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Abstract

The aim of the work presented in this thesis is to provide tools to extend modelling

capacities and improve quality and reliability of bulk and guided wave propagation

models using commercially available finite element (FE) packages.

During the development process of NDT inspection techniques, the knowledge of the

interaction of waves with defects is key to the achievement of robust and efficient

techniques as well as identifying potential weaknesses. The reflection of ultrasound

from cracks and notches of simple geometry and orientation is already well

understood, but there are few results for more complex cases. A discrete approach is

needed to model how the waves interact with discontinuities, including structural

features, cracks, corrosion or other forms of defects. FE methods have been used to

model a wide range of bulk and guided waves problems and have successfully

provided important information about wave interaction with discontinuities. In these

studies, defects were strongly simplified. One reason for this is that initial work is

bound to focus on the simplest cases, but many modellers are ready to go on to more

complex problems. The reason that so little of that is happening is that, despite rapid

growth in computer power, many of the more complex realistic problems are still

beyond the capacity of the models. The more complex problems require much larger

models than the simplified ones, and so have remained out of reach. 

This can be changed by using innovative techniques and improving the quality and

reliability of modelling by taking the right decisions during the modelling process. 

Perfectly matched layers (PML) and absorbing layers using increasing damping

(ALID) enabling a reduction in the model geometric size are implemented in

commercially available FE packages. Analytical models are developed in order to

facilitate the achievement of high computational efficiency. Demonstrator cases

highlight the gains achieved by the use of these techniques.

As the choice of mesh density is crucial in defining the resources necessary to solve a

model, a study of the influence of meshing parameters for various element types and

numerical schemes on the propagation velocity is performed. This provides

information helping modellers to reach the right modelling compromises thanks to an

improved understanding of the consequences of the decisions made.
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The accuracy of defect modelling is investigated for a range of situations and

modelling strategy. The weight of the choice of the right strategies is demonstrated.

The potential implementation of local mesh refinement in commercially available FE

packages is considered and discussed in the context of the choices open to the

modellers.

The outcome of the use of the techniques and information presented in this thesis is a

significant improvement in FE modelling of waves in elastic media.
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Chapter 1 

Introduction

1.1. Introduction

During the development process of ultrasonic NDT techniques, the knowledge of the

interaction of waves with defects is key to the achievement of robust and efficient

procedures as well as identifying potential weaknesses. Any problems such as poor

sensitivity to certain shapes and orientation needs to be identified as early as possible.

The reflection of ultrasound from cracks and notches of simple geometry and

orientation is already well understood, but there are few results for more complex

cases, for example from the multiple-crack geometry of stress corrosion cracking, or

from realistic profiles of corrosion.

Against this background, experience has shown that, as NDT is developed for

increasingly challenging applications, it has become increasingly important to start

with careful modelling studies in order to be confident that the procedures which are

developed are optimized and robust. Indeed in the particular topic of guided waves it

is universally accepted that this is the only viable approach. Whereas various wave

models, such as ray models for bulk wave problems or DISPERSE [1] for guided wave

problems can predict the properties of waves in continuous uniform structures, a

discrete approach is often needed to model how the waves interact with discontinuities,

including structural features, cracks, corrosion or other forms of defects. Finite

Element (FE) methods have been used to model a wide range of guided waves

problems [2, 3, 4, 5, 6, 7] and have successfully provided important information about

wave interaction with discontinuities [8, 9, 10, 11, 12, 13]. In these studies, defects

were simplified and straight cracks, notches or cylindrical holes were used to represent

real defects such as fatigue cracks or corrosion patches. One reason for this is that

initial work is bound to focus on the simplest cases, but many modellers are ready to

go on to more complex problems. The reason that so little of this is happening is that,

despite rapid growth in computer power, many of the more complex realistic problems

are still beyond the capacity of the models. The more complex problems require much
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larger models than the simplified ones. In a similar way, modelling of bulk wave

propagation and scattering has also received a huge amount of interest with many

techniques being used but many cases remain out reach.

1.2. Objectives

As engineers involved in developing ultrasound NDT applications, our goal is to find

computationally efficient techniques to improve modelling capacity and quality.

Commercially available FE packages are chosen from the outset. This decision is

based on the fact that they not only offer memory efficient and robust solvers but also

remove the highly complex and time consuming necessity of developing and

maintaining a specialist FE code. It is worth mentioning that most of the commercial

packages have interactive user-friendly pre and post-processing tools which greatly

increase their flexibility and ease of use. The choice of commercially available FE

packages is also motivated by the fact that they enable new techniques to be quickly

transferred to industry where these products are already or could easily be available

and where a specific unsupported research code would be difficult to maintain. Two

FE packages from a range available on the market are selected and used in this work:

ABAQUS [14] and COMSOL Multiphysics [15]. ABAQUS is chosen because it is

widely available, well developed and supported. Its level of performance is confirmed

by the fact that it is used in many industries. COMSOL Multiphysics (formerly known

as FEMLAB) is a relatively new software which gives more control to users. This

means that it has an increased flexibility compared to ABAQUS but as it is a “young”

package it is not yet so widely available in the industry. At the time of writing, it is

noted that COMSOL is generally not as efficient as ABAQUS. The tools available

clearly influenced the direction of our research but the findings are not limited to these

two packages only as numerous other packages share the same basis to solve problems.

In this context, various aspects of the modelling process have the potential to provide

users with improved results.

One aspect is that related to the existence of unwanted reflections from the boundaries

of a FE model. This has been a limiting factor for FE wave modelling. In time domain

solving, it leads to a large increase in the model geometric size (and therefore a large

increase in the number of degrees of freedom to be solved) as it is generally desirable
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to separate in time the interaction of the waves with defects from unwanted boundary

reflections. This point is illustrated in Figure 1.1 where it can be seen that the modelled

area is much larger than the area of interest in order to fulfil this. Moreover, in

frequency domain solving, removal of unwanted reflections is a requirement in order

to correctly represent wave propagation in the system [16].

Being able to represent total radiation outside the area of study in numerical wave

propagation models at a reasonable cost would enable a large increase in

computational efficiency. This topic has attracted a vast amount of interest in the last

25 years [17]. Well known techniques include infinite elements [18], boundary integral

methods [19], non reflecting boundary conditions (NRBC) [20] and absorbing layer

techniques [5, 16, 21, 22, 23, 24].

Another key aspect in the field of NDT is the precise knowledge of wave propagation

velocities. The time of flight of a wave packet has been widely used to determine the

position of defects in structures in many ultrasound industrial applications. Recently,

imaging algorithms [25] and super resolution of defects [26, 27] have been

investigated for NDT applications. Research in these techniques is very much active as

their use holds promises of improved applications not only in NDT but also in the

medical field. In the process of moving from the genesis of a numerical model to its

conclusion and the obtention of results enabling a better understanding of a physical

phenomenon, a modeller takes a series of design decisions. The choice of the solving

Figure 1.1. a) 2D plane strain model of a plate including a defect, b) Time signal at the monitoring 
point
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technique, mesh density or time step influences the successful outcome of the exercise

but also the level of accuracy with which the phenomenon is represented. Discreti-

zation of the space and time leads to a discrepancy between theoretical physical values

and their actual values measured in the model. One of the parameters suffering from

this is the wave propagation velocity in elastic media. It would be beneficial to provide

modellers with information enabling the improvement of not only the quality of their

modelling (adequate decision making) but also the quality of the analysis made based

on the numerical results (quantitatively taking into account the numerical deviation).

There is also an interest in understanding the reasons for mesh scattering where a

change in mesh size causes some numerical reflection.

As mentioned above, accurately representing the interaction of a wave with structural

features and/or defects is crucial to evaluating the potential of an inspection technique.

The degree of accuracy depends on the way the defect and overall model are defined.

The space and time are discretized and defects are simplified. Even for the simplest of

defects, there are uncertainties about the extent of the discrepancy between the exact

and numerical results. NDT researchers have generally favoured the use of regular

meshes in order to avoid numerical problems linked to a change in node spacing

(numerical scattering). This approach creates problems of its own when it comes to

representing defects or features in the regular grid as it generally leads to jagged edges

of defects. The investigation of alternative techniques and sound understanding of the

factors influencing the numerical errors should lead to increased modelling quality and

enable modellers to move forward to more complex cases as efficiently as possible.

Achieving better representation of the interaction of waves with complex defects has

led to the development of specialist ways of resolving this interaction. A method

generating interest recently is the fictitious domain technique [28, 29, 30].

Investigation of this technique shows that its implementation in a commercially

available FE packages is not possible. Instead, in this thesis, the path of local mesh

refinement in the context of a regular node grid, is pursued as this could potentially

lead to a large increase in model efficiency and improved representation of the defects.

Overall, the knowledge gained from this work should enable modellers to improve the

quality of their modelling not only by increasing the computational efficiency of their
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models but also by having a better understanding of the quantitative consequences of

the decisions taken during the generation of their models.

1.3. Outline of the thesis

Chapter 2 presents the theoretical background necessary to understand the work

developed further in the thesis. Bulk and guided wave theory is presented. Numerical

implementation of the implicit and explicit solvers used in this work are outlined. The

time domain explicit solver of ABAQUS/Explicit [14], the frequency domain direct

integration implicit solvers of ABAQUS/Standard [14] and COMSOL Multiphysics

[15] are presented.

In Chapter 3, the use of two different absorbing layer techniques for elastodynamic

problems is investigated. Implementation of perfectly matched layers [24] (PML) in

the frequency domain in COMSOL Multiphysics and absorbing layer using damping

[31, 32] (ALID) for time and frequency domain in ABAQUS and COMSOL

Multiphysics is devised. Analytical models are developed to enable a quick and

accurate determination of adequate layer parameters. Typical example FE models of

NDT applications are used to demonstrate the added value of using absorbing layers.

The modelling options available to modellers are discussed.

In Chapter 4, the influence of mesh parameters on the propagation velocity is

investigated. Both explicit and implicit solvers used with a range of element types are

studied. Regular meshes made of square or equilateral triangles are investigated first.

These meshes are then distorted in order to understand the influence of element

deformation on wave velocities. The general approach is to run a series of FE models.

The results of these models enable the identification of simple functions to describe the

errors as generally as possible.

The work presented in Chapter 5 aims to provide the foundations to more complex

defect modelling. The cases investigated are the reflection of bulk waves from straight

edges, straight cracks at an angle and circular holes. For each case, the use of a regular

square mesh approach where the defects are defined by removing or disconnecting

elements is compared with the use of automatically generated meshes made of
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triangular elements. In order to obtain a reference through the convergence of signals,

the mesh size with both methods is reduced gradually.

The work is Chapter 6 focuses on local refinement of a regular square mesh using

conventional tools available in the commercially available FE package ABAQUS. The

method investigated in this part consists of creating 2 separate areas having different

mesh densities and tying them together. The effect of the change in element size in a

regular mesh of elements is investigated. The knowledge of the propagation velocities

gained in Chapter 4 is used. This enables the influence of the way meshes of different

size are tied together on reflections at the interface between the 2 meshes to be

determined. A range of 1D and 2D FE models are created and studied in order to better

understand and quantify the influence of these sources of error. In particular, elastic

properties in parts of the models are adjusted in order to minimize the level of

reflection. Parametric studies are performed in order to provide modellers with a

database of information enabling them to determine the level of reflection which exist

in a range of situations.

In Chapter 7, a review of this thesis is presented. Main contributions are summarized

and finally consideration is given to suggested further work.
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Chapter 2 

Theoretical background

2.1. Introduction

This chapter presents the theoretical background to the work presented in this thesis.

The theory of wave propagation in elastic media is developed and is followed by a

presentation of the FE techniques used in this work.

2.2. Theory of wave propagation in elastic media

The theory of wave propagation in elastic media is presented in this section. Bulk

waves and guided waves in a 2D plate are considered. The aim of this section is not

only to present the cases which are of interest to us but also to define the notations used

in following chapters.

2.2.1 Bulk wave propagation

2.2.1.1 Bulk wave propagation in infinite isotropic elastic media

The propagation of acoustic waves in unbounded isotropic media has been the subject

of many studies and its theory is widely available [33, 34]. The general equation of

motion relates the particle displacement u in a material of density ρ to the stress field

tensor σ by:

 (2·1)

It is well known that Hooke’s law links the stress σ and strain ε in an isotropic material:

 (2·2)

with  (2·3)

where λ and μ are the 2 Lamé constants.

ρ
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----------
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εij
1
2
---
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∂uj
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-------+⎝ ⎠

⎛ ⎞=
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The Navier governing equation is derived from equations 2·1, 2·2 and 2·3:

 (2·4)

This can also be expressed in a vectorial form:

 (2·5)

The Helmholtz decomposition can be used to derive the displacement u in terms of a

compressional scalar potential φ, and an equivoluminal vector potential ψ:

 (2·6)

Using equation 2·6 to substitute the displacement in the Navier equation 2·4, the

following relation is obtained:

 (2·7)

This equation is fulfilled if both terms are zero which can be interpreted as the

Helmholtz differential equations:

  (2·8)

and  (2·9)

cL and cS are the velocities of longitudinal (dilatational) and shear (rotational) waves

in the infinite isotropic medium and are equal to:

 and  (2·10)
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The wave numbers of these waves are defined as:

 and  (2·11)

The wavelengths are defined as:

 and  (2·12)

The solution to the Helmholtz differential equations (2·8) and (2·9) for longitudinal or

shear harmonic waves propagating in a given direction is:

 and  (2·13)

with Φ and Ψ the amplitude of the wave and kLx, kLy, kSx and kSy, the projection of the

wavenumbers of the longitudinal and shear waves on the x and y axes.

2.2.1.2 Bulk propagation in a semi-infinite isotropic elastic medium

Wave propagation in a semi-infinite medium (one interface) is considered in this

section. This case is investigated because wave propagation in a multi layered system

is modelled in Chapter 3 and will require this theory for its construction.

Let us consider a semi-infinite medium as shown in Figure 2.1. The arrows represent

the longitudinal and shear waves that can exist in the material. In this work, positive

waves are defined as waves propagating in the positive x direction and negative waves

are defined as waves propagating in the negative x direction.

 

Figure 2.1. Modes considered and their orientation
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The wave potentials of each wave type are defined as:

 (2·14)

 (2·15)

 (2·16)

 (2·17)

It is also considered that these waves are linked by the Descartes-Snell’s law. This

implies that kLx=kSx=kx. The previous expressions can therefore be simplified, omitting

the common factor .

 (2·18)

 (2·19)

 (2·20)

 (2·21)

Using equations 2·2, 2·3 and 2·6, the displacements and stresses are derived:

 (2·22)

 (2·23)

 (2·24)

 (2·25)
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These expressions will be needed in Chapter 3 to model a multi-layered system and can

be linked to the potentials in the following way:

 (2·26)

with M=

 (2·27)

This expression enables to link all displacements, stresses and wave potentials and can

be used to describe a multi-layered system straightforwardly.

2.2.2 Guided wave propagation in a plate

In this section, the theoretical basis of guided wave propagation in a 2D plate is

presented. This case is considered as studies of models of guided waves which are

specific to the plate case are done in Chapter 3.

Let us consider the plate represented in Figure 2.2.    

Figure 2.2. Geometry of a 2D plate
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Guided waves in plates propagate in the same way as bulk waves in the infinite

medium except the fact that the internal longitudinal and shear waves are reflected at

the free surfaces. The theory of guided waves is treated in detail in several textbooks

[33, 35]. Guided waves result from this interaction of both wave types with the top and

bottom surfaces of the plate where Snell’s law is satisfied. This implies that both wave

types have the same wave number kx in the x direction. As represented in Figure 2.2,

in general there can be up to two shear waves and two longitudinal waves. Following

the notation used previously for bulk waves, the field F can be expressed as:

 (2·28)

where  (2·29)

            (2·30)

It is essential to note that, at this stage, Φp, Φn, Ψp, Ψn and kx are unknown.

The symmetry of the system imposes that the amplitude of waves going up is either

equal to or opposite to the amplitude of waves going down:

 and  or  and  (2·31)

This leads to the existence of two types of guided modes: symmetric and anti

symmetric modes as represented in Figure 2.3. 

Figure 2.3. Typical deformation caused by symmetric (a) and anti-symmetric (b) modes.
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When the amplitudes are equal, symmetric modes exist. The common factor 

is omitted and the following expressions are obtained:

 (2·32)

 (2·33)

Equations 2·2, 2·3 and 2·6 are still valid in this case. The displacements and stresses

are derived:

 (2·34)

 (2·35)

 (2·36)

or  (2·37)

 (2·38)

or  (2·39)

 (2·40)

or  (2·41)

When the amplitudes are opposite, anti symmetric modes exist. The common factor

 is omitted and the following expressions are obtained:

 (2·42)

 (2·43)

 (2·44)

 (2·45)
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 (2·46)

or  (2·47)

 (2·48)

or  (2·49)

 (2·50)

or  (2·51)

Φa, Φs, Ψa, Ψs and kx are unknown. In order to calculate them, the traction-free

boundary conditions on the top and bottom surfaces (where ) are used:

 and  (2·52)

For symmetric modes, this means:

 and

 (2·53)

Φs=1 is taken arbitrarily and leads to:

 and  (2·54)

This gives the dispersion equation that enables the calculation of kx:

 (2·55)

 (2·56)
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or  (2·57)

which can be further simplified to:  (2·58)

For anti symmetric modes, in a similar way, the dispersion equation is:

 (2·59)

Equation 2·58 and 2·59 were first published by Lamb [36]. These are solved

numerically as there are no analytical solutions to these equations. The solutions give

values of kx which can be either real (propagating mode), imaginary (evanescent mode)

or complex (propagating evanescent mode). Figure 2.4 illustrates the deformation of a

plate caused by these various types of modes. 

Propagating waves are those which have received the largest amount of research in the

field of NDT as they can be used for long range inspection of structures such as rails,

plates or pipes. For a given set of properties (plate thickness, bulk wave numbers and

frequency), there is a finite number of real and imaginary wave numbers and an infinite

number of complex wave numbers. It implies the existence of a finite number of

propagating and evanescent waves and an infinite number of propagating evanescent

modes. DISPERSE [1, 37], a software tool developed at Imperial College, provides a

useful tool to find these solutions. Figure 2.5 shows an example of dispersion curves

of propagating modes in a typical engineering structure (3mm thick steel plate). 

Figure 2.4. Illustration of the deformation of a plate caused by a) propagating, b) propagating 
evanescent, c) evanescent waves which have a) real, b) complex, c) imaginary wave numbers.
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These can be presented in many forms but a common form is to represent the phase

velocity of the modes against the frequency-thickness product, as shown in Figure 2.6.

In this figure, it can be seen that the phase velocities of guided waves in a plate vary

with the frequency thickness product. Guided waves in a plate are therefore described

as dispersive.     

In practical NDT, wave packets (often tone bursts) are usually used. Since guided

waves are dispersive, the wave packet will not retain its original shape as it travels. In

this case, it is convenient to define the velocity of the packet using the group velocity,

found from the wave number curves.

Figure 2.5. Wave number against frequency for a 3mm thick steel plate

Figure 2.6. Phase velocity against frequency.thickness for a 3mm thick steel plate
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The two previous figures illustrate the existence of several guided modes whose

existence depends on the frequency and whose velocity varies against the frequency. 

In order to identify the modes, each mode is named by a letter and a number.

Symmetric modes use ‘S’ and anti-symmetric modes ‘A’. The number is a counter

variable starting at 0 used to distinguish modes in their family. S0 is the fundamental

symmetric mode, S1, the first symmetric mode to appear as the frequency increases,

and so on.

Another aspect of a guided mode is its mode shape. As can be seen from the

displacement and stress equations derived previously in this section, the amplitudes of

these values vary through the thickness of the plate. Knowledge of the mode shapes is

essential to NDT and these are commonly plotted as shown in Figure 2.7.  

2.3. Finite elements modelling of wave propagation

In this work, wave propagation problems are solved using both implicit and explicit

solvers. Time domain explicit models are run with ABAQUS/Explicit [14]. For

implicit models, ABAQUS/Standard [14] and COMSOL Multiphysics [15] are used.

It is important to emphasize that ABAQUS/Explicit and ABAQUS/Standard are two

separate programs which are part of the ABAQUS package. This section presents the

details of the numerical implementation in these cases.

Figure 2.7. Example of A0 mode shapes for a free plate case at different frequencies, shown for a 3mm 
thick steel plate
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2.3.1 Explicit method

Explicit dynamic analysis in ABAQUS/Explicit is a direct time stepping method based

on the central-difference operator and the use of diagonal element mass matrices [14].

Let us start with the equation of dynamic equilibrium:

 (2·60)

, ,  are the acceleration, velocity and displacement respectively. [M] is the

diagonal lumped mass matrix whose values are determined by the density of the

material used. [K] is the static stiffness matrix whose values are defined by the Young’s

modulus and Poisson’s ratio. [C] is the viscous damping matrix which is determined

by the Rayleigh damping. Stiffness or mass proportional damping can be introduced:

 (2·61)

where CM and CK are the mass and stiffness proportional damping coefficient. [Fa] is

the external force.

Wave propagation occurs when the initial equilibrium is disturbed by the application

of forces or displacement constraints on nodes. Commonly, these are applied in the

form of a tone burst. The central difference operator links the displacement, velocity

and acceleration in the following way: 

 (2·62)

 (2·63)

with Δt, the time increment and i, the time increment number.

The procedure is explicit because the process is advanced using known values from the

previous time step. 

M[ ]u·· C[ ]u· K[ ]u+ + Fa[ ]=

u·· u· u

C[ ] CM M[ ] C+ K K[ ]=

u· i 0.5+( ) u· i 0.5–( ) Δt i 1+( ) Δt i( )+
2

-----------------------------------u·· i( )+=

u i 1+( ) u i( ) Δt i 1+( )u· i 0.5+( )+=
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The computational efficiency comes from two aspects of the explicit scheme. Firstly,

unlike in the implicit scheme, there is no need to assemble and invert the global mass

matrix. Secondly, the diagonal mass matrix is used when calculating the acceleration

in the following way:

 (2·64)

where [F] is the applied load vector and [I] is the internal force vector. [M]-1 is easily

calculated because [M] is diagonal.

This implementation is conditionally stable and the time step Δt has to be smaller than

the critical time step Δtcr which in an undamped system depends on the highest

frequency in the smallest element [14]:

 (2·65)

In wave propagation modelling, as small deformations of elements is assumed, an

approximation often used is that the critical time step is the transit time of a dilatational

wave through the smallest element in the model [38]:

 (2·66)

where ΔL is the smallest element size and cL is the velocity of the dilatational wave.

Figure 2.8 illustrates the value of ΔL for a linear square element, a linear equilateral-

triangular element and a quadratic equilateral-triangular element. It can be noted that

this distance corresponds to the shortest distance between 2 nodes for a square element

but this is not the case for triangular elements. This will be verified in Section 4.2.3.1. 

u·· i( ) M[ ] 1– F[ ] i( ) I[ ] i( )–( )=

Δt Δ≤ tcr
2

ωmax
------------=

Δt Δtcr≤ ΔL
cL
-------=
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The condition in equation 2·66 is referred to as the CFL condition after R. Courant, K.

Friedrichs, and H. Lewy [39]. The actual time step used in a model can be expressed

in terms of its ratio by the critical time step. This ratio is called the Courant (or CFL)

number:

 (2·67)

therefore the time increment is defined as:

 (2·68)

Given that the space usually needs to be discretized in such a way that the shortest

wavelength in the model is finely discretized (usually, at least 7 nodes per shortest

wavelength are used), a large number of increments is required to solve a model. The

number of increment in an explicit scheme is larger than the one required with a time

domain implicit scheme but, since global mass and stiffness matrices do not need to be

formed nor inverted, each increment is computationally inexpensive. This makes the

explicit scheme particularly attractive for wave propagation.

2.3.2 Implicit method

Although it is possible to use implicit schemes to solve time domain wave propagation

problems, the central difference explicit scheme has proved to be far more efficient

than the implicit one. Therefore, in this work, time domain implicit schemes are not

investigated and the implicit method is only used to solve wave problems in the

Figure 2.8. Illustration of ΔL for a a) linear square element, b) linear triangle element and c) quadratic 
triangle element.
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frequency domain (i.e. subjected to continuous harmonic excitation). The steady state

response of the model forced by an harmonic excitation (i.e. at a single frequency) is

calculated. In this case, it is necessary for waves to radiate out of the area of study in

order to model wave propagation. The particular aspect of radiation outside the area of

study is the topic of Chapter 3.

This procedure provides frequency domain results which can be used to reconstruct

time domain results. The reconstruction procedure is presented in Section 3.5.2.

2.3.2.1 ABAQUS/Standard procedure

The direct steady-state dynamic analysis procedure of ABAQUS/Standard is used to

model frequency domain wave propagation. The formulation is based on the dynamic

virtual work equation over a small volume V of exterior surface St[14]: 

:  (2·69)

where  is the stress, t is the surface traction and  is the strain variation compatible

with the displacement variation . The : operation means that corresponding

conjugate components of the stress and strain rate matrices are multiplied as pairs and

the products summed.

The discretized form of this equation is defined as:

 (2·70)

with the mass matrix  (2·71)

the internal load vector :  (2·72)

and the external load vector  (2·73)

ρ u u·· V ρCM u u· V εδ
V
∫+d⋅δ

V
∫+d⋅δ

V
∫ σ V u t Sd⋅δ
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σ εδ

uδ

uN MNMu··M CMMNMu· M IN PN–+ +{ }δ 0=

MMN ρNN NM Vd⋅
V
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IN βN

V
∫= σ Vd

PN NN t Sd⋅
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NN is the shape function of the specified elements and  defines the strain variation

from the variation of the kinematic variables. The change in internal force vector is:

[ : : ]  (2·74)

The change in stress is:

:  (2·75)

where  is the elasticity tensor. The strain and strain rate become:

 and  (2·76)

The stiffness matrix is defined as:

: :  (2·77)

Therefore equation 2·70 becomes:

 (2·78)

For harmonic excitation and response, we can write:

 (2·79)

 (2·80)

 (2·81)

 (2·82)

βN
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V
∫= ΔβN σ βN+ Δσ Vd

Δσ Del= Δε CKΔε·+( )

Del
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V
∫= Del βM Vd

uN MNMu··M CMMNM CKKNM+( )u· M KNu PN–+ +{ }δ 0=

ΔuM ℜ uM( ) iℑ uM( )+( ) iωt( )exp=
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ΔPM ℜ PM( ) iℑ PM( )+( ) iωt( )exp=
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Therefore Equation 2·78 can be written as:

 (2·83)

Solving this equation provides the complex response of the system. Provided that

radiation out of the area of study occurs, this response describes the wave propagation

phenomenon occurring in the model.

2.3.2.2 COMSOL Multiphysics procedure

In COMSOL Multiphysics, it is possible to solve a model by directly defining partial

differential equations (PDE) in the following form [15]:

 in  (2·84)

 in  (2·85)

 in  (2·86)

 is the computational domain,  is the domain boundary and n is the outward unit

normal vector on . u is a dependent variable unknown on the computational domain

and can be a scalar or a vector, c, a, g, h and r are constants or matrices depending on

the form of u.

In a 2D vectorial problem in an orthonormal coordinate system (x,y), the displacement

is defined as:

 (2·87)

with u1 and u2, two independent scalar variables.

KNM ω2MNM– ω CMMNM CKKNM+( )–

ω CMMNM CKKNM+( )– KNM ω2MNM–( )–

ℜ uM( )

ℑ uM( )

ℜ PM( )

ℑ–( )PM
=

∇ c– ∇u( ) au+⋅ 0= Ω

n c∇u( )⋅ g= Ω∂

hu r= Ω∂

Ω Ω∂

Ω∂

u u1x u2y+=
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c and a are defined as:

 (2·88)

 (2·89)

In the expanded form, Equation 2·84 gives:

-  (2·90)

-  (2·91)

-  (2·92)

-  (2·93)

Since the equations of dynamic equilibrium in the frequency domain for a 2D isotropic

elastic medium are:

 (2·94)

 (2·95)

c

c1111 c1112

c1121 c1122

c1211 c1212

c1221 c1222

c2111 c2112

c2121 c2122

c2211 c2212

c2221 c2222

=

a
a11 a12

a21 a22

=

x∂
∂ c1111 x∂

∂u1 c1112 y∂
∂u1 c1211 x∂

∂u2 c1212 y∂
∂u2+ + +⎝ ⎠

⎛ ⎞

y∂
∂ c1121 x∂

∂u1 c1122 y∂
∂u1 c1221 x∂

∂u2 c1222 y∂
∂u2+ + +⎝ ⎠

⎛ ⎞ a11u1 a12u2+ + 0=

x∂
∂ c2111 x∂

∂u1 c2112 y∂
∂u1 c2211 x∂

∂u2 c2212 y∂
∂u2+ + +⎝ ⎠

⎛ ⎞

y∂
∂ c2121 x∂

∂u1 c2122 y∂
∂u1 c2221 x∂

∂u2 c2222 y∂
∂u2+ + +⎝ ⎠

⎛ ⎞ a21u1 a22u2+ + 0=

x∂
∂ λ 2μ+( ) x∂

∂u1 λ y∂
∂u2+⎝ ⎠

⎛ ⎞
y∂

∂ μ y∂
∂u1 μ x∂

∂u2+⎝ ⎠
⎛ ⎞ ρω2u1+ + 0=

x∂
∂ μ y∂

∂u1 μ x∂
∂u2+⎝ ⎠

⎛ ⎞
y∂

∂ λ x∂
∂u1 λ 2μ+( ) y∂

∂u2+⎝ ⎠
⎛ ⎞ ρω2u2+ + 0=



Chapter 2
Theoretical background

42

It is therefore possible to solve Equations 2·94 and 2·95 using Equation 2·84 by

defining c and a as

 (2·96)

 (2·97)

The model is excited by either applying a force on a boundary with Equation 2·85 or

prescribing a displacement using Equation 2·86. The model is solved using one of

COMSOL built-in solvers and solutions can be output to be post processed in

MATLAB. As with ABAQUS/Standard, provided that radiation out of the area of

study exists, the response obtained represents the wave propagation phenomenon

occurring in the system.

2.4. Conclusions

In this chapter, the theoretical background necessary to the work presented in this

thesis was presented. The theory of wave propagation in elastic media was developed

and was followed by a presentation of the FE techniques used in this work.

c

λ 2μ+ 0
0 μ00 00

000 00 λ000 000

μ00 00 00 0

000 00 μ00 00

λ000 000 00 0

μ00 00 0

0 λ 2μ+

=

a ρω2 0

0 ρω2
=
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Chapter 3 

Modelling waves in unbounded elastic 

media using absorbing layers

3.1. Introduction

Unwanted reflections from the boundaries of the system have been a limiting factor for

FE modelling of waves. In time domain solving, this leads to a large increase in the

model geometric size (and therefore a large increase in the number of degrees of

freedom to be solved) as it is generally desirable to separate in time the interaction of

the waves with defects from unwanted boundary reflections. This issue is illustrated in

Figure 3.1 where it can be seen that the plate had to be extended to achieve separation

of the signal of interest and the unwanted reflections. Moreover, in frequency domain

solving, removal of unwanted reflections is a requirement in order to correctly

represent wave propagation in the system.

Removing unwanted reflections in numerical wave propagation models is equivalent

to representing total radiation outside the area of study. This topic has attracted a vast

amount of interest in the last 25 years [17]. Well known techniques include infinite

elements [18], boundary integral methods [19], non reflecting boundary conditions

Figure 3.1. a) 2D plane strain model of a plate including a defect, b) Time signal at the monitoring 
point
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(NRBC) [20] and absorbing layer techniques [5, 21, 22, 23, 24]. These various

techniques have proved successful in their context but, as engineers involved in

developing ultrasound NDT applications, our goal is to find computationally efficient

techniques for removing unwanted reflections that can be used with commercial FE

packages. Commercial packages were chosen from the outset of the study not only

because they offer memory efficient and robust solvers but also because they remove

the necessity of developing and maintaining specialist codes. It is key that the

technique that achieves the removal of unwanted boundary reflections is easily

implementable in the commercial FE packages. It needs to be able to remove the

reflections with a high degree of accuracy (typically, in this work, 60dB 99.99% of

the incident wave amplitude removed) as ultrasound NDT relies on quantitatively

evaluating relatively low amplitude signals. A significant reduction in model

geometric size compared with the classical technique (i.e. increasing model geometric

size) needs to be achieved in order to justify the use of the technique.

In this work, I have focused on two different absorbing layer techniques for

elastodynamic problems. I implemented “Perfectly Matched Layers” [24] (PML) in

the frequency domain in COMSOL [15] and “Absorbing Layer Using Damping” [31,

32] (ALID) for time and frequency domain in ABAQUS [14] and COMSOL.

Optimum definition of the layer parameters is essential to improve modelling

capabilities, but it becomes counter efficient to invest a large amount of time to

determine the best parameters to use for these layers. This issue is raised in several

papers [40,41]. In order to resolve this, we have developed analytical models to enable

a quick and accurate determination of adequate layer parameters.

One of the challenges of this chapter is to stimulate interest from fellow researchers,

engineers and modellers. To convince them of the advantage of the techniques, two

typical examples demonstrate the added value of using absorbing layers.

≡
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3.2. Review of non-investigated techniques

As mentioned above, only the use of absorbing layers is investigated in detail as it

proved to be the only technique fitting the requirements. In this section, the alternative

infinite element and non reflecting boundary condition techniques are summarised.

The justification why these are not investigated is given.

3.2.1 Infinite element methods

Infinite elements are a special type of element with modified properties which can be

used in conjunction with standard finite elements and which simulate an infinite space.

A general presentation of the development of infinite elements can be found in [18]. A

single row of infinite elements is positioned outside the boundaries of the area of study

as shown in Figure 3.2. 

Infinite elements have been proved to work relatively well for static cases as well as in

certain domains of wave propagation: electromagnetism, acoustics and elastic bulk

waves with incidence at angles close to the normal. It should be noted that elastic wave

problems are more complex than acoustic or electromagnetic ones because in 2D two

wave types exist in this case. In the general case of wave propagation, the simulation

of an infinite expanse of material can be defined using the Sommerfeld radiation

condition [42] which defines the condition for total radiation of a wave from a source.

Satisfying exactly the radiation condition in the infinite element results in perfect

absorption and no reflection from the boundary. For solid media, ABAQUS provides

infinite elements based on [43]. A benchmark problem for the use of infinite elements

is available in the ABAQUS user manual [14]. This example is similar to the one

analysed in [44]. The geometry of the model is presented in Figure 3.3.a. The problem

Figure 3.2. Illustration of use of infinite elements

Area of study Infinite elements
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is an infinite half-space subjected to a vertical pulse line load in the form of a 10MHz

raised-cosine function 1-sin(ωt/3)*cos(ωt) with a spatially constant amplitude of

1GPa. The vertical displacement is monitored at point A 2mm below the edge of the

load as indicated on Figure 3.3.a. The resulting displacement is plotted on Figure 3.3.b.

A comparative model is created. This model has the same properties as the benchmark

but does not use infinite elements. Instead, the boundaries of the area of study where

the infinite elements were placed are moved away from point A so that the monitored

signal at point A does not include any interaction of the waves with these boundaries.

This represents an exact reference and the difference between the two models is the

reflection from the infinite element boundary. This model is shown in Figure 3.3.c. and

the displacement monitored at point A is plotted in Figure 3.3.d.

There is a clear discrepancy between the 2 monitored signals. This indicates that a

noticeable reflection occurs as the wave reaches the infinite elements. This example

confirms that infinite elements are not suitable for high accuracy removal of unwanted

reflection of bulk waves. Studies [45, 46] have proved that similar conclusions can be

drawn for the use of these elements with guided waves. These findings justify why this

technique is not investigated further in this chapter.

Figure 3.3. ABAQUS benchmark model: a) Model geometry, b) vertical displacement at point A, 
Extended model (reference): c) Model geometry, d) vertical displacement at point A
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3.2.2 Non reflecting boundary condition

Non reflecting boundary conditions (NRBC) are special boundary conditions used in

FE or finite difference (FD) methods to model wave propagation in unbounded media.

The dimensions of the model are the same as the area of study; only the boundary

conditions are changed. The modified boundary conditions generally use extra

variables in order to approximate the infinite expanse of the medium. Many different

methods have been developed for a wide range of fields. Early work in the ‘70s on

NRBC was dominated by the use of the radiation condition given by Sommerfeld [42]

but this method had limits as demonstrated in [47]. Other methods were developed

such as the Engquist-Majda [48], Bayliss-Turkel [49], and are still widely used today.

Exact non-local methods based on the Dirichlet-to-Neumann map [50, 51] or the

difference potential method were developed from the late ‘80s. In the last 10 years,

high order local NRBC have been developed for various cases [52]. These techniques

were proved to work correctly but, as they require modification of the standard solving

procedure, the development of specialist FE codes is required. To the best of the

author’s knowledge, they cannot be implemented in commercially available FE

packages and are therefore not investigated here.

3.3. Absorbing layer theory

3.3.1 Concept

Absorbing layers are finite regions “attached” at the extremities of a model - see Figure

3.4. Their objective is to approximate the case of an unbounded problem by absorbing

waves entering them. Small reflections from the absorbing region exist but these can

be made acceptably small by correctly defining the layer’s parameters. 

Figure 3.4. Absorbing layer concept for 2D models: a) infinite medium, b) semi infinite medium, c) 
plate

Area of study Absorbing layer
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3.3.2 Perfectly matched layer (PML)

The PML technique was created in 1994 by Berenger for electromagnetism [24] and

has been extended to other fields such as acoustics [53, 54, 55] and seismological and

other elastic waves [56, 57, 58, 59]. As its name indicates, a PML matches perfectly

the impedance of the area of study. This means that, in theory, a wave enters a PML

without reflection. Once inside it, the wave decays exponentially. A PML can therefore

be used to achieve total radiation of a wave out of the area of study.

In this work, the technique is implemented in the frequency domain for an

elastodynamic case without splitting the variables. This implementation was defined

in collaboration with Dr Elizabeth Skelton, a mathematician at Imperial College [60].

Let us consider an harmonic wave travelling in the x direction which can be defined by:

 (3·1)

For an elastic isotropic medium in 2D plane strain, the equations of equilibrium are:   

 (3·2)

 (3·3)

In the PML, we want the wave to decay exponentially and therefore to have the

following form. 

 (3·4)

The modification from equation 3·1 to equation 3·4 can be achieved by performing a

change of variable in the PML.

