Imperial College London

UNIVERSITY OF TWENTE.

A physics-based data-driven model for electrolyte supported SOCs

Catalina A. Pino-Muñoz^{1,*}, Nigel P. Brandon¹, Aayan Banerjee²

- ^l Electrochemical Science and Engineering, Earth Science and Engineering Department, Imperial College London, UK.
- ² Catalytic Processes and Materials, Faculty of Science and Technology, University of Twente, Netherlands.
- *Email: c.pino15@imperial.ac.uk

Motivation

- Solid oxide cells operating at high-temperature (*e.g.*, 600-900°C) display high efficiencies, and convert chemicals into electricity in fuel cell mode. While the reverse process occurs in electrolyser mode.
- Critical challenges are their long-term durability and material degradation processes, and thermal management.
- Speeding up stack performance simulations by coupling multi-scale modelling approaches [1,2] and machine learning algorithms can facilitate to study long-term operating effects.

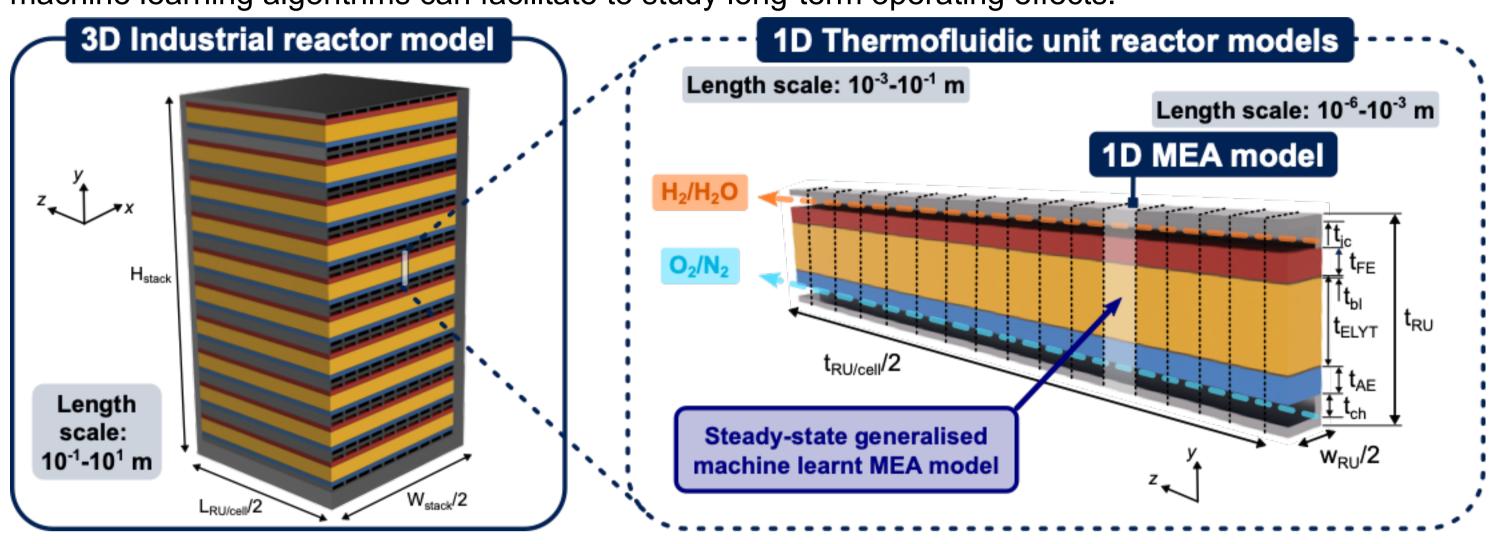


Figure 1. Hierarchical multiscale modelling approach [1,2] and domains: a quarter of a stack and half of a repeating unit (RU).

