronowicki [22] and Akgün [23] adapted the Fox and Kapoor’s technique. 

The interested reader is directed to these authors for further information. Here we will 

only show the final formulation of the extended version of the traditional Fox and 

Kapoor’s method as it will be used in future sections of this work. 
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The modeshape sensitivity, 
{ }

p
r

∂
Π∂

, of a mode of multiplicity m which forms part of the 

subset [ ]Π  containing all m “re-aligned” modes can be calculated using the extended 

Fox and Kapoor method as: 
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2.4  Case Study 

In order to ease the understanding of the model validation approach proposed in this 

work, the methodology will be illustrated using a real industry Case Study where the 

design model of an assembly of components will be validated from start to end. 

Figure  2.7 shows the assembly design model in need of validation. The assembly is 

comprised of three aeroengine casings bolted together: 

• Combustor Outer Casing, COC (red component); 
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• High Pressure Turbine – Intermediate Pressure Turbine Casing, HPTIPTC 

(yellow component) and; 

• Low Pressure Turbine Casing, LPTC (blue component). 

All the dimensions and material properties of the assembly model are nominal. Table 

 2.1 illustrates some of the characteristics of the assembly model. 

 

     (a)                                                                              (b) 

Figure  2.7. Case Study assembly. (a) Location in the aeroengine and (b) design model. 

As described at the beginning of this chapter, the assembly model will be validated by 

individually validating the most relevant of its constituent components using 

supermodels as the reference. Figure  2.8 describes this process. All the validation work 

is carried out in a virtual environment and well ahead of manufacture. Physical testing is 

only used at the end of the validation process as a confirmatory check (i.e. Certification). 

 COC HPTIPTC LPTC TOTAL 

Total Number of DOFs 2,532 2,724 4,680 9,936 

Total Number of Elements 434 684 1,044 2,162 

Element Types 
SHELL & 

BEAM 

SHELL & 

BEAM 

SHELL & 

BEAM 

SHELL & 

BEAM 

Table  2.1. Case Study assembly model. 
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COMPONENT 
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Original Assembly 
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Relevant 
Component 

Design Models

COMPONENT 
DESIGN MODEL 

VALIDATION

Component 
Supermodels

Virtually Validated 
Assembly Design 

Model

Modal Test 
Data

CERTIFICATION

Valid Assembly 
Design Model

 

Figure  2.8. Assembly design model validation process. 

Finally, it is important to point out that the methodology presented in this thesis can be 

applied to any assembly regardless of its number of constituent components. 

2.4.1  Case Study Model Requirements 

In the context of this work an assembly model is considered to be valid when it is 

capable of accurately predicting a specific set of modes (i.e. natural frequencies and 

modeshapes). These modes are typically the ones that contribute the most to the forced 

response calculations. 
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The assembly model validation strategy proposed here is independent of the modes 

chosen. For simplicity, the Case Study assembly model will be considered to be valid if 

it is capable of accurately predicting the first 20 non-rigid body modes of the structure 

when it is in free-free configuration. Figures  2.9 and  2.10 show the predicted 

modeshapes and the distribution of the natural frequencies∗ respectively. As expected, 

since the assembly design model is axis-symmetric the modes appear in orthogonal 

pairs. 

These particular modes are selected for the following reasons. 

• physical testing is used as a final confirmatory check of the validity of the 

“virtually” validated model. Free-free is an easy and relatively cheap 

configuration to achieve in practice. A more complex test configuration would 

increase the cost of the test and would not add any benefit for the 

demonstration of the technology proposed here. Also; 

• 20 non-rigid body modes represent a sufficiently high number of modes to 

ensure that a successful model validation can be unequivocally attributed to the 

method being suitable and not simply by chance. 

During the final check against the test data, the “virtually” validated assembly model will 

be considered valid if: 

• all the natural frequency predictions fall within a ±5% error band when 

compared against the test results. And; 

• the MAC correlation between the predicted and measured modeshapes is 

higher than 80% for all modes. 

These error allowances should account for the fact that all the models used during the 

“virtual” validation (i.e. design models and supermodels) are nominal while the tested 

hardware is subject to manufacturing variability. Also, it is important to keep in mind that 

all physical tests are inevitably subject to measurement errors. 

                                                     

∗ The actual natural frequencies cannot be shown for commercial reasons. 
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Figure  2.9. Case Study assembly model. Predicted first 20 non-rigid body modeshapes. 
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Figure  2.10. Case Study assembly model. Predicted natural frequency distribution. 

In Chapter 5 a method is proposed that helps specifying acceptable limits for validation 

based, amongst others, on the expected manufacturing variability and the uncertainties 

associated with the physical test (e.g. instrument calibration). Nonetheless, for the 

moment the more traditional approach of setting limits based on intuition and experience 

will be followed. Furthermore, the limits described above are very tight and if anything, it 

is most likely that we are being conservative with the accuracy required. 

2.5  Existing Methods for Component Prioritisation 

The idea of validating an assembly model by validating only a few of its most relevant 

components is not new. At the beginning of the decade this concept was extensively 

studied during the CERES project [24] where Lenoir and Cogan [25] presented an 

analytical method to prioritise those components in most urgent need of validation. 

Before describing their approach it is important to understand how the design model of a 

component is created. 

The design models of the components that make up an assembly must be simplified so 

that the final assembly model can be handled with the available computing power. For 

instance, Figure  2.11 shows the manufacturing CAD model of the Case Study COC 
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front flange and the corresponding design model. It is clear that most of the geometrical 

features in the flange such as holes, chamfers, fillet radii, etc. have been ignored in the 

design model and replaced by a simple 1D beam running along the edge of the 

component. The modeller will try to compensate for the geometry simplifications by 

“tuning” the parameters that define the beam (e.g. cross-section area, moments of 

inertia, etc.). This process is usually based on previous experiences with similar 

components. However the accurate definition of those parameters might be very difficult 

at times, especially when (i) a very coarse simplification is required, (ii) there is no 

previous experience with similar components or (iii) the geometry is very complex (e.g. 

hollow aerofoils). As a result, the confidence of the modeller on some of the parameters 

will be low. 

1D Beam

 

        (a)                                                                    (b) 

Figure  2.11. COC front flange. (a) Manufacturing CAD model and (b) corresponding design model. 

According to Lenoir and Cogan the most relevant component design models in an 

assembly can be identified following the next process: 

• all the parameters in all the component design models which definition is 

“uncertain” must be identified first. Then; 

• for each of the uncertain parameters, one must estimate the limits over which 

the “true” parameter value lies. Obviously, the more uncertainty over the 

definition of a parameter the bigger the range over which the parameter value 

might vary. 
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• For each of the component design models, a number of Craig-Bampton [26] 

reduced models are created. Each of the reduced models corresponds to a 

particular combination of the possible values of the uncertain parameters. Lenoir 

and Cogan proposed a method to best select the different combinations. Then; 

• the different Craig-Bampton models corresponding to the different components 

are combined together to generate the full-assembly predictions. When there 

are not many models corresponding to each of the components, all possible 

combinations might be considered. Otherwise, a reduced number of 

combinations are used. 

• The components which Craig-Bampton reduced models cause the biggest 

changes to the assembly predictions are prioritised for validation. Lenoir and 

Cogan use the so-called “Principal Component Analysis (PCA)” [27] [28] to 

quantitatively prioritise the importance of the different components. 

The method proposed by Lenoir and Cogan is mathematically sound. However there is 

a fundamental issue that has hindered its application in industry. For the method to give 

reliable answers, all the uncertain parameters in all the component design models in the 

assembly must be identified upfront. Moreover, the user must accurately estimate for 

each parameter the limits over which the true parameter value lies. 

Let us consider the Case Study of the three aeroengine casings. Figure  2.12 shows the 

actual geometry of a few regions in the assembly design model which are modelled 

using continuous shells and beams. All three component design models are simplified 

pretty much everywhere. This makes the identification of all the uncertain parameters in 

the component models very difficult. Moreover, the accurate estimation of the limits over 

which the true parameter values lie is almost impossible. This assembly is compromised 

of only three components, just imagine having to identify all the uncertain parameters in 

a model of a more complex assembly (e.g. whole aeroengine). 
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Figure  2.12. Case Study geometry simplifications. 

2.6  Proposed Method for Component Prioritisation 

According to equation (2.8), the accuracy of the modal properties predicted by a FEM 

depends on the right definition of the stiffness and mass matrices. The stiffness and 

mass matrices are in turn the result of the summation of the stiffness and mass matrices 

of all the individual finite elements in the model. 

[ ] [ ]∑=
=

n

1j
jkK      (2.49) 

[ ] [ ]∑=
=

n

1j
jmM     (2.50) 

Small changes to the mass and stiffness matrices of some finite elements will have a 

bigger effect on the accuracy of the FEM predictions than others. The effect that 
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changes in a given finite element will have on the model predictions (i.e. natural 

frequencies and modeshapes) can be calculated using the following sensitivities: 

[ ]jk
edictionPrModel

∂
∂

    (2.51) 

[ ]jm
edictionPrModel

∂
∂

    (2.52) 

A high sensitivity from (2.51) and/or (2.52) indicates that small changes to the modelling 

of a given finite element will have a big effect on the accuracy of the model predictions. 

Conversely, a finite element with a very low sensitivity indicates that even significant 

changes to its modelling will have little effect on the predictions from the model. 

The denominators in (2.51) and (2.52) are matrices. This makes it very difficult, if not 

impossible, to calculate these sensitivities. This problem can be solved if a scalar could 

be representative of the matrix [ ]jk  and another one for [ ]jm . The Young’s modulus and 

material density of the finite element can fill that role. An increase in the Young’s 

modulus of the finite element will result in a stiffer element. Similarly an increase in 

material density of a finite element model will make the corresponding element heavier. 

Hence the sensitivities in (2.51) and (2.52) can be approximated as: 
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k
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   (2.53) 
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where Ej and ρj represent the Young’s modulus and material density of the j-th finite 

element. 

The sensitivities in (2.53) and (2.54) can be rewritten non-dimensionally as: 

edictionPrModel

E

E
edictionPrModel j
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   (2.55) 
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Imagine now that we calculated the sensitivity of the model predictions to changes in 

every single finite element in the model using (2.55) and (2.56). This would allow us to 

identify which are the finite elements in the model with the highest sensitivity. These 

finite elements should be modelled with greater care as any error in their definition will 

have a bigger impact on the accuracy of the model predictions. 

There is also a big benefit of calculating the sensitivities for all finite elements in the 

model. When we calculate the sensitivity of the model predictions for all finite elements 

in the model we can plot the sensitivities back onto the model to identify the regions in 

the structure where a more careful modelling is required. For instance, let us consider 

the simple plate in Figure  2.13 (a) with dimensions 300x100x1 mm, a hole in the middle 

of 50 mm diameter and made of standard steel. Figure  2.13 (b) shows the 

corresponding FEM made of 6 noded triangular shells. Figure  2.13 (c) shows the 

modeshape prediction for the first non-rigid body mode in free-free configuration. 

The colour of each of the finite elements in Figure  2.14 represents the sensitivity of the 

first mode’s natural frequency to a change in the stiffness of the finite element using the 

ratio in (2.55). This plot allows us to easily identify the regions in the model where 

modelling errors will have the greatest effect on the accuracy of the predictions. 

Considering the modeshape for this mode it is no surprise that the regions that should 

be modelled with greater care are those on each side of the hole. 

There is a problem though. The modeshape of the first mode of the plate is symmetric 

with respect to the vertical axis. As a result, one would expect that the accurate 

modelling of both sides of the hole would be equally important. However, the sensitivity 

plot is not symmetric with respect to the vertical axis. The reason lies in the 

characteristics of the mesh. In order to illustrate this point, let us consider a new a model 

of the plate, see Figure  2.15 (a), where the mesh density has been increased only on 

the left hand side. Figure  2.15 (b) shows the sensitivity results to changes in the 

stiffness (Young’s modulus) of all finite elements. 
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        (a)                                       (b)                                     (c) 

Figure  2.13. Simple plate. (a) Geometry, (b) FEM and (c) first non-rigid body mode. 
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Figure  2.14. Simple plate sensitivity of the first natural frequency  to stiffness changes. 
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                             (a)                                          (b) 

Figure  2.15. Plate model with high mesh density on the left hand side. (a) Mesh and (b) natural 
frequency sensitivity to stiffness changes. 

The sensitivity on the left hand side has now vanished. This is because the ratios in 

(2.55) and (2.56) always favour big elements. They represent a bigger physical area, 

hence, changes to their stiffness and mass characteristics are likely to have a greater 

effect on the predictions. This is an important issue since, in practice, the most difficult 

regions to model are usually those with smaller elements. The use of (2.55) and (2.56) 

can incorrectly bias the focus towards regions having larger elements. This problem can 

be easily solved by weighting the sensitivity values according to the volume of the 

elements: 

j
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   (2.58) 

where Vj is the volume of the j-th finite element and VT is the total volume of the model. 
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The ratios (2.57) and (2.58) will be referred to as sensitivity density. Figure  2.16 shows 

the sensitivity density for the simple plate with dissimilar mesh density on each side. The 

sensitivity is now symmetric and focussed on the right locations. 

0.0002 
(1/mm3)

0.0         
(1/mm3)

Sensitivity density

 

Figure  2.16. Plate with high mesh density on the left hand side. Sensitivity density of the natural 
frequency to stiffness changes. 

Let us now consider the Case Study of the three casing assembly. The assembly model 

must accurately predict the first 20 free-free modes (natural frequencies and 

modeshapes) to be considered valid. Figures  2.17 and  2.18 show the natural frequency 

and modeshape sensitivity densities to changes in the stiffness (Young’s modulus) and 

mass (material density) properties respectively. The sensitivities are calculated using 

(2.44), (2.45), (2.57) and (2.58). In order to ease the interpretation, each of the 

sensitivity contours is plotted on a model deformed according to the corresponding 

modeshape. 

Please remember that this assembly model is axis-symmetric and that the first 20 

modes appear as 10 orthogonal pairs. As already explained in Section 2.3.3 using a 

simple disc, the modification of a small region in a structure with orthogonal pairs will 

result in the reorientation of the modes. One of the modes in each pair will be more 

severely affected by the change than the other. It is only the highest change which is of 
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interest since it will have a bigger effect on the accuracy of the predictions. That is why 

only one sensitivity plot is presented for each mode pair. 

Moreover, all the sensitivities have been normalised from 0 to 1 to facilitate the 

comparison between plots. The reader is reminded that: 

• the natural frequency sensitivities are always positive for stiffness changes. An 

increase in stiffness will invariably increase the natural frequency, see equation 

(2.18); 

• the natural frequency sensitivities are always negative for mass changes. An 

increase in mass will invariably decrease the natural frequency, see equation 

(2.18) and ; 

• the MAC sensitivities are always negative for both stiffness and mass changes. 

Any change in either mass or stiffness will invariably result in a modification of 

the original modeshape and therefore a reduction in the MAC value, see 

equation (2.37). 

The sensitivity contour plots can be used to prioritise the component design models in 

the assembly which are in most urgent need of validation. For instance, all the sensitivity 

plots corresponding to the mode pair 7-8 indicate that the accuracy in the predictions for 

this mode pair is mainly influenced by the quality of the LPT design model. The 

presence of modelling errors in the other two components will have a much lower effect 

in the predictions. As a result, if one only wanted to validate the assembly predictions for 

this mode pair, the validation of the LPT design model should be given the highest 

priority. 

Some other interesting conclusions can be drawn from the analysis of Figures  2.17 and 

 2.18: 

• for any given mode, the natural frequency and modeshape sensitivity might not 

look similar. This is particularly noticeable in the sensitivities to stiffness 

changes of the mode pair 5-6. Also; 

• it is sometimes very difficult to anticipate where the sensitive areas will lie 

without the help of the sensitivity plots. See for instance the modeshape 

sensitivity to stiffness changes for the mode pair 19-20 in Figure  2.17. It would 
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be very difficult for anyone to foresee that the accurate modelling of the COC is 

important for the correct prediction of a mode which is totally dominated by the 

activity at the rear end of the LPTC. Finally; 

• all the sensitivity plots are axis-symmetric. By definition, the sensitivity contour 

plot of an axis-symmetric model must also be axis-symmetric. 

Finally, the calculation of the sensitivities for the thousands or even millions of finite 

elements in an assembly model might look computationally expensive. Nonetheless, it is 

not. When describing the methods for sensitivity analysis, particular attention was paid 

to those which are explicit. These methods facilitate the calculation of sensitivities at a 

much reduced computational cost. In fact, the calculation of the sensitivities does not 

take much longer than any standard FEM post processing operation (e.g. stress 

calculation from the nodal displacements). 

2.6.1  Relative Importance of the Sensitivity to Mas s 

Changes 

Typically a component design model must match the mass properties (e.g. total mass, 

position of the centre of gravity, etc.) predicted by a detailed manufacturing CAD 

drawing of the component before it is ever used as part of a bigger assembly model. 

This is usually achieved by adjusting local material densities or adding concentrated 

masses in certain regions of the component design model. The end result being that the 

mass distribution of a component design model is usually very accurate. 

There is however a much greater deal of uncertainty associated with the modelling of 

the stiffness. Not only because the modeller usually has not got any reference to 

compare against, as in the case of the mass properties, but also because the accurate 

modelling of the stiffness is usually much more complex than that of the mass. 

For the reasons above, in most cases, when it comes to prioritise component design 

models for individual validation the focus should be on those that contain the regions of 

higher sensitivity to stiffness variations. The sensitivity to the mass distribution takes a 

secondary role since it is most likely that the mass properties of all the component 

design models are already accurately modelled. 
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Figure  2.17. Case Study sensitivity density to changes in stiffness. 
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Figure  2.18. Case Study sensitivity density to changes in mass. 
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2.6.2  Component Prioritisation - Quantitative Assess ment 

The sensitivity density plot in Figure  2.17 (stiffness), and to a smaller extent that in 

Figure  2.18 (mass), can help identifying those components in the assembly in most 

urgent need of validation. In some cases, such as in mode pair 7-8, a look at the plot 

containing the sensitivity to stiffness changes is enough to reveal that only one of the 

components (i.e. LPT) requires validation. Nonetheless this decision gets more 

complicated for mode pair 15-16 where the sensitivity is more widely spread. In order to 

get rid of some of this subjective judgement and to make the method more robust for 

deployment in industry a quantitative approach for component prioritisation is proposed 

next. 

The total sensitivity to variations in the stiffness of the k-th component design model in 

an assembly can be calculated by integrating the sensitivity density in (2.57) across the 

volume of the component: 
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Considering that a FEM is a discrete system, the previous integral is equivalent to: 
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where and nk is the total number of elements in the k-th component model. The ratio of a 

component’s sensitivity with respect to the total in the assembly is given by: 

∑ 













∂
∂

∑ 













∂
∂

=

=

=

n

1j
j

j

Tj

j

n

1j
j

j

Tj

j
k

V
V
V

edictionPrModel

E

E
edictionPrModel

V
V
V

edictionPrModel

E

E
edictionPrModel

C

k

  (2.61) 

where n is the total number of elements in the assembly model. Equation (2.61) can be 

simplified as: 
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This ratio can be used as an indicator of a component’s relevance to the assembly 

predictions. Note that only the sensitivity to stiffness changes has been included in the 

calculations. In the unlikely event where there is a great deal of uncertainty associated 

with the modelling of the mass distribution, the same methodology could be followed 

using the sensitivities to mass changes. 

The ratios in Figure  2.19 show the relative importance of each component design model 

in the Case Study to the accurate prediction of the first 20 assembly modes (natural 

frequencies and modeshapes). Again, only the sensitivities to stiffness changes are 

considered since there is typically little uncertainty about the mass distribution in the 

component design models. 

As expected, those ratios confirm some of the initial conclusions drawn from looking at 

the sensitivity plots in Figure  2.17. However, now the information is easier to handle and 

a great deal of subjective judgement is replaced by numerical figures. Still the modeller 

has to decide the threshold over which the contribution of a component is considered 

relevant and hence needs individual validation. This decision is normally based on 

engineering judgement but will usually take into account: 

• the accuracy required for the predictions. A higher accuracy will demand an 

accurate modelling of not only the most important regions but also of those of 

medium relevance. In such case, the threshold will be low. Also; 

• the number of components in the assembly. In assemblies where there are 

many components it is unlikely that the sensitive regions will only be 

concentrated around one or two components. It is likely that they will be more 

widely spread. In this case, accurate predictions will demand a lower threshold 

to include more components. 
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(b) 

Figure  2.19. Case Study component prioritisation. Individual contribution to (a) natural frequency 
and (b) modeshape. 

For the assembly Case Study here, a threshold of 25% is selected. According to this 

threshold, if the requirement for the assembly model was to accurately predict only 

mode pairs 7-8, 9-10 and 11-12, the ratios in Figure  2.19 would suggest that only the 

validation of the LPTC design model would be required. 
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If only the mode pair 1-2 was required, both the COC and the LPTC would need 

validation. The COC is the main contributor to the natural frequency and modeshape 

(around 75% and 50% respectively) while the LPTC still has a significant importance in 

the modeshape (around 40%). 

The requirements for the Case Study assembly model are the accurate predictions of 

the first 20 modes (10 mode pairs). The contribution ratio of all three components is 

beyond the specified threshold (25%) for at least one of the mode pairs. This means that 

all three component design models will require individual validation. 

2.6.3  Validation of the Component Prioritisation Me thod 

In order to validate the component prioritisation method above, a small exercise is 

devised. Let us assume that the Young’s modulus of the COC design model in the 

original Case Study assembly model has been incorrectly modelled and is 10% higher 

than it should. If the prioritisation method is correct, this modelling error should have a 

bigger effect on the assembly modes where the COC contributes the most. Figure  2.20 

(a) shows the COC contribution to the accurate prediction of the assembly natural 

frequencies. Figure  2.20 (b) shows the error introduced by the incorrect modelling of the 

COC. Clearly the biggest errors occur in those modes where the COC contribution is 

higher. Conversely, those modes where the contribution is low do not seem to be 

affected by the modelling error. 

Similarly to the case above, let us consider now that the modelling error (10% increase 

in the Young’s modulus) has taken place in the HPTIPTC alone. Figure  2.21 show the 

same conclusions as above. 

Figure  2.22 shows the same effects when the modelling errors only occur in the LPTC. 

Finally, all three cases above are put together in Figure  2.23. It is clear that the higher 

the contribution of a component the more emphasis should be put into its validation as 

modelling errors will have a greater effect on the assembly predictions. 
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(b) 

Figure  2.20. Validation of the component prioritisation method. (a) COC contribution to the 
assembly natural frequency predictions and (b) natural frequency error when the COC Young’s 

modulus is incorrectly modelled (+10% with respect to nominal). 
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(b) 

Figure  2.21. Validation of the component prioritisation method. (a) HPTIPTC contribution to the 
assembly natural frequency predictions and (b) natural frequency error when the HPTIPTC 

Young’s modulus is incorrectly modelled  ( +10% with respect to nominal). 
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Figure  2.22. Validation of the component prioritisation method. (a) LPTC contribution to the 
assembly natural frequency predictions and (b) natural frequency error when the LPTC Young’s 

modulus is incorrectly modelled (+10% with respect to nominal). 
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Figure  2.23. Validation of the component prioritisation method. (a) Component contribution to the 
assembly natural frequency predictions and (b) natural frequency error when the Young’s modulus 

is incorrectly modelled (+10% with respect to nominal) in each component. 
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2.6.4  Limitations of the Proposed Method 

The methodology presented above has certain limitations which must be understood by 

the user when prioritising components for individual validation: 

• only first order sensitivities are considered in this work, hence ignoring the 

effects that second or higher order terms might have when predicting the 

consequences of parameter changes. The results from first-order analyses are 

usually accurate for small parameter changes only, or in other words, when the 

assembly model is reasonably accurate in the first place. First order sensitivities 

might not be accurate when the original assembly model is too coarse. Also; 

• the sensitivities computed here only consider one parameter change at a time. 

The potential interdependence between parameters is not taken into account. 

This could be an issue if two regions in the model with low sensitivities when 

considered independently had a strong effect when combined together in a 

certain manner. This problem could be tackled by computing high-order cross-

sensitivities. Finally; 

• the definition of the threshold over which a component contribution ratio is 

considered relevant might not be easy at times. As explained above, the 

threshold level will be selected considering the accuracy requirements and the 

number of components. However this decision is still rather subjective. Clearer 

guidelines should be implemented to ensure consistency between users. 

2.6.5  Other Applications of the Proposed Method 

The sensitivity plots and component prioritisation methods presented here were 

developed with assembly model validation in mind. However their application could span 

across other fields, some of which are discussed below. 