 (3·5)

u x y t, ,( ) u0e iωt– eikx=

x∂
∂ λ 2μ+( ) x∂

∂ux λ y∂
∂uy+⎝ ⎠

⎛ ⎞
y∂

∂ μ y∂
∂ux μ x∂

∂uy+⎝ ⎠
⎛ ⎞ ρω2ux+ + 0=

x∂
∂ μ y∂

∂ux μ x∂
∂uy+⎝ ⎠

⎛ ⎞
y∂

∂ λ x∂
∂ux λ 2μ+( ) y∂

∂uy+⎝ ⎠
⎛ ⎞ ρω2uy+ + 0=

u x y t, ,( ) u0e iωt– e
ikx kαxx–

=

x x 1 iαx+( )→
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This change of variable can be interpreted as:

 (3·6)

After this change of variable for x and y and some algebra, the equations of equilibrium

3·2 and 3·3 become:

 (3·7)

 (3·8)

In the area of study, αx and αy are equal to zero, hence Sx and Sy are equal to 1 and

equation 3·7 and 3·8 become equation 3·2 and 3·3. In the PML, αx and αy are

respectively x and y dependent and are defined as illustrated in Figure 3:

 and  (3·9)

with Ax and Ay two constants.      

The same approach can be readily extended to 3 dimensional cases by following the

same reasoning. 

Figure 3.5. Variation of αx(x) and αy(y) in a 2D model.
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In order to avoid numerical issues due to the discontinuity of the attenuation parameter

and its first and second derivatives at the interface between the area of the study and

the PML, the attenuation parameters are taken to vary at least quadratically with the

distance which implies that p in equation 3·9 has to be superior or equal to 2.

At the end of the PML, the decaying wave is reflected and generally partially mode

converted. The reflected waves propagate back toward the area of study while

continuing to decay and then re-enter the area of study. The PML has to be defined so

that these reflections are negligible.

Correct definition of the PML parameters (thickness of the layer, α and p) is essential

to achieve an efficient model. These points are looked at in detail later in this chapter.

Solving of the model is done in the frequency domain but time domain results can be

obtained easily by solving the model over a range of frequency and performing an

inverse Fourier transform.

3.3.3 Absorbing layer using increasing damping (ALID)

The ALID is an absorbing layer which is made of a material with the same properties

as those of the area of study apart from having a gradually increasing damping. The

general concept was mentioned in 1980 by Israeli and Orszag in [22] and was recently

revived by Liu et al [21] and Castaings et al [16].

Let us start with the equation of equilibrium in the time domain:

 (3·10)

with ,  and , the mass, damping and stiffness matrices.

By convention, we consider harmonic waves of the form: . We

have . The equation of equilibrium in the frequency domain is:

 (3·11)

M[ ]u·· C[ ]u· K[ ]u+ + f=

M[ ] C[ ] K[ ]

u x y t, ,( ) u0e iωt– eikx=

u· i– ωu→

M[ ]– ω2u C[ ]– iωu K[ ]u+ f=
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Stiffness or mass proportional damping can be introduced in time or frequency domain

models in most FE packages and is generally termed Rayleigh damping. We define:

 (3·12)

where CM and CK are the mass and stiffness proportional damping coefficients.

Equation 3·11 becomes:

 (3·13)

 (3·14)

In an ALID with a boundary perpendicular to the x axis, the value of CM and CK are

gradually increased in the x direction. We set the following formulation:

 and  (3·15)

CMmax and CKmax are positive real numbers and X(x) varies from 0 at the interface

between the ALID and the area of study to 1 at the end of the ALID following a power

law whose order is defined by p. In a time domain model, CMmax and CKmax are

constant and therefore do not vary with the frequency. This leads to a variation of the

wave attenuation against the frequency. In a frequency domain model, it can be made

constant over the range of frequencies by adjusting CMmax and CKmax accordingly with

frequency.

The effect of Rayleigh damping can be better understood by using a formulation using

complex density and complex stiffness modulus in the ALID:

 or  (3·16)

C[ ] CM M[ ] C+ K K[ ]=

M[ ]– ω2u CM M[ ] C+ K K[ ]– iωu K[ ]u+ f=

M[ ]– 1 i
CM
ω

-------+⎝ ⎠
⎛ ⎞ ω

2
u K[ ] 1 iω– CK( )u+ f=

CM x( ) CMmax X x( )p⋅= CK x( ) CKmax X x( )p⋅=

ρALID ρ 1 i
CM x( )

ω
---------------+⎝ ⎠

⎛ ⎞= EALID E 1 iω– CK x( )( )=
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The wavenumber is proportional to the square root of the density ρ and inversely

proportional to the square root of the Young’s modulus, E:

 (3·17)

From this, we see that, in the ALID, the wave number is complex and the solution to

wave equation becomes:

 (3·18)

k’ and k’’ are the real and imaginary parts of the wave number and are both positive

numbers for a wave propagating in the positive direction. k’’ induces the decay of the

wave in the layer. The real part of the wave number in the ALID varies with the

damping and does not match perfectly the real part of the wave number in the area of

study. This denotes a change in acoustic impedance which will cause reflections at the

interface of the ALID as well as inside it. To simulate unboundedness with high

accuracy, these reflections need to be negligible. Increasing the damping gradually

enables us to achieve this. The technique is not as neat as the PML technique since

there is a change of impedance between the area of study and the ALID, and inside the

ALID itself, but it has the advantage of being easily implementable in both time and

frequency domain solving in most commercially available FE packages.

One important point to note is that the introduction of damping decreases the value of

the stable time increment when solving the model with the central difference explicit

scheme [14]. The value of the damping at the end of the ALID is usually very large

compared to values commonly used in structures. A high value of CM causes a

relatively small decrease in the stable increment whereas one of CK usually has a very

strong effect leading to a great loss in computational efficiency (e.g. time increment

divided by a thousand or more). Therefore, it is preferable to avoid using CK to define

ALID with an explicit scheme. For this work, we have only used CM for time and

frequency domain studies:

 and  (3·19)

k ω ρ
E
---∝

u x y t, ,( ) u0e iωt– eik′x k″x–=

CM x( ) CMmax X x( )p⋅= CK x( ) 0=
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It is easy to see that correct definition of the layer parameters (length of the layer L,

variation of the attenuation parameter CM and the power law p) is essential to achieve

an efficient model.

In FE models, as the space is discretized, the gradual increase of CM occurs by steps.

The ALID is defined as a series of sub layers having the same material properties but

different values of CM. It is preferable to minimize the change in CM between two

adjacent sub layers and therefore it is recommended to have one element thick sub

layers.

3.4. Efficient layer parameters’ definition

The target when defining layer parameters is to achieve a good approximation of

unboundedness in the area of study with the shortest absorbing layer possible. It is

essential to determine a sensible acceptability criterion for the approximation of

unboundedness. For this work, a layer is considered acceptable when the amplitude of

waves reflected from it is smaller than 0.1% (-60dB) of the amplitude of the incident

wave entering it. This value was chosen for 2 reasons. The first one is that, given that

it is common for NDT applications to monitor reflection as low as 2%, a value of 0.1%

gives a good ratio of reflection to signal. The second one is that one aim of this study

is to validate the capacity of a technique to achieve highly accurate absorption of the

incident wave. When it comes to defining a criterion for a particular model, the key is

to have a high ratio between the signal of interest (e.g. reflection from defects or

structural features) and the reflection from the absorbing layer. Therefore, in some

models, an acceptability criterion can be as high as 5% of the incident wave. Generally,

a low percentage criterion (e.g. 0.1%) leads to a thicker absorbing layer than a high

percentage one (e.g.5%). Hence, an adequately chosen criterion is the first step towards

achieving computational efficiency.

Running FE test cases to determine layer parameters has proved to be highly time

consuming and inefficient. It would be beneficial for modellers to be able to use tools

to define the layer parameters quickly, reliably and efficiently. Analytical models have

therefore been created to evaluate the reflection coefficient of absorbing layers for bulk

and guided waves cases. In the following parts, the explanation of what these models
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represent and why layers parameters can be defined using them are given. These

models guarantee the fulfilment of the acceptability criterion and greatly speed up the

correct definition of layer parameters.

All the following models are defined in the frequency domain, as harmonic waves are

considered, and they can be extended readily to work in the time domain. For a time

domain model, the modeller needs to know the frequency content of its signal and

validate the absorbing layer over the range of interest. The parts of the frequency

spectrum whose amplitude is smaller than the acceptability criterion can be ignored.

The rest of the frequency spectrum defines the frequency range of interest. It is

advantageous to take into account the actual frequency spectrum as it relaxes the

acceptability criterion for the low amplitude parts of the frequency spectrum.

3.4.1 Analytical model for bulk waves

3.4.1.1 General definition

Analytical models presented in this section have been developed to evaluate the

reflection coefficient of harmonic longitudinal and shear plane waves from absorbing

layers over a range of frequencies and angles. Although all models in this part are 2

dimensional, they are also valid for 3 dimensional cases. The intention is that these

models can be used to validate the acceptability of a given absorbing layer for both

longitudinal and shear waves over any desired range of frequencies and angles of

incidence. As one considers the geometry of an area of study, it is easy to see that shear

and longitudinal waves coming from a range of sources may be incident at the

absorbing layers. As will be seen later, knowledge of the range of angles at which these

waves are incident at the absorbing layer is one consideration needed to define the

absorbing layers. The range of angles of incidence is determined by the geometry of

the model and the position of wave sources such as excitation points or scatterers in the

model, as illustrated in Figure 3.6.

Frequency domain technique using monochromatic plane waves rather than transient

waves generated by point sources are used in the model as this greatly simplifies the

approach and provides a conservative value of the reflection from the layer. In the real

model, waves decay (beam spread) before reaching the absorbing layer and reflections
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spread spatially (unless the incidence is purely normal) as the reflection phenomenon

will occur at different locations in the layer - see Figure 3.7. In the time domain, the

reflection will also be spread in time as a consequence of the previous point. 

To summarize, in order to validate an absorbing layer for a given model against a

certain level of reflection defined by the modeller, one can safely use an analytical

model that evaluates the reflection coefficient for harmonic plane waves incident at the

layer over the range of angles of incidence present in the model and the range of

frequencies of interest.

3.4.1.2 Validation procedure

In order to confirm the validity of the analytical models, their results are compared with

results from FE models. The challenge is to reproduce exactly the plane wave

interaction with the absorbing layers. As, exceptionally in this case, the reflected

amplitude from an absorbing layer is the one of interest, it is necessary to use extremely

Figure 3.6. Illustration of extreme angles defining the range of angles to consider when dimensionning 
an absorbing layer.

Figure 3.7. Spatial spread of the reflection and transmission for a single layer (no mode conversion 
shown for simplicity)
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low (-120dB) reflection ALID referred to below as “ultra” ALID in order to correctly

monitor the reflection from the absorbing layer studied.

One model shown in Figure 3.8.a is used for normal incidence. This is a 2D plane strain

model where the displacements on the top and bottom surfaces are constrained to zero

in the vertical direction to have plane longitudinal wave propagation or in the

horizontal direction to have plane shear wave propagation. The excitation is applied

uniformly over the thickness of the model on one side of the area of study where an

“ultra” ALID is placed. On the other side is the layer studied, either an ALID or a PML.

The complex displacement is monitored along a line in the area of study and the

amplitude of the incident and reflected signal are determined by performing a spatial

FFT [61]. 

For other angles of incidence, another 2D plane strain model is defined as illustrated

in Figure 3.8.b. The area of study is triangular. On one edge is the layer studied. On the

other two, “ultra” ALID are placed. The excitation is uniformly applied on one edge.

The displacements are monitored along 3 lines aligned with the predicted propagation

direction of the incident and reflected waves. Spatial FFTs are performed to obtain

reflection coefficients. Models are non-dimensional and the material is defined so that

Figure 3.8. FE model used to validate the analytical models a) normal incidence model, b) angled 
incidence model

Area of study

PML or ALID

a)

“Ultra” ALID

b)

Excitation
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the longitudinal and shear wavelengths are 2 and 1 units respectively: Young’s

modulus is 8/3, Poisson’s ratio is 1/3 and density is 1.

Shear and longitudinal wave cases are treated separately. The lengths L of the layers

are L=3 for longitudinal wave incidence and L=1.5 for shear wave incidence for PML

and ALID. The attenuation parameters as defined previously are Ax=1 and p=3 for

PML and CMmax=10π and p=3. 

Performance of the two techniques should not be compared with each other using these

examples, as the layers are not optimized.

3.4.1.3 PML analytical model

The PML analytical model for bulk waves is based on the knowledge of wave decay

in the PML [60] and the reflection/mode conversion occurring at the end of the PML.

The PML is defined in the x direction and αx is defined as in equation 3·9. Waves in

the PML have the following form:

 (3·20)

where θ indicates the angle of incidence of the wave as shown in Figure 3.8. Note that

the decay rates of longitudinal and shear waves are unequal as their wave numbers k

differ. If the amplitude u0 of a wave entering the PML is 1, then the amplitude of the

wave after travelling the length of the PML is:

 (3·21)

At the free end of the PML, reflection and mode conversion occurs. Calculation of the

amplitude of each reflected wave is done using the stress free boundary conditions at

the end of the PML:

 and  (3·22)

u x y t, ,( ) u0 iωt–( )exp ik x θcos y θsin+( )( ) Axk θxpcos–( )expexp=

Amplitude Axk θ( ) Lp 1+

p 1+( )
-----------------cos–⎝ ⎠

⎛ ⎞exp=

σxx 0= σxy 0=
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The reflected waves exponentially decay again over the length of the PML following

equation 3·21. The theoretical reflection coefficient for bulk waves incident at a PML

over a range of angles for a given case can therefore be quickly calculated using this

method.

As mentioned before, in theory, no reflection should occur at the interface of, or inside,

the PML. In practice, numerical experiments have shown that this does occur and is

evident in extreme cases when a limited number of elements cannot accurately

represent a strong decay of the wave (spatial under-sampling) induced by a large value

of Αx. Figure 3.9.a presents the reflection obtained at normal incidence (θ=0) for a case

where a PML with a quadratic variation of α is used. Αx is varied from 0 to 50. For low

values of Αx the FE reflection coefficient at normal incidence matches the prediction

of the theoretical model but as Αx increases a non-negligible numerical reflection

occurs. One can see that the numerical reflection grows with Αx and is negligible for

low values of Αx where the theoretical reflection is dominant.  

It is also shown that the numerical reflection also depends on the number of elements

per wavelength. A series of models are run while only varying the number of elements

per wavelength. Results are shown in Figure 3.9.b. As the number of elements per

wavelength increases, the numerical reflection decreases. Further studies have shown

that the numerical reflection can also be decreased by increasing the polynomial order

of the shape function of the element or reducing the decay rate per wavelength. In most

cases, the element size and order are given by other parameters of the model and

altering them to reduce numerical reflection would decrease computational efficiency. 

Figure 3.9. a) Reflection coefficient against Ax b) Reflection coefficient against the number of 
elements per wavelength.
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Unlike the theoretical reflection which is a physical phenomenon, numerical reflection

is closely linked to the numerical implementation of the model and is therefore difficult

to predict. A simple pragmatic solution is proposed to avoid the problem based on

physical data. In a given model, the wave which suffers the most from numerical

reflection is the one with the highest wavenumber (and hence the shortest wave length)

reflected at normal incidence (cosθ=1) as it is the most strongly attenuated (i.e. the

decay occurs on fewer elements than any other wave).

Starting by taking a layer whose length Lor is equal to the shortest wavelength, the

reflection coefficient is:

 (3·23)

Numerical reflection will be minimum for the lowest value of Αx that satisfies the

acceptability criterion RCdB. Experience has shown that for this PML length, the

calculation can be based on the theoretical value and the numerical reflection can be

confidently neglected. Αx is taken equal to:

 (3·24)

Keeping this value of Ax, the modeller can define the length of the PML so that it meets

the acceptability criterion over the range of interest by using the theoretical reflection

coefficients obtained with the analytical model. Clearly, Lor influences the final length

of the PML as it limits the value of Ax. Modellers can reduce the value of Lor to less

than the advised value but should be cautious that numerical reflection does not pollute

their results. 

A FE model using the parameters defined in Section 3.4.1.2 is used to verify the

validity of the analytical model. The comparison of these 2 models is shown in Figure

3.10.  

Looking at Figure 3.10, one can see that as expected there is no mode conversion at

normal incidence (θ=0). The influence of the angle of incidence is highlighted as the

RCdB 20 10 2Axk Lp 1+

p 1+( )
-----------------–⎝ ⎠

⎛ ⎞exp⎝ ⎠
⎛ ⎞log⋅=

Ax 0.5 p 1+( )
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p 1+
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⎛ ⎞
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non converted reflection of the incident mode smoothly tends towards unity as the

angle of incidence tends towards 90 degrees for both wave types. The general shape of

these curves for waves at incidence above 60 degrees indicates that PMLs generally

cope well with high angle incidence. This confirms that the range of angle of incidence

plays a critical role in determining the layer’s parameters. One can also note the

presence of critical angles indicating that evanescent waves propagating along the back

surface of the PML and decaying perpendicularly to the free surface (likely to be a

Rayleigh wave) are generated. No reflection of this wave type has been noticed in the

area of study. Overall, there is an excellent agreement between the FE model results

and the prediction obtained with the analytical model. This confirms that the analytical

model can be used to define PML parameters. 

This analytical model enables the quick evaluation of the acceptability of a given PML

for a particular model. Experience has shown that a small value of p, the variable

defining the power dependence, is usually preferable. Combined with previous

comments concerning this variable, it is recommended to use: . No great gain

in model efficiency can be achieved by optimizing p. It is advised to only concentrate

on minimising L for the recommended Ax. In the cases where time domain results are

required, it is advantageous to take into account the shape of the frequency spectrum.

Figure 3.10. Reflection coefficient for a given PML obtained with bulk wave analytical and FE models
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3.4.1.4 ALID analytical model

The ALID analytical model for bulk waves is based on a multi-layered approach. As

space is discretized in a FE model, the ALID is considered as a series of sub layers

(referred to as layers in this Section) with increasing damping. The variation of CM is

implemented by changing its value in each of these layers. Using layers one element

thick is the thinnest possible and clearly minimizes the change in damping between any

2 consecutive layers. It is of course not a problem to use layers several elements thick,

but best results were obtained with the thinnest layer possible. The ALID can be

analytically modelled using the continuity of displacements and stresses at the

interface of each of these layers. Such an analytical model will enable a modeller to

easily optimize the layer parameters.

Let us consider a multi-layered system. We define the displacement and stresses at the

front and back with the subscript f (front) or b (back). At the front of layer n, the

following equations are valid:

 (3·25)

 (3·26)

 (3·27)

and  (3·28)

ux n[ ]f

uy n[ ]f

σxx n[ ]f

σxy n[ ]f

u n[ ]f

σ n[ ]f

=

Φp n[ ]

Ψp n[ ]

Φn n[ ]

Ψn n[ ]

P n[ ]

N n[ ]

=

M n[ ]f MP n[ ]f MN n[ ]f=

u n[ ]f

σ n[ ]f
MP n[ ]f MN n[ ]f

P n[ ]

N n[ ]

=
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At the interface between layer n and n-1, there is continuity of displacements and

stresses:

 (3·29)

Several techniques exist to deal with wave propagation through multi-layered systems

[37]. The technique used in this section is based on the one used by Pialucha [62]. It

does not use a transfer matrix but a global matrix algorithm; amplitudes of the waves

are calculated at each interface in the system. The strength of the technique is that

instabilities are removed by placing the origin of all waves at their entry point in the

layer. 

Based on equation 2·26, this leads to:

 (3·30)

 (3·31)

At the back of layer n, displacements and stresses are:

 (3·32)
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At the front of layer n+1, displacements and stresses are:

 (3·33)

As there is continuity of stresses and displacements - see equation 3·29, the following

equation is defined:

 (3·34)

hence  (3·35)

In the layered system, it becomes:

 (3·36)

 (3·37)

and so on...
P[1] is known as it is the model input. Equation 3·32 can be rewritten as:

 (3·38)

 (3·39)

u n 1+[ ]f

σ n 1+[ ]f

M n 1+[ ]f
P n 1+[ ]

N n 1+[ ]

=

M n[ ]b
P n[ ]

N n[ ]

M n 1+[ ]f
P n 1+[ ]

N n 1+[ ]

=

M n[ ]b
P n[ ]

N n[ ]

M n 1+[ ]f–
P n 1+[ ]

N n 1+[ ]

0=

M 1[ ]b
P 1[ ]

N 1[ ]

M 2[ ]f–
P 2[ ]

N 2[ ]

0=

M 2[ ]b
P 2[ ]

N 2[ ]

M 3[ ]f–
P 3[ ]

N 3[ ]

0=

MP 1[ ]b MN 1[ ]b
P 1[ ]

N 1[ ]

M 2[ ]f–
P 2[ ]

N 2[ ]

0=

MN 1[ ]b N 1[ ] M 2[ ]f–
P 2[ ]

N 2[ ]
MP 1[ ]b– P 1[ ]=



Chapter 3
Modelling waves in unbounded elastic media using absorbing layers

64

At the back of the last layer n:

 (3·40)

hence  (3·41)

with 

 (3·42)

The complete multi-layered system can be written in a global matrix:

 (3·43)

By solving this system, [N[1]] is obtained. It gives the amplitude of the wave potentials

reflected into the first layer (the area of study in the FE model). The amplitude of the

wave displacements is therefore derived from this data using the expressions defined

in Section 2.2.1. Finally, reflection coefficients are deduced from this. 
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Results for a sample case are compared with the FE models and are presented in Figure

3.11.  

There is an excellent agreement between the FE and analytical results. As for the PML

case, one can note the importance of the range of angle of incidence in validating the

acceptability criterion. Although the ALID and PML used in this section should not be

quantitatively compared, the general shape of the curves in Figure 3.10 and 3.11 at high

angles of incidence indicates that the efficiency of absorbing layers for both non mode

converted reflected waves deteriorates faster for ALID than PML at these angles.

Therefore ALID can be considered as more sensitive to high angles of incidence than

PML. The presence of a critical angle for incident shear waves is also noticeable and

should be considered when validating the layer. 

The excellent agreement between FE and analytical model confirms that the analytical

model can be used in the process of quickly determining the ALID parameters. When

defining an ALID, we recommended to use a value of p equal to 3 and find the right

combination of thickness and CMmax to minimize the thickness of the ALID. 

For time domain models, the frequency spectrum of a signal is not constant. Taking

this into account relaxes the constraints to define an acceptable layer and therefore

leads to thinner layers.

Figure 3.11. Reflection coefficient for a given ALID obtained with bulk wave analytical and FE 
models
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3.4.2 Analytical model for 2D guided wave cases

The aim of the analytical model for guided wave cases is to evaluate the reflection

coefficient of guided waves from a given absorbing layer over a range of frequencies.

This part presents the case of guided waves in a 2D plate. The same approach could

readily be taken for wave guiding phenomena in pipes or cylinders.

3.4.2.1 Consideration for guided wave PML implementation

In an elastic medium, modes are defined by the following equation:

 (3·44)

In the PML, this equation becomes:

 (3·45)

As mentioned above, in an elastic wave guide, kx can be real, imaginary or complex.

When kx is a real number, the wave behaves in the same way as a bulk wave: the wave

enters the PML without reflection and decays inside it. 

It is important to mention that PMLs have not been created for evanescent waves

(imaginary or complex wavenumber) and do not work well with them [63, 64]. At best,

the natural decay of these waves carry on as they propagate in the PML. Let us take the

example of a wave with an imaginary wave number kx=i.k with k a real number. In the

PML, the wave is described by:

 (3·46)

The decay is the same as in the elastic area so the wave continues its normal decay in

the PML but now there is also a propagating part added to it. This part varies in the

PML and leads to a change in impedance. This can also lead to spatial under sampling

causing numerical reflection. This confirms that PML is not suited to evanescent

modes. A large amount of research has been done regarding this issue in the domain of

electromagnetism [65, 66, 67]. Evanescent waves by essence decay and usually do so
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rapidly so they are usually very localised in practical cases. A pragmatic approach is

therefore to make sure that PML are placed so that only evanescent waves of negligible

amplitude (which have sufficiently decayed) reach them or that their potential

reflection from the PML will not influence the area of interest in the model.

Another type of guided wave which has proved to be problematic with PML is

backwardly propagating modes which in essence are waves whose group and phase

velocities are of opposing signs. A backward travelling wave incident at a PML will

have a negative wave number kx=-k with k a real positive number. In the PML, the

wave is hence described by:

 (3·47)

It is easy to see that this expression will lead to the wave growing exponentially inside

the PML, instead of decaying, which clearly is a problem.

Since these waves only occur over a very limited range of frequencies, which usually

is of no practical interest in NDE applications, one way of avoiding the problem is

simply to avoid these frequencies. This can be achieved easily in the PML implemen-

tation presented here as the models are solved in the frequency domain. A study

performed at Imperial College [68] showed that it is possible to fix the problem by

performing a modal decomposition using the bi-orthogonality relations of the guided

modes [69] and channelling them to separate PMLs defined such that all wave types

are absorbed correctly. This is an attractive approach in cases where access to the

coding is possible, but is out of reach for the standard packages used in this study. If

the frequency range of study includes the possibility of backwardly propagating waves,

one pragmatic alternative is to use ALID instead of PML as ALID does not have any

difficulty absorbing backwardly propagating waves.

3.4.2.2 Validation procedure

In order to confirm the validity of the analytical models, their results are compared with

results from FE models. 2D plane strain models shown in Figure 3.12 are used. As for

bulk waves, the use of “ultra” ALID is necessary. The excitation is applied over the
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thickness of the model on one side of the area of study where an “ultra” ALID is placed.

On the other side is the layer studied, either an ALID or a PML. The displacement is

monitored along a line in the area of study and the amplitude of the incident and

reflected signal are determined by performing a 2D FFT.    

The plate is 8mm thick and made of aluminium (ρ=2780kg/m3, E=70GPa, ν=0.33). It

is excited at frequencies ranging from 114kHz to 186kHz. At these frequencies, the

two fundamental modes, A0 and S0, are studied. For these cases, the PMLs are defined

with L= 13.1mm, Ax=2.66e6 and p=3 for S0 and L= 6.55mm, Ax=2.66e6 and p=3 for

A0. The ALID are defined with L= 13.1mm, CMmax=2.66e6 and p=3 for S0 and L=

76.5mm, CMmax=1e6 and p=3 for A0.

Performance of the two techniques should not be compared using these examples as

the layers are not optimized.

3.4.2.3 PML analytical model for guided wave cases

The analytical model used to determine the reflection coefficient of a PML is based on

the knowledge of the decay of the mode in the layer and the reflection of modes at the

end of the layer.

Propagating modes are treated using a model similar to the PML bulk wave model. One

difference is that any mode conversion that may occur at the end of the PML is not

taken into account in the analytical model and total reflection is assumed. Each

propagating mode is considered independently. The reflection coefficient for each

propagating mode is equal to:

 (3·48)

As for the case of bulk waves, the issue of numerical reflection needs to be taken into

account. In a given model, the wave which suffers the most from numerical reflection

Figure 3.12. FE model used to validate the guided wave analytical models.
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is the one with the highest wave number (and hence the shortest wave length) as it is

the most strongly attenuated (i.e.: the decay occurs on fewer elements than the other

waves). 

As a starting point, a layer whose length Lor is equal to the shortest wavelength is taken.

Numerical reflection will be the lowest for the lowest value of Ax that satisfies the

acceptability criterion RCdB. Experience has shown that for this PML length, the

calculation can be based on the theoretical value and the numerical reflection can be

confidently neglected. Αx is taken equal to:

 (3·49)

Keeping this value of Ax, all the other waves will be less strongly attenuated. The wave

with the longest wavelength (and so the shortest wave number) will have the slowest

decay in the layer. In order to correctly define the PML over the range of wave

numbers, the length of the layer for the previously defined Ax is increased to achieve

the theoretical reflection criterion using the following formula:

 (3·50)

Using equation 3·49 and 3·50, the length of the PML is:

 (3·51)

Validating that the reflection coefficient is acceptable for each propagating mode

ensures that the PML is correctly defined. As mentioned before, this formula is only

valid for propagating modes. Evanescent and backwardly propagating modes need to

be dealt with separately.

Clearly, Lor directly influences the final length of the PML but this can be reduced to

less than the advised value if required although caution is necessary in this case. The

Ax 0.5 p 1+( )

kmaxLor
p 1+

---------------------------- 10

RCdB

20
-------------⎝ ⎠

⎛ ⎞

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

log–=

LPML 0.5 p 1+( )
kminAx
----------------- 10

RCdB

20
-------------⎝ ⎠

⎛ ⎞

⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

log–
⎝ ⎠
⎜ ⎟
⎜ ⎟
⎛ ⎞

1
p 1+
------------

=

LPML Lor
kmax
kmin
----------⎝ ⎠

⎛ ⎞
1

p 1+
------------

=



Chapter 3
Modelling waves in unbounded elastic media using absorbing layers

70

formula also highlights that the final length of the PMLs depends on the ratio of the

extreme wave numbers. High ratios typically occur at frequencies just above cut-off

and lead to potentially long PMLs.

As shown previously, evanescent waves are not correctly dealt with by PMLs and it is

necessary to make sure they do not have a significant impact on the displacement field

of the area of study. The evanescent wave with the smallest imaginary part 

(which has the lowest decay rate) is considered. Its amplitude is conservatively taken

equal to 1 at any feature which can generate evanescent waves (e.g. defect, source). It

is also conservatively considered that an evanescent wave incident at a PML would be

totally reflected. In order to have an acceptable displacement field between the PML

and the feature, the wave needs to have decayed sufficiently (i.e. its amplitude is equal

to RCdB) when it reaches the PML. 

The distance between the feature and the PML needs to be:

 (3·52)

In cases where the displacement field between the PML and the feature is not

monitored, one can use:

 (3·53)

In these cases, the wave amplitude is equal to RCdB as it reaches the feature after being

reflected and is therefore acceptable.

Results from the analytical model are compared with FE results obtained for the first

fundamental propagating modes A0 and S0 with the parameters defined in Section

3.4.2.2. Figure 3.13 shows that there is an excellent agreement between both sets of

results and validates the use of the analytical approach to dimension PMLs for guided

waves. 
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3.4.2.4 ALID analytical model

The following analytical model determines the reflection coefficient of ALID for

guided waves in plates modelled in 2D plane strain. It is based on a multi-layered

approach and makes use of an impedance matrix.

An infinity of modes can exist in a given guided wave system. A finite number of

modes are selected. This selection is based on the characteristics of the wave number

of the mode in the elastic part of the model. All real (propagating) and imaginary

(evanescent) modes and a finite number of complex modes (inhomegeneous) are

included in the model. As explained before, each layer in the ALID has the same elastic

properties as the area of study save for having a gradually increasing damping. As for

bulk waves, the damping causes the properties of the waves to vary as they propagate

through the ALID. The actual properties of modes existing in each layer inside an

ALID need to be calculated by solving the Rayleigh equation using the properties of

each layer. All modes have a complex wave number in the ALID. As for bulk waves,

the real part of the wave number varies as the damping is increased, leading to a change

of acoustic impedance inside the layer and therefore causing reflection. Contrary to the

PML, due to the physical properties of the ALID materials, all modes including

backwardly propagating modes decay in the ALID [31].

Figure 3.13. Reflection coefficient for a given PML obtained with guided wave analytical and FE 
models
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In guided wave cases as in bulk wave cases, ALID can be seen as a series of finite

layers with varying properties. In 2D, the symmetric and anti-symmetric modes can be

treated independently as ALID are symmetric with respect to the mid plane of the plate.

The model defined in this section is a development of a model by Pagneux [70]. The

idea is to define a global impedance matrix of the ALID that can be used to determine

reflection coefficients. The matrix is defined starting from the end of the ALID and

propagated through each layer and each interface between these layers until the area of

study. Let us consider a multi layered system as represented in Figure 3.14 where layer

1 represents the area of study. 

One starts by noting that at any point in the plate and ALID the total displacements and

stresses (subscript tot) are equal to the sum of the displacement and stresses of the

modes travelling in the positive (po) and the negative (ne) x-direction. Combining this

with the symmetry properties of the Lamb wave mode shape, we have:

 (3·54)

with  (3·55)

Figure 3.14. Definition of the multi layered system
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and  (3·56)

One defines  and , so equation 3·54

can be expressed by:

 and  (3·57)

One defines  and  and the

impedance matrix as:

 (3·58)

Inside a layer, the impedance matrix can be propagated between the back (b) and the

front (f) of a layer d. One has:

 and  (3·59)

therefore:

 (3·60)

with C and S, diagonal matrices made of  and 

elements respectively.

The link between Zd(xf) and Zd(xb) is:

 (3·61)
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This formulation shows instabilities [70] and the following equation is a better

alternative:

 (3·62)

with T, a diagonal matrix made of  elements.

At the boundary between the back face of layer d and the front face of layer d+1, one

has:

 (3·63)

 (3·64)

These expressions are multiplied by  and

 respectively and integrated over the thickness of the plate:

 (3·65)

 (3·66)

One has:

 (3·67)

 (3·68)

Zd xf( ) iT 1– S 1– Zd xb( ) i– T 1– 1–
S 1–+–=

kn xf xb–( )( )tan

an
d xb( )

ux
n d, y( )

σxx
n d, y( )1

n

∑ an
d 1+ xf( )

ux
n d 1+, y( )

σxx
n d 1+, y( )1

n

∑=

bn
d xb( )

σ– xy
n d, y( )

uy
n d, y( )1

n

∑ bn
d 1+ xf( )

σ– xy
n d 1+, y( )

uy
n d 1+, y( )1

n

∑=

σ– xy
m d, y( ) uy

m d, y( )
T

ux
m d 1+, y( ) σxx

m d 1+, y( )
T

an
d xb( )

ux
n d, y( )

σxx
n d, y( )

σ– xy
m d, y( )

uy
m d, y( )

⋅ yd
h–

h

∫
1

n

∑ an
d 1+ xf( )

ux
n d 1+, y( )

σxx
n d 1+, y( )

σ– xy
m d, y( )

uy
m d, y( )

⋅ yd
h–

h

∫
1

n

∑=

bn
d xb( )

ux
m d 1+, y( )

σxx
m d 1+, y( )

σ– xy
n d, y( )

uy
n d, y( )

yd⋅

h–

h

∫
1

n

∑ bn
d 1+ xf( )

ux
m d 1+, y( )

σxx
m d 1+, y( )

σ– xy
n d 1+, y( )

uy
n d 1+, y( )

⋅ yd
h–

h

∫
1

n

∑=

ad xb( )Jn m,
d d, ad 1+ xf( )Jn m,

d d 1+,=

bd xb( )Jm n,
d 1+ d, bd 1+ xf( )Jm n,

d 1+ d 1+,=



Chapter 3
Modelling waves in unbounded elastic media using absorbing layers

75

The analytical expression of the matrices coefficients is calculated analytically as the

stresses and displacements in the plate are known. Using the last two equations, the

impedance matrices of layer d and d+1 are linked:

 (3·69)

 (3·70)

 (3·71)

The bi-orthogonality relation [69, 71] leads to:

 (3·72)

The final missing part to describe an ALID is the determination of the behaviour at the

end of the last layer. At this point, there is a stress free condition:

 and  (3·73)
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 (3·76)
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One multiplies equation 3·76 by:  and integrates through the

thickness

 (3·77)

 (3·78)

So the impedance at the end of ALID is:

 (3·79)

Zend(xb) is used in equation 3·62 to obtain Zend(xf) which is used to obtain Zend-1(xb)

with equation 3·71 and so on until Z1(xb)=ZALID, which represents the total impedance

of the ALID.

The following expressions are defined:  and

. At the entrance of the ALID, A1(xb) is proportional

to the amplitude of the modes incident to the ALID and B1(xb) to the reflected modes: 

 (3·80)

In order not to over-complicate the model, each mode is studied separately and it is

conservatively assumed that each mode has a unit amplitude as it reaches the ALID.

The diagonal of matrix [RC] gives the ratio of the reflected to incident amplitude for

each mode (propagating and evanescent). This value is used to evaluate the compliance

of all modes with the acceptability criterion. As all modes are considered, the ALID

can be placed very close to any feature (e.g. defect, source) in the model.

Results obtained with this analytical model are compared with FE models with the

parameters defined in Section 3.4.2.2. Results for propagating modes are presented in

Figure 3.15. There is an excellent agreement between both techniques so the analytical

models can be confidently used to determine parameters of the ALID. 
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3.5. Demonstrators

These demonstrators show the possibilities and gains that can be achieved using

absorbing layers.

3.5.1 Computational efficiency

These models demonstrate that a significant gain in computational efficiency can be

achieved by implementing the 2 absorbing layer techniques presented in this chapter

in real life cases. The parameters of the layers used in this part were obtained using the

analytical models defined previously.

3.5.1.1 Bulk wave model

This model is a realistic simplified practical bulk wave case represented in Figure

3.16.a. The material used is steel (ρ=7800kg/m3, E=200Gpa, ν=0.33). The model is

excited by a point force on the top free surface acting at 45 degrees to the normal (in

order to extend the generality of the model). It is applied in the form of a 2MHz 5

cycles tone burst (Blackman Harris 3 terms). A simplified horizontal 4.5mm crack is

located 30mm under and to the right of the excitation point. The aim of this is to

monitor the interaction of the waves with the free surface and the defect by monitoring

the displacement at a chosen point. In this example, the monitoring point is located at

the excitation point.  

Figure 3.15. Reflection coefficient for a given ALID obtained with guided wave analytical and FE 
models
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Without using absorbing layers, the model needs to be 100mm by 200mm (Figure

3.16.b) in order to achieve separation of the first reflections from the defect and the

unwanted reflections at the monitoring point. 

For models using absorbing layers, the acceptability criterion is set at -60dB meaning

that the maximum reflection from the absorbing layers will be smaller than 0.1% of the

maximum displacement of the excitation point. Using the models described previously

in this chapter to define the required PML or ALID and taking into account the

frequency spectrum of the excitation, the model size can be reduced to 66.5mm by

56mm (Figure 3.16.c) using ALID and 33.5mm by 13.5mm (Figure 3.16.d) using

PML. The thickness of the ALID is 16mm, CMmax is 11e6 and p is 3. The PML is 3mm

thick, Amax is equal to 2.3e9 and p is 3. The thickness of the PML is smaller than the

ALID one because of the perfectly matched impedance. It should also be noted that the

area of study is smaller for the PML case than for the ALID case because ALID is more

sensitive than PML to waves incident at high angles. The geometric size of the 2D

model is divided by 5.35 with ALID and 44 with PML compared with the classical

Figure 3.16. a) bulk wave demonstrator, FE model: b) without absorbing layer, c) with ALID, d) with 
PML.
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technique. This reasoning can be extended to a 3D model of the same case where the

model size would be divided by 15 and 655 respectively.

An added benefit of models using absorbing layers is that the complete area of study

is clean of any unwanted reflection. This can help a better understanding of the

physical phenomena occurring in the model. Figure 3.17 shows the displacement field

obtained for the ALID case described above. The absolute value of the displacement is

represented and, in order to highlight low amplitude reflection, the colour scale only

spans up to 0.1% of the maximum absolute displacement in the model. These figures

show that there is no visible reflection coming back from the ALID into the area of

study. This confirms the correct dimensioning obtained using the analytical model.

Figure 3.17. Absolute displacement field for the bulk demonstrator with ALID at time: a)5μsec 
b)10μsec c)15μsec d)20μsec. Colour scale extends from 0 (blue) to 0.1% (red) of the maximum 
absolute displacement. Grey indicates out of scale (0.1% to 100%). White dashed line indicates the 
boundary between area of study and ALID
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3.5.1.2 Guided wave model

The guided wave model represented in Figure 3.18.a is a simplified practical case

which has been used extensively in guided wave research. An 8mm thick aluminium

(ρ=2780kg/m3, E=70Gpa, ν=0.33) plate is excited by a 150kHz 12 cycles tone burst

(Blackman Harris 3 terms) with a point force at 45 degrees in order to strongly excite

both fundamental modes. Over the frequency range excited, the fundamental

symmetric and anti-symmetric modes can propagate in the medium. The plate contains

a 2mm by 2mm slit located 700mm from the excitation. If the first reflections from the

defect were studied without using absorbing layers, the model would need to be

2700mm long (Figure 3.18.b) to avoid the presence of unwanted reflections reaching

the monitoring point before the reflections from the slit.

Using the analytical models devised above and taking into account the frequency

spectrum, an optimized ALID is 80mm thick. In this case, CMmax is 2.1e6 and CM

varies following a cubic law. The left hand side ALID starts at the excitation point and

the right hand side ALID 3mm behind the slit. The model size is divided by 3.12

(Figure 3.18.c). 

Using the analytical model, an optimized PML is 18.5mm thick. Amax is 8.36e5 and α

varies following a cubic law. As only the field between the slit and the excitation point

is of interest, it is calculated (taking advantage of the shape of the frequency spectrum)

that the PML needs to be located 29mm away from these features. The model size is

hence divided by 3.38 with PML (Figure 3.18.d). 

Figure 3.19 shows the displacement field for the ALID case described above. A scale

factor of 10 is applied in the vertical direction in order to improve the visibility. The

Figure 3.18. a) guided wave demonstrator, FE model: b) without absorbing layer, c) with ALID, d) 
with PML.

700mm150kHz 2mm

8mm

2700mm

865mm

797mm

a)

b)

c)

d)

Area of study
Absorbing layer



Chapter 3
Modelling waves in unbounded elastic media using absorbing layers

81

colour scale is adjusted to highlight the low amplitude part of the absolute

displacement field. Figure 3.19.a shows the 2 modes propagating in the plate. On

Figure 3.19.b one can see the reflection of these 2 modes from the defect. As mode

conversion occurs at the defect, 4 wave packets exist. On Figure 3.19.c the last wave

packet is about to enter the ALID and the absence of any other visible wave packets

reflected from the ALID can be noted, although some numerical noise in the form of

low amplitude long wavelength waves can be observed. Other models were run and

confirmed that this noise is not related to the ALID. Finally, Figure 3.19.d shows that

all modes have been correctly absorbed indicating that the ALID worked correctly.    

3.5.2 Time reconstruction 

As mentioned in the introduction, our implementation of the PML can only be used in

the frequency domain. Wave propagation time domain results can be obtained by using

absorbing layers (either ALID or PML) and running the model in the frequency

domain. Results are then processed with an inverse Fourier transform. The aim of this

case is to describe the method used to do this, using an example of modelling of guided

waves. This case was developed with Ludovic Moreau and formed part of a publication

[31].

 

Figure 3.19. Absolute displacement field for the guided demonstrator with ALID at time: a)150μsec 
b)300μsec c)450μsec d)600μsec. Colour scale is varied and extends from 0 (blue) to 2% or 10% (red) 
of the maximum absolute displacement as indicated on the figure. Grey indicates out of scale (2% or 
10% to 100%). White dashed line indicates the boundary between area of study and ALID.

a) t=150 μsec        Color range: 10% of max
 

  
b) t=300 μsec       Color range: 2% of max

    
c) t=450 μsec       Color range: 2% of max

  
d) t=600 μsec       Color range: 2% of max



Chapter 3
Modelling waves in unbounded elastic media using absorbing layers

82

In this case, the first anti-symmetric mode A0 is generated in an 8mm thick aluminium

plate with a 2mm by 2mm rectangular notch as shown in Figure 3.20. The excitation

time signal desired is a 150kHz 10 cycle tone burst applied in the normal direction to

the plate. Frequency domain input data is defined by FFT of the time excitation shown

in Figure 3.21. Most of the energy is concentrated between 120kHz and 180kHz. Only

frequencies located in this range will be used to solve the model. 

A0 mode generation is achieved by applying the input data as a force in the normal

direction over a region on the top and bottom surfaces of the plate, in a spatially

windowed sine wave whose wavelength matches the wavelength (obtained using

DISPERSE for example) of the desired mode. This is shown in Figure 3.22. For this

case, ALIDs are used to absorb incident waves but PMLs could have been used

similarly. The complex normal displacements for each frequency are monitored

700mm away from the defect and an inverse FFT is applied to this complex spectrum.

The real part of the inverse FFT result gives the time traces. In order to validate the

method, they are compared with time traces obtained with a classical time domain

model.    

Figure 3.20. Model geometry for time reconstruction case

Figure 3.21. Input preprocessing
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Results are presented in Figure 3.23. At the monitoring point, results from the different

models agree with high accuracy in terms of propagation velocities and relative

amplitudes. Differences on both of these parameters are smaller than 1%. This

confirms that it is possible to obtain wave propagation time domain results by using

absorbing layers and solving the model in the frequency domain.      

Figure 3.22. a) dispersion curve data used for input definition, b) input definition

Figure 3.23. Normal displacement monitored 700mm away from the defect. a) Classical time domain 
analysis with ABAQUS, b) Frequency domain analysis with ABAQUS, c) Frequency domain analysis 
with COMSOL
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3.5.3 Wave scattering

Using absorbing layers in models designed to study wave scattering can greatly

simplify them in addition to reducing their size compared to classical models.

3.5.3.1 Single-mode reflection coefficient

The model used in this section is similar to the one used in [72]. The plate used is 3mm

thick and made of steel as defined in the published paper [72]. A notch 0.5mm deep is

positioned 1m away from the excitation. The width of the notch is varied from 0.5mm

to 5mm in separate analyses. The COMSOL FE model is represented in Figure 3.24. It

is excited by an harmonic normal force whose amplitude is constant through the

thickness of the plate. The frequency of the harmonic excitation is varied from 400kHz

to 500kHz. ALID are placed on each side of the area of study to absorb any incoming

wave.       

The complex out-of-plane displacements are monitored mid-plane between 0m and 1m

away from the excitation. This data is used to perform a spatial FFT [61] which yields

the amplitude of the incident wave A0inc and the reflected waves: A0ref as shown in

Figure 3.25. It should be noted that the position of the peaks indicates the wave

numbers of the modes. 

Figure 3.24. Representation of model used for guided wave scattering validation

Figure 3.25. Example of a typical spatial FFT curve
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The reflection coefficient RC is evaluated in the following way:

 (3·81)

The notch width varies from 0.5 to 5mm and the wavelength from 5.17mm to 6.16mm.

The notch width is therefore varied from 8.1% to 96.7% of the wavelength. In Figure

3.26, the reflection is plotted against the notch width. Results from the COMSOL

models are compared with the published experiments and published finite element

models (FINEL [73]).   

It can be seen that results obtained from time domain modelling with FINEL and

frequency domain modelling with COMSOL agree very well. Incidentally, the

agreement of the COMSOL results with experimental ones is similar to the agreement

of FINEL results with experimental ones.

Figure 3.26. Reflection coefficient against notch width
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3.5.3.2 Multi-mode reflection coefficient

The aim of this case is to show that multi-mode reflection coefficients from a scatterer

can be easily obtained using frequency domain analysis and absorbing regions. This

case was developed with Ludovic Moreau and formed part of a publication [31].

The model set up is similar to the previous case although the dimensions are changed

and the excitation is defined so that only the fundamental anti symmetric mode is

excited as was done in section 3.5.2. The plate is an 8mm thick aluminium plate with

a 2mm by 2mm notch. The excitation frequency is varied from 140kHz to 500kHz by

steps of 15kHz. ALID are placed on each side of the area of study. The normal

displacement is monitored on the top surface of the plate over a region whose length is

equal to 3 times the longest wavelength in the model. It is used to perform a spatial FFT

[61] which gives the relative amplitude of the normal displacements for each mode. As

the mode shapes of each mode is different, it is necessary to use power-normalized

mode shapes in order to obtain the reflection coefficients in terms of energy. 

For a particular mode, the value of the energy Ei carried by each mode [33]:

 (3·82)

with Ai, the amplitude of the displacement in a given direction at a through thickness

position given by the spatial FFT and Mi, the value of the displacement in the same

through thickness position and direction of the power normalized mode shape of the

mode of interest. In this way, it is possible to verify that the summation of the energies

carried by the different modes reflected and transmitted from a defect is equal to the

energy of the incident mode. Reflection coefficients are calculated by dividing the

value of the energy carried by each mode by the value of the energy carried by the

incident mode (A0 in this case). 

Results obtained with ABAQUS and COMSOL (both using ALID) are shown in

Figure 3.27. The evolution of the reflection coefficient from an A0 incident mode for

frequencies ranging from 140kHz to 500kHz is presented for each possible mode. They

agree well, showing the same patterns, the maximum difference over the range of

Ei
Ai
Mi
------⎝ ⎠

⎛ ⎞
2

=
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values being 3.2%. Similar results were obtained for transmission coefficients

calculation. 

In this case, as several modes having a large range of velocities are present, the use of

absorbing regions greatly simplifies the obtention of the reflection curves.

Figure 3.27. Energy reflection coefficient for A0 incident on a 2mm square notch in an 8mm thick 
aluminium plate from 140kHz to 500kHz
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3.6. Discussion

The previous demonstrators have highlighted the gains obtained by using ALID or

PML and have also shown that PML generally achieves smaller model size than ALID.

This can be explained by the fact that with PML the layer matches the impedance of

the area of study perfectly whereas for the ALID the strength of the decay is limited by

the impedance change it causes. As a consequence, for a given case, ALID is generally

thicker than PML. It is also more sensitive to waves incident at high angles leading to

a necessary increase of the area of study in order to minimize the model size. In short,

PML is superior to ALID from a theoretical point of view for all wave types except

evanescent and backwardly ones. As the aim is to improve modelling capabilities, this

gives an advantage to the PML technique but it has to be balanced by the fact that, to

our knowledge at the time of writing, COMSOL is the only mainstream FE package

that allows implementation of PML. The implementation is limited to frequency

domain solving with implicit solvers whereas ALID can be implemented to be used

with any FE package which allows Rayleigh damping. The actual performance

comparison depends on the type of result required.

A user wishing to obtain frequency domain results such as the reflection coefficient

from a defect has a choice of directly using either PML or ALID. The two best

combinations investigated are ABAQUS with ALID and COMSOL with PML.

ABAQUS models were solved using the “Direct-solution steady-state dynamic

analysis” procedure of ABAQUS/Standard which uses a direct implicit solver.

COMSOL offers a range of direct and iterative implicit solvers. Direct solvers have

proved to be robust and efficient but limited in terms of the number of degrees of

freedom that can be solved. Iterative solvers showed improvement in terms of speed

and memory but convergence proved difficult. Overall, in our experience, using

COMSOL 3.2 and ABAQUS 6.6, COMSOL did not match the performance of

ABAQUS for a given number of degrees of freedom. Given these two combinations it

is therefore not possible to clearly recommend one of them, as the best solution

depends on the specific details of the model considered.

For time domain results, the most straightforward approach is to use ABAQUS/

Explicit with ALID. The explicit solver of ABAQUS uses the central difference
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algorithm. It is particularly attractive for large models as it is faster and more memory

efficient than an implicit solver. This technique is recommended for most cases where

time domain results are required. An alternative is to solve the model in the frequency

domain and reconstruct the time domain results by performing an inverse fourier

transform.