Towards lifetime modelling

- Leveraging machine learning (ML) algorithms to develop an industrial scale simulator of faster evaluation by incorporating an MEA machine learnt model in a hierarchical multiscale framework.
- Feature engineering analysis of Multiphysics problem to obtain a reduced number of inputs while maintaining physical interpretation: physics-based machine learnt model
- Random forests (RF) are popular ML methods due to their proven accuracy, stability, and ease of use, and provide straightforward methods for feature selection.
- RF regressors (RFR): non-parametric ensemble regression \rightarrow decision trees as base classifiers, using
- Bootstrapping: random selection of data subsets \rightarrow overcome over-fitting and reduce prediction error.

Modelling methodology Database generation Multiphysics description COMSOL Fuel electrode transport $H_2 + O^2 \longleftrightarrow H_2O + 2e^-$ Ni-YSZ / Ni-CGO Isothermal **Galvanostatic** transport Electrolyte **Steady-state** YSZ Electron transport Air electrode $1/2 O_2 + 2e^- \leftrightarrow O^{2-}$ LSM-YSZ / LSCF-CGO Surface reactions **Feature Engineering Physical parameters Reduced feature** vector Cell architecure **Characteristic Dimensional** numbers analysis **Operating** conditions **Non-linear** Non-linear $I_{\mathrm{ed}} \dots T \dots \sigma_{\mathrm{io}} \dots k_{\mathrm{ed}} \dots$ analysis effects **Transport** properties $N_f \theta_i$ Kinetic Raw data parameters ' Training of physics-based machine learnt model **Workflow for random forest machine learning analysis Train set** tuning of parameters: No. of trees and No. of input variables **Trained** $(RMSE_{i+1} < RMSE_i)$ N_{tress} vs Errors **Data set** (N*_{trees}, N*_f) Calculate error rates: RMSE Take out less (+ 1 tree) **YES** OOB, train/test important feature η_{cell} **→** Calculate N_{f,i} $N_{f,j+1} = N_{f,j} - 1$ feature importances Test set

Figure 2. Methodology of physics-based machine learnt model:

Final output is the average of aggregated

predictions of multiple decision trees

- Generate the mathematical description of 1D steady-state SOC Multiphysics problem (PDEs) and implement in COMSOL Multiphysics®. A total (N_p) of physical parameters (ξ_i) with upper and lower bounds are used to generate random combinations and solve the problem in
- COMSOL, obtaining the cell overpotential (η_{cell} , output target) for a total of polarisation cases (N_{pol}).
- Using feature engineering (i.e., dimensional and nonlinear effects analyses) to analyse the mathematical description and produce a reduced vector of features (θ_i) containing characteristic numbers and non-linearities.

 $\Sigma f(t_n) = prediction of \eta_{cell}$

- iv. All ξ_i values are used to evaluate the corresponding θ_i values for N_{pol} cases.
- Splitting the data (i.e., θ_i and η_{cell}) into train and test data sets.
- Train the RFR with all features for an increasing number of tress (N_{trees}) and compare Out-of-Bag (OOB), train and test error rates.
- vii. Take out features by considering their permutation importances and RMSE of RFRs trained with $N_{
 m f}$ number of features. viii. The final RFR is trained with N^*_{tress} and N^*_{f} and used to predict the cell overpotential for the test data set.

Training/testing physics-based machine learnt model

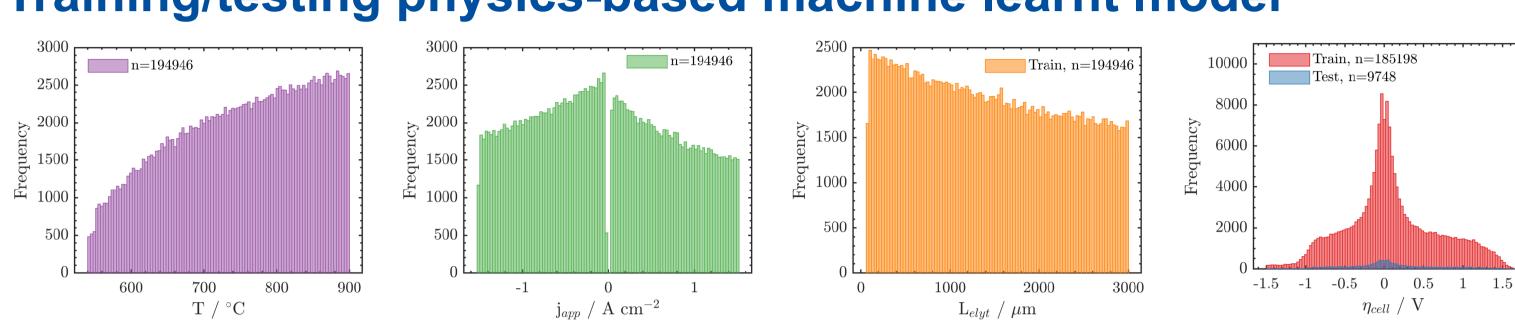
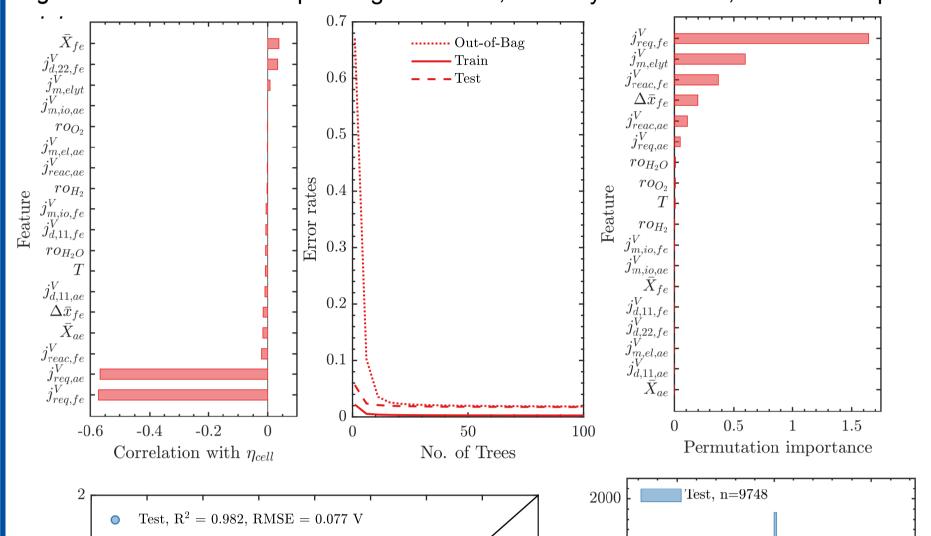


Figure 3. Distributions of operating conditions, electrolyte thickness, and cell overpotential with train and test expanding range -1.5 to 1.5 V.



- The test and OOB error rates converge to "asymptotic" minimum values and do not increase after the training error approaches zero, showing that RFR "does not overfit"
- Physics-based feature engineering significantly reduce the number of ML model inputs, speeding up training and execution times of ML model.
- Trained ML model shows high

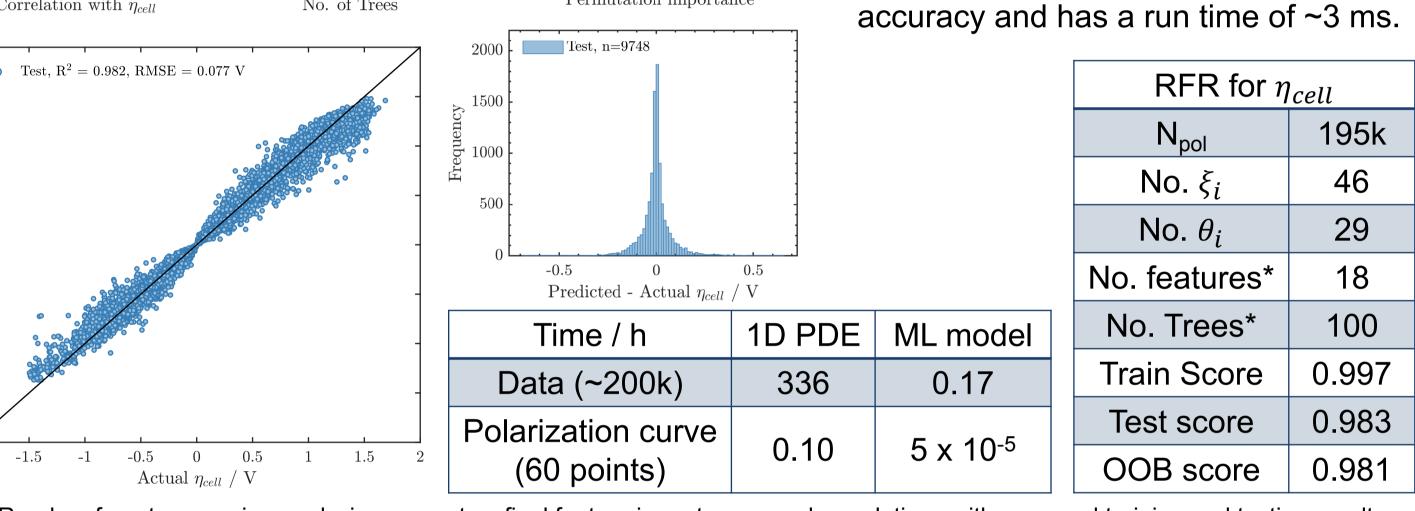
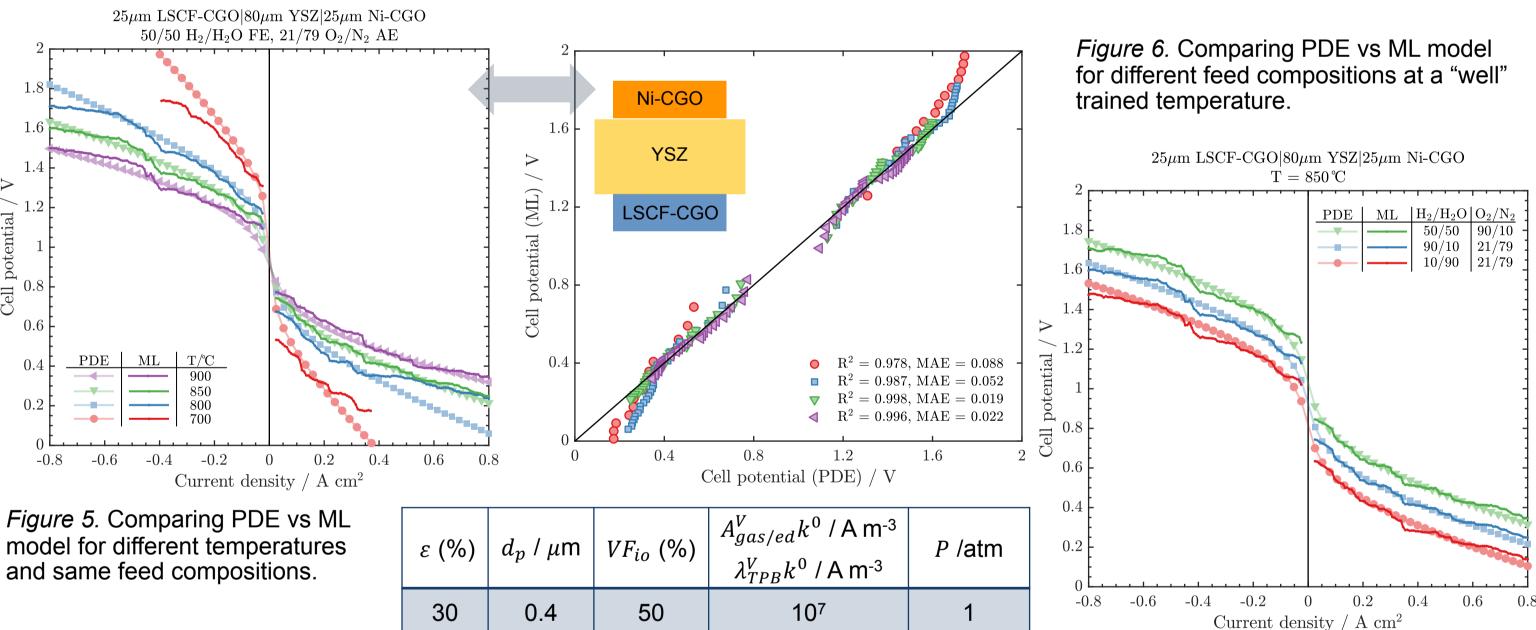


Figure 4. Random forest regression analysis: error rates, final feature importances and correlations with η_{cell} , and training and testing results.

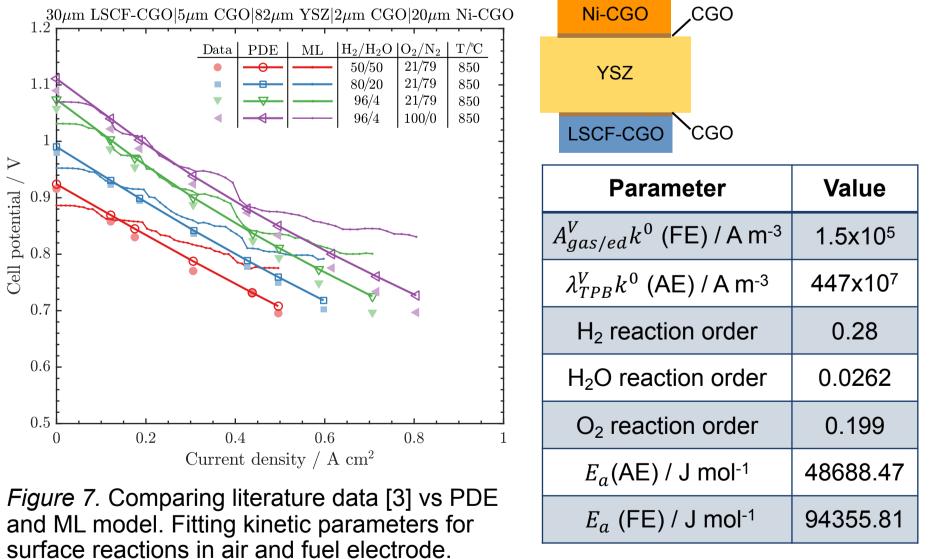
Validation against Multiphysics model and Literature data

PDE vs ML: Reversible solid oxide cell (SOC)



Literature data: Solid oxide fuel cell (SOFC)

 $30\mu\mathrm{m}$ LSCF-CGO| $5\mu\mathrm{m}$ CGO| $82\mu\mathrm{m}$ YSZ| $2\mu\mathrm{m}$ CGO| $20\mu\mathrm{m}$ Ni-CGO



- Reasonably good agreement for operation at higher temperatures.
- As temperature decreases and current density increases deviation from PDE overpotential solution is observed.
- ML model captures the effect of feed composition changes for "well" trained cases.
- Initial validation with literature data shows cell potential mismatch at high temperature
- Possibly, lack of enough polarisation data points for specific combination of physical parameters/features.

Next steps

- Expand data generated to capture the effect of individual physical parameters and their combined effect.
- Evaluation of other ML alternatives or their coupling with the RFR
- for better guess in regions with reduced polarisation points.
- Validation against extensive experimental data: ESC, ASC, MSC.
- Test methodology on other systems like PCFC →
- Coupling with hierarchical multiscale modelling framework to allow for lifetime simulation.

References:

- Wehrle et al, ACS Environ. Au, 2022, 2, 42-64.
- Wehrle et al, Chem. Ing. Tech., 2019, 91, No. 6, 833–842. Padinjarethil et al, Front. Energy Res., 2021, 9:668964.