The sensitivity density plots such as those in Figures  2.17 and  2.18 indicate those 

regions in the model where an accurate modelling of the stiffness and mass is most 

important. This information can be used during the modelling stage to identify the areas 

in a model where a higher refinement may be appropriate. 
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Also, the sensitivity contour plots can be used to identify the regions in a structure where 

manufacturing tolerances should be more tightly controlled or where they can be 

relaxed. In those regions of high sensitivity, a big tolerance can result in a very dissimilar 

behaviour from one part to the next. As a result, the manufacturing tolerances should be 

tightened where the sensitivity is high and relaxed in places where the sensitivity is low. 

2.7  Conclusions 

A new methodology has been presented in this chapter to validate complex assembly 

models by validating a reduced number of its constituent components. The concept of 

validating an assembly by virtue of validating only a few of its components is not new 

though. However, existing methods for component prioritisation lack the robustness 

required for implementation in industry. 

The new approach consists of identifying those regions in the assembly model where an 

inappropriate definition will have a significant impact on the accuracy of its predictions. It 

is the component models describing those regions that are given the highest priority for 

validation. The new approach is capable of quantifying the relative importance of each 

of the components in the assembly, hence removing a great deal of the subjective 

judgement traditionally associated with the prioritisation of components. The robustness 

of this method makes it highly suitable for deployment into industry. 

Since sensitivity analysis is the backbone of the new technique, a thorough review of the 

most widespread sensitivity methods applicable to structural dynamic analysis has been 

carried out in this chapter. It has been shown why some of these methods are not well-

suited to deal with cyclic-symmetric structures, so common in the aeroengine industry, 

due to the presence of more than one mode at the same frequency (i.e. orthogonal 

mode pairs). Appropriate methods capable of resolving this issue have also been 

reviewed. In all cases, particular emphasis has been paid to those methods that allow 

the explicit calculation of sensitivities as the new approach for component prioritisation 

requires a great deal of sensitivity analyses and explicit methods facilitate the 

calculations at a much reduced computational cost. 

A representative Case Study has been presented to demonstrate the suitability of the 

proposed methods. The Case Study consisted of three aeroengine casings bolted 
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together for which the assembly design model needed validation. It has been shown 

how the components in the assembly could be successfully prioritised in a quantitative 

manner using the sensitivity-based methods presented in this chapter. 
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Chapter 3 - Validation of Individual 

Components 

3.1  Introduction 

When validating a component design model it is important to consider that the model 

must perform well when it is part of the assembly and not just when it is considered in 

isolation. A component design model which accurately predicts the modal properties of 

a component when it is in isolation, but fails to yield appropriate predictions when it is 

part of the assembly is not a valid model. 

When the available computing power was still not sufficient to handle supermodels, 

physical testing on manufactured prototypes was the only source of reference data for 

the validation of component design models. However, the boundary conditions that can 

be applied to a component in a laboratory environment are typically very different from 

those that the component will experience when it is connected to the other parts in the 

assembly. Consequently, it is usually difficult to justify why a component design model 

which accurately resembles the dynamic behaviour of a component under laboratory 

conditions will also yield appropriate predictions when it is part of the assembly. Over 

the years, a few techniques have been proposed to bridge this important gap. In fact, 

this field of study has been given its own name, Test Strategy [24]. 

Test Strategy methods carefully select test configurations, and specific modes in each 

configuration, for which to validate a component design model. Theoretically, a 

component design model capable of accurately predicting the target modes in those 

configurations should yield appropriate predictions when it is part of the bigger 

assembly. 

The appearance of supermodels has transformed the approach to model validation. 

Supermodels provide a virtual environment where not only is there no need for 
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manufacturing of prototypes but also the constraints of physical testing are not present 

anymore. In an ideal scenario, the same boundary conditions that the component design 

model is subject to when it is part of the assembly would be applied to the 

corresponding supermodel. The supermodel predictions would then provide an accurate 

estimation of the component’s dynamic behaviour when it is part of the assembly. This 

would in turn represent the ideal reference data to validate the corresponding 

component design model. However, the correct application of the assembly boundary 

conditions to a component supermodel is not straight-forward and requires specialised 

techniques. 

This chapter will first review some of the most relevant Test Strategy methods for the 

validation of component design models. Even though these methods were conceived 

with physical testing in mind, their analysis will highlight the main challenges faced when 

using supermodels as the reference for validation. Following this review, a novel 

technique to validate a component design model using the virtual reference provided by 

a supermodel will be presented. The Case Study introduced in the previous chapter will 

again be used here to illustrate some of the methods presented. 

Finally, this chapter will explore the consequences of ignoring the effects of joints in the 

dynamic behaviour of assemblies. The industrial nature of the proposed Case Study will 

serve as an ideal vehicle to investigate this issue. A solution to incorporate the effects of 

joints into the overall validation strategy will be subsequently presented. 

3.2  Model Updating 

When validating any model (e.g. component design model), its predictions are typically 

compared against a reference. This reference will typically be the measurements from a 

physical test or the predictions from a supermodel. When the predictions from the 

original model correlate well with the reference, the model is considered to be valid and 

no further action is required. However there are occasions where the original model 

needs to be modified to better match the reference data. This process is usually referred 

to as Model Updating. 

In order to illustrate the methods presented in this thesis, some of the Case Study 

component design models will need to be updated. As a result, it is worth reviewing here 
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some of the most common Model Updating techniques. Extensive literature is available 

on the subject with comprehensive reviews by Friswell and Mottershead [29], Berman 

and Nagy [30] and Ewins [31]. 

Very often the concept of Model Updating is interpreted differently in Academia and 

Industry. The description by Ewins [31] is widely accepted in Academia, “Model 

Updating is the process of correcting the numerical values of individual parameters in a 

mathematical model using data obtained from an associated experimental model such 

that the updated model more correctly describes the dynamic properties of the subject 

structure”. According to this definition, Model Updating is restricted to the correction of 

certain components of the stiffness and mass matrices of the original model to better 

match the reference data. Nonetheless, the basic characteristics of the matrices, such 

as the total number of DOFs, remain the same. This in turn means that not all models 

are capable of being updated. A model which is too coarse or which does not contain 

the appropriate DOFs might never be capable of accurately matching the reference 

data. There is a process called Verification which objective is to ensure that a model is 

susceptible of being updated. Chen [32] developed analytical techniques to verify 

models ahead of Model Updating. 

On the other hand, the concept of Model Updating in industry is much broader. Any 

change to a model to better match the reference data is typically considered as a Model 

Update. Changes may include: modifications to the original mesh to better represent 

certain geometry features, use of different element types, etc. 

In the context of this work Model Updating will only refer to the modification of existing 

parameters in the original model according to the academic description above. 

Let us consider that the matrices: 

[ ]0ω    ,   [ ]0φ      (3.1) 

contain the original model predictions for all the q modes that need to be predicted 

accurately. These modal properties must fulfil the general equation (1.1): 

[ ] [ ][ ]( )[ ] [ ]0MK 0
2
0 =φω−     (3.2) 

Let us also consider that the actual modal properties of the structure are: 
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[ ]Xω    ,   [ ]Xφ      (3.3) 

This data will come from either a physical test or a supermodel and it is typically referred 

to as the reference data. When the differences between the predicted modal properties 

and the reference data are unacceptable, the original model will need to be updated 

according to: 

[ ] [ ]( ) [ ] [ ]( )[ ]( )[ ] [ ]0MMKK X
2
X =φω∆+−∆+    (3.4) 

where [ ]K∆  and [ ]M∆  are the modifications to the original stiffness and mass matrices 

respectively. 

In the case where the reference data comes from physical testing, [ ]Xω  and [ ]Xφ will be 

rectangular. The reason being that it is almost impossible to measure as many modes 

as DOFs in the original model. Furthermore, each of the measured modeshapes { }jXφ  

will only contain data for a limited number of DOFs. In many Model Updating methods 

the measured modeshapes { }jXφ  need to be expanded to bring the vectors to their full 

dimension. The most common expansion methods are called SEREP (System 

Equivalent Reduction and Expansion Process) which are described in reference [33]. 

In the case where the reference data comes from a supermodel, as many modes as 

DOFs in the design model could be calculated (the supermodel has a bigger size than 

the original design model). However this can be computationally prohibitive. Hence [ ]Xω  

and [ ]Xφ  will usually be rectangular. In this case [ ]Xφ  will not require expansion as it is 

most likely that all DOFs in the design model will have a matching pair in the 

supermodel. 

Model Updating techniques are usually grouped into two types depending on their 

approach to calculating [ ]K∆  and [ ]M∆ : 

• Direct Methods, where any component in the stiffness and mass matrices is 

susceptible of being directly corrected to better match the reference data. The 

corrections might not have any physical meaning though. And; 
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• Indirect Methods, where physical parameters in the model are corrected to 

alleviate the initial discrepancies. Those changes are then translated into 

changes of the stiffness and mass matrices, hence the adjective of indirect. 

The following sections describe the basics of the most relevant methods in each group. 

3.2.1  Direct Methods 

The Direct Matrix Updating and the Error Matrix Method are the most common direct 

techniques to calculate the stiffness and mass matrix corrections in equation (3.4). 

According to the Direct Matrix Method: 

[ ] [ ][ ][ ] [ ][ ][ ] [ ] [ ][ ][ ][ ] [ ]
[ ][ ][ ] [ ] [ ][ ][ ] [ ]KMMK

MMMKMK
T

XX
T

XX

T
X

2
XX

T
XX

T
XX

φφ−φφ−

φωφ+φφφφ=∆
  (3.5) 

and 

[ ] [ ][ ][ ] [ ] [ ]( )[ ] [ ] [ ]MmmImMM T
X

11
X φ−φ=∆ −−    (3.6) 

where 

[ ] [ ] [ ][ ]X
T

X Mm φφ=     (3.7) 

According to the Error Matrix Method: 

[ ] [ ] [ ][ ] [ ] [ ][ ] [ ] [ ]KKK T
X

12
XX

T
0

12
00 






 φωφ−φωφ=∆

−−
  (3.8) 

and 

[ ] [ ] [ ][ ] [ ][ ]( )[ ]MMM T
XX

T
00 φφ−φφ=∆    (3.9) 

The main advantage of the Direct Methods is their computational efficiency. Very little 

resources are required to calculate equations (3.5) to (3.9). 

However, there are significant drawbacks to the use of Direct Methods: 

• the correction matrices [ ]K∆  and [ ]M∆  may contain components which are not 

physically possible. For instance, [ ]K∆  could introduce an off-diagonal 

component in the original stiffness matrix [ ]K  which corresponds to two DOFs 
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which are not physically connected. This means that the resultant model might 

become a purely mathematical model with very little physical meaning. 

Moreover; 

• the reference data typically contains information for a number of modes which is 

smaller than the number of DOFs in the model. The updating equations (3.5) to 

(3.9) only impose the restriction to accurately match the modal properties of the 

reference modes [ ]Xω  and [ ]Xφ . The rest of the modal properties in the model 

can take up any value. This in turn means that there are many possible 

solutions, [ ]K∆  and [ ]M∆ , to the updating problem. Again, this is indicative of 

the lack of physical meaning of the changes introduced to the original model. 

Also, 

• equations (3.5) to (3.9) require a full dimension [ ]Xφ  matrix. If the reference data 

comes from a physical test, the number of measured DOFs will be much lower 

than that of the model. As a result, the measured modeshapes will need to be 

expanded. Expansion methods usually make use of the stiffness and mass 

matrices of the original model. The fact that this model needs updating is an 

indication that these matrices are not very accurate in the first place. This can 

compromise the accuracy of the expanded modeshapes and subsequently of 

the method as a whole. 

References [34] and [35] provide more information on the Direct Matrix Updating and 

Error Matrix Method techniques respectively. 

3.2.2  Indirect Methods 

Indirect Methods work by tuning a selected set of physical parameters in the original 

model to better match the reference data. These parameters might include, Young’s 

modulus of certain elements or groups of elements, material densities, shell 

thicknesses, etc. This in turn ensures that the changes introduced to the model will have 

a physical meaning. This is a much more robust approach to Model Updating than the 

Direct Methods where the changes introduced to the original model might not have any 

physical meaning. 
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These methods are referred to as indirect because of the sequence followed by the 

updating process. Physical parameters are updated first. Then, these parameter 

changes are translated into the correction matrices [ ]K∆  and [ ]M∆ . This is the opposite 

to the Direct Methods where the correction matrices [ ]K∆  and [ ]M∆  are calculated 

directly. 

The most popular Indirect Methods are those based on parameter sensitivity. Let us 

consider the response vector: 

{ }
{ }
{ }
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Z     (3.10) 

containing the reference natural frequencies and modeshapes from either a supermodel 

or a physical test. The corresponding vector containing the original predictions from the 

model is: 
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The relationship between { }XZ  and { }0Z  can be approximated using the first-order 

Taylor approximation in equation (2.4): 
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{ } { } [ ] { } { }( )0U0X PPSZZ −+≅    (3.12) 

where the components in vector { }0P  correspond to the original values of the 

parameters selected for updating. Vector { }UP  contains the updated values for those 

parameters. 

The components of the sensitivity matrix [S] in equation (3.12) correspond to the first-

order sensitivity of the modal properties with respect to changes in the parameters. The 

methods to calculate those sensitivities have been discussed in detail in the previous 

chapter. 

If: 

{ } { } { }0X ZZZ −=∆     (3.13) 

{ } { } { }0U PPP −=∆     (3.14) 

then equation (3.12) can be rewritten as: 

{ } [ ]{ }PSZ ∆≅∆     (3.15) 

Equation (3.15) neglects the contribution of high order terms in the Taylor series. The 

resultant parameter values { }UP  are an approximation and so equation (3.15) needs to 

be iterated a number of times to arrive at the correct values of the updated parameters. 

The iterative nature of the Indirect Methods is their major drawback since their 

application can be computationally expensive at times. On the other hand, the results 

from the Model Update are physically meaningful. Furthermore there is no need to 

expand the eigenvectors in equation (3.10) when the reference data is provided by 

physical tests as only a reduced set of DOFs might be selected as responses. 

Equation (3.15) can only be solved using 

{ } [ ] { }ZSP 1 ∆=∆ −     (3.16) 

when there are the same number of responses as parameters for updating. This is 

rather unusual and in most cases there will be either more responses than parameters 

(over-determined system) or more parameters than responses (under-determined 

system). 
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The various Indirect Methods for Model Updating differ in the way that equation (3.15) is 

solved. 

Least-Squares Method 

According to this method, the solution to equation (3.15) is given by: 

{ } [ ] [ ]( ) [ ] { }ZSSSP T1T ∆=∆
−

    (3.17) 

for over-determined systems. In the case of under-determined systems, the solution is: 

{ } [ ] [ ] [ ]( ) { }ZSSSP
1TT ∆=∆

−
    (3.18) 

These equations represent the least-square solution for the updated parameters. In 

mathematical terms, equations (3.17) and (3.18) minimise the penalty function: 

[ ]{ } { }ZPSJ ∆−∆=     (3.19) 

Weighted Method 

The Weighted methods provide a solution to equation (3.15) which minimises the 

following penalty function: 

{ }[ ]{ } { }[ ]{ }PWPZWZJ PZ ∆∆+∆∆=    (3.20) 

where [WZ] and [WP] are the response and parameter weighting matrices respectively. 

Both matrices are diagonal. 

The solution to the updating problem is given by: 

{ } [ ] [ ] [ ][ ]( ) [ ] [ ]{ }ZWSSWSWP R
T1

Z
T

P ∆+=∆
−

   (3.21) 

for over-determined systems. In the case of under-determined systems, the solution is: 

{ } [ ] [ ] [ ] [ ][ ] [ ]( ) { }ZSWSWSWP
1T1

P
1

Z
T1

P ∆+=∆
−−−−   (3.22) 

The major benefit of this approach with respect to the Least-Squares method is that the 

individual parameters and responses can be given different weights. The bigger the 

weighting assigned to a given response the more emphasis that the updating process 

will place on accurately matching the reference data from the supermodel or the 
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physical test. Conversely, a big weighting associated with a parameter will reduce the 

associated changes during the updating process. This can be particularly useful in 

certain cases. For instance, let us imagine that the accurate prediction of a particular 

natural frequency is more important than the rest. In this case this response would be 

given a bigger weighting. This will ensure that the correctness of the most relevant 

response is not compromised by the attempt to accurately predict other less important 

responses. Now let us consider that the uncertainty over the definition of one parameter 

in the model is high, this means that the range over which the parameter might vary is 

big. In this case a small parameter weighting will promote a bigger change when 

compared to other parameters that might have a smaller uncertainty associated. 

Different weighting matrices have been proposed by many authors such as Link and 

Zhang [36], Link et al [37], Mottershead and Foster [38], Natke [39] and Collins et al 

[40]. 

3.3  Test Strategy 

Before computers were sufficiently powerful to handle supermodels, component design 

models could only be validated using physical test data as the reference. Because of the 

cost limitations, the free-free configuration would typically be used to test the 

manufactured prototypes. A component design model would be considered to be valid if 

it was capable of accurately predicting the modal properties of the first few modes in 

free-free configuration. 

Time after time it was discovered that the thought-to-be-valid component design models 

would not yield accurate predictions when they were part of a bigger assembly model. It 

is not difficult to see why since the dynamic properties of a component do not only 

depend on its stiffness and mass distribution but also on the boundary conditions that 

the component is subject to. The boundary conditions (or lack of) applied to a 

component in free-free configuration are very different from the boundary conditions that 

the component is subject to when it is part of a bigger assembly. As a result, accurate 

predictions of the first few free-free modes from a component design model does not 

ensure that the model will perform well when it is part of a bigger assembly. 
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Test Strategy is a concept first introduced at the beginning of this decade during the 

CERES project [24] and further developed for robust industrial application during 

VIVACE [41]. The objective of Test Strategy is to design an appropriate test 

configuration(s) to validate a component design model. The accurate prediction from the 

component design model of a carefully selected number of modes in that test 

configuration(s) should ensure a valid model when this is part of a bigger assembly. 

The following lines describe the most important Test Strategy methods in chronological 

order. They differ from each other in their criteria for the selection of the most 

appropriate test configurations and the modal properties that should be targeted for 

validation. 

3.3.1  Loaded Boundary Method 

The Loaded Boundary method is one of the earliest Test Strategy methodologies and, 

not surprisingly, it is the most intuitive. It consists of designing special test fixtures that 

once attached to the component simulate the boundary conditions that the component is 

subject to when it is part of the assembly. As a result the modal properties of the 

component in the test configuration will resemble those when the component is mounted 

in the assembly. 

The initial versions of this approach were also referred to as Mass-Loading Methods. 

The reason being that only the inertial properties of the rest of the components in the 

assembly would be mimicked using the test fixtures. For instance, if we were to validate 

the HPTIPTC design model corresponding to the Case Study, the manufactured 

component would be bolted to two fixtures, one on each end. The fixture at the front 

would have a similar weight and inertia properties as the COC. Likewise, the fixture at 

the back would have similar weight and inertia properties as the LPTC. Figure  3.1 

schematically represents this method. Different variations of this method have been 

presented by Neibal [42] in the 1980s and Admire et al [43] and Karpel and Ricci [44] in 

the 1990s. 

There are a few drawbacks to the Mass-Loading Methods: 

• the stiffness of adjacent parts in the assembly also influence the dynamic 

behaviour of the component. This effect is not considered by these methods. In 



Chapter 3                                                                   Validation of Individual Components 

75 

practice this might mean that the addition of these fixtures is not sufficient to 

replicate the behaviour of the component when mounted in the assembly. 

Furthermore; 

• the fixtures will invariably have a stiffness associated with them. For the case 

where the stiffness of the fixtures is very different from that of the adjacent 

components, this effect could further deviate the dynamic behaviour of the 

component in the test configuration when compared to that when mounted in 

the assembly. In the late 1980s Gwinn et al [45] proposed the use of many non-

interconnected small masses attached to the bolt holes of the component 

flanges to reduce the effect of fixture stiffness. However this still does not solve 

the previous problem where the influence of the stiffness of the adjacent parts is 

ignored. 

 

 

Figure  3.1. Case Study HPTIPTC. Test Strategy, Mass-Loading Method. 

The more general Loaded-Boundary methods try to overcome the drawbacks of the 

Mass-Loading methods. Now, the design of the test fixtures does not only try to replicate 

the inertia properties of the adjacent components, but also their stiffness distribution. 

McGowan et al [46] demonstrated in the early 1990s the suitability of the Loaded-

Boundary method for the validation of certain components in an experimental space 

station. Ghosh et al [47] performed a similar exercise at the end of that decade for the 

model validation of a cargo module in the International Space Station. 
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The application of the Loaded-Boundary methods in industry is hindered by a few 

factors though: 

• the design of testing fixtures for a component that replicate the mass and 

stiffness distribution of the adjacent parts can be very difficult in practice. Also; 

• the manufacturing of test fixtures is expensive and time consuming. The long 

lead times and high costs associated are prohibitive in most modern industries. 

Moreover; 

• the use of test fixtures usually adds to the uncertainties of testing. It is important 

to consider that the fixtures will usually be bolted to the component. These joints 

will have an effect on the measured modal properties which is very difficult to 

control and account for during the model validation process. The end result is 

that many times these kinds of tests add as many problems as they solve. 

3.3.2  CERES Method 

Early this decade and as part of the CERES project [24] Perinpanayagam [48] proposed 

a Test Strategy method which would not require such complex test fixtures as in the 

Loaded-Boundary approach. The basics of this method are explained below. 

Let us consider that the vector { }rφ  represents the r-th modeshape predicted by an 

assembly model and that { }rϕ  contains the components corresponding to one of 

component design models. 

If the vector { }jfφ  represents the j-th modeshape predicted by the component design 

model in a free-free configuration then, 

{ } { }∑ φ=ϕ
=

N

1j
jfjr a     (3.23) 

will be exact if N is equal to the total number of DOFs in the component design model. 

Similarly, if [ff] contains the predicted internal forces corresponding to all free-free 

modeshapes then: 
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{ } { }∑≅
=

N

1j
jfjr fbf     (3.24) 

is usually a good approximation. Note that equation (3.24) is not necessarily exact as 

the internal forces [ff] do not necessarily form a linearly-independent subspace of 

vectors. 

During a physical test it is impossible to measure as many free-free modes as DOFs in 

the component design model, usually thousands. In practice, only a small subset of 

modes M in the low frequency range will be measured. According to Perinpanayagam, if 

the following equations: 

{ } { }∑ φ≅ϕ
=

M

1j
jfjr a     (3.25) 

{ } { }∑≅
=

M

1j
jfjr fbf     (3.26) 

are good approximations and the component design model is capable of accurately 

predicting all the M modes in free-free configuration then the model can be considered 

to be valid. 

The validation effort could be further reduced if only those modes L with high 

coefficients in the linear combinations in (3.25) and (3.26) are targeted for validation: 

{ } { }∑ φ≅ϕ
=

L

1j
jfjr a     (3.27) 

{ } { }∑≅
=

L

1j
jfjr fbf     (3.28) 

In physical terms, equations (3.27) and (3.28) mean that if the component design model 

is capable of accurately predicting a set of L modes in free-free configuration whose 

linear combination resembles the deformed shape and internal forces of the component 

when it is part of a bigger assembly then the model is valid. 

The free-free configuration is the cheapest to achieve in a laboratory environment. 

Furthermore the uncertainty over any fixture joint is minimal. That is why free-free 

testing should always be the first option for model validation. However, at times, there 



Chapter 3                                                                   Validation of Individual Components 

78 

might not be any set of free-free modes in the measurable frequency range which linear 

combination accurately resembles the deflected shape and internal forces of the 

component when part of the assembly according to equations (3.27) and (3.28). In this 

case a different set of test configuration must be sought. 

Perinpanayagam proposed selecting a number t of test configurations which would 

provide a number of Lt modes each, all within the measurement frequency range, so 

that: 

{ } { } { } { }∑ φ++∑ φ+∑ φ≅ϕ
===

t21 L

1j
jttj

L

1j
j2j2

L

1j
j1j1r a...aa    (3.29) 

{ } { } { } { }∑++∑+∑≅
===

t21 L

1j
jttj

L

1j
j2j2

L

1j
j1j1r fb...fbfbf    (3.30) 

are accurate approximations. 

The test configurations (other than free-free) that Perinpanayagam suggested would 

rank from perfectly rigid boundary conditions to more complex test fixtures. 

There are a few drawbacks to this method: 

• the methodology is useful to evaluate whether a set of test configurations is 

suitable for component model validation. However it does not guide the modeller 

in the selection of an appropriate set. The user must follow a trial and error 

process until a suitable solution is found. Also; 

• similarly to the Loaded-Boundary method, test fixtures are still required. This 

usually comes with the penalties explained in the previous method. Nonetheless 

the design of the fixtures is less restrictive in this case. Now, none of the test 

modes need to resemble individually the assembly properties. Only the linear 

combination of different modes must mimic the component deflected shape and 

internal forces of the component when mounted in the assembly. Finally; 

• it is difficult to demonstrate mathematically why a component design model 

which accurately predicts the modes selected by this method will yield accurate 

predictions when it is part of a bigger assembly. 
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3.3.3  VIVACE Method 

Garcia and Ewins [49] recently proposed a method capable of demonstrating 

mathematically why the accurate prediction from the component design model of certain 

modes in different test configurations would ensure a valid model when this model is 

used as part of a bigger assembly. This method was developed as part of the VIVACE 

[41] programme and represents an extension of the method proposed by 

Perinpanayagam [48]. 

In order to illustrate the basic principles of this method, let us consider the validation of 

the Case Study assembly model. We will also consider that only the mode pair 17-18 

needs to be accurately predicted for the assembly model to be considered valid. The 

sensitivity density contour to changes in stiffness is plotted in Figure  2.17. According to 

this plot, the correct definition of the stiffness characteristics of the COC front flange 

should be given the highest priority to ensure accurate predictions from the assembly 

model. Figure  3.2 shows the same sensitivity density as in Figure  2.17 but restricted to 

the COC design model. 

 

0.0 1.0Normalised Sensitivity Density (Stiffness)

Natural Frequency Modeshape

Assembly Mode Pair 
17-18

 

Figure  3.2. Case Study COC sensitivity density to changes in stiffness. 
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Let us consider now the COC in isolation and free-free configuration. Figure  3.3 shows 

the natural frequency sensitivity densities to stiffness changes of the first 8 free-free 

modes. Please note that the COC model is axis-symmetric and the modes appear as 

orthogonal pairs. 

 

0.0 1.0Normalised Sensitivity Density (Stiffness)

Mode Pair 
1-2

Mode Pair 
3-4

Mode Pair 
5-6

Mode Pair 
7-8

 

Figure  3.3. Case Study COC natural frequency sensitivity density to changes in stiffness. First 8 
modes in free-free configuration. 

A look at these sensitivity plots reveals that the natural frequency of mode pair 3-4 is 

also highly dependant on the stiffness distribution of the COC front flange. As a result 

one would expect that if the COC design model is capable of accurately predicting the 

natural frequency of this free-free mode it will also yield accurate predictions when the 

model is part of the assembly. On the contrary, the accurate prediction of the other 3 

mode pairs does not add any value since they do not exercise the front flange. In this 
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case all validation effort could be reduced to the accurate prediction of a single mode in 

free-free configuration. 

Interestingly, the CERES method would have not selected this free-free mode for 

validation. The shape of the free-free mode is 2D while the deformed shape when the 

COC is part of the assembly has a 3D shape. In fact, it is most likely that the CERES 

method would have selected the free-free mode pair 5-6 as the target for validation. This 

mode has a 3D shape similar to that of the component when it is part of the assembly. 

Nonetheless, the sensitivity plots in Figure  3.3 show that the free-free mode pair 5-6 

barely exercises the front flange. As a result, the accurate prediction from the COC 

design model of this mode will not ensure accurate predictions when the component 

model is a part of the assembly. 

The mathematical basis of the VIVACE method is as follows: if the vector { }rs  contains 

the sensitivity data (natural frequency and modeshape) corresponding to a component 

design model when it is part of the assembly for the r-th mode and there are a set of L 

modes when the component is in a free-free configuration so that: 

{ } { }∑≅
=

L

1j
jfjr sas     (3.31) 

where the vector { }jfs  contains the sensitivity data corresponding to the j-th mode of the 

component in a free-free configuration, then, all the sensitive regions of the component 

model when it is part of the assembly are also exercised by the L modes of the 

component in the free-free configuration. As a result, the accurate prediction of the 

component design model of the L free-free modes should ensure a valid component 

model when it is part of the assembly. 

Nonetheless, in a general case, all the free-free modes in the measurement frequency 

range might not be enough to ensure a good approximation. In this case, a set of test 

configurations t which provides a number of Lt modes each so that: 

{ } { } { } { }∑++∑+∑≅
===

t21 L

1j
jttj

L

1j
j2j2

L

1j
j1j1r sa...sasas    (3.32) 

must be sought. 
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As with the CERES method the main drawbacks of this method are: 

• the methodology is useful to evaluate whether a set of test configurations is 

suitable for component model validation. However it does not guide the modeller 

in the selection of an appropriate set. The user must follow a trial and error 

process until a suitable solution is found. Also; 

• test fixtures are still required. Nonetheless the design of the fixtures is unlikely to 

be as complex as in the Loaded-Boundary method. It is likely that reasonably 

simple configurations will provide sufficient modal properties to exercise all the 

regions of interest in the component. 

3.4  Validation Using Supermodels as the 

Reference 

As a reminder, Figure  3.4 highlights this step in the validation process. 

A component design model is only considered to be valid when it is capable of 

accurately predicting the dynamic properties of the component when part of the 

assembly. In order to satisfy this requirement, Test Strategy methods had to overcome 

the practical difficulties of replicating in a laboratory the interaction of the component 

with other parts of the assembly (i.e. boundary conditions). 

Supermodels provide a virtual platform for the validation of component design models 

which are not subject to the shortcomings of physical testing. The application of 

boundary conditions to a supermodel is simply a mathematical exercise which is not 

constrained by the manufacturing costs or the uncertainties associated with the use of 

test fixtures. 

Let us imagine that the same boundary conditions that the component design model is 

subject to when it is part of the assembly can be applied to the corresponding 

supermodel. The predictions from the supermodel would then accurately describe the 

dynamic properties of the component when it is mounted in the assembly. This is the 

ideal reference data for validation and the component design model will be considered 

to be valid when it is capable of predicting this behaviour accurately. 
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Figure  3.4. Validation using supermodels. 

But, how do we apply the appropriate boundary conditions to a supermodel? A possible 

solution is to substitute the component design model in the assembly by the 

corresponding supermodel. In order to illustrate this method, let us consider that the 

HPTIPTC design model highlighted in Figure  3.5 (a) requires validation. The component 

design model can now be replaced by the corresponding supermodel and connected to 

the rest of the components in the assembly, see Figure  3.5 (b). 
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Figure  3.5. Component model validation using a supermodel as the reference. (a) Original Case 
Study design model and (b) HPTIPTC design model replaced by a supermodel. 

The dynamic properties predicted by the supermodel in Figure  3.5 (b) will accurately 

describe the dynamic behaviour of the HPTIPTC when it is mounted in the assembly. 

These predictions are the ideal reference for the validation of the less refined 

component design model. 

In both assemblies in Figure  3.5 the component design models corresponding to the 

adjacent parts (COC and LPTC) are the same. Subsequently, any differences in the 

predictions between both assembly models can only be attributed to the discrepancies 

in the dynamic properties predicted by the HPTIPTC design model and the 

corresponding supermodel. The validation process is then reduced to the updating of 

the parameter values in the original HPTIPTC design model (i.e. Model Updating) until 

the differences are reduced to a satisfactory level. 

The assembly model with the component supermodel embedded in it is usually referred 

to as a “hybrid assembly model”. Such models have been used in the past for highly 

complex dynamic simulations (e.g. Fan Blade Off). However, as far as the author is 

aware this is the first time that hybrid assembly models have been used as the 

reference for model validation. 

It is important to point out that the size of a supermodel is usually a few orders of 

magnitude bigger than that of the design models. Therefore the computational effort 

required to analyse a hybrid assembly model are not much different to those required 

when analysing the supermodel in isolation. 
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This method opens a completely new avenue in the field of model validation. Not only 

the associated costs are reduced by an order of magnitude (no manufactured parts, no 

physical testing, etc.) but also the quality of the validation process is dramatically 

increased. Apart from the most obvious quality benefits (e.g. wealth of noise-free data) 

the many doubts over the suitability of the boundary conditions used during a physical 

test will now vanish. Furthermore, the dynamic properties of a component can be 

validated under conditions, such as operating temperature gradients, which could never 

be matched in a laboratory but which are easy to reproduce in a virtual environment. 

The successful application of this method is based on two main assumptions: 

• the original assembly design model is representative of the structure. The 

predicted dynamic behaviour of the supermodel when it is mounted on the 

assembly depends on its boundary conditions. These are in turn determined by 

the interaction with the design models of the rest of the components in the 

assembly. If those models are not sufficiently accurate, the boundary conditions 

might not be representative of the real structure and so compromise the validity 

of the supermodel predictions. 

However, in practice, even when the design models of the adjacent components 

are not sufficiently accurate to be considered fully validated they will usually still 

be representative, ensuring that their effect on the component supermodel is 

properly predicted. Also; 

• the supermodel can be seamlessly connected to the rest of the assembly design 

models. Usually the mesh density of a supermodel is much higher than that of 

the adjacent design model and the connection between them can be 

challenging. 

3.4.1  Hybrid Assembly Models 

One of the most essential requirements to create hybrid assembly models is the ability 

to connect supermodels to industry standard design models. In practice, the very 

different modelling approaches for these two types of models can make joining them 

very challenging. The refinement of supermodels usually requires the use of high 

density meshes. Moreover, supermodels are made of solid elements which will normally 
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make use of high-order interpolation functions. This is in clear contrast with the standard 

component design models where the mesh density is much reduced and the element 

types might not even be solid (1-D beam elements and 2-D shells are not uncommon). 

Figure  3.6 shows the region where the COC design model rear flange meets the 

HPTIPTC supermodel front flange. 

 

 

Figure  3.6. Case Study COC design model to HPTIPTC supermodel connection detail. 

The problem of connecting two dissimilar meshes is not new. In fact, this field of study is 

fairly mature. Most methods were originally developed for stress analysis in the late 

1980s but have been subsequently refined to cover the more general structural 

dynamics problem. The following lines will briefly describe some of the most common 

methods. 

The problem of connecting shells to shells and solids to solids has been tackled by 

many authors since the 1970s. Some of the most relevant are Atluri [50], Aminpour et al 

[51], Park et al [52] [53] and Puso et al [54]. 

When it comes to joining shells to solids the problem becomes more complex. The 

stiffness and mass properties of shell elements are specified in 6 DOFs for each node, 3 

translational and 3 rotational. On the contrary, the nodes in solid elements are only 
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characterized by 3 translational DOFs. In the early 1990s Liao et al [55] and Davila [56] 

proposed transitional elements that would tie the angular rotations of shells to the 

translational displacements of solids while ensuring stress continuity across the joint. 

Nonetheless, the applicability of these methods is restricted to very specific element 

types. 

At the beginning of this decade Dohrman et al [57] and McCune et al [58] proposed 

general methods for coupling any type of dissimilar meshes, including shell to solid 

connections. Both methods are based on energy equilibrium principles. According to 

these approaches, a correct coupling between dissimilar meshes can be achieved when 

the total virtual work generated by the internal forces on both sides of the interface is 

zero. This restriction will generate multi-point constraint equations that will link all DOFs 

on both sides of the interface. Examples of the multi-point constraint equations that 

result of the application of this principle to different element types can be found in 

references [59], [60], [61] and [62]. 

These days, most commercial FEM packages incorporate methods for hybrid meshing. 

Due to their generality, the work equilibrium methods are proving the most popular at 

the moment. 

3.5  Case Study - Component Design Model 

Validation 

According to the component prioritisation method described in the previous chapter, all 

three component design models in the Case Study assembly model require validation. 

Figure  3.7 shows the supermodels of the three components in the assembly. The 

creation of these supermodels followed the supermodelling guidelines developed during 

the VIVACE project [41] by Baker [63] and Loyer [64]. Each of the supermodels was 

created using the corresponding manufacturing CAD drawings with no geometry 

simplification. Nominal dimensions and material properties were used. Table  3.1 

illustrates some of the characteristics of the supermodels. 

The hybrid assembly models in Figure  3.8 (a), (b) and (c) will be used as the reference 

to validate the COC, HPTIPTC and LPTC component design models respectively. 
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     (a)                                                                         (b) 

 

                                 (c) 

Figure  3.7. Case Study supermodels. (a) COC, (b) HPTIPTC and (c) LPTC. 

 COC HPTIPTC LPTC 

Total Number of DOFs 4,978,149 3,670,335 4,047,313 

Total Number of Elements 989,469 674,453 834,903 

Element Types TET 10 TET 10 TET 10 

Table  3.1. Case Study supermodels. 
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     (a)                                                                          (b) 

 

                                           (c) 

Figure  3.8. Case Study hybrid assembly models. (a) COC supermodel; (b) HPTIPTC supermodel 
and (c) LPTC supermodel. 

3.5.1  Validation of the Combustor Outer Casing (COC)  

Design Model 

The original assembly design model predictions were compared against the predictions 

from the hybrid assembly model in Figure  3.8 (a). The results from the correlation are 

presented in Figure  3.9. 
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   (b) 

Figure  3.9. Correlation of Case Study assembly model vs. hybrid assembly model with COC 
supermodel. (a) Natural frequency and (b) modeshape. 

Please note that the assembly design model is axis-symmetric while the hybrid model is 

not. There are small holes, brackets, bosses, etc. in the COC supermodel which are not 

equally positioned around the engine axis. As a result, the orthogonally paired modes in 
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the hybrid assembly model appear rotated with respect to those from the assembly 

design model. The method proposed by Chan [65] was used to rotate the modeshapes 

predicted by the assembly design model before the MAC was calculated. Alternative 

methods such as that proposed by Chen [66] would have also been suitable. 

The natural frequency deviation for some mode pairs is significant, for instance the 

deviation of mode pair 17-18 is around 7.5%. The modeshape correlation is very good 

for all mode pairs with MAC values close to 100%. 

The discrepancies in the correlation can only be attributed to the differences in between 

the COC design model and the corresponding supermodel. The rest of the component 

design models are the same in both assemblies. 

As a reminder from the previous chapter, the whole assembly design model (three 

casings joined together) will only be considered valid if the natural frequencies lie within 

a 5% error when ultimately compared against physical test data. The COC design model 

on its own is already accountable for errors in the region of 7.5% when compared 

against the corresponding supermodel. Considering that the other two component 

design models will potentially add their fair share of errors, the COC design model must 

be updated to better reflect the reference data provided by the supermodel. 

Both the natural frequencies and modeshapes were selected as target responses during 

the Model Updating. The Young’s modulus for each ring of elements in the COC design 

model, 12 in total, was selected as a potential parameter for updating. This type of 

selection is common in practice since design models have a carefully tuned mass 

distribution which will not be modified by changes to the Young’s modulus. 

The weighted method according to equation (3.20) was selected for Model Updating. All 

parameters and responses were given the same weighting of 1. Figure  3.10 shows the 

updating progress. The X-axis corresponds to the iteration number while the Y-axis 

represents the average natural frequency error of the updated design model when 

compared to the reference from the supermodel. The iteration process was stopped 

when the improvement from two consecutive analyses was less than 0.001%. The 

convergence is smooth with a low error asymptote. 
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Figure  3.10. COC Model Updating progress. 

Figure  3.11 shows the correlation improvements after the Model Update. All natural 

frequency correlations lie within a 2% error. The MAC correlations remain close to 

100%. 

Figure  3.12 shows the parameter changes introduced as a result of the Model Updating 

process. It is always good practice to analyse the parameter changes to make sure that 

they obey to physical reasons. This avoids producing mathematical models that have no 

basis in reality. The big changes introduced to the original COC design model are all 

centred on the third ring of shells starting from the front. An increase in the Young’s 

modulus of around 200% is suggested. Under normal circumstances this could look 

excessive. Nevertheless, the actual geometry of the region modelled by this continuous 

ring shells is very complex, see Figure  3.13. The thickness of the ring of shells in the 

original COC design model is selected to match the mass of this section, however the 

resultant stiffness is no match for the real behaviour. Subsequently a considerable 

increase in the Young’s modulus is considered to be acceptable. 
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Figure  3.11. Correlation before and after COC Model Update. (a) Natural frequency and (b) 
modeshape. 
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Figure  3.12. COC design model parameter updates. 
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Figure  3.13. COC geometry detail. 
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3.5.2  Validation of the High Pressure Turbine Inter mediate 

Pressure Turbine Casing (HPTIPTC) Design Model 

The validation of the HPTIPTC design follows the same principles explained above for 

the COC design model. The original assembly design model predictions were compared 

against the predictions from the hybrid assembly model in Figure  3.8 (b). The results 

from the correlation are presented in Figure  3.14. 
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Figure  3.14. Correlation of Case Study assembly model vs. hybrid assembly model with HPTIPTC 
supermodel. (a) Natural frequency and (b) modeshape. 
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Even though the modeshape correlation is very good for all mode pairs, the natural 

frequency deviation of around 8% for mode pair 13-14 is significant and requires 

correction. 

Again, both the natural frequencies and modeshapes were selected as target responses 

during the Model Updating. The Young’s modulus for each ring of elements in the 

HPTIPTC design model, 19 in total, was selected as a potential parameter for updating. 

Figure  3.15 shows the updating progress. In this case the updating diverges in the 

beginning to then smoothly converge to a low level of error. The original divergence 

behaviour is likely to be caused by a local minimum of the updating penalty function. 
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Figure  3.15. HPTIPTC Model Updating progress. 

Figure  3.16 shows the correlation improvements after the Model Update. All natural 

frequency correlations lie within a 0.5% error. The MAC correlations remain close to 

100%. Figure  3.17 shows the parameter changes introduced as a result of the Model 

Updating process. 
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Figure  3.16. Correlation before and after HPTIPTC Model Update. (a) Natural frequency and (b) 
modeshape. 
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Figure  3.17. HPTIPTC design model parameter updates. 

The most significant changes are centred on the back end of the component. Figure 

 3.18 (a) shows a cross-section detail of the geometry in this area. This step-shape 

region is modelled by three rings of shells at almost 90°, see Figure  3.18 (b). Shell 

elements do not have in-plane rotational stiffness. Hence, the vertical ring of shells will 

have a much reduced radial stiffness. Model Updating compensates for this lack of 

stiffness by greatly increasing the Young’s modulus in this area. There are diverse views 

over whether this is an acceptable practice or not. In the context of this work, this 

modelling approach will be considered to be valid. 

1D Beam

Updated Rings of 
Shells

 

    (a)                                                                       (b) 

Figure  3.18. HPTIPTC. (a) Cross-section geometry detail and (b) corresponding design model. 
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3.5.3  Validation of the Low Pressure Turbine Casin g 

(LPTC) Design Model 

The original assembly design model predictions were compared against the predictions 

from the hybrid assembly model in Figure  3.8 (c). The results from the correlation are 

presented in Figure  3.19. 
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Figure  3.19. Correlation of Case Study assembly model vs. hybrid assembly model with LPTC 
supermodel. (a) Natural frequency and (b) modeshape. 
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Even though the modeshape correlation is very good for all mode pairs, the natural 

frequency deviation of some mode pairs is significant (10% error for mode pairs 7-8 and 

9-10). As a result the LPTC design model needs to be updated. 

Again, both the natural frequencies and modeshapes were selected as target responses 

during the Model Updating. The Young’s modulus for each ring of elements in the LPTC 

design model, 29 in total, was selected as a potential parameter for updating. Figure 

 3.20 shows the updating progress. The convergence is smooth with a low error 

asymptote. 
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Figure  3.20. LPTC Model Updating progress. 

Figure  3.21 shows the correlation improvements after the Model Update. All natural 

frequency correlations lie within a 0.5% error. The MAC correlations remain close to 

100%. Figure  3.22 shows the parameter changes introduced as a result of the Model 

Updating process. 

The most significant changes are centred on the middle section of the component. 

Figure  3.23 (a) shows a cross-section detail of the geometry in this area. There is a 

stiffening ring which is not captured in the original design model, see Figure  3.23 (b), 
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and which effect has been compensated during the Model Update by increasing the 

Young’s modulus of the adjacent shells. Again, this would be considered an acceptable 

modification as it has real physical meaning. 
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   (b) 

Figure  3.21. Correlation before and after LPTC Model Update. (a) Natural frequency and (b) 
modeshape. 
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Figure  3.22. LPTC design model parameter updates. 
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(a)                                                                            (b) 

Figure  3.23. LPTC. (a) Cross-section geometry detail and (b) corresponding design model. 

3.6  Case Study - Certification 

In order to demonstrate the suitability of the assembly model validation strategy 

proposed in this work, the predictions from the assembly model containing the validated 
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component design models will now be compared against the results from a Modal Test. 

For clarity, this step is highlighted in Figure  3.24. 
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Figure  3.24. Final certification. 

The Modal Test was performed on a manufactured prototype of the assembly as part of 

the VIVACE [41] programme. Figure  3.25 shows the manufactured assembly 

suspended from very soft elastic ropes that mimic free-free boundary conditions. A 

multi-reference SIMO (Single Input Multiple Output) Modal Test was selected as the 

most appropriate technique due to the close proximity of some of the modes of interest. 

The test made use of a calibrated hammer to excite the structure and a set of 
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accelerometers to measure the response. The accelerometers remained at the same 

place throughout the whole test while the hammer moved around the structure. 

 

 

Figure  3.25. Case Study physical test. 

The number of impact locations (180 in total) and responses (8 in total) as well as their 

positions were optimised using the predictions from the “virtually” validated assembly 

model. This process is commonly referred to as Test Planning [31]. Figure  3.26 shows 

the Measurement wireframe. A detailed description of this test can be found in reference 

[67]. 

 

Figure  3.26. Case Study Measurement wireframe. 
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Figure  3.27 shows the correlation against test data of the original assembly model and 

the validated one. The improvement in the natural frequency correlation is significant. 

For instance, the correlation of the mode pair (i.e. 5-6) has been reduced from around 

15% to a mere 3%. In fact, all mode pairs but two (i.e. 13-14 and 15-6) have seen a 

significant improvement in their frequency correlation which has brought them well 

within the 5% threshold. The modeshape correlation of all mode pairs remains very 

good with all MAC values above the requirement of 80%. 

These improvements are significant and very encouraging. Nonetheless they are 

somehow overshadowed by the natural frequency correlation of the updated mode pairs 

13-14 and 15-16 with values of around 6% and 6.5% respectively. One could argue that 

the design models were validated using nominal supermodels as reference while the 

tested structure is subject to manufacturing tolerances. Moreover, measurement errors 

and other test uncertainties might contribute to deviations in the correlation. However, it 

is unlikely that the combination of these factors can explain such big differences. It is 

more likely that there is a physical explanation behind these poor correlations. 

A closer analysis of the correlation values reveals some interesting findings. For 

instance, the original design model was not either consistently stiffer or softer when 

compared to the measured modes. Mode pair 5-6 was predicted to be 15% stiffer than 

that of the real structure while mode pair 7-8 was 8.5% softer. On the contrary, the 

validated model seems to be consistently stiffer for all modes. The only exceptions are 

mode pairs 1-2 and 17-18, but in both cases the correlation is very close to 0. 

It is now time to revisit some the assumptions taken during the validation process, 

particularly the hypothesis that the joints between components do not play any 

significant part in the behaviour of the assembly. Throughout the whole validation 

process using supermodels, the interfaces between components have been assumed to 

be perfectly rigid. This can potentially explain why the validated assembly model seems 

to be overstiff. 

The following sections take a look at the influence that joints might have on the 

assembly behaviour and discusses how to incorporate their effect during the validation 

process. 
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Figure  3.27. Correlation of Case Study assembly model vs. physical test data. (a) Natural 
frequency and (b) modeshape. 
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3.7  Case Study - Influence of Joints 

In order to assess the effect of joints on the dynamic behaviour of assemblies, a simple 

exercise is devised. The rigid links between components in the validated assembly 

model are replaced by springs to make the joints flexible, see Figure  3.28. 

The stiffness of those springs will be modified to assess the effect of the flexibility of the 

joints on the behaviour of the assembly. 

The design models of the Case Study are made up of shells and beams. In practical 

terms this means that each of the nodes is defined by 6 DOFs, 3 translational and 3 

rotational. As a result, the stiffness of the spring between two nodes must be defined in 

six directions: 

• Kz is the translational spring stiffness between two nodes in the engine’s axial 

direction; 

• Kr and Kθ are the radial and tangential translational stiffness respectively; 

• Rz is the angular spring stiffness between two nodes in the engine’s axial 

direction and; 

• Rr and Rθ are the radial and tangential angular stiffness respectively. 

In order to simplify the analysis, the following constraints are considered: 

• all stiffness components change uniformly across all node pairs in a given joint. 

This is fairly representative of the actual joints where the connecting bolts are 

usually equally spaced and with the same torque value applied. Also; 

• the value of the translational axial stiffness Kz is an order of magnitude higher 

than that of the radial and tangential components, Kr and Kθ respectively. This 

accounts for the fact that the radial and tangential stiffness are mostly driven by 

friction forces across the flange. Also; 

• the value of the angular axial stiffness Rz is an order of magnitude lower than 

that of the radial and tangential components, Rr and Rθ respectively. Similarly to 

the translational case, this accounts for the fact that the angular axial stiffness is 

mostly driven by friction forces. Finally; 
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• Kr is equal to Kθ and Rr is equal to Rθ. This assumes equal stiffness in the radial 

and tangential direction. 

 

Rigid Links

Springs

 

Figure  3.28. Rigid to flexible joints. 

As a result, there are four parameters that fully define the stiffness of the two joints in 

the assembly: 
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• Kz 1 defines the translational stiffness between two nodes of the front joint (Kr 1 = 

Kθ 1 = 0.1 Kz 1); 

• Rz 1 defines the angular stiffness between two nodes of the front joint (Rr 1 = Rθ 1 

= 10 Rz 1); 

• Kz 2 defines the translational stiffness between two nodes of the rear joint (Kr 2 = 

Kθ 2 = 0.1 Kz 2) and; 

• Rz 2 defines the angular stiffness between two nodes of the rear joint (Rr 2 = Rθ 2 

= 10 Rz 2). 

In order to assess the effect of each parameter individually the following methodology is 

followed. One parameter is selected and its stiffness is modified to span across different 

levels of flexibilities. In the meantime the rest of the joint parameters are considered to 

be perfectly rigid. 

For instance, the graphs in Figure  3.29 (a) represent the effect of the translational 

stiffness of the front joint on the natural frequency predictions for the first 10 mode pairs 

of the assembly. The X-axis corresponds to the translational stiffness of the front joint 

represented by the value of Kz 1 (in logarithmic scale). The Y-axis corresponds to the 

natural frequency deviation with respect to perfectly rigid connections. Obviously, the 

softer the joint, the lower the natural frequency predicted for all modes. However the 

effect on each individual mode pair is noticeably different. For instance, the natural 

frequency of mode pair 13-14 is noticeably the most affected by the translational 

stiffness of the front joint. The graphs in Figure  3.29 (b) describe the influence of the 

angular stiffness of the front joint while those in Figure  3.30 correspond to the influence 

of both the translational and angular stiffness of the rear joint. 

The analysis of these graphs reveals that there are three mode pairs which are 

particularly affected by the stiffness of the joints. These are the mode pairs 13-14 and 

15-16 and to a smaller scale the mode pair 5-6. 

Now let us come back to the correlation of the validated assembly model against the 

data from physical testing in Figure  3.27. The model overpredicts the natural frequency 

of mode pairs 15-16, 13-14 and to a smaller scale 5-6. Interestingly these are exactly 

the same modes that are most affected by the flexibility of the joints. This hardly seems 
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like a coincidence and strongly suggests that the effect of joints cannot be ignored 

anymore if accurate predictions from assembly models are required. This in turn raises 

the question of how to deal with the joints during the validation process. 
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Figure  3.29. Front joint COC-HPTIPTC. (a) Effect of translational stiffness and (b) effect of 
rotational stiffness. 
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Figure  3.30. Rear joint HPTIPTC-LPTC. (a) Effect of translational stiffness and (b) effect of 
rotational stiffness. 
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3.8  How to Deal with Joints 

The methodology presented in this chapter facilitates the robust validation of component 

design models. Nevertheless, it looks like an assembly made up of validated component 

models might still not yield sufficiently accurate predictions if the effect of joints is 

ignored. 

This does not necessarily mean that the validation approach proposed here is flawed. 

The separation of an assembly into components and joints is completely artificial. A joint 

is in itself another component in the assembly. It might not have mass but it definitely 

has stiffness and damping. If joints were modelled and treated like any other 

component, the validation approach proposed in this work would still be applicable. 

Similarly to any other component, the supermodel of a joint would be used to validate its 

corresponding, and less refined, design model. 

Unlike continuous components made of isotropic materials, it is most likely that the 

behaviour of joints can only be understood at a microscopic level. The effects of surface 

finish and other complex tribology phenomena are likely to have a significant effect on 

the properties of the joints. Current computing technology does not allow model 

refinements at a microscopic level and joint models must rely on gross assumptions 

which usually lead to poor predictions. Nonetheless, the rapid developments in 

computing technology are quickly changing this scenario. It is most likely that models at 

a microscopic level will be a reality in a few years. This will facilitate a better 

understanding of the joint’s properties and the creation of accurate supermodels in the 

near future. It is also important to understand that a thorough experimental programme 

will be required to support the development of these supermodelling techniques. 

Understandably, industry cannot wait until joint supermodels are a feasible option to 

validate assembly design models using the methodology presented above. A short term 

solution is required to bridge the problem of the joints. Figure  3.31 shows a proposal to 

validate complex assembly models which takes into account the effects of joints. 
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Figure  3.31. Proposed validation strategy to account for the influence of joints. 
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In the first stage of the process, the rigid links between components are substituted by 

simplified joint models. These models will usually consist of springs with high values of 

stiffness associated. Preferably, the stiffness parameters would be selected according to 

the best existing joint modelling practice, nevertheless, it is most likely that in many 

cases an “informed guess” will be used. The next stage is to validate the component 

design models using their corresponding supermodels as the reference. This can be 

done at the very early stages of the engine programme and well ahead of manufacture. 

It is important to understand that the validation of a component model at this stage is not 

compromised by the influence of the joints as long as both the original assembly model 

and the corresponding hybrid assembly model share the same models for the joints. In 

other words, the only difference between the assembly design model and the hybrid 

assembly must only be the model of the component being validated. Keeping the same 

model of the joints in the hybrid assembly model is quite simple in practice. Figure  3.32 

illustrates the methodology that must be followed. The picture at the top corresponds to 

two design models linked together using springs. In the picture at the bottom, one of the 

component design models has been substituted by a supermodel. In order to maintain 

the same model of the joints, an extra set of nodes is created at the same positions 

where the original interface nodes of the substituted component were. These extra 

nodes are then linked on one side to the supermodel and on the other to the adjacent 

component using the original model of the joints. 

Once the component design models have been “virtually” validated the next step is to 

validate the models of the joints. As supermodels for joints do not exist yet, the 

validation of the joint models in the assembly must make use of physical test data. The 

results from a test on a prototype of the assembly will be compared against the 

assembly model predictions. Any discrepancy at this stage can only be attributed to the 

joints since all the component models are already validated. If necessary, these 

discrepancies can be reduced by updating the parameters in the joint models to better 

match the test results. The final certification of the model will take place once the 

assembly model is deemed valid. 
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Figure  3.32. Joint modelling in hybrid assembly models. 

This approach is a short term compromise where most of the assembly validation takes 

place before manufacture. Only the validation of the joints must wait until physical test 

data is available. 
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The proposed approach will now be demonstrated using the Case Study. The original 

rigid links between the component design models are substituted by springs. Each pair 

of connecting nodes between components is linked by 6 springs similarly to the exercise 

in the previous section. 

For any of the j-th joints in the assembly, the value of the translational axial stiffness Kz j 

can be estimated using the axial stiffness of the bolts that connect the casing flanges. 

The axial stiffness of a single bolt is given by: 

L
AE

Kbolt =      (3.33) 

where E is the Young’s modulus, A the section area and L the length of the bolt. As the 

nodes in the flanges of the assembly model are equally spaced, the value of Kz j for the 

j-th joint is given by: 

jnodes

jbolts
jboltjz n

n
KK =     (3.34) 

where nbolts j is the number of bolts in the j-th joint and nnodes j is the number of node pairs 

in the connecting flange. 

The radial and tangential stiffness, Kr j and Kθ j respectively, are usually driven by friction 

forces and will be considered to be an order of magnitude lower than the axial stiffness 

Kz j. 

10

K
KK jz

jjr == θ     (3.35) 

The estimation of the values for the angular stiffness parameters (Rr j, Rθ j and Rz j) is 

much more difficult and would require very complex calculations. For this test case, 

realistic values were used. Table  3.2 shows the initial estimates for the longitudinal and 

angular joint stiffness parameters corresponding to the front (COC-HPTIPTC) and rear 

(HPTIPTC-LPTC) joints. 
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Joint Parameter Initial Estimate 

Kz 1 
1nodes

1bolts
1bolt n

n
K  

Kr 1, Kθ 1 
10

K 1z
 

Rz 1 1.0E+06 N mm/rad 

1 

(COC – HPTIPTC) 

Rr 1, Rθ 1 1.0E+07 N mm/rad 

Kz 2 
2nodes

2bolts
2bolt n

n
K  

Kr 2, Kθ 2 
10

K 2z
 

Rz 2 1.0E+06 N mm/rad 

2 

(HPTIPTC – LPTC) 

Rr 2, Rθ 2 1.0E+07 N mm/rad 

Table  3.2. Estimated values for joint stiffness parameters. 

Once the simplified models for the joints are in place, the next step in the process 

according to Figure  3.31 is the validation of the component design models using the 

supermodels as reference. This process has been thoroughly explained in this chapter 

and will not be repeated here. It is just important to point out that now the hybrid 

assembly models contain the same simplified models of the joints as those used to join 

the component design models. 

Figure  3.33 show the correlation against test data of: 

• the original assembly model with rigid links and; 

• the assembly model with validated components using supermodels as reference 

and simplified joint models. 
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   (b) 

Figure  3.33. Influence of joints. Correlation of Case Study assembly model vs. physical test data. 
(a) Natural frequency and (b) modeshape. 

The assembly model with validated component models and an initial estimate of the 

stiffness of the joints already fulfils the accuracy requirements of 5% natural frequency 

error and 80% in MAC correlation. As a reminder, when the effects of joints were 
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ignored, the virtually validated assembly model was not capable of fulfilling the accuracy 

requirements. 

As the certification requirements have already been met, there is no need for further 

refinement of the joint models. Nonetheless there is still some interest in finding out the 

parameter values in the joint models that would give the most accurate predictions. This 

will help engineers in building up much needed experience in joint modelling. 

The same automated Model Updating procedure used during the validation of 

component models was used here to refine the parameter values of the joints. Figure 

 3.34 shows the updating progress. 
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Figure  3.34. Joints Model Updating progress. 

Figure  3.35 extends the results presented Figure  3.33 to cover the correlation of the 

assembly model with validated components and updated joint models. The worst natural 

frequency error is now around 2.5% (mode pair 17-18), a slight improvement with 

respect to the validated assembly model with the initial estimate of the joint stiffness (4% 

error in mode pair 15-16). Table  3.3 shows the change in the stiffness parameters of the 

joint models as a result of the Model Updating process. The large variation in some of 

the parameters highlights the lack of accuracy of the initial estimates and the need for 

improved methods to better model the stiffness of joints. 
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Figure  3.35. Joints Model Updating. Correlation of Case Study assembly model vs. physical test 
data. (a) Natural frequency and (b) modeshape. 
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Joint Parameter 
ValueInitial

ValueUpdated
 

Kz 1 27.8 

Kr 1, Kθ 1 15.1 

Rz 1 1.0 

1 

(COC – HPTIPTC) 

Rr 1, Rθ 1 0.1 

Kz 2 2.5 

Kr 2, Kθ 2 0.1 

Rz 2 0.8 

2 

(HPTIPTC – LPTC) 

Rr 2, Rθ 2 1.2 

Table  3.3. Joints Model Updating. Parameter changes. 

3.9  Conclusions 

A component design model is only considered to be valid if it is capable of predicting the 

dynamic behaviour of the component when it is part of the assembly model. The 

boundary conditions that can be imposed on a component in a laboratory environment 

usually differ from those that the component will experience when connected to other 

parts in service. That is why it is not uncommon for a component design model to 

accurately predict the dynamic behaviour of the component under laboratory conditions 

but for it to yield inaccurate predictions when it is part of the assembly. 

The objective of Test Strategy methods is to design test configurations in which to 

validate the component design models. However, as reviewed in this chapter, the 

application of these methods usually results in the need for complex test fixtures which 

can add a great deal of uncertainty to the test measurements. 

The development of supermodels has transformed the approach to model validation. 

The application of boundary conditions to a supermodel is simply a mathematical 
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exercise which is not constrained by the traditional limitations of physical testing. A new 

method has been presented in this chapter which extracts the component design model 

under validation from the original assembly model and replaces it with the 

corresponding supermodel to create a so-called “hybrid assembly model”. The 

predictions from the supermodel as part of the hybrid assembly model correspond to the 

behaviour of the component when it is part of the assembly. This is the behaviour that 

the component design model should accurately predict if it is to be considered valid and 

hence it represents the ideal reference data for validation. 

The proposed validation methodology was demonstrated using a representative Case 

Study where the individual components in an assembly model were validated using the 

virtual reference provided by hybrid assembly models. The assembly model made up of 

virtually validated components showed a worst natural frequency error of 6.5% when 

compared against the measurements from a Modal Test. This is a significant 

improvement with respect to the worst correlation of 15% that would have been 

achieved by the original assembly model had it not been validated. Even though this 

improvement was significant, the worst discrepancies between the predictions from the 

virtually validated assembly model and the data from the Modal Test (i.e. 6.5% error in 

natural frequency) were difficult to explain in view of the low manufacturing variability 

expected from the tested hardware and the low uncertainty associated with the Model 

Test (i.e. free-free configuration and state-of-the-art measurement equipment and data 

processing tools). 

A comprehensive study carried out in this chapter highlighted that the most likely cause 

of the discrepancies was due to the influence of the joints which had been neglected 

when validating the assembly model. It has been shown that the original validation 

strategy (using supermodels as the reference) can easily accommodate the presence of 

joints. It simply requires considering each joint as any other component in the assembly 

and, as for any component, design models of the joints should be included in the 

assembly model and validated using the corresponding supermodels as the reference.  

Unfortunately, supermodel techniques for joints are almost non-existent. As a result, 

physical testing remains the only reference for the validation of joint models. A 

modification to the original validation strategy has been presented in this chapter to 

cope with the presence of joints until reliable joint supermodels become a reality. The 
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approach consists of first validating the component design models using supermodels 

as the reference and then using the measurements from a Modal Test to fine tune the 

models of the joints. The bulk of the validation work is still carried out in a virtual 

environment well ahead of manufacture; however, physical testing still remains 

necessary to complete the validation. 

The application of the revised validation strategy to the Case Study resulted in a worst 

natural frequency error of only 2.5% between the predictions from the validated 

assembly model and the results from the Modal Test. This level of correlation is well 

within expectations considering the inevitable uncertainties associated with the 

measurements and the expected deviations of the manufactured components with 

respect to nominal. Moreover, this level of correlation represents a remarkable 

improvement with respect to the frequency error of 15% associated with the original 

assembly model and the 6.5% error achieved when the assembly model was validated 

neglecting the influence of joints. 
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Chapter 4 - Technology Demonstration 

on an Industrial Application 

4.1  Introduction 

The validation strategy proposed in the previous chapters promises to reduce the cost 

and timescales currently associated with the validation of complex assembly models. In 

fact, the virtual nature of this approach facilitates the validation of complex assembly 

models during the early stages of the product development cycle at almost no financial 

cost and with few time penalties. 

The previous two chapters made use of a simple Case Study to illustrate the proposed 

methodology. This Case Study consisted of the validation of an assembly model 

comprising three simple casings. Even though the results from the validation proved 

very successful, this example could be considered too simple to draw firm conclusions 

for applications to more complex structures. At the end of the day, the three casing were 

quasi-cylindrical and the modes validated were not particularly challenging. 

This chapter will now consider the validation of a sub-assembly model containing some 

of the most complex components in an engine. The modes selected for validation have 

also historically been difficult to predict accurately. 

This work was carried out as part of an actual engine certification programme. The strict 

deadlines and the tight cost limitations associated with these types of programme 

represent an ideal scenario to demonstrate the maturity of the proposed methodology 

and its suitability for full-scale deployment into industry. 
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4.2  Assembly Model Description and 

Requirements 

The Front Structure sub-assembly illustrated in Figure  4.1 (a) is one of the key structural 

elements in an aeroengine. This sub-assembly is responsible for: 

• holding in place the front bearings that support the engine’s shafts and; 

• directing the airflow from the fan towards the engine bypass and the inner core. 

The design of the Front Structure sub-assembly must be robust enough to withstand the 

loading from the shafts due to normal (e.g. rotor unbalance) and abnormal (e.g. fan 

bade off) loading, it must also be aerodynamically efficient and very importantly, it must 

be light. This difficult balance results in one of the most complex designs in the engine. 

 

 

          (a)                                                                                                    (b) 

Figure  4.1. Front Structure. (a) Location in the aeroengine and (b) design model. 

The criticality of the Front Structure coupled with its complex design means that the 

corresponding structural design model must be validated as part of the engine 

certification programme. Figure  4.1 (b) shows the Front Structure design model that will 

be validated in this chapter. This model is constructed using shell and beam elements. 
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The Front Structure sub-assembly is made up of three components, the Mount Ring 

(MR), the Fan Outlet Guided Vanes (FOGV) and the Front Bearing Housing (FBH), see 

Figure  4.2. Table  4.1 illustrates some of the characteristics of the different models. All 

three components are connected together using bolted joints. 

 

 

   (a)                                                        (b)                                                          (c) 

Figure  4.2. Front Structure component design models. (a) MR, (b) FOGV and (c) FBH. 

 

 MR FOGV FBH TOTAL 

Total Number of DOFs 5,052 45,912 37,842 88,806 

Total Number of Elements 916 9,456 8,220 18,592 

Element Types 
SHELL & 

BEAM 

SHELL & 

BEAM 

SHELL & 

BEAM 

SHELL & 

BEAM 

Table  4.1. Case Study assembly model. 

In order to achieve certification, it must be demonstrated that the Front Structure model 

is capable of accurately predicting a clearly specified set of modes. Physical test data 

must be used as the final reference data for the assessment of the predictions. 
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The modes that must be accurately predicted by the sub-assembly model are (i) the 

torsion mode, (ii) the 2D axial mode and (iii) the 1D pitch mode when the structure is 

tested in a free-free configuration. The model of the sub-assembly is quasi axis-

symmetric. That is why the two modeshapes with diametral nodal lines (i.e. 2D axial and 

1D pitch) appear in orthogonal pairs. For simplicity, from now on only one of the axial 

modes and one of the pitch modes will be considered. 

Figures  4.3 and  4.4 show the modeshapes and natural frequency distribution∗ of these 

modes as predicted by the original design model of the sub-assembly. These modes are 

the first 5 modes of the structure when tested in a free-free configuration. 

The selection of these specific modes by the certification authorities is not random. 

When this sub-assembly is part of the whole engine the main dynamic loads applied to it 

are the axial loads from the shafts, the rotor out of balance forces and the axial load 

when the reverse thrust is engaged. The modeshapes targeted for validation closely 

resemble the deflections patterns of the sub-assembly when it is subject to those loads: 

• the axial loading from the shafts is directly applied to the hub of the FBH through 

the bearings. Due to the stagger angle of the aerofoils this forces the whole 

structure to untwist. This deformed shape closely resembles the torsion mode; 

• the rotor out of balance forces are always applied in the radial direction. This 

forces the Front Structure to tilt. This deformed shape closely resembles the 1D 

pitch mode. Finally; 

• when the reverse thrust is engaged during the landing operations a significant 

axial load is applied to the rear flange of the MR. This axial loading is usually not 

uniform across the whole circumference, see Figure  4.5. The resultant deformed 

shape of the Front Structure under this load closely resembles the 2D axial 

modeshape. 

                                                     

∗ The actual natural frequencies cannot be shown for commercial reasons. 
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In order to consider the model valid all natural frequencies must be fall within a ±5% 

error band when compared against physical test data. The MAC correlation must be 

higher than 80%. 

 

 

          (a)                                                                          (b) 

0.0 mm 1.0 mmResultant Displacement
 

          (c)                                                                          (d) 

Figure  4.3. Predicted modeshapes. (a) Undeformed model, (b) torsion mode, (c) 2D axial mode 
and (d) 1D pitch mode. 
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Figure  4.4. Predicted natural frequency distribution. 

 

Figure  4.5. Reverse thrust engaged during a landing operation. 

4.3  Validation Strategy 

The validation strategy proposed in the previous chapters will be used here to validate 

the design model of the Front Structure sub-assembly. For clarity this process is 

illustrated again in Figure  4.6. 
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Figure  4.6. Validation Strategy. 
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The first step is to replace the rigid connections between components in the original 

assembly design model by flexible joints. The next step is to select the individual 

components in the assembly that require validation (i.e. component prioritisation). These 

components will be validated using their corresponding supermodels as the reference. 

Please remember that a supermodel must be embedded into the original assembly 

design model (hybrid assembly model) so that it can provide an accurate estimation of 

the component’s behaviour when it is part of the assembly. 

Once all the high-priority component models have been validated the next step is to 

validate the models of the joints. This validation still requires physical testing. This test 

data will also be used to ultimately certify that the model predictions fulfil the accuracy 

requirements. 

Most of the model validation takes place in a virtual environment and can start well 

ahead of the test data being available. In fact the test data is simply used at the very late 

stages to validate the joint models and to certify that the final predictions meet the 

accuracy requirements. This is quite handy since there is usually only a few weeks 

margin between the test data being available and the deadline for the certification 

report. 

4.4  Flexible Joints 
Figure  4.7 highlights this step in the validation strategy. 

The rigid connections between components in the original assembly model must be 

replaced by flexible joints to account for the actual flexibilities of the interfaces. There 

are two joints in the sub-assembly, that between the MR and the FOGV and that 

between the FOGV and the FBH. 
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Figure  4.7. Validation Strategy. Flexible joints. 
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4.4.1  Mount Ring (MR) - Fan Outlet Guided Vanes (FO GV) 

Joint 

Each of the vanes in the FOGV is connected to the MR using two bolts, one close to the 

leading edge tip and the other one close to the trailing edge tip. Figure  4.8 shows the 

manufacturing CAD drawings corresponding to this connection. 

 

Figure  4.8. MR to FOGV joint details. 

There are two nodes in each of the vanes of the FOGV model placed at the same 

position as the two connecting bolts, see Figure  4.9 (a). In the original assembly model 

these two nodes are rigidly connected to a matching pair of nodes placed on the MR 

model, see Figure  4.9 (b). 

In order to represent the flexibility of the joint, the rigid links between the FOGV and MR 

nodes are replaced by springs in the 6 DOFs. It is best if the values associated with the 

stiffness of the sprigs are fairly representative. Nonetheless their accurate definition is 

not that important at this stage. They simply represent an initial estimation which will be 

updated as soon as the test data becomes available. 

For each of the bolted connections, the value of the spring stiffness in the direction 

normal to the joint (radial direction) is assumed to be the same as the longitudinal 

stiffness of the connecting bolt according to equation (3.33). The stiffness in the two 

directions parallel to the contact surface is mainly driven by friction forces, hence the 

stiffness values in these two directions are assumed to be an order of magnitude lower 

than the normal stiffness according to equation (3.35). The values of the spring stiffness 
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associated with the rotational DOFs were selected based on engineering judgement. 

Table  4.2 shows the spring values initially associated with each of the leading and 

trailing edge bolted joints. 

Leading Edge Connection

Trailing Edge Connection
 

                      (a)                                                                           (b) 

Figure  4.9. MR – FOGV joint. (a) FOGV model detail and (b) MR model detail. 

Joint Parameter Initial Estimate 

Kr 1 Kbolt 1 

Kθ 1, Kz 1 
10

K 1r
 

Rr 1 1.0E+06 N mm/rad 

1 

(MR – FOGV Leading Edge) 

Rθ 1, Rz 1 1.0E+07 N mm/rad 

Kr 2 Kbolt 2 

Kθ 2, Kz 2 
10

K 2r
 

Rr 2 1.0E+06 N mm/rad 

2 

(MR – FOGV Trailing Edge) 

Rθ 2, Rz 2 1.0E+07 N mm/rad 

Table  4.2. MR – FOGV joint spring stiffness. 
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4.4.2  Front Bearing Housing (FBH) - Fan Outlet Guided  

Vanes (FOGV) Joint 

The FOGV is bolted to the FBH across a more conventional flange, see Figure  4.10. 

 

Figure  4.10. FOGV to FBH joint detail. 

The design models corresponding to both components have a ring of nodes where the 

two components meet, see Figure  4.11. In the original assembly model the nodes on 

both sides of the joint are rigidly connected. 