3.7. Conclusion

In this chapter, 2 techniques to remove unwanted reflections from the boundaries of FE

models were investigated: ALID and PML. The principles of these techniques were

described. Analytical models to facilitate the efficient and reliable design of FE models

to exploit them were developed. Using demonstrator cases, it was shown that both

techniques enable a significant reduction in model size which justifies their use. The

discussion explained the wider considerations to assist the choice of technique for

practical cases. Given the pace of recent developments in computer technology and

software packages in the last few years, the constant improvement of modelling

capabilities was witnessed and it was also realized that modellers constantly test the

modelling capabilities to their limits. The use of absorbing layers presented in this

chapter clearly aims at pushing these limits further and the analytical models devised

enable to streamline the achievement of an efficient model using these techniques.
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Chapter 4 

On the influence of mesh parameters on 

elastic bulk wave velocities

4.1. Introduction

In the process of moving from the genesis of a numerical model to its conclusion and

the obtention of results enabling a better understanding of a physical phenomenon, a

modeller takes a series of design decisions. In the context of wave propagation

modelling, the choice of the solving technique, mesh density or time step influences

the successful outcome of the exercise but also the level of accuracy with which the

phenomenon is represented. Approximation by discretization of the space and time

leads to a discrepancy between theoretical physical values and their actual values in the

model. One of the parameters suffering from this is the propagation velocity of bulk

waves in elastic media. This study looks into how this is influenced by design decisions

and aims to provide modellers with information enabling them to improve not only the

quality of their modelling (adequate decision making) but also the quality of the

analysis made based on the numerical results (quantitatively taking into account the

numerical deviation). There is also an interest in understanding the reasons for mesh

scattering where a change in mesh size causes some numerical reflection. This is an

important point as a better understanding of this could lead to vast increase of

modelling capabilities by enabling local mesh refinement to be implemented.

In this chapter, both explicit and implicit solvers used with a range of element types are

studied. Regular meshes made of square or equilateral triangles are investigated first.

These meshes are then distorted in order to understand the influence of element

deformation on wave velocities. The general approach is to run a series of FE models.

The results of these models enables the identification of simple functions to describe

the errors as generally as possible and enable users to establish guidelines to suit their

modelling requirements.
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Details from all the studies performed are presented in this chapter. This is done in

complete details in order to provide a useful general reference to users for future use.

Being aware that providing such a level of details for all cases studied does not help

with the flow of the chapter, it is suggested for users interested in a particular case to

investigate findings for this particular case and then to proceed to general discussion

and conclusions. Users interested in the principles will find them described in the

following sections: 4.2.1 (explicit solving), 4.3.1 (implicit solving), 4.2.2.1 (square

elements) and 4.2.3.1 (equilateral triangle elements). 

4.2. Explicit solving

4.2.1 Introduction

For time domain models solved with an explicit scheme (ABAQUS/Explicit), we

investigate the influence of the time step, mesh density and angle of incidence for

linear quadrilateral elements (CPE4R), linear triangular elements (CPE3) and modified

quadratic triangular elements (CPE6M) for both longitudinal and shear waves.

FE models are run for each case and post processing leads to the obtention of a precise

value of actual propagation velocity in the model. For simplicity, all models are non-

dimensional: density ρ=1, frequency f=1, Young’s modulus E=8/3, Poisson’s ratio

η=1/3 so that we have a longitudinal velocity cL=2 and shear velocity cS=1. Models are

made with a regular mesh of elements and represent an area covering at least 20

wavelengths away from the excitation point (different model sizes were taken for

longitudinal and shear waves) as shown in Figure 4.1. 

Models are 2D plane strain. Both shear and longitudinal wave generations are

considered, as models are excited by nodal forces being applied on four elements as

Figure 4.1. Definition of the main feature of the model

ALID

Excitation
point

Displacement 
monitoring area

Area of study
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shown on Figure 4.2. This generates an almost pure wave - shear or longitudinal - and

as the size of the source is only a fraction of a wavelength, it is close to a point source.

The point located at the centre of the four elements is referred to as the excitation point.  

The time domain excitation signal is a sine function of unit frequency. Displacements

are monitored over a disc area centred on the excitation point of 18 wavelengths radius.

Spatial FFTs are performed on the displacements over a range of radii at different

angles in a similar way to the example presented in Section 3.5.3.1. On these radii, only

the displacements from 3 to 18 wavelength from the centre are used. The signals used

for the spatial FFTs are Hanning windowed and padded in order to improve the

velocity precision. As some coarse meshes are used, cubic interpolation is performed

in order to increase the ability to look correctly at the influence of the direction of

propagation.

ALID are placed outside the area of study in order to absorb incoming waves.

4.2.2 Linear quadrilateral elements

This section investigates models made of linear quadrilateral elements. In ABAQUS/

Explicit, the only element of this type is a 4 node linear quadrilateral element with

reduced integration referred to as CPE4R [14]. It should be noted that this element is

the most commonly used quadrilateral element type. Meshes made of squares,

rectangles, rhombi and parallelograms are investigated.

4.2.2.1 Square elements

This study looks into the velocity error for models made with square elements. The side

of the square element is L=L0=L90 as shown in Figure 4.3. 

Figure 4.2. a) Longitudinal and b) shear wave excitation for a square element mesh and c) longitudinal 
and d) shear excitation for a triangular elements mesh

a) c) d)b)
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The mesh density N is expressed in term of nodes per wavelength and is varied from 6

to 30 along the side of the element:

 (4·1)

In this chapter, the mesh density is defined relative to the considered wave. As the

longitudinal wavelength is twice the shear one, for a given mesh density, the element

size for longitudinal waves is twice that of shear ones. 

In the first series of models run, the Courant number CFL as defined in Section 2.3.1

is varied between 1 and 0.05. Figure 4.4.a and 4.4.b represent the variation of the error

on the longitudinal velocity EcL and shear velocity EcS along the element side (at 0

degrees) against CFL for various mesh densities N. Some shear wave models did not

complete when run at the stability limit (CFL=1). The maximum CFL used for shear

waves is 0.98. 

On Figure 4.4.a, it can be seen that the error on the longitudinal wave EcL is nil when

the CFL is equal to 1. This is mentioned in [38] and can be explained by the fact that,

in this case at 0 and 90 degrees, there is a match between the time stepping frequency

and the highest frequency of a single element:

 (4·2)

hence  (4·3)

Figure 4.3. Schematic defining L0, L90, L45 and Lθ in a mesh of square elements.
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As CFL is reduced, the error increases and seems to reach an asymptote.

On Figure 4.4.b, a similar phenomenon is observed although the error does not tend

towards zero as CFL tends towards 1. This can be explained by the fact that the highest

frequency of elements is determined by the (faster) longitudinal wave and not the

(slower) shear wave (see equation 2·67). For CFL=1, the time stepping frequency does

not match the highest frequency for a shear wave. This explains why the error is not

zero for shear waves.

Figure 4.4. a) Longitudinal and b) shear velocity errors against CFL for various mesh densities at 0 
degrees.
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Let us consider a hypothetical critical time step for a shear wave at 0 degrees, ΔtS0,

which would correspond to the maximum frequency for this wave, ωmax,S0, such as:

 (4·4)

Δts0 is larger than Δtcr, so the model could not be run as it would be unstable. We define

MS0 as the ratio between ΔtS0 and Δtcr:

 (4·5)

This leads to the following relation:

 (4·6)

For completeness, we define ΔtL0 and ML0 as:

 (4·7)

and  (4·8)

We also define:

 (4·9)

Plotting the curves of Figure 4.4.a and 4.4.b against CFLX leads to a good agreement

as shown on Figure 4.5.           

This confirms that the amplitude of the velocity errors on both waves are subject to the

same mechanism. A general analytical function of CFLX fitting these curves is:

 (4·10)

where  is the value of the velocity error when CFLX tends to zero. This

value is dependent on the mesh density and can rightly be considered as the worst

Δts0
L0
cS
------ 2

ωmax L0,
-------------------

cL
cS
-----Δtcr= = =

MS0
Δtcr
ΔtS0
----------=

Δt CFLΔtcr MS0 CFLΔtS0⋅= =

ΔtL0
L0
cL
------ 2

ωmax L0,
------------------- Δtcr= = =

ML0
Δtcr
ΔtL0
---------- 1= =

CFLX ML0CFL MS0CFL= =

Ec N CFLX,( ) Ec N( ) CFLX 0→( ) 1 CFLX
2–( )⋅=

Ec N( ) CFLX 0→( )
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possible error for a given mesh density. In order to establish the dependency, the

velocity error for both the longitudinal and shear waves at 0 degrees are plotted against

the mesh density N in Figure 4.6. For these cases, CFL is taken equal to 0.025.

Following equation 4·10, for this value of CFL, the velocity error is less than 0.1%

away from .

Figure 4.6 highlights the strong influence of the mesh density on the velocity error. The

shape of the curve is hyperbolic and shows how the error varies from a value of about

5% for N=6 to a value of less than 0.2% for N=30.

Figure 4.5. Velocity errors against CFLX for various mesh densities at 0 degrees.

Figure 4.6. Velocity error against mesh density for shear and longitudinal waves at 0 degree with a 
CFL of 0.025.
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As mentioned previously, the mesh density value has a great impact on the

computational model size and therefore the amount of memory required to solve a

model. For example, in 3D, a model with N=30 would require 125 times more memory

than a model with N=6. It would also take much longer to solve as the number of time

steps would be multiplied by 5, and each time step would take longer to solve. This

illustrates the importance of carefully choosing N to match the accuracy required. 

In order to facilitate the choice of N, the error variation can be fitted to the following

analytical expression:

 (4·11)

This expression gives the value of the velocity error within 0.15% in a conservative

manner based on the results in this work.

So far we have only considered the error along the element side (at 0 degrees). In a

mesh of square elements such as the one in Figure 4.3, the mesh density is not constant

for all angles of propagation of a wave. In particular, at element level, L0=L90 but

L45= L0. In order to study this, the longitudinal and shear velocities were monitored

from 0 to 90 degrees for various mesh densities N defined at zero degrees. As seen

above, the error varies quite strongly for CFL close to 1 whereas it is almost constant

at low CFL. For this series of models, a low CFL value of 0.05 is taken in order to avoid

a variation of the error due to this parameter. 

Figure 4.7 shows the variation of the error against the angle for both wave types and a

mesh density varying from 6 to 30. The expected symmetry exists at 45 degrees. The

curves for both wave types and all mesh densities follow a similar pattern. The

minimum error is located at 0 degrees and increases as the angle increases towards 45

degrees where it reaches its maximum. There is a good match between shear and

longitudinal errors which indicates that the same mechanism determines the error

variation against the angle.

Ec N( ) CFLX 0→( )
180
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--------- 180

λ
L
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On Figure 4.8, it is very interesting to note that the actual error at 0, 45 and 90 degrees

matches the value given closely by the analytical expression of equation 4·11 when it

is calculated using L as L0, L45 and L90. 

The agreement is relatively good for all values of N. The maximum difference between

the predicted values and the actual value is 0.6% for N=4.24 (mesh of density 6 at 45

degrees). The analytical expression used for the prediction gives a conservative

estimate for all cases apart from extremely low mesh densities (N<6). This should not

Figure 4.7. Variation of the longitudinal (a and c) and shear (b and d) velocity error against the angle of 
incidence for various values of mesh density plotted in polar (a and b) and linear (c and d) plots.

Figure 4.8. Velocity error against mesh density for shear and longitudinal waves at 0 and 45 degree.
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be a cause for concern. Such low mesh densities are only rarely used as the wave

phenomenon is likely to be incorrectly represented. 

The agreement between predicted and measured values does not exist at other angles

than 0, 45 and 90 degrees if we were to use Lθ to calculate the mesh density N but it

can be precisely predicted using another expression. The variation of the error between

these values calculated with the analytical expression can be fitted to the following

expression:

 (4·12)

with E(0) and E(45) the errors at 0 and 45 degrees calculated using equation 4·11 and

θ in degrees. Therefore, we are able to predict the error for any direction of the mesh

by using the fitted analytical expressions.

As discussed previously, the value of CFLX influences the value of the error. At 45

degrees, the value of ΔtL45 and ΔtS45 is higher than ΔtL0 and ΔtS0 and is the highest in

the model. This restricts the range of CFLX as illustrated on Figure 4.9 and implies that

the maximum error due to the CFL occurs at 45 degrees. 

Figure 4.10 presents the results of Figure 4.5 over a surface that shows the variation of

the velocity error against the scaled Courant number CFLX and mesh density N. This

Figure 4.9. Velocity errors against CFLX for various mesh densities at 45 degrees.
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surface can be used to predict the error on the velocity in the principal directions of the

mesh (0, 45, 90 degrees) for any mesh density and stability factor. 

A close fit to this surface is given by the analytical expression:

 (4·13)

For a given model, as shear waves have shorter wavelength than longitudinal waves,

the mesh density is lower for shear waves than longitudinal waves. Also, as shown in

this section, CFLX will be lower than for longitudinal waves. As the mesh density is

lowest at 45 degrees, the overall maximum error will be indicated by equation 4·13 for

a shear wave travelling at 45 degrees with the lowest CFLX.

4.2.2.2 Rectangle elements

The models studied in this part are similar to those used in the previous part apart from

the fact that the elements are “stretched” in one direction to become rectangular. The

element size in the vertical direction y is kept the same for all models so that the mesh

density N in this direction is 15. The element size in the horizontal direction x is varied

so that the mesh density N varies from 7.5 to 30. The ratio between the element side

R=Lx/Ly is hence varied from 0.5 to 2 as illustrