

Molecular dynamics simulations of a supercapacitor with ionic liquid electrolytes

Tribeni Roy, Saurav Goel, Gregory J. Offer, Monica Marinescu, Huizhi Wang t.roy@imperial.ac.uk

Supercapacitors (SCs) / Ionic liquids (ILs)

Supercapacitor

$$E=\frac{1}{2}CV^2$$

Ionic liquid

Ionic liquid SCs under loads

- Flexible SCs/ SCs under load
- Electrolyte displacement
- Wettability
- Porous structure distortion

Li et al., ACS Nano, 2010; Hu et al., Gourdin et al., J. Power Sources, 2011, 2012; Chem. Commun., 2018; Moon et al., Chem. Eng. J., 2020

BF₄-

Structure and method for MD

- PACKMOL, LAMMPS, OVITO, Constant potential method, OPLS AA forcefield
- Equilibration: 15 ns at 25°C in the NVT ensemble
- *Dynamic run*: Engineering strain rate = 0.001/fs

Roy et al. (under review)

Compression and Stretching

Stretching of SC

- Compression/Stretching was achieved keeping all parameters in equilibrium
- A potential difference of 4V was used for all simulations

Behaviour of electrolyte

Increasing

compressive

stress

 $(d)_{30}$ Electrode ₹²⁰ 32 30 $(e)_{30}$ **3** 20 32 (f)30£20 31 32 33 Location of ions

Behaviour of electrode

- MSD of ions is directly proportional to the reduction in electrode charge density
- Increasing compression leads to low charge storage

Behaviour of electrode

Density distribution of electrode atom charge

Double layer capacitance

- Tension-compression asymmetry
- Capacitance reduces with compression

Compression at different voltages

- Charge density fluctuations minimise with increase in potential
- Capacity retention at higher potentials

Conclusion

- Strain induced electrochemical behaviour of IL based SC using molecular dynamics simulations
- Low compression showed a reduced performance in terms of charge density in the electrodes (29%) while stretching improved performance (7%)
- Higher potential leads to better capacity retention with compression

Acknowledgment

Thank you

https://www.imperial.ac.uk/people/t.roy

https://www.imperial.ac.uk/electrochem-sci-eng