Again, the rigid links between each of the node pairs must be replaced by springs to 

simulate the flexibility of the joint. The values associated with the springs in each node 

pair are shown in Table  4.3. These values are an initial estimate which takes into 

account the stiffness of the connecting bolts according to equations (3.33), (3.34) and 

(3.35). 

 

  (a)                                                                             (b) 

Figure  4.11. FBH - FOGV joint. (a) FOGV model detail and (b) FBH model detail. 
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Joint Parameter Initial Estimate 

Kz 3 
3nodes

3bolts
3bolt n

n
K  

Kr 3, Kθ 3 
10

K 3z
 

Rz 3 1.0E+06 N mm/rad 

3 

(FBH – FOGV) 

Rr 3, Rθ 3 1.0E+07 N mm/rad 

Table  4.3. FBH – FOGV joint spring stiffness. 

4.5  Component Prioritisation 

Figure  4.12 highlights this step in the validation strategy. 

The sensitivity density contour plots in Figure  4.13 give an indication of the regions in 

the assembly model where an incorrect modelling will have a bigger effect in the 

predictions of the natural frequencies and modeshapes. A look at these plots indicates 

that the highly sensitive areas are all concentrated in the MR and the FOGV. It seems 

that the accurate definition of the FBH design model is not as important since changes 

to its stiffness have little effect on the assembly predictions. 

Figure  4.14 show the quantitative assessment of the importance of each of the 

components to the accuracy of the assembly predictions according to equation (2.62). 

These values reinforce our initial estimation that the validation of the models 

corresponding to the MR and the FOGV should be given the highest priority. In fact the 

validation of the FBH design model can be spared altogether since its contribution is 

negligible for all the modes of interest. 
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Figure  4.12. Validation Strategy. Component prioritisation. 
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Figure  4.13. Sensitivity density to changes in stiffness. 
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(a) 

Component Contribution
Assembly Modeshape Predictions

0.0%

25.0%

50.0%

75.0%

100.0%

Torsion 2D Axial 1 D Pitch

Mode No.

C
om

po
ne

nt
 C

on
tr

ib
ut

io
n

MR FOGV FBH
 

(b) 

Figure  4.14. Component prioritisation. Individual contribution to (a) natural frequency and (b) 
modeshape. 

4.6  Component Design Model Validation 

Figure  4.15 highlights this step in the validation strategy. 
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Figure  4.15. Validation Strategy. Component design model validation. 
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4.6.1  Component Supermodels 

The creation of the supermodels made use of the supermodelling guidelines proposed 

by Baker [63] and Loyer [64]. The geometry CAD models used for the creation of the 

MR and FOGV supermodels did not contain any simplification and fully reflected the 

manufactured geometry of a nominal component. Figures  4.16 and  4.17 show some of 

the details of the MR and FOGV supermodels respectively. Table  4.4 gives an insight 

into their size. 

 

 

 

Figure  4.16. MR supermodel. 
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Figure  4.17. FOGV supermodel. 

 

 MR FOGV 

Total Number of DOFs 1,166,934 6,619,596 

Total Number of Elements 204,564 1,161,632 

Element Types TET 10 TET 10 

Table  4.4. Component supermodels. 

4.6.2  Validation of the Mount Ring (MR) Design Mode l 

Figure  4.18 (a) shows the assembly design model containing the original component 

design models linked together using flexible joints. In Figure  4.18 (b) the design model 

of the MR has been substituted by the corresponding supermodel. The models 

corresponding to the rest of the components, including the joints, remain exactly the 

same. This means that any discrepancies between the predictions from both assembly 
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models can only be attributed to the differences between the MR design model and the 

corresponding supermodel. 

 

 

       (a)                                                                           (b) 

Figure  4.18. (a) Assembly design model and (b) hybrid assembly model containing the MR 
supermodel. 

Figure  4.19 shows the correlation between the assembly design model predictions and 

those from the hybrid assembly model. The discrepancies are significant, particularly the 

natural frequency error corresponding to the axial mode. These discrepancies must be 

reduced if we want to achieve the level of accuracy required for certification.  

Parameter sensitivity based Model Updating was used to update the original MR design 

model to better match the predictions from the supermodel. The Young’s modulus for 

each ring of elements in the MR design model was selected as a potential parameter for 

updating. The selection of the Young’s modulus as the updating parameter is very 

convenient since it does not affect the carefully tuned mass distribution of the original 

component design model. 

Both the natural frequencies and modeshapes were selected as target responses during 

the Model Updating. The weighted method according to equation (3.20) was selected for 

Model Updating. All parameters and responses were given the same weighting of 1. 
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   (b) 

Figure  4.19. Correlation of assembly design model vs. hybrid assembly model with the MR 
supermodel. (a) Natural frequency and (b) modeshape. 

Figure  4.20 shows the updating progress. The X-axis corresponds to the iteration 

number while the Y-axis represents the average natural frequency error of the updated 
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design model when compared to the reference from the supermodel. The iteration 

process was stopped when the improvement from two consecutive analyses was less 

than 0.001%. The convergence is smooth with a low error asymptote. 
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Figure  4.20. MR Model Updating progress. 

Figure  4.21 shows the correlation after the Model Update. The levels of correlation are 

very satisfactory with all natural frequency errors close to 0% and all modeshape 

correlations close to 100% 

As usual, it is important to make sure that the parameter changes obey to physical 

reasons. Figure  4.22 shows the parameter changes introduced as a result of the Model 

Update. The biggest changes are introduced in the two regions highlighted in Figure 

 4.23. These regions do not contain any particularly challenging feature to model. 

Nonetheless, the changes introduced to the original MR design model are surprisingly 

high (Young’s modulus reduction of around 50%). This is usually an indication that there 

is something fundamentally wrong in the original model which has been mathematically 

compensated in the updated model. The use of mathematical models with little 

resemblance of the actual physics is dangerous and should be avoided wherever 

possible. 
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   (b) 

Figure  4.21. Correlation before and after the MR Model Update. (a) Natural frequency and (b) 
modeshape. 
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Figure  4.22. MR design model parameter updates. 

 

E reduced by 
approx 50%

 

Figure  4.23. Regions of the MR where the biggest parameter changes were suggested. 

The results from the Model Updating give us an indication of what is wrong with the 

original model. According to Figure  4.22 the biggest parameter changes take place in 

the regions where the MR is connected to the FOGV vanes. Figure  4.24 shows the 

modelling practice in these regions. For each of the FOGV vanes there are two nodes in 

the MR model, each of them located at the position where the vane is bolted to the MR. 

These are the nodes that are connected to the FOGV through flexible springs. 
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In the original MR model, each of the nodes placed at a bolt location is rigidly connected 

to the four nodes on the closest shell. This in turn makes some of the shells perfectly 

stiff. The Model Updating compensates for this over prediction of the stiffness by 

reducing the Young’s modulus of the elements close to those regions. 

 

Rigid Links

FOGV Bolt 
Location

 

Figure  4.24. Modelling practice for the regions where the MR is connected to the FOGV vanes. 

This modelling error can be easily removed by calculating the displacement of the nodes 

at the bolt locations as the average displacement of the four nodes in the closest shell. 

Model Updating could have never removed this modelling error simply because there 

was not any parameter to update in the original model which would have removed the 

presence of the rigid shells. This type of modelling error is usually referred to as 

configuration error [32]. 

It is very important that all configuration errors are removed from the original model 

before Model Updating is used. Otherwise it is most likely that the updated model will 

have very little physical sense. This phenomenon was recently studied in detail by Chen 

[32] who suggested that all models should be subject to a Verification process before 

they are updated. 

Figure  4.25 shows the correlation achieved using an updated model of the MR where 

the configuration errors had been corrected before the start of the Model Updating 

process. The correlation of the updated model is remarkable with all natural frequency 

errors close to 0% and all MAC correlations close to 100%. Figure  4.26 shows the 
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parameter changes that resulted of the Model Updating. The changes are all quite small 

and can be easily explained from a physical point of view. 
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   (b) 

Figure  4.25. Correlation before and after MR configuration error correction and Model Update. (a) 
Natural frequency and (b) modeshape. 
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Figure  4.26. MR design model parameter updates where configuration errors were removed 
before Model Updating. 

4.6.3  Validation of the Fan Outlet Guided Vanes (F OGV) 

Design Model 

Figure  4.27 (a) shows the assembly design model containing the original component 

design models linked together using flexible joints. In Figure  4.27 (b) the design model 

of the FOGV has been substituted by the corresponding supermodel. The design 

models corresponding to the rest of the components, including the joints, remain exactly 

the same. This means that any discrepancies between the predictions from both 

assembly models can only be attributed to the differences between the FOGV design 

model and the corresponding supermodel. 

 



Chapter 4                                     Technology Demonstration on an Industrial Application 

151 

 

 

       (a)                                                                           (b) 

Figure  4.27. (a) Assembly design model and (b) hybrid assembly model containing the FOGV 
supermodel. 

Figure  4.28 shows the correlation between the assembly design model predictions and 

those from the hybrid assembly model. The discrepancies are not as big as in the case 

of the MR, nevertheless it is always worth reducing the differences to a minimum in 

order to increase our chances of meeting the certification requirements 

Parameter sensitivity based Model Updating was used to update the original FOGV 

design model to better match the predictions from the supermodel. The Young’s 

modulus for each ring of elements in the FOGV design model was selected as a 

potential parameter for updating. Both the natural frequencies and modeshapes were 

selected as target responses during the Model Updating. The weighted method 

according to equation (3.20) was selected for Model Updating. All parameters and 

responses were given the same weighting of 1. Figure  4.29 shows the updating 

progress. The iteration process was stopped when the improvement from two 

consecutive analyses was less than 0.001%. The convergence is smooth with a low 

error asymptote. 
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Figure  4.28. Correlation of assembly design model vs. hybrid assembly model with the FOGV 
supermodel. (a) Natural frequency and (b) modeshape. 
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Figure  4.29. FOGV Model Updating progress. 

Figure  4.30 shows the correlation after the Model Update. The levels of correlation are 

very satisfactory with all natural frequency errors close to 0% and all modeshape 

correlations close to 100% 

As usual, it is important to make sure that the parameter changes that result from the 

Model Update have some physical meaning. Figure  4.31 shows the parameter changes 

introduced as a result of the Model Update. The biggest parameter changes take place 

in the inner rim with an increase in the Young’s modulus of around 125%. Figure  4.32 

shows the actual geometry of this region. The cross-section of this area is clearly thicker 

than the adjacent regions. Nevertheless, the original model did not capture this local 

increase of stiffness. As a result, it is perfectly justifiable to increase the value of the 

Young’s modulus in this area. 
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Figure  4.30. Correlation before and after the FOGV Model Update. (a) Natural frequency and (b) 
modeshape. 
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Figure  4.31. FOGV design model parameter updates. 

 

 

Figure  4.32. FOGV inner rim cross-section geometry. 

4.7  Joints Model Validation and Final Certificatio n 

Figure  4.33 highlights these two steps in the validation strategy. 
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Figure  4.33. Validation Strategy. Joints validation and certification. 
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The picture in Figure  4.34 illustrates the test configuration used during the Modal 

Testing of the Front Structure sub-assembly. In order to simulate the free-free conditions 

the structure was lifted off a trolley using elastic ropes connected to three cranes. 

 

 

Figure  4.34. Modal Test. 

Some of the modes of interest were predicted to appear at very close frequencies. A 

traditional SISO (Single Input Single Output) Modal Test is not well suited to differentiate 

closely coupled modes. A multi-reference SIMO (Single Input Multiple Output) Modal 

Test was selected as the most appropriate technique in this case. The test made use of 

a calibrated hammer to excite the structure and a set of accelerometers to measure the 

response. The accelerometers remained at the same place throughout the whole test 

while the hammer moved around the structure. 

The number of impact locations (386 in total) and responses (12 in total) as well as their 

positions were optimised using the predictions from the “virtually” validated assembly 
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model. This process is commonly referred to as Test Planning [31]. Figure  4.35 shows 

the Measurement wireframe. 

 

 

Figure  4.35. Measurement wireframe. 

The availability of test data means that we can now validate the models of the joints. 

Please remember that the “virtually validated” assembly contains valid models for the 

components but rough estimates of the flexibilities of the joints. 

Figure  4.36 shows the correlation between the “virtually validated” assembly model and 

the test results. The correlation corresponding to the original assembly model with non-

validated component models and rigid joints is also included for comparison purposes. 

The “virtually validated” assembly model represents a remarkable improvement with 

respect to the original model. In fact, the predictions from the “virtually validated” model, 

which contains a coarse model of the joints, are already well within the certification 

requirements. This reinforces the claim that the bulk of the validation can take place in a 

virtual environment well ahead of any test data being available. 
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   (b) 

Figure  4.36. Correlation between “virtually validated” assembly model and the test data. (a) 
Natural frequency and (b) modeshape. 
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As the certification requirements are already met we could stop the validation process at 

this stage and leave the models of the joints as they are. Nevertheless, it is good 

practice to carry out an update of these models to get a better understanding of the 

actual flexibility of the joints. This is important to support the development of better 

modelling techniques. The same automated Model Updating procedure used during the 

validation of component models was used here to refine the parameter values of the 

joints. Figure  4.37 shows the updating progress. 
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Figure  4.37. Joints Model Updating progress. 

Figure  4.38 shows the correlation before and after a sensitivity-based updating of the 

joint models. Even though the correlation is slightly better, the remarkable correlation 

already achieved before the updating means that there was not much room for 

improvement. Nonetheless the main purpose of this exercise is to get a better 

understanding of the actual stiffness of the joints, which is shown in Table  4.5. Again, 

the updated values are significantly different from the original estimates. 
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Figure  4.38. Joints Model Updating. (a) Natural frequency and (b) modeshape. 
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Joint Direction 
ValueInitial

ValueUpdated
 

Kr 1 8.0 

Kθ 1, Kz 1 0.9 

Rr 1 6.9 

1 

(MR – FOGV Leading Edge) 

Rθ 1, Rz 1 0.2 

Kr 2 23.0 

Kθ 2, Kz 2 14.5 

Rr 2 1.6 

2 

(MR – FOGV Trailing Edge) 

Rθ 2, Rz 2 3.3 

Kz 3 1.6 

Kr 3, Kθ 3 11.5 

Rz 3 1.0 

3 

(FBH – FOGV) 

Rr 3, Rθ 3 1.2 

Table  4.5. Joints Model Updating. Parameter changes. 

4.8  Conclusions 

The proposed strategy for the validation of assembly models has been used in this 

chapter to validate the model of a complex aeroengine sub-assembly. The most relevant 

component design models in the assembly were first identified using the sensitivity 

methods proposed in Chapter 2 and then validated using highly refined supermodels as 

the reference following the methodology outlined in Chapter 3. All this work took place in 

a virtual environment well ahead of the test data being available. However, as 

supermodels of joints remain unreliable, the design models corresponding to the 
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component interfaces (i.e. joints) could only be validated once the Modal Test data 

became available. 

The final validated assembly model resulted in a remarkable worst natural frequency 

correlation of less than 2% when compared against the results from the Modal Test. 

This level of correlation falls within what would be expected due to the manufacturing 

variability and the inevitable uncertainties associated with testing. Moreover, the 

validated assembly model represents a significant improvement with respect to the 

original model whose worst natural frequency error would have been around 20%, had it 

not gone through the validation process. 

During the course of this validation exercise it was necessary to correct some of the 

component design models to better match the reference data provided by the 

supermodels. This highlighted the importance of correcting the configuration errors in 

any model before attempting Model Updating. When this is ignored, the changes 

introduced to the parameters in the model can be unrealistic, resulting in a mathematical 

model having little or no physical meaning. The use of such “mathematical models” is 

not advisable as the actual cause of the original discrepancies will remain hidden and 

could surface again when the conditions under which the model operates are changed. 

The example presented in this chapter was part of a real engine certification 

programme. A model validation exercise where the bulk of the work can take place in a 

virtual environment well ahead of manufacture is particularly advantageous for this kind 

of programme where there is usually very little time between the test data being 

available and the certification deadline. Also, this is a particularly demanding industrial 

scenario in which to demonstrate any new technology. The successful outcome 

achieved reinforces the confidence in the maturity of the proposed validation strategy for 

its staged release into industry. 
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Chapter 5 - Validation of Supermodels 

5.1  Introduction 

The use of supermodels is central to the validation strategy proposed in this work. 

Predictions from supermodels are used to validate the less refined component design 

models during the early stages of the product development cycle, even before 

manufacture. This “virtual” validation strategy can potentially reduce the need for 

physical testing by an order of magnitude when compared with more traditional 

validation approaches. Nevertheless, the successful outcome of this approach relies on 

the capability of supermodels to predict accurately the dynamic properties of the 

components that they represent. 

The concept of a supermodel was introduced in the first years of this century by Fotsch 

[1]. Even though there has been significant progress in the development of 

supermodelling techniques [63] [64], there is still further work required before reliable 

supermodels can be generated for all cases. 

The development of valid supermodelling techniques invariably requires some physical 

testing but it is important to highlight here the difference in the role of physical testing 

when compared to a more traditional validation exercise. Traditionally, physical testing is 

used to validate a specific model so that it accurately predicts the dynamic properties of 

a given structure. Here, physical testing will be used to validate the supermodelling 

technique and not the models themselves. The supermodels selected for validation 

must contain features that current supermodelling techniques find challenging to model 

properly. The validation of such supermodels will, in turn, serve to validate the 

techniques employed during their creation. Importantly, this validation can take place off 

the critical path of the design. 

The whole idea of using a supermodel to validate its less refined design model 

counterpart revolves around the concept that the supermodel predictions are highly 
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accurate in much the same way that experimental data from a physical test are 

considered to be the “true” values. Subsequently, a supermodel can only be considered 

valid if its predictions can be shown to closely resemble test measurement. But, how 

close do they need to be? 

It is important to consider that during a validation exercise, the model usually represents 

the nominal geometry and material properties. The actual dimensions and material 

properties of the manufactured component(s) are usually uncertain and are only known 

to be within manufacturing tolerances of the nominal design values. Moreover, in a 

laboratory environment measurements will invariably be affected by noise and other 

uncertainties such as those arising from transducer calibration. As a result, even 

perfectly valid supermodels will never match the test measurements with a 0% error. 

Traditionally, model validation exercises have taken a deterministic approach to deal 

with uncertainty. A model (e.g. supermodel) is considered to be valid if the distance 

between the predictions and the measurements is within a specified threshold. This 

threshold is typically selected based on “what looks reasonable” taking account of the 

manufacturing tolerances of the test specimens, the estimated measurement errors and, 

most importantly, the modelling error allowance. This validation approach is well suited 

for validating coarse models where the modelling error allowance is typically much 

higher than the potential effects of the manufacturing variability or the measurement 

errors. However, supermodels are expected to provide predictions so accurate that they 

rival the accuracy of physical testing. 

The accuracy expected from supermodels calls for a more robust validation criterion 

where the differences between the predictions and the measurements are judged in 

relation to the uncertainties present during the validation process. Those uncertainties 

are usually defined using probabilistic terms. This means that the model validation 

strategy must shift its focus from a deterministic to a stochastic approach. 

This chapter will present efficient ways of quantifying the uncertainties associated with 

the predictions from a supermodel (e.g. due to manufacturing variability) and those 

associated with the test. The characterisation of the uncertainty associated with the 

supermodel predictions can become computationally prohibitive at times, that is why 

reduced models of the supermodel (i.e. metamodels) may be used instead for such 

purpose. This chapter will review some of the most common types of metamodels (e.g. 
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sensitivity-based, “neural nets”, etc.) highlighting their benefits and shortfalls. An 

efficient method will also be presented to quantitatively establish the maximum 

difference allowed between the predictions and the measurements when considering 

whether a supermodel is valid. The application of these methods will be illustrated by 

using the validation of the COC supermodel used in Chapters 2 and 3 as a Case Study. 

5.2  Different Approaches to Probabilistic Model 

Validation 

The traditional approach to probabilistic model validation is to compare the predictions 

from a nominal model against the results from a number of tests. These tests must be 

representative of the different uncertainties present during the model validation process. 

For instance, a number of manufactured components must be tested to account for the 

expected manufacturing variability, different transducers should also be used to account 

for potential measurement error, different practitioners should also be employed to 

account for human errors, and so on. 

If the number of tests is sufficiently high, the measured responses can be characterised 

in probabilistic terms. Different metrics have been proposed over the years to estimate 

the validity of a model based on the correlation between the nominal predictions and the 

probabilistic characteristics of test results. 

One of the most basic validation metrics, which is still very common, is the distance 

between the nominal predictions and the mean of the responses. The principle behind 

this metric is simple. If none of the uncertain factors in the validation process is biased 

(high and low values are equally possible) and the nominal model is valid, one should 

expect a close match between the predictions and the mean values of the test results. 

Brownlee [68] in the 1960s and Miller and Freund [69] in the 1980s proposed to use the 

median of the test results instead of the mean to calculate the distance between the 

predictions and the measurements. Other authors such as Beck and Arnold [70] in the 

late 1970s or Reckhow et al [71] in the early 1990s went further and considered a model 

valid if the predictions fell within the limits specified by a percentage (e.g. 95%) of the 

test results. 
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All these techniques rely on the availability of extensive test data to characterise the 

uncertainties associated with the model validation process. However, the use of 

extensive test programmes for the validation of models is simply not realistic in a 

modern industrial environment. Time and cost are certainly some of the main reasons 

but there are others. For instance, during the development phase of a modern 

aeroengine there will be typically less than a dozen engine prototypes ever built. This 

means that, at best, a much reduced number of manufactured components will be 

available for testing. This number will usually not be enough to fully explore, for 

instance, the effect of manufacturing variability. 

A realistic model validation approach must take into account the fact that very limited 

test data might be available. In fact, it is not unusual for only a single test to be ever 

performed. In the absence of comprehensive test data, there is no other option but to 

characterise the uncertainty in the validation process analytically. The model will be 

considered to be valid if the differences between the predictions and the measurements 

are consistent with the anticipated uncertainty. An important benefit of this approach is 

the fact that it compels the test engineers to fully understand the mechanisms that drive 

the uncertainty in the validation process so that they can improve the design of the tests. 

The two main sources of uncertainty present in the validation process have their origins 

in the model and the measurements, respectively. The following sections describe how 

to characterise analytically the uncertainty associated with both the model predictions 

and the test measurements. 

5.3  Model Uncertainty 

In the context of this work, a supermodel is a comprehensive mathematical 

representation of the physics that fully govern the dynamic behaviour of a component. 

The predictions from a supermodel depend mainly on two factors: 

• the mathematical description of the problem. In other words, the modelling 

technique, and; 

• the model input parameters comprising the geometrical dimensions, the material 

properties and the boundary conditions. 
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One could argue that there is a third factor which has an effect on the predictions, 

namely, the numerical method used to resolve the mathematical equations. However, 

the significant advances in this area over the past decades have relegated the 

importance of this factor to a secondary role. 

When validating a supermodel, the objective is to make sure that the modelling 

techniques are appropriate. Nevertheless, even in the absence of measurement errors 

and using perfect modelling techniques, the supermodel predictions will not match the 

test results if the dimensions, material properties and boundary conditions used in the 

model are different to those of the manufactured component(s). This does not mean that 

the model is wrong, just that the supermodel simply represents a different test. 

Ideally, one would create a supermodel using the exact geometrical dimensions, 

material properties and boundary conditions of the real test. This would focus the 

attention on the validation of the modelling techniques and not on the right definition of 

the model input parameters. However, the only data usually available are the tolerances 

over which the geometrical dimensions, the material properties and, to some extent, the 

boundary conditions might vary. Subsequently, even when the modelling techniques 

used for the creation of a supermodel are accurate, uncertainty still remains that the test 

modelled might not correspond exactly to the one that takes place in reality. 

5.4  Characterisation of Model Input Parameter 

Uncertainty 

The characterisation of uncertainty is usually done in statistical terms. For instance, the 

uncertainty associated with the definition of the Young’s modulus in a supermodel can 

be characterised using a Probability Density Function (PDF) such as that in Figure  5.1. 

The data used to construct this curve typically comes from a series of tensile tests 

performed on specimens made of the material of interest. 

The shape of most PDFs can be approximated using standard functions. Examples of 

such functions are: Normal distribution, Lognormal distribution, Weibull distribution, 

Gumbel distribution, Uniform distribution, Triangular distribution, etc. A comprehensive 

description of these distributions can be found in any statistics textbook, e.g. [72]. 
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Figure  5.1. Typical PDF of a material’s Young’s modulus. 

The shape of the PDF in Figure  5.1 resembles a Normal distribution, although the tails 

have been truncated. This means that the Young’s modulus of the material will always 

lie within a specified set of bounds. This characteristic is typical of parameters which are 

tightly controlled during the manufacturing processes. For instance, the strict quality 

checks in the aeroengine industry will prevent the use of any material whose Young’s 

modulus falls outside a given error band with respect to the nominal value. 

The estimation of the PDFs for some model input parameters is relatively easy. For 

instance, the Materials Laboratory will usually provide a good estimation of the PDFs for 

the basic material properties, Young’s modulus, Poisson’s ratio, density, etc. 

In the case of the geometrical dimensions, the upper and lower bounds are usually well 

defined and strictly controlled during manufacturing. However, the shape of the PDF is 

less clear and it is usually estimated based on a detailed understanding of the 

manufacturing processes. 

The characterisation of uncertainty associated with the value of the parameters used to 

describe the test boundary conditions is most difficult in practice. For instance, it is very 

difficult to characterise the uncertainty associated with the values of the parameters 

used to describe the contact stiffness between the component and a test fixture. The 

usual approach in these cases is to consider that the values of the parameters can 

change over a wide range (i.e. high uncertainty). The shapes of the PDFs are then 

typically determined based on “engineering judgement”. 
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The free-free configuration is a particular case where the component is tested in the 

absence of boundary conditions. This eliminates the complex task of characterising the 

uncertainty associated with the modelling of the boundary conditions. Moreover, the lack 

of uncertainty in their definition will result in a much reduced uncertainty in the free-free 

model predictions when compared with more complex test configurations. 

5.5  Model Uncertainty Propagation 

The uncertainties in the input parameters will be invariably propagated through the 

model and will manifest themselves as uncertainties in the predictions. For instance, let 

us consider that the material density of a model is defined by a Normal distribution such 

as that shown in Figure  5.2 (a). The total mass, M, of a solid homogenous model is 

predicted using: 

VM ρ=      (5.1) 

where ρ is the material density and V is the total volume. 

 

Let us also assume that there is no uncertainty over the dimensions of the component 

and therefore the volume remains constant. Under these circumstances, it can be easily 

demonstrated that the total mass predicted by the model will also follow a normal 

distribution, see Figure  5.2 (b), where the mean and standard deviation σ  are given by: 

VM meanmean ρ=     (5.2) 

( ) ( )VM ρσ=σ      (5.3) 

This is one of the simplest examples of uncertainty propagation. There is only one 

uncertain parameter in the model and the mathematical function that relates the input 

parameter to the prediction of interest (i.e. total mass) is linear. 

In a general case, the uncertainty in the model predictions will be the result of more than 

one input parameter. Moreover, the mathematical relationship between the input 

parameters and the predictions might not be explicit, let alone linear. 
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      (a)                                                                               (b) 

Figure  5.2. (a) Material density PDF and (b) mass prediction PDF. 

5.5.1  Parametric CAD Models 

In order to calculate the propagation of uncertainty through a model it is necessary to 

establish a mathematical relationship between its input parameters and the output 

predictions. In other words, the predictions must be expressed as a function of the input 

parameters. 

As explained above, when validating a supermodel (and subsequently the modelling 

techniques) the biggest uncertainty in the predictions comes from an inability to exactly 

match the geometrical dimensions, material properties and boundary conditions of the 

test components. In practice, it is very difficult to mathematically determine the 

relationship between the model predictions and some of those parameters. For 

instance, assume that we want to establish the uncertainty in the natural frequency 

predictions of a casing supermodel due to the variation of the front flange thickness. It 

can prove very challenging to construct the stiffness and mass matrices of the 

supermodel as a function of this parameter. Moreover, the natural frequencies cannot 

be predicted from the stiffness and mass matrices explicitly, requiring the solution of an 

eigen problem instead. 

The relationship between a set of input parameters in the supermodel and its predictions 

can be resolved more easily taking the indirect approach shown in Figure  5.3. 
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Figure  5.3. Indirect approach for the calculation of the relationship between the input parameters 
and the model predictions. 

The first step in the process is to create a CAD model of the component with the right 

dimensions. This is usually done by inputting the specified set of dimensions into a 

parametric CAD model. A supermodel is then generated using the appropriate 

supermodelling techniques. A set of material properties and boundary conditions are 

added to the model at this stage. The predictions from the supermodel will correspond 

to the geometrical dimensions specified in the CAD model and the material properties 

and boundary conditions subsequently added to the supermodel. This in effect 
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establishes the correspondence between the model input parameters and the 

predictions. Even though this correspondence is not described in the strictest 

mathematical sense, it is a pragmatic way of calculating the values of the supermodel 

predictions for a given set of input parameters. 

One could argue that different supermodels are used for each set of input parameters. 

Nonetheless, each of those supermodels is created using the same modelling 

techniques and will not differ much from each other. Moreover, as explained before, the 

actual objective of the validation exercise is to validate the supermodelling techniques 

and not the supermodels themselves. 

5.5.2  Monte Carlo Simulation 

Monte Carlo Simulation is probably the most extended method for the calculation of 

uncertainty propagation through models where the relationship between the input 

parameters and the predictions cannot be formulated explicitly. According to this 

method, the probabilistic data of the model responses (e.g. mean, standard deviation, 

distribution type) can be characterised using the predictions from a model evaluated a 

great number of times, each time for a different set of input parameter values selected 

randomly according to their PDFs. 

Figure  5.4 illustrates this method when applied to the characterisation of the uncertainty 

in the predictions from a supermodel. At each iteration the values of the model input 

parameters are selected randomly according to their PDFs. A CAD model of the 

component is first created using randomly selected values of the geometrical 

dimensions. The CAD model is then meshed using supermodelling techniques. The 

values corresponding to the material properties and boundary conditions are applied to 

the supermodel at this stage. The model is then analysed to evaluate the values of the 

predictions corresponding to the input parameters which were selected randomly. 

Finally the uncertainty in the response predictions is characterised statistically. 

One of the main advantages of this method is its accuracy. The predictions from the 

model at each sample are exact. This means that if the number of samples is sufficiently 

high, the probabilistic characterisation of the model responses will be very accurate. In 



Chapter 5                                                                                  Validation of Supermodels 

174 

fact, Monte Carlo Simulations are typically used as the accuracy benchmark for other 

approximate methods used in uncertainty propagation analysis. 
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Figure  5.4. Monte Carlo Simulation. 
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The number of samples usually required by Monte Carlo Simulations can be in the order 

of tens of thousands. This number might increase if an accurate characterisation of the 

tails of the response PDFs is required. This is the biggest downside of this method when 

applied to complex models. For instance, a single analysis of a supermodel for the 

computation of its modal properties takes a considerable amount of time even with the 

aid of High Performance Computing (HPC) Capabilities. The analysis of this model tens 

of thousands of times is simply unrealistic. 

A number of variations of the Monte Carlo Simulation method have been proposed over 

the years to reduce the number of samples required for an accurate estimation of the 

model response PDFs. The most relevant are those from Halton [73], Hammersley [74], 

and Hammersley and Handscomb [75] in the 1960s, and those from Owen [76], Hurtado 

and Barbat [77], Ziha [78] and Saliby [79] in the 1990s. Even though these techniques 

facilitate an important reduction in the number of samples required, this number is still 

very high. 

5.5.3  Sensitivity-based Metamodels 

Sensitivity analysis can be used as an efficient tool to overcome some of the limitations 

associated with the Monte Carlo Simulation. If z represents a supermodel prediction 

(e.g. natural frequency) whose value depends on a set input parameters, p1,p2,p3,…, 

then z(p1,p2,p3,…) can be approximated using the first-order terms of the Taylor series: 
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          (5.4) 

where: 

• p1,p2,p3,… are the uncertain input parameters in the supermodel; 

• zmean is the value of the supermodel prediction when evaluated using the mean 

values of the input parameters p1 mean, p2 mean, p3 mean, ..., and; 

• 
jp

z
∂
∂

 is the first-order derivative of supermodel prediction z with respect to the 

input parameter pj when evaluated at p1 mean, p2 mean, p3 mean, ... 
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Equation (5.4) is in effect a much reduced approximate model of the original 

supermodel’s response z. These models-from-models are usually referred to as 

metamodels. The creation of a metamodel according to equation (5.4) requires only the 

calculation of the mean response zmean and the first-order sensitivity terms 
jp

z
∂
∂

. In 

general, these sensitivities cannot be calculated explicitly and finite difference methods 

such as that in equation (2.19) must be applied. This in turn means that the original 

supermodel needs to be evaluated as many times as the number of input parameters. 

Nevertheless, this is typically a much reduced number of supermodel analyses than 

those required by a standard Monte Carlo Simulation. The process of creating a 

metamodel from a supermodel is graphically illustrated in Figure  5.5. 

 

Supermodel
SUPERMODEL REDUCTION

(e.g. sensitivity-based, “neural nets”, etc.)
Metamodel

(approximate model)

 

Figure  5.5. Creation of metamodels. 

The analysis of model uncertainty propagation is much easier when using a reduced 

metamodel, such as that described in equation (5.4), instead of the original supermodel. 

For instance, the Monte Carlo Simulation described in Figure  5.6 is computationally 

inexpensive even when using millions of iterations to characterise the statistical 

properties of the response. 

Moreover, the linearity of equation (5.4) means that in many cases where the 

uncertainty of the input parameters is described by standard PDF functions, the 

uncertainty of the response can be characterised explicitly without the need of a Monte 

Carlo Simulation. For instance, if all input parameters in equation (5.4) are defined by 

Normal distributions, the response z will also follow a Normal distribution where the 

mean value is zmean and the variance (squared of the standard deviation σ) is given by: 
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Figure  5.6. Monte Carlo Simulation using a metamodel. 

The benefits of the sensitivity-based metamodels are sometimes obscured by their poor 

accuracy. The first-order Taylor approximation in equation (5.4) is only exact for linear 

models. Reasonably good accuracy can still be achieved for moderately non-linear 

models when the input parameters only change over a reduced range. However, for a 

general non-linear model where the parameters might change considerably, the use of a 

linear approximation is usually too coarse. 
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The inclusion of higher order terms to the Taylor series would improve the accuracy of 

sensitivity-based metamodels. Nonetheless, the computational effort required to 

estimate those terms is usually significant. 

5.5.4  Design of Experiments - Response Surface Model  

The use of metamodels can simplify the analysis of model uncertainty propagation. 

Sensitivity-based methods are capable of generating simple metamodels, however, their 

lack of accuracy hinder their application in practice. The use of Design of Experiment 

(DoE) techniques coupled with Response Surface Models (RSM) offer the possibility of 

creating accurate metamodels which can be confidently used for uncertainty 

propagation analysis of general non-linear models where the input parameters might 

vary significantly. 

The illustration of this approach is easier when using a practical example. For instance, 

let us consider that we want to characterise the uncertainty of a model response z which 

depends on two model input parameters, p1 and p2, according to: 

)p,p(zz 21=      (5.6) 

where the values for the parameters p1 and p2 are defined using the general PDFs in 

Figure  5.7. These PDFs are both bounded by upper and lower limits. 
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         (a)                                                                             (b) 

Figure  5.7. PDFs corresponding to (a) parameter p1 and (b) parameter p2. 
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In a general case, the model represented by equation (5.6) will be non-linear and 

implicit. As explained above, the use of Monte Carlo Simulations to characterise the 

uncertainty propagation of these models is usually prohibitive. 

Let us consider now that the model prediction z is evaluated at a number of 

combinations of the parameters p1 and p2 as illustrated in Figure  5.8. Please note that 

every combination (sample) lies within the input parameter bounds (e.g. pLow to pHigh). 

The response z for a combination of parameters p1 and p2 different from those used 

during the sampling can be approximated by interpolating the responses from the 

closest samples. The interpolation functions create a surface contour such as that in 

Figure  5.9. This contour is usually referred to as Response Surface Model (RSM). 

The RSM is a metamodel of the original response function in equation (5.6) where the 

value of the model response for any combination of input parameters can be easily 

calculated using simple interpolation functions. This metamodel can now be used 

instead of the original model to easily calculate the model uncertainty propagation (e.g. 

using a Monte Carlo Simulation). 
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        (a)                                                                           (b) 

Figure  5.8. (a) Parameter sampling and (b) model response. 
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Figure  5.9. Model prediction at each sample. 

The extension of this methodology to account for the existence of more than two 

uncertain model input parameters is straight-forward. However, the RSM then becomes 

a multi-dimensional function which cannot easily be illustrated graphically. 

The number of samples chosen plays a significant role on in the accuracy of the RSM. 

As a general rule, the more samples the better approximations from the metamodel. 

Nonetheless, there is another factor which has a great effect on the metamodel’s 

accuracy, this is, the distribution of the samples. In order to illustrate this point, let us 

consider again the simple model in equation (5.6). Figure  5.10 (a) and (b) show two 

different sampling options for the input parameters. Both options make use of the same 

number of points. The interpolation functions are more likely to give a better estimate of 

the model’s response (for any input parameter combination within the uncertainty range) 

when using the evenly spaced sampling corresponding to Option 2. 
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      (a)                                                                             (b) 

Figure  5.10. Sample distribution. (a) Option 1 and (b) Option 2. 

DoE techniques are typically used to optimise the sampling distribution. The concept of 

DoE was first formulated by Fisher [80] in the 1930s and has been an active area of 

research since then. The Full Factorial technique is one of the earliest and most basic 

DoE methods which is still in use today. According to this technique, the continuous 

uncertainty range for each of the p model input parameters is first reduced to a finite 

number of L equally spaced values. The sampling takes place at all Lp possible 

parameter combinations. Figure  5.11 shows an example of a Full Factorial sampling for 

a model such as that in equation (5.6) with 2 input parameters and 4 point discretisation 

(42 possible combinations). 
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Figure  5.11. Full Factorial sampling. 
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The number of samples used can only be controlled to a certain extent by the number of 

L divisions used to discretise the continuous parameters. Nevertheless, for models with 

a considerable number of input parameters p, even a small number of L divisions will 

lead to a vast number of samples, Lp. In fact, the number can be so big that it may 

become prohibitive to sample the original model at so many points. 

Different authors have proposed variations of the Full Factorial method to reduce the 

number of samples required. Some of the most important contributions are attributed to 

Plackett and Burman [81] in the 1940s and their Orthogonal Arrays method and Ross 

[82] in the 1980s, who used a modified Full Factorial approach. 

The Latin Hypercube method is another popular DoE technique which takes a different 

approach with respect to Full Factorial methods. This methodology was first proposed 

by McKay et al [83] in the late 1970s and more recently refined by Iman et al [84]. The 

basics of this methodology are simple. Again, the continuous uncertainty range for each 

of the p model input parameters is first reduced to a finite number of L equally spaced 

values. The user then specifies the number of samples required, ns. The parameter 

combination for each of the samples is selected randomly. Figure  5.12 shows an 

example of a Latin Hypercube sampling for a model such as that in equation (5.6) with 2 

input parameters, 4 point discretisation and a total of 10 samples. 
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Figure  5.12. Latin Hypercube sampling. 
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The user has now full control over the number of samples used. The random nature of 

this techniques means that a sufficiently high number of samples is usually required in 

order to achieve a good sampling distribution. Otherwise the distribution of the samples 

might not evenly cover the uncertainty range of the input parameters. 

A very interesting modification to the Latin Hypercube method was recently proposed by 

Jin et al [85] and is called Optimal Latin Hypercube Method. In this method, an initial 

sampling is created using the standard Latin Hypercube technique. The samples are 

then rearranged according to an optimisation procedure to achieve a more even 

distribution across the uncertainty range of the input parameters. This allows a reduction 

in the number of samples required by the standard Latin Hypercube method. Figure 

 5.13 shows an example of a Optimal Latin Hypercube sampling for a model such as that 

in equation (5.6) with 2 input parameters, 4 point discretisation and a total of 6 samples. 
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Figure  5.13. Optimal Latin Hypercube sampling. 

There are no general rules for an optimum selection of the number of sample points 

required to produce an accurate RSM. This selection depends on the nature of the 

model response and the DoE technique used for the sampling. For instance, highly non-

linear model responses will require many more samples than those required for linear or 

quasi-linear models. Moreover, a larger number of samples is required if a standard 

Latin Hypercube sampling method is used instead of its optimised version. 

There is however an absolute minimum of samples required to create an RSM and this 

number depends on the type of interpolation functions used. For instance, if a 
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polynomial interpolation function is used to approximate the model response, at least as 

many samples as polynomial coefficients are required. The number of coefficients for a 

linear polynomial function is p+1 where p is the number of input parameters. If the 

function is quadratic the number of coefficients becomes (p+1)(p+2)/2. This number 

increases to (p+1)(p+2)/2+p for cubic functions and to (p+1)(p+2)/2+2p for fourth-order 

polynomials. 

It is common practice to use more samples than the absolute minimum required, in 

which case, the polynomial coefficients will be calculated to provide the best fit. Under 

these circumstances it is possible that the interpolation function might not exactly match 

the original response at the sample points. 

The use of polynomial functions for the creation of RSMs must be carried out with great 

care. For instance, the use of a linear interpolation will be completely inappropriate to 

represent highly non-linear responses. Moreover, high-order polynomials can introduce 

local instabilities that can compromise the accuracy of the approximation. 

Radial Basis Functions (RBF), also referred to as “neural nets”, provide a reliable 

alternative to polynomial functions for the creation of RSMs. These functions were 

initially introduced by Weissinger [86] in the 1940s and have been subsequently refined 

by other authors such as Hardy [87] in the 1970s and Broomhead and Lowe [88] in the 

1980s. In very simple terms, RBFs are spline functions that connect the response 

values from all samples. The use of splines removes the instabilities associated with 

high-order polynomial functions. These functions are particularly well suited for highly 

non-linear models. 

The mathematical formulation of these functions is complex and will not be reproduced 

here. The interested reader is directed to the authors referred above. It is however 

important to mention here that the minimum number of samples required to fully 

characterise a RSM using RBFs is 2p+1. 

Unlike polynomial functions, RBFs always match the original response values at the 

sample points even when the number of samples is higher than the minimum required. 
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5.5.5  Metamodel Error Uncertainty 

A metamodel is an approximation of the original model response which greatly simplifies 

the calculation of uncertainty propagation. The downside is that the response values 

from the metamodel are approximate and therefore carry some level of error. As 

discussed above, the more samples used, the better the approximation. Nonetheless for 

highly complex models the approximation errors cannot be fully eliminated. 

The approximation error will be in general different for each parameter combination. 

Moreover, it is almost impossible to anticipate what the error will be for a given 

combination. For that reason the approximation error can be considered an uncertainty 

in itself. 

The uncertainty in the approximation error can easily be characterised by comparing the 

response from both the original model and the metamodel at a sufficient number of 

samples other than those used to create the metamodel. Those samples, usually 

referred to as “check samples”, can be selected randomly or using an appropriate DoE 

technique. 

When calculating the uncertainty propagation using metamodels, the approximation 

error uncertainty must be added to the uncertainty in the predictions which result from 

the uncertainty in the model input parameters. This process is illustrated in Figure  5.14 

for the case where the uncertainty propagation is calculated using a Monte Carlo 

Simulation. On each iteration, an error selected randomly according to the 

approximation error PDF is added to the prediction from the metamodel. 

The clear benefits of using a metamodel for the calculation of the uncertainty 

propagation usually outweighs the extra uncertainty introduced. Moreover a careful 

sampling when creating the metamodel can greatly reduce this uncertainty. 
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Figure  5.14. Metamodel uncertainty. 

5.6  Measurement Uncertainty 

The other major source of uncertainty present during the validation process is that 

associated with the test measurements. In order to illustrate the main sources of 

measurement uncertainty we will follow the sequence of events that usually take place 

during a typical Modal Test. 

Once the manufactured component has been delivered to the laboratory and set-up for 

testing, the first step is to mark the excitation and response locations on the component. 

Those locations are usually specified beforehand using Test Planning methods [31]. The 
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test practitioner will always try to closely match those locations on the structure. This is 

particularly important to ensure a consistent correlation between the measurements and 

the predictions. For certain components, such as those containing aerofoil shapes, the 

accurate positioning of measurement points can be very challenging. Unless accurate 

measurement devices are available in the laboratory, the uncertainty over the 

positioning of the excitation/measurement points can be significant. This will have a 

negative effect when correlating the measured and the predicted modeshapes. 

Moreover, the measurement direction of transducers is also important. For instance, it is 

a common requirement to measure the vibration response only in a direction normal to 

the surface. If we are using a hammer to excite the structure it might be difficult to 

accurately hit the component perpendicular to its surface, hence increasing the 

measurement uncertainty. 

Transducers are themselves subject to manufacturing tolerances. The transducer 

calibration is usually only known to lie within a tolerance. This tolerance is usually 

supplied by either the manufacturer or a certified calibration laboratory. 

The transfer of the signal from the transducer to the data acquisition box makes use of 

electrical wiring. Electrical noise from adjacent equipment usually introduces undesired 

effects on the signal and distorts the actual measurements. Also, mechanical vibration 

from adjacent machinery might be transmitted to the component being tested, thus 

corrupting the quality of the measured response. A good practitioner will always try to 

reduce the noise in the signal by insulating the electrical equipment and by isolating as 

much as possible the test from external mechanical vibration. Moreover, measurements 

are usually repeated a number of times to average out the influence of noise. These 

procedures will reduce the uncertainty in the measurements due to noise, nonetheless 

the noise will never be totally removed. 

These days, the analogue signal from a transducer is usually digitised for further 

processing. This is, in effect, a conversion from a continuous signal to one defined by a 

discrete number of points. Most of the time, the digitised data will also be transformed 

from the time domain to the frequency domain using Fourier analysis. All these 

conversions will inevitably introduce errors in the final results. 
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The end result from the signal conditioning process is a set of Frequency Response 

Functions (FRF). The extraction of natural frequencies and modeshapes from these 

data requires a further step usually referred to as Modal Analysis. In very simple terms, 

Modal Analysis methods try to find a mathematical model (i.e. Modal Model) that best 

fits the measured data. The modal properties of the Modal Model are assumed to be 

those of the component tested. 

The user must make a few decisions over the type of mathematical model that will be 

used to fit the test data. For instance, damping is typically assumed to be either 

hysteretic or viscous. In reality it might be neither. For the same set of data, different 

types of mathematical models will provide different answers. Furthermore, for a given 

mathematical model there is a great variety of techniques that can be used to fit the test 

data. Again, different fitting algorithms will in general provide slightly different answers. 

The uncertainty associated with Modal Analysis is particularly high when the modes of 

the tested structure have very close natural frequencies. In these cases, the fitting errors 

are usually significant leading to extracted modal properties that barely resemble those 

of the test component. In fact, it is not uncommon for the Modal Analysis to wrongly 

identify some of the modes or introduce extra “mathematical modes” which have no 

physical meaning. 

Last but not least, the environmental conditions, particularly temperature, can have an 

important effect on the modal properties. Most modern test facilities can provide 

environmental control to a certain extent. Nonetheless, it is not uncommon to see shifts 

in the measured natural frequencies throughout the test due to temperature changes. 

Modern Modal Analysis methods are very sensitive to frequency shifts in the 

measurements and even slight deviations can seriously compromise the results. 

5.7  Characterisation of Measurement Uncertainty 

The measurement uncertainty is the resultant of the propagation of all the uncertainties 

in the measurement chain. This uncertainty must be characterised statistically to be 

included in the model validation process. 

One could argue that the same principle used for the calculation of the model 

uncertainty propagation could be applied here to characterise the measurement 
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uncertainty. According to this approach, all the uncertainties in the measurement chain 

would be characterised individually and then propagated through a mathematical model 

that reflects the interaction between the different factors. This can be very difficult in 

practice though. First of all, it can be very difficult to individually characterise the 

uncertainty of some factors in the measurement chain. But most importantly, the 

interaction between the different factors (e.g. transducer calibration, curve-fitting errors) 

is highly complex and difficult to determine mathematically. 

An alternative approach is to characterise the measurement uncertainty with the use of 

extensive test programmes. This approach is conceptually simple: for a given 

manufactured component under laboratory conditions (e.g. free-free) the same Modal 

Test is repeated by different practitioners, each of them using different transducers, 

different data acquisition hardware, different analogue-to-digital converters, different 

Modal Analysis software, different curve fitting methods, etc. 

If the component and the boundary conditions remain the same during all tests, 

deviations in the measurements can only be attributed to the test uncertainty. If the 

number of tests is sufficiently high, this uncertainty can be characterised statistically. 

The experimental approach, even though possible in theory, is not viable in an industrial 

environment. A proper statistical characterisation of the measurement uncertainty would 

require so many test variations that the cost would rapidly escalate to unacceptable 

levels. 

In practice, the characterisation of the measurement uncertainty will usually take a much 

more pragmatic approach. In fact, it is common to estimate this uncertainty based on 

“engineering judgement”. For instance, the uncertainty associated with the 

measurement of natural frequencies is known to be low. The measurement errors are 

not likely to be outside a ±1% band when using modern equipment. A PDF such as that 

in Figure  5.15 is probably not a bad estimation of the uncertainty in the natural 

frequency measurement error. This PDF follows a Normal distribution with the mean at 

0% error, and standard deviation of 0.1% and upper and lower limits at ±1%. 
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Figure  5.15. Typical natural frequency measurement error uncertainty. 

5.8  Probabilistic Model Validation 

Let us assume that the PDF in Figure  5.16 describes the uncertainty associated with the 

prediction of the first natural frequency of a component when using a supermodel. Let 

us also assume that the vertical red line in Figure  5.16 corresponds to a single test 

measurement. 

As described in the previous section, the measurement is also subject to uncertainty. 

The measurement uncertainty is plotted in Figure  5.17 alongside the model uncertainty. 
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Figure  5.16. Typical prediction uncertainty and test result. 
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Figure  5.17. Typical prediction and measurement uncertainty. 

An overlap of the two PDFs indicates that the model prediction is consistent with the test 

result. At first one would be tempted to use the area where the two PDFs overlap as a 

numerical estimation of the confidence in the model. Nevertheless, this approach is 

misleading. For instance, let us consider the two cases in Figure  5.18. In Case I the 

measurement exactly matches the mean of the predictions while in Case II these two 

values differ. Moreover, the low uncertainty associated with the measurement in Case I 

reinforces the confidence in the test data. Under these circumstances the test result in 

Case I should provide a higher confidence in the model than the measurement in Case 

II. Nonetheless, the small uncertainty in the measurement in Case I reduces the total 

area where the two PDFs overlap. In fact, this area is bigger in Case II where the test 

measurement does not match the mean value of the predictions and the uncertainty in 

the measurements is higher. 
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Figure  5.18. Overlap of prediction and measurement PDFs. (a) Case I and (b) Case II. 
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In recent years, Hills and Trucano [89] [90] [91] presented an elegant solution to accept 

or reject a model as valid in view of the actual measurements. The first step in their 

approach is to incorporate the measurement uncertainty to the prediction uncertainty as 

illustrated in Figure  5.19. Conceptually, the combined uncertainty represents the 

uncertainty associated with the predictions from a model of the whole test. This model 

includes not only the finite element model but also the model of the measurement chain. 
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Figure  5.19. Test uncertainty (prediction + measurement). 

The characterisation of the uncertainty associated with a model of the whole test is not 

difficult in practice. For instance, the process in Figure  5.20 illustrates how to calculate 

this uncertainty using a Monte Carlo Simulation. A random measurement error is 

introduced to the predictions from the metamodel to simulate what happens during a 

real test. The statistical characterisation of the “measured” response uncertainty 

contains the combined effect of the uncertainties in the model input parameters and 

measurement errors expected during the test. 

According to Hills and Trucano [89] the model of the whole test is considered valid if all 

the measurements fall within certain bounds of the uncertainty in the predictions. For 

instance, let us consider that the PDF in Figure  5.21 corresponds to the uncertainty 

associated with one of the predicted natural frequencies from the model of the test. The 

left and the right dashed lines determine the range over which 95% of the predictions lie. 

If an actual measurement falls within those bounds it will be consistent with 95% of the 

predictions. This gives us a good confidence in the model. On the contrary, if the 

measurement falls outside the predicted bounds, there is only a 5% chance that the 
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measurement is consistent with the model predictions. This certainly reduces our 

confidence in the model. According to Hills and Trucano, all measurements must fall 

within a specified confidence limit (95% in this case) to consider the model valid. 

 

Model Input 
Parameter 

PDFs

METAMODEL 
EVALUATION

Model Input 
Parameters

MODEL INPUT 
PARAMETER 
SELECTION

MONTE CARLO
TEST MODEL 
RESPONSE 

CHARACTERISATION

Metamodel 
Prediction

Metamodel

METAMODEL 
UNCERTAINTY 

ADDITION

Approx. Model 
Prediction

Approximation 
Error PDF

MEASUREMENT 
ERROR ADDITION

Test Model 
Prediction

Measurement 
Error PDF

M
O

D
E

L U
N

C
E

R
T

A
IN

T
Y

M
E

A
S

U
R

E
M

E
N

T
 

U
N

C
E

R
A

T
IN

T
Y

 

Figure  5.20. Test uncertainty characterisation. 
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Figure  5.21. Confidence limit. 

One could rightly argue that according to this method, there is a 5% chance of rejecting 

a valid model. This is in fact true and it is usually referred to as Type I error [68] (i.e. 

rejection of a valid model). 

Why do not we eliminate the Type I error by increasing the confidence limit to 100%? In 

this case, if any measurement falls outside the predicted bounds we can categorically 

consider the model invalid. There is a problem though. A higher confidence limit 

increases the range over which the measurements are considered to be consistent with 

the test model predictions. This in turn increases the chances of accepting an invalid 

model. This is usually referred to as Type II error [68] (i.e. acceptance of an invalid 

model). 

The chances of committing a Type I error (i.e. rejection of a valid model) are fixed by the 

value of the confidence limit. For instance, if the confidence limit is 95% the chances of 

a Type I error are invariably 5%. On the contrary, for any given confidence limit, the 

chances of a Type II error (i.e. acceptance of an invalid model) can be minimised. For 

instance, the more test results the less chances of all measurements falling within the 

confidence bounds if the model is invalid. A reduction in the uncertainty associated with 
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some of the model input parameters (e.g. dimensions of the test components) will also 

result in a reduction of the uncertainty associated with the test model predictions. This 

will minimise the chances of the measurements falling within the predicted test 

uncertainty unless the model is valid. 

The selection of the confidence limit must take these factors into account. For instance, 

when there are many test measurement available and the uncertainty associated with 

the test model predictions is low it is justifiable to use a high confidence limit to minimise 

the chances of Type I error (i.e. rejection of a valid model). Nonetheless, when there is 

only a single measurement or the uncertainty in the test model predictions is significant, 

a high confidence limit will increase the chances of a Type II error (i.e. acceptance of an 

invalid model), therefore a lower limit should be selected. 

In practice, it is usually recommended that a limit of 99% is used when there are a 

reasonable number of test measurements and the uncertainty in the test model 

predictions is low. When the number of tests is reduced (e.g. only one) and/or the 

uncertainty is significant, a 95% confidence limit is suggested. These numbers are not 

selected randomly. For a Normal distribution, a confidence limit of 95% covers all points 

within a distance with respect to the mean value of approximately ±2 times the standard 

deviation. In the case of 99%, the distance increases to ±3 times the standard deviation. 

5.8.1  Multiple Response Validation 

In general, the validation of a model requires the accurate prediction of more than one 

response. For instance, it is common when a model is only considered to be valid if it is 

capable of accurately predicting all natural frequencies within a specified frequency 

range. 

The simplest way of approaching this problem is to consider the validation of each 

response independently. For instance, Figure  5.22 shows the uncertainty associated 

with the predictions of four responses (e.g. natural frequencies). According to this 

approach, the model is considered valid if all the measured responses fall within the 

confidence limit bounds. 

In general, the responses from a model are not independent from each other though. 

For instance, an increase of the Young’s modulus in the model will consistently affect to 
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all the predicted natural frequencies. The same is applicable to the measured 

responses. If two manufactured components have very similar dimensions but the 

Young’s modulus of one of them is slightly higher, all the measured natural frequencies 

will in general be consistently higher for this component. As a result, it makes good 

sense to validate all the predicted responses at once. 
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Figure  5.22. Multiple responses. Individual validation. 

Figure  5.23 shows the uncertainty associated with the prediction of two responses (e.g. 

natural frequencies) when considered together. The measurement point represents the 

measured responses for a given test. The characterisation of the bi-dimensional 

uncertainty follows a similar principle to that used when considering a single response, 

see Figure  5.20. The only difference is that now the two responses from the test model 
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are evaluated at the same time during each Monte Carlo iteration and instead of 

creating a PDF for each response individually, the combined uncertainty is computed. 

The concentric lines represent iso-lines of equal probability density. 

 

z1

z2
Test Uncertainty PDF

(Prediction + Measurement)

Test 
Measurement

 

Figure  5.23. Combined uncertainty of multiple responses. 

The model validation approach introduced for a single response can be easily extended 

to a multiple response scenario. Considering the two-response example above, the 

dashed line in Figure  5.24 defines the boundary where 95% (confidence limit) of the test 

measurements should fall to consider the model valid. 

The extension to more than two responses is straight-forward, however, the combined 

variability is a multi-dimensional PDF which is difficult to plot graphically. 

It can sometimes be difficult to calculate whether the responses measured during a test 

fall within the confidence limit bounds of a multi-dimensional PDF. Hills and Trucano [89] 

proposed a mathematical solution to this problem which is applicable to the case where 

the individual PDFs of all the model responses follow a Normal distribution. 
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Figure  5.24. Combined uncertainty of multiple responses showing confidence limit. 

According to Hills and Trucano, if r2 is defined according to: 
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          (5.7) 

where zX q represents the test’s q-th measured response, zPred q mean is the corresponding 

predicted mean value and the matrix V contains the predicted response variances: 
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          (5.8) 

then the test measurement containing the response vector (zX 1, zX 2, …, zX q) is within 

the bounds defined by a γ % confidence limit if: 
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( )qlr 22
γ≤      (5.9) 

where ( )ql2γ  is the value for which the cumulative distribution function of the chi-square 

distribution function ( )q2χ  is equal to γ . 

Quite recently, Chen et al [92] extended the method by Hills and Trucano to consider 

the case where the response PDFs might take a general form. 

5.9  Reduction of the Test Model Prediction 

Uncertainty 

According to the probabilistic model validation method described above, a model is 

considered to be valid if the measurements fall within certain bounds of the uncertainty 

associated with the predictions from a model of the test. When the uncertainty is high, a 

measurement might deviate significantly from the predicted mean value but still fall 

within the acceptance bounds. Under these circumstances one starts to question 

whether the model is in fact valid or whether the range over which the measurements 

are allowed to vary is too forgiving. 

In order to reduce the risk of accepting an invalid model as valid (Type II error) it is 

important to reduce the uncertainty associated with the test model predictions as much 

as possible. This will tighten the margins over which the measurements are considered 

to be consistent with the model predictions, hence reducing the chances of a 

measurement falling within the acceptance bounds when the model is invalid. 

There are many ways in which the uncertainty associated with the test model 

predictions can be reduced. For instance, modern techniques such as Computed 

Tomography (CT) scanning allow the accurate measurement of the geometrical 

dimensions of the component being tested. This can substantially reduce the uncertainty 

associated with the definition of the geometrical dimensions in the model and 

subsequently reduce the uncertainty in the test model predictions. 

Nevertheless, the main contributor to the uncertainty in the test model predictions is 

usually the uncertainty associated with the modelling of the boundary conditions. There 

is an exception though. The uncertainty associated with the modelling of a free-free 
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configuration is almost none. In fact this configuration represents a total lack of 

boundary conditions. For this reason the free-free test configuration should always be 

the preferred option when validating a supermodel. 

One could argue that a component supermodel is ultimately used to provide accurate 

predictions of the component’s behaviour when it is part of a bigger assembly (using 

hybrid assembly models). According to this argument, it is those predictions that should 

be validated and not the modal properties of the component in free-free configuration. 

Nevertheless, it is important to remind ourselves that the real objective when validating 

a supermodel is to validate the supermodelling techniques and not the model itself. The 

ultimate use of the component represented by the supermodel is irrelevant. 

Also, the natural frequencies should always be used as the preferred responses when 

validating a model. The measurement uncertainty associated with them is much 

reduced when compared to the measurement of modeshapes. Again, this minimises the 

chances of a Type II error (i.e. acceptance of an invalid model). 

5.10  Validation Frequency Range 

We have established that the free-free configuration is the preferred option to validate a 

supermodel. Also, the validation of the natural frequency predictions should be given the 

highest priority due to the small measurement uncertainty they have. Nonetheless we 

have not established yet the frequency range over which the predictions and the 

measurements must be consistent with each other to consider the supermodel 

validated. 

The predictions from any model will inevitably deteriorate as the frequency increases. 

This is mainly due to the non-continuous nature of Finite Element Models. As the natural 

frequency increases, the modeshapes become more complex and the model’s 

interpolation functions find it increasingly difficult to accurately predict the deformation 

patterns. 

The more refined the model the higher the frequency at which the predictions remain 

accurate. In the case of a supermodel, its refinement should guarantee accurate 

predictions even for high-order modes. 
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Ideally one would like to validate a supermodel up to high frequencies. Nonetheless 

practical limitations present during testing will inevitably restrict the maximum frequency 

of the measurements. For instance, when a hammer is used to excite a component 

during a Modal Test, the energy input will always decay with frequency. Figure  5.25 

shows a typical hammer input force auto-spectrum. The input force is reasonably 

constant up to a certain frequency and then starts to drop quickly. 
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Figure  5.25. Typical hammer input force auto-spectrum. 

The lower the input force, the lower the response. At high frequencies, the low signal to 

noise ratio for both the force and response measurements will result in unacceptably 

poor measurements. It is common practice to only accept measurements up to a 

frequency where the input force has decayed 20 dB with respect to the level recorded at 

low frequencies. 

There are ways of increasing the measurement frequency range. For instance, when 

using a hammer as the excitation method, the lighter the hammer the higher the 

frequency range. Also, hard tips (e.g. steel) will introduce forces in the structure at 

higher frequencies when compared to soft tips (e.g. rubber). 

The best available measurement equipment should be used in order to validate the 

supermodel to the highest possible frequency with confidence. 

5.11  Case Study - Probabilistic Model Validation 

We will now illustrate the probabilistic model validation methods presented in this 

chapter using an industrial Case Study. The COC supermodel in Figure  5.26 (a), used in 



Chapter 5                                                                                  Validation of Supermodels 

202 

Chapters 2 and 3, will now be validated using physical test data as the reference. Due to 

time and cost limitations only a single manufactured component was made available for 

testing, see Figure  5.26 (b). 

 

  (a)                                                                               (b) 

Figure  5.26. Case Study COC. (a) Supermodel and (b) manufactured component. 

5.11.1  Modal Test 

A detailed description of the Modal Test and Modal Analysis carried out can be found in 

reference [67]. We will only highlight here the most important characteristics of the test. 

A free-free configuration was the preferred option to reduce the uncertainty in the 

predictions. This configuration was easily achieved by suspending the component using 

flexible bungees, see Figure  5.27. 

The component was excited at 60 different locations (normal to the surface) using a 

calibrated hammer. For each excitation, the response was measured (normal to the 

surface) at six different positions using uniaxial accelerometers. This Modal Test 

technique is usually referred to as Single Input Multiple Output (SIMO) and is particularly 

useful to average out noise and accurately measure ‘close’ modes. Figure  5.28 shows 

the measurement wireframe used. 
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Figure  5.27. Case Study COC. Free-free test configuration. 

The smallest hammer available in the test facility was used to maximise the frequency 

range of the measurements∗. After the Modal Analysis, the number of modes measured 

in the measurement frequency range was 42. Figure  5.29 shows the natural frequency 

distribution of the measured modes. 

 

Figure  5.28. Case Study COC. Measurement wireframe. 

                                                     

∗ The actual measurement frequency range cannot be shared for commercial reasons. 
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Figure  5.29. Case Study COC. Natural frequency distribution of the measured modes. 

Close examination of Figure  5.29 reveals that the low frequency modes come in pairs. 

At higher frequencies, this pattern is broken and the modes do not appear in pairs 

anymore. This is typical behaviour of quasi axis-symmetric components like the COC. In 

these components, the most basic low-frequency modes appear in orthogonal pairs with 

the two modes at very close frequencies. Figure  5.30 shows the modeshapes 

corresponding to the first two modes. As the frequency increases, the modes become 

more localised and are increasingly influenced by the non axis-symmetric features in the 

component (e.g. holes, bosses, etc.). Figure  5.31 shows the modeshapes 

corresponding to the modes 41 and 42. 

It is also important to point out that the modeshapes associated with the high frequency 

modes are very intricate, see Figure  5.31. Only highly refined models (e.g. supermodel) 

have the potential to accurately predict these modes. This gives us confidence that the 

frequency range covered by the Modal Test is sufficient to validate the supermodel. 
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      (a)                                                                    (b) 

Figure  5.30. Case Study COC measured modeshapes. (a) Mode 1 and (b) mode 2. 

 

 

      (a)                                                                    (b) 

Figure  5.31. Case Study COC measured modeshapes. (a) Mode 41 and (b) mode 42. 

5.11.2  Nominal Model Correlation 

Before embarking in the probabilistic validation of the COC supermodel it is interesting 

to analyse the correlation between the predictions from a nominal model and the Modal 

test results. This will give us a good first impression of the accuracy of the supermodel. 

Figure  5.32 illustrates the natural frequencies predicted from the nominal model. There 

are a total of 42 modes predicted in the measurement frequency range.  
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Figure  5.32. Case Study COC. Natural frequency distribution predicted by a nominal model. 

This is the same number of modes measured during the test. Moreover, the graph in 

Figure  5.32 is very similar to that in Figure  5.29 corresponding to the measured modes. 

This would be considered an encouraging indication that the supermodel is accurate. 

Nevertheless, when performing a MAC correlation between the predicted and the 

measured modeshapes, 7 of the predicted modes could not be matched with any of the 

measured modes (MAC value below a threshold of 30%). Even though there were 

modes measured at frequencies close to prediction, the predicted and measured 

modeshapes were different. The red spots in Figure  5.32 identify these uncorrelated 

modes.  

The unmatched modes appear in areas of high modal density. At first one could attribute 

the lack of correlation to the fact that Modal Analysis can sometimes struggle to provide 

an accurate estimation of the measured modeshapes when the modes appear in areas 

of high modal density. Even though this can certainly be a contributing factor to the lack 

of correlation, we will demonstrate later that it is not in fact the only reason in this case. 
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Figure  5.33 shows the natural frequency correlation between the nominal predictions 

and the measurements. Obviously, no correlation is possible for the unmatched modes. 
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Figure  5.33. Case Study COC. Nominal model, natural frequency correlation. 

Again, the remarkable level of correlation (within ±2%) gives us a good first impression 

of the accuracy of the supermodel. 

5.11.3  Model Uncertainty 

One would always like to create a supermodel that represents faithfully the actual 

dimensions, material properties and boundary conditions of the component being tested. 

These are the so-called model input parameters. A reduction in the uncertainty of these 

parameters would reduce the uncertainty associated with the predictions. The use of a 

free-free configuration is a step in the right direction and eliminates the uncertainty due 

to the boundary conditions. Nonetheless, the actual dimensions and material properties 

of the test components are only known to vary within certain, well defined, limits (i.e. 

manufacturing tolerances). 

The calculation of the effects that the uncertainty in the input parameters might have on 

the supermodel predictions (i.e. uncertainty propagation) requires that the supermodel 

can be modified to reflect different dimensions and material properties. As described in 
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Section 5.5.1, the creation of a supermodel to reflect a set of model input parameter 

values is done indirectly. The specified geometrical dimensions are first input into a 

parametric CAD model to create a geometry model with the right dimensions. This CAD 

model is then meshed using the appropriate supermodelling techniques. The values for 

the material properties are added at this stage and the model is ready to be analysed. 

In the case of the COC, the parametric CAD model contains 177 of the most important 

geometrical dimensions that describe this casing. The dimensions were selected based 

on the manufacturing drawings for this component. The manufacturing drawings also 

specify the tolerances over which the dimensions will lie. Those are the bounds of the 

PDFs that characterise the dimensional uncertainties. It is important to highlight that the 

tolerances in the geometrical dimensions are very tight, in fact, the maximum deviation 

from nominal allowed is only 0.3 mm and 1° for the longitudinal and angular dimens ions 

respectively. This means that the bounds in the PDFs are very close indeed. 

The actual shapes of the PDFs are not known precisely. Normal distributions are usually 

considered to provide a good estimation though. The nominal dimensions are selected 

as the mean values of the distributions. Standard deviations of 0.1 mm and 0.1° were 

assumed to be appropriate for the longitudinal and angular dimensions respectively. 

These engineering estimates are believed to be fairly representative of the accuracy of 

the processes used during the manufacturing of this casing. 

The material properties that can vary in the COC supermodel are the Young’s modulus, 

Poisson’s ratio and mass density. The limits for their values are specified as a ±2% 

deviation from the nominal value for Young’s modulus and Poisson’s ratio and ±1% for 

density. Again, these tolerances are very tight. The PDFs follow Normal distributions 

with the mean value corresponding to the material’s nominal properties. The standard 

deviations are 1% of the nominal values. This probabilistic data is usually provided by 

the Materials Laboratory or Vendor. 

In total there are 180 uncertain input parameters in the supermodel, 177 geometrical 

dimensions and 3 material properties. 



Chapter 5                                                                                  Validation of Supermodels 

209 

5.11.4  Response Metamodels 

In general, the calculation of the uncertainty in the predictions from the model of the 

whole test requires a Monte Carlo Simulation. Unless we are prepared to analyse 

thousands of supermodels it is best to create a much reduced metamodel for each of 

the supermodel responses that we plan to validate (i.e. all natural frequencies in the 

measurement frequency range). 

The creation of a metamodel for a given response was described in Section 5.5.4. In 

very simple terms, the response of interest (e.g. first natural frequency) is predicted for a 

carefully selected number of combinations of the supermodel’s input parameters. The 

response for any parameter combination is then interpolated using a Response Surface 

Model (RSM). 

The relationship between most of the input parameters in the supermodel and the 

predicted natural frequencies is highly non-linear. Radial Basis Functions (RBF) are the 

best suited for the creation of non-linear RSMs (i.e. metamodels). The minimum number 

of input parameter combinations required to create a RSM using these interpolation 

functions is 2p+1, where p is the total number of input parameters (i.e. 180 for the COC 

supermodel). 

The nominal COC supermodel predicts 42 modes in the measurement frequency range. 

The creation of a metamodel corresponding to the natural frequency of a given mode 

requires a minimum of 361 (i.e. 2x180+1) supermodel predictions. The same 

combinations of model input parameters can be used for the creation of all 42 RSMs. 

This means that a minimum of 361 supermodels need to be analysed to provide 

accurate RSMs for all of the natural frequencies in the measurement frequency range. 

In order to improve the accuracy of the metamodels it was decided that an extra 100 

combinations would be added to the minimum required, bringing the total number of 

parameter input combinations to 461. 

The 461 input parameter combinations were optimised using the Optimal Latin 

Hypercube technique [85]. This technique should ensure an even distribution of the 

combinations across the uncertainty range of the input parameters. 
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It is important to keep in mind that the order in which the modes appear might be altered 

when the model input parameters change. This is very common when the modes 

appear at very close frequencies as it is the case for the COC supermodel. In order to 

be consistent, all the natural frequency predictions used to create a given frequency 

response metamodel must correspond to the same mode. 

In the case of the COC, the order in which the modes appear for a nominal model was 

considered to be the datum. For each of the 461 supermodels created, a MAC 

correlation was performed between the predicted modeshapes and those corresponding 

to a nominal model. This allowed a match to be made between the modes 

corresponding to a given parameter combination and those corresponding to the 

nominal model. 

All 461 COC supermodels predicted 42 modes in the measurement frequency range, 

the same number as in the nominal model. This was not unexpected as the input 

parameters are only allowed to change over a very small range. Nonetheless, 

something remarkable was observed for some input parameter combinations. Some of 

the 42 nominal modeshapes could not be matched to any of the modes predicted by 

some of the supermodels (MAC value below a threshold of 30%). The blue dots in 

Figure  5.34 highlight the 13 nominal modes which, at one point or another, could not be 

matched to any of predicted modes. 

Why would some of those 13 modes disappear for some parameter combinations? The 

answer is simple. All of the 13 “unstable modes” are in areas of high modal density. 

When two or more modes have very close frequencies the small frequency shifts 

caused by the parameter changes can result in very big changes to the modeshapes. 

The nominal modes disappear in favour of new ones. Remember that the total number 

of modes remained the same (i.e. 42) for all parameter combinations. 
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Figure  5.34. Case Study COC. Unstable modes. 

The red dots in Figure  5.34 highlight the 7 modes predicted by the nominal supermodel 

that could not be matched to any of the measured modes. It can be seen that these 

modes coincide with some of the “unstable” modes. Initially we discussed the possibility 

that the reason behind the mismatch could be found in the difficulty of Modal Analysis to 

characterise close modes. Nonetheless, in view of the results above it is far more likely 

that the 7 modes could not be matched because the actual combination of the 

dimensions and material properties of the manufactured component tested results in a 

set of modes of which 7 have a different shape when compared to the nominal 

component. Unfortunately this can only be demonstrated if a supermodel was created 

using the exact dimensions and material properties of the component used during the 

test. 

The “unstable modes” cannot be used during the validation of the supermodel. These 

modes disappear for certain parameter combinations and new ones appear instead. As 

a result, the natural frequency of an “unstable mode” cannot be evaluated consistently 

across the whole uncertainty range of the input parameters. 
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A total of 29 (42-13) metamodels corresponding to the natural frequency predictions of 

the “stable modes” were created. The supermodel will be considered valid if the natural 

frequency measurements for the 29 “stable modes” are consistent with the uncertainty 

associated with the prediction of these modes. 

5.11.5  Metamodel Error Uncertainty 

The probabilistic characterisation of the approximation error corresponding to a 

metamodel requires the comparison between the supermodel and the metamodel 

predictions for a number of input parameter combinations. 

Ideally one would like to use many “check samples”, however, each of them requires the 

generation and analysis of a supermodel. In the case of the COC, 100 supermodels 

were used to estimate the approximation errors of the 29 metamodels. The 100 input 

parameter combinations were selected using the Optimal Latin Hypercube technique 

[85]. 

The reduced number of samples means that it is difficult to characterise the shape of the 

PDF corresponding to the error introduced by each metamodel. This error will be 

assumed to follow a normal distribution with a mean of 0% error. The values for the 

standard deviations are considered to be the same as those calculated for the 100 

“check samples”, see Table  5.1. It is clear from these figures that the approximation 

errors are extremely low (within 0.07%). This is a good indication that the metamodels 

represent accurate approximations of the supermodel predictions. 

5.11.6  Measurement Uncertainty 

There are too many factors that can influence the measurement errors, these rank from 

electrical noise to transducer calibration. As explained in Section 5.7, the accurate 

characterisation of the measurement uncertainty is very difficult in practice. 

State-of-the-art equipment was used during the Modal Test of the COC component, and 

the latest Modal Analysis packages were used to post-process the measured data [67]. 

Subsequently, one would expect to see only small errors associated with the 

measurement of the natural frequencies. 
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The measurement error uncertainty was assumed to be the same for all modes. A 

Normal distribution with the mean at 0% error, and standard deviation of 0.1% and 

upper and lower limits at ±1% was considered to provide a realistic estimation of the 

uncertainty associated with the measurement error. 

Mode 

No. 

Metamodel 

Uncert. 

σ (%error) 

Mode 

No. 

Metamodel 

Uncert. 

σ (%error) 

Mode 

No. 

Metamodel 

Uncert. 

σ (%error) 

1 0.053 11 0.050 22 0.053 

2 0.052 12 0.052 24 0.062 

3 0.058 13 0.055 29 0.050 

4 0.058 14 0.054 30 0.066 

5 0.051 15 0.047 31 0.069 

6 0.051 16 0.056 32 0.070 

7 0.055 17 0.054 35 0.057 

8 0.051 18 0.057 37 0.058 

9 0.060 19 0.051 38 0.052 

10 0.059 20 0.065   

Table  5.1. Case Study COC. Metamodel error uncertainty. 

5.11.7  Individual Response Validation 

The calculation of the uncertainty associated with the 29 natural frequency predictions 

used for validation followed the process described in Figure  5.20. Each of the responses 

was considered individually. A total of 5000 Monte Carlo iterations were carried out to 

characterise the PDFs. These PDFs are shown in Figure  5.35. The natural frequency 
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deviations with respect to the nominal model predictions are plotted instead of the actual 

natural frequencies in order to more easily assess the level of variation that could be 

expected during the test. 

All PDFs have well defined upper and lower bounds. It is important to remember that all 

the geometrical dimensions, material properties and measurement errors considered in 

the model of the test have upper and lower limits. That is why the predictions only 

change over a limited range. 

The vertical dotted lines represent the upper and lower limits corresponding to a 

confidence limit of 95%. The vertical red line in each PDF corresponds to the actual 

measurement recorded during the Modal Test. 

All measured natural frequencies sit comfortably within the confidence limits. If we were 

to validate the supermodel by validating its predictions individually then we could 

certainly say that the model is valid. 

5.11.8  Multiple Response Validation 

The shapes of all PDFs in Figure  5.35 are similar to Normal distributions. This means 

that equations (5.7), (5.8) and (5.9) can be used to calculate whether the measurements 

fall within the confidence limit when all the responses are considered together. 

The process described in Figure  5.20 was followed to calculate the statistical 

parameters required in equations (5.7) and (5.8). A total of 5000 Monte Carlo iterations 

were carried out. It is important to keep in mind that during each Monte Carlo iteration all 

responses must be evaluated together. 

The value of r2 according to equations (5.7) and (5.8) is 22.6. The value of ( )29l2 95.0  

corresponding to 29 responses and a 95% confidence limit is 42.6. The value of r2 is 

clearly lower than the value of ( )29l2 95.0 : 

( ) 6.4229l6.22r 2
95.0

2 =<=     (5.10) 

According to equation (5.9) this means that the measurements fall within the 95% 

confidence limit when all responses are considered together. Subsequently the model 

can be considered valid. 
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Figure  5.35. Case Study COC. Uncertainty associated with the natural frequency predictions. 



Chapter 5                                                                                  Validation of Supermodels 

217 

5.12  Conclusions 

Supermodelling techniques are still in their infancy and further developments will 

inevitably require physical testing so that the predictions from supermodels can be 

validated against a reliable reference. 

It is important to keep in mind that supermodels are expected to provide predictions 

whose accuracy can rival that from physical testing, which traditionally has been 

considered the “true” reference for the validation of design models. As a result, the 

predictions from a supermodel should be very close to the test measurements before 

the supermodel can be considered as valid. However, even when a supermodel is 

flawless, the distance between the predictions and the measurements is unlikely to be 

zero as the tested components will be subject to manufacturing variability and the 

measurements will be inevitably corrupted by noise. Under these circumstances, the 

maximum difference allowed between the measurements and the predictions must be 

defined in view of the uncertainties associated with both the definition of the supermodel 

(e.g. geometrical dimensions, material properties, etc.) and those associated with the 

measurements. 

The statistical estimation of the uncertainties associated with the supermodel predictions 

requires the use of uncertainty propagation techniques capable of analytically 

determining the uncertainty in the model output predictions (e.g. natural frequencies) 

from the uncertainties in the model input parameters (e.g. geometrical dimensions and 

material properties). However, the traditional methods for calculating the propagation of 

the uncertainty (e.g. Monte Carlo simulation) can be computationally prohibitive when 

using supermodels. A solution to make use of the Monte Carlo method at a much 

reduced cost has been proposed in this chapter. This solution is based on creating a 

computationally efficient, and yet accurate, model of the supermodel (i.e. metamodel) 

susceptible of being evaluated thousands of times in a matter of seconds. 

Hills and Trucano [89] [90] [91] recently presented an efficient method for determining, 

to a given level of statistical confidence (e.g. 95%), the bounds within which all 

measurements must fall to consider a supermodel as valid. These bounds are 

calculated using the probabilistic definition of the uncertainties associated with the 

model predictions and the test. This method has been illustrated in this chapter by 
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validating the supermodel of the COC previously used in Chapters 2 and 3. The 

measured data from a Modal Test invariably fell within the bounds specified by a 

confidence limit of 95% (i.e. confidence limit commonly used when there is only data 

from a single test). As a result, the supermodel was deemed valid with a 95% 

confidence. 
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Chapter 6 - Conclusions and Future 

Work 

6.1  Overall Conclusions 

The role of simulation tools during the design cycle of new products has rapidly 

increased over the years. In the aeroengine industry, the bulk of any new engine design 

takes place in a virtual environment where simulation tools are used in the pursuit of an 

optimised solution. Traditionally, the validation of the models used to drive the design 

has had to wait until physical prototypes become available for testing. This usually 

happens late in the development cycle when any redesign would incur serious time and 

cost penalties to the project. 

This thesis has presented a novel methodology that facilitates the validation of complex 

assembly models (e.g. WEM) used for structural dynamic analysis early in the design 

cycle, even before manufactured prototypes become available for testing. The new 

methodology starts with a prioritisation of the most important components in the 

assembly using a novel approach which makes use of sensitivity analysis methods. 

Each of the most relevant component design models (typically less than one tenth of the 

total number of components in an aeroengine) is then validated using the corresponding 

supermodel as the reference according to a new technique which ensures that the 

predictions from the supermodel correspond to the component as part of the assembly 

and not when it is in isolation. This is achieved by replacing the component design 

model in the original assembly by its corresponding supermodel to create a so-called 

“hybrid assembly model”. 

This new validation approach overcomes current technology limitations which restrict 

the use of supermodels to components modelled in isolation and reduces the validation 

of complex assembly models to the validation of only a few of its constituent 
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components. Moreover, the virtual nature of this approach means that complex 

assembly models can be validated at almost no financial cost and with few time 

penalties, hence satisfying the original target specified in Section 1.4 of reducing by an 

order of magnitude the cost and timescales currently associated with the validation of 

complex assembly models used in the aeroengine industry, which historically have 

required extensive test programmes. 

The concept of a supermodel was introduced only a few years ago [1] and, as a result, 

supermodelling techniques are still in their infancy. The development of these 

techniques inevitably requires physical testing as the reference and appropriate model 

validation methods. A robust method for the validation of supermodels has been 

outlined in this thesis. This method makes use of probabilistic techniques to specify the 

bounds within which all measurements must fall to consider a supermodel valid. 

This chapter will review some of the specific conclusions drawn in this thesis, some of 

which come from the application of the proposed techniques to industrial Case Studies. 

This will be followed by a summary of contributions, suggestions for future work and 

some closing remarks from the author. 

6.2  Specific Conclusions 

Detailed individual conclusions for each of the topics covered in this thesis have already 

been presented throughout the previous chapters. The following sections highlight some 

of the most important conclusions drawn from this work in line with the original 

objectives described in Section 1.4. 

6.2.1  Component Prioritisation 

Currently-available computing power restricts the use of supermodels to components 

modelled in isolation. This means that complex assembly design models (e.g. WEM) 

cannot be validated against full-scale assembly supermodels. An alternative is to 

validate the assembly model by validating each of its constituent components 

individually. However, a complex assembly can comprise hundreds of components 

which means that hundreds of supermodels would be required. For some time to come, 

supermodels will run on the limits of the available computing power and the creation and 
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analysis of hundreds of supermodels will take a considerable amount of time and 

computing resources, thereby limiting the potential advantages of supermodels over 

physical testing. 

A new approach has been presented in this thesis to reduce the validation of complex 

assembly models to the validation of just a few of its constituent components. Sensitivity 

contour plots are used to identify the regions in the assembly model where modelling 

errors could have the biggest effect in the accuracy of the predictions. The design 

models of the components describing those regions are given the highest priority for 

validation. The new method is also capable of quantitatively assessing the contribution 

of each of the components to the accuracy of the assembly predictions, hence reducing 

the subjectivity traditionally associated with the selection of the target components for 

validation. 

It is estimated that, for the case of an aeroengine, the application of the proposed 

method could reduce the validation of the corresponding WEM to the validation of less 

than a tenth of its constituent components. 

6.2.2  Validation of Individual Components 

When validating a component design model which is part of a bigger assembly it is 

important that the model performs well when it is part of the assembly and not just when 

it is considered in isolation. Over the years a few methods have been proposed to 

design test configurations in which to validate component design models. All these 

methods are constrained by the fact that they only consider using physical testing as the 

reference data for model validation. This usually results in complex test configurations 

which are either very expensive, very difficult to achieve in practice, or both. 

The virtual platform provided by supermodels means that the traditional constraints of 

physical testing do not apply any more when validating a component design model. A 

new method has been proposed to validate a component design model using its 

corresponding supermodel as the reference while ensuring that the validated model 

performs well when it is part of the assembly model. 

The method consists of substituting the original component design model in the 

assembly by its corresponding supermodel. This results in a so-called “hybrid assembly 



Chapter 6                                                                             Conclusions and Future Work 

222 

model” where the supermodel is linked to the rest of the components in the assembly. 

The predictions from the supermodel under these conditions correspond to the 

behaviour expected from the component when it is part of the assembly. This is the 

behaviour that the component design model must predict accurately to be considered 

valid and hence it represents the ideal reference data for validation. 

This method was demonstrated using a Case Study consisting of three quasi-cylindrical 

aeroengine casings bolted together. The assembly model comprised of “virtually” 

validated component design models showed a worst natural frequency error of around 

6.5% when compared against the measurements from a Modal Test. The original 

assembly model would have shown a 15% natural frequency error when compared 

against the measurements, had it not been validated using supermodels as the 

reference. Even though the “virtually” validated assembly model represents a significant 

improvement with respect to the original model, it is difficult to attribute a natural 

frequency error of 6.5% to deviations of the manufactured hardware with respect to 

nominal or to measurement errors. 

A detailed study concluded that the source of discrepancy between the predictions from 

the “virtually” validated assembly model and the measurements from the Modal Test 

were attributable to the fact that the effects of component interfaces (i.e. joints) had 

been neglected during the validation process. 

6.2.3  Influence of Joints 

An assessment of the effects of joints in the dynamic behaviour of assemblies 

concluded that the modelling of the interfaces between components using rigid links is 

not appropriate for the general case. The flexibility of the joints must be modelled 

properly if a valid assembly model is sought. 

The validation strategy proposed in this thesis can equally cope with the presence of 

joints. This simply requires considering a joint as any other component in the assembly, 

and, as for any other component, the design model of a joint should be validated against 

its corresponding supermodel. However, supermodelling techniques for joints are almost 

non-existent. This is mainly due to the fact that the underlying physics that drives the 

behaviour of joints is not completely understood. Unfortunately, this means that physical 

testing is still the only reliable option to validate the design model of a joint at this time. 
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A modified version of the original validation strategy has been proposed to cope with the 

presence of joints until supermodelling of joints becomes a reality. The approach is 

simple, the design models of the components in the assembly are validated first using 

their corresponding supermodels as the reference. This is followed by the validation of 

the design model of the joints when physical test data becomes available. This 

represents a temporary compromise of the proposed validation strategy where most of 

the validation work can be done in a virtual environment well ahead of manufacture and 

the fine tuning of the joint models is carried out once physical test data becomes 

available. 

The implementation of this method to the Case Study consisting of three quasi-

cylindrical aeroengine casings resulted in a worst natural frequency correlation of only 

2.5% between the predictions from the validated assembly model and the 

measurements from a Modal Test. This level of correlation is in line with expectations 

considering that the tested structure will invariably deviate from nominal and that 

measurements are subject to noise. Moreover, this level of correlation represents a 

significant improvement with respect to the 6.5% error obtained when validating the 

assembly model using supermodels as the reference but neglecting the influence of the 

joints. 

6.2.4  Implementation of the Assembly Model Validati on 

Strategy in Industry 

The overall validation strategy proposed in this thesis has been demonstrated on a real 

industrial Case Study consisting of a sub-assembly comprised of some of the most 

challenging structural components in an aeroengine. This validation exercise was 

carried out as part of an actual certification programme whose tight cost and time 

constraints represent the ideal scenario to demonstrate whether any new technology is 

ready for deployment into industry. 

The bulk of the validation took place in a virtual environment where the most relevant 

components in the assembly were identified using the novel sensitivity-based methods 

and then validated using hybrid assembly models as the reference. Once manufactured 

prototypes became available, the results from a Modal Test were used to fine tune the 

original design models of the joints. 
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The worst natural frequency error from the validated assembly model was less than 2% 

when compared against measurements. This remarkable level of correlation was well 

within the 5% limit required to successfully achieve certification. Interestingly, the 

original assembly model would have failed the certification requirements, had it not been 

validated, with a worst natural frequency error of 20%. 

6.2.5  Validation of Supermodels 

The use of supermodels is central to the methodology proposed in this thesis for the 

validation of assembly models. However, supermodelling techniques were only 

introduced a few years ago and their development will inevitably require physical testing 

and appropriate methods to validate supermodels. 

Supermodels are expected to provide predictions whose accuracy can rival that of the 

measurements from physical tests. As a result, one should expect a very close match 

between the predictions from a supermodel and the test measurements to consider the 

supermodel valid. However, even when a supermodel has been created using perfect 

modelling techniques, the differences between prediction and measurement will never 

be zero. First and foremost, it is most unlikely that the supermodel and the actual test 

specimens will have exactly the same dimensions and material properties. That does 

not mean that the supermodel is wrong, it simply means that what has been modelled 

differs from what has been tested. Also, physical testing is invariably subject to 

measurement errors which can be minimised through careful practice but can never be 

removed completely. 

The traditional approach to model validation would be to consider the supermodel as 

valid if the distance between the predictions and the measurements is below a specified 

threshold. The selection of this threshold is typically based on “what looks reasonable” 

considering the manufacturing tolerances of the tested specimens, the estimated 

measurement errors and, most importantly, the modelling error allowance. This 

approach might be acceptable for the validation of coarse models where the modelling 

error allowance is typically high in comparison with the variation expected due to the 

manufacturing tolerances or the measurement errors. However, supermodels are 

expected to serve as a reliable substitute of physical testing during the validation of 

assembly models. For this reason the modelling error allowance is almost none. This 
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means that the differences between the predictions and the measurements must be fully 

explained before the model is considered to be valid. 

Some of the causes of the discrepancies between the supermodel predictions and the 

measurements can only be understood in probabilistic terms. As a result, it was 

concluded that a probabilistic approach would be best suited to validate supermodels. A 

robust method was presented in the thesis capable of determining the bounds within 

which all measurements must fall to consider the supermodel valid. Those bounds 

depend on the uncertainties associated with the model predictions (e.g. due to 

dimensional and/or material variability), those linked to the test measurements and the 

statistical confidence required for the validation (e.g. 95%). 

This method was illustrated by validating the supermodel of an aeroengine casing using 

the measurements from a Modal Test as the reference. All measurements fell within the 

bounds prescribed by the proposed validation method which corresponded to a 

specified confidence limit of 95% and, as a result, the supermodel was deemed valid. 

6.3  Summary of Contributions 

• A novel methodology for the validation of complex assembly design models 

early in the design cycle, even before manufacture, has been presented. This 

methodology consists of validating the assembly model by validating a reduced 

number of its constituent component design models using their corresponding 

supermodels as the reference. 

• A new method has been presented for the identification of those component 

design models in the assembly in most urgent need of validation. This method 

consists of identifying the regions in the assembly model which are most 

sensitive to modelling errors. The component design models describing those 

areas are given the highest priority for validation. 

• A new method for the validation of individual component design models using 

supermodels as the reference has been proposed. This method consists of 

replacing the original component design in the assembly by its corresponding 

supermodel. This results in a so-called hybrid assembly model where the 
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predictions from the supermodel correspond to the component as part of the 

assembly and, subsequently, the ideal reference for validation. 

• It has been shown how an assembly model made up of valid component design 

models might still yield inaccurate predictions if the joints between components 

are considered to be rigid. A preliminary study demonstrated how the flexibility 

of joints can affect the accuracy of the predictions from an assembly model. 

A solution to incorporate the effects of joints into the assembly model validation 

strategy has been proposed. This method first validates the most relevant 

component design models using their corresponding supermodels as the 

reference and then fine tunes the design models of the joints when physical test 

data becomes available. This is a viable approach to take until reliable 

supermodels of joints become available. 

• It has been demonstrated that the overall strategy for the validation of complex 

assembly models performs well under the pressures of a highly demanding 

industrial scenario (i.e. aeroengine certification programme). As a result, the 

methodology is considered to be well-suited for full-scale deployment into 

industry. 

• An efficient method for the validation of supermodels has been reviewed. This 

method takes a probabilistic approach to model validation and is able to 

determine the validity of a supermodel depending on whether the 

measurements fall within the expected uncertainty associated with the 

predictions. 

6.4  Suggestions for Future Work 

6.4.1  Supermodels 

The use of supermodels is central to the validation strategy proposed in this work. 

However, supermodelling techniques are still in their early days and there are still not 

robust methods for the generation of reliable supermodels for all components. 
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Moreover, most of the efforts so far have been concentrated on the generation of 

supermodels for homogeneous isotropic components. Non-isotropic materials such as 

Carbon Fibre Reinforced Plastics are increasingly being used in industry. Techniques 

will soon be required for the creation of supermodels of components made from such 

materials. 

6.4.2  Joint Modelling 

The modelling of joints remains seriously underdeveloped. This is mainly due to the fact 

that most of the research work directed at improving the modelling of assemblies has 

focussed, almost exclusively, on reducing the sources of error associated with the 

models of components. Now that supermodels are capable of reducing the errors in 

component models to the same level expected from manufacturing variability, joints 

have become the weakest link in the modelling of assemblies. 

Unfortunately, the physics that drive the dynamic behaviour of joints are not yet well 

understood and, as a result, joint models are typically quite poor. A significant amount of 

research will be required to first understand the physics behind the behaviour of joints 

and then to translate the physics into reliable models. 

6.4.3  Probabilistic Model Validation 

The reliability of the probabilistic methods for the validation of models largely depends 

on the ability to identify and characterise the sources of uncertainty present during the 

validation tests. This can be difficult and imprecise at times. 

The main uncertainties associated with a model validation have their origins in the 

manufacturing variability and the test measurement errors. The correct characterisation 

of the manufacturing variability will require a better understating of the manufacturing 

processes and how they influence on the characteristics of the final products. The 

accurate characterisation of the uncertainty in the measurements will require a much 

better understanding of the sources of the measurement errors, their statistical 

properties and how they propagate through the measurement process. 
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6.4.4  Forced Response Validation 

The research work presented in this thesis has focussed on the validation of assembly 

models so that a set of natural frequencies and modeshapes are accurately predicted. 

These modal properties only depend on the stiffness and mass matrices of the FEM. 

The proposed methodology should be extended to facilitate the validation of assembly 

models so that they are capable of accurately predicting the more general forced 

response case. This will require methods to accurately validate both the damping factors 

used in the assembly model and the force vectors used to characterise the loads. 

6.4.5  Other Applications 

This thesis has focused on the validation of assembly models used in the aeroengine 

industry. Most of the methodologies presented here can obviously be applied to other 

engineering fields, most notably Aerospace and Automotive. 

A range of representative Case Studies will need to be evaluated using the proposed 

methods to establish their strengths and weaknesses for the general case. 

6.5  Closing Remarks 

The overall objective of this research work was to develop a suitable methodology that 

would facilitate the validation of complex assembly models early in the design cycle 

when manufactured prototypes are still not available. It is believed that the proposed 

validation approach represents a viable solution to satisfy this objective. 

The virtual nature of the proposed methodology can potentially eliminate a great deal of 

the physical tests currently required to validate a complex assembly model. In fact, it is 

estimated that the implementation of this technology in the aeroengine industry could 

reduce the amount of testing currently required for the validation of assembly models by 

an order of magnitude. However, it is important to keep in mind that the transition 

towards a virtual validation scenario must be done gradually. This technology is still in 

its infancy and the elimination of physical testing should only be attempted when there is 

sufficient and unequivocal evidence that a virtual validation is reliable. That evidence will 

typically come from previous projects of similar characteristics where the virtually 
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validated models consistently fare well when compared against the measurements from 

physical tests. This highlights the important role that physical testing will play in the 

implementation of virtual validation methods. Moreover, well-planned physical testing 

remains essential to further improve supermodelling techniques and expand them into to 

areas which still remain largely underdeveloped (e.g. joints). 
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Appendix – Software Tools 

The following software tools were used during the research work presented in this 

thesis. 

Software Name Versions Vendor Applications 

Unigraphics NX2, NX4 Siemens PLM Software CAD Geometry Generation 

Patran 2004r2, 2005r2 MSC Software Corporation 
FEM Pre-processing 

FEM Post-processing 

Nastran 2004r2, 2005r2 MSC Software Corporation FEM Processing 

SC03 11C0 Rolls-Royce plc. 
FEM Post-processing 

Hybrid Meshing 

FEMtools 3.1, 3.2 DDS 
Model Correlation 

Model Updating 

i-SIGHT 2.5.5 Engineous Software Uncertainty Propagation 

VIVACEsen 1.1 Rolls-Royce plc. 
Sensitivity Analysis 

Component Prioritisation 

LMS Virtual Lab. 6B LMS International Test Planning 

LMS Test Lab. 8A LMS International Modal Analysis 

Table. Software tools. 


