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Motivation
• Solid oxide cells operating at high-temperature (e.g., 600-900°C) display high efficiencies, and convert 

chemicals into electricity in fuel cell mode. While the reverse process occurs in electrolyser mode.
• Critical challenges are their long-term durability and material degradation processes, and thermal 

management.
• Speeding up stack performance simulations by coupling multi-scale modelling approaches [1,2] and 

machine learning algorithms can facilitate to study long-term operating effects.

Next steps
• Expand data generated to capture the effect of individual physical  

parameters and their combined effect.
• Evaluation of other ML alternatives or their coupling with the RFR 

for better guess in regions with reduced polarisation points.
• Validation against extensive experimental data: ESC, ASC, MSC.
• Test methodology on other systems like PCFC à
• Coupling with hierarchical multiscale modelling framework to 

allow for lifetime simulation.
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Parameter Value

𝐴!"#/%&' 𝑘( (FE) / A m-3 1.5x105

𝜆)*+' 𝑘( (AE) / A m-3 447x107

H2 reaction order 0.28

H2O reaction order 0.0262

O2 reaction order 0.199

𝐸"(AE) / J mol-1 48688.47

𝐸" (FE) / J mol-1 94355.81

Figure 1. Hierarchical multiscale modelling approach [1,2] and domains: a quarter of a stack and half of a repeating unit (RU).

Towards lifetime modelling
• Leveraging machine learning (ML) algorithms to develop an industrial scale simulator of faster evaluation 

by incorporating an MEA machine learnt model in a hierarchical multiscale framework.

• Feature engineering analysis of Multiphysics problem to obtain a reduced number of inputs while 
maintaining physical interpretation: physics-based machine learnt model

• Random forests (RF) are popular ML methods due to their proven accuracy, stability, and ease of use, and 
provide straightforward methods for feature selection. 

• RF regressors (RFR): non-parametric ensemble regression à decision trees as base classifiers, using
• Bootstrapping: random selection of data subsets à overcome over-fitting and reduce prediction error.
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• Reasonably good agreement for 
operation at higher temperatures.

• As temperature decreases and current 
density increases deviation from PDE 
overpotential solution is observed.

• ML model captures the effect of feed 
composition changes for “well” trained 
cases.

• Initial validation with literature data 
shows cell potential mismatch at high 
temperature

• Possibly, lack of enough polarisation 
data points for specific combination of 
physical parameters/features.

RFR for 𝜂+,--
Npol 195k

No. 𝜉. 46
No. 𝜃. 29

No. features* 18
No. Trees* 100
Train Score 0.997
Test score 0.983
OOB score 0.981
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• The test and OOB error rates converge 
to “asymptotic” minimum values and do 
not increase after the training error 
approaches zero, showing that RFR 
“does not overfit”

• Physics-based feature engineering 
significantly reduce the number of ML 
model inputs, speeding up training and 
execution times of ML model.

• Trained ML model shows high 
accuracy and has a run time of ~3 ms.

Figure 3. Distributions of operating conditions, electrolyte thickness, and cell overpotential with train and test expanding range -1.5 to 1.5 V.
minimum

Figure 2. Methodology of physics-based machine learnt model: 
i. Generate the mathematical description of 1D steady-state SOC Multiphysics problem (PDEs) and implement in COMSOL Multiphysics®. 
ii. A total (Np) of physical parameters (𝜉/) with upper and lower bounds are used to generate random combinations and solve the problem in 

COMSOL, obtaining the cell overpotential (𝜂0%11, output target) for a total of polarisation cases (Npol). 
iii. Using feature engineering (i.e., dimensional and nonlinear effects analyses) to analyse the mathematical description and produce a reduced 

vector of features (𝜃/) containing characteristic numbers and non-linearities. 
iv. All 𝜉/ values are used to evaluate the corresponding 𝜃/ values for Npol cases. 
v. Splitting the data (i.e., 𝜃/ and 𝜂0%11) into train and test data sets.
vi. Train the RFR with all features for an increasing number of tress (Ntrees) and compare Out-of-Bag (OOB), train and test error rates.
vii. Take out features by considering their permutation importances and RMSE of RFRs trained with Nf number of features. 
viii. The final RFR is trained with N*tress and N*f and used to predict the cell overpotential for the test data set.

Figure 4. Random forest regression analysis: error rates, final feature importances and correlations with 𝜂0%11, and training and testing results.

Figure 5. Comparing PDE vs ML 
model for different temperatures 
and same feed compositions.

Figure 6. Comparing PDE vs ML model 
for different feed compositions at a “well” 
trained temperature.

Figure 7. Comparing literature data [3] vs PDE 
and ML model. Fitting kinetic parameters for 
surface reactions in air and fuel electrode.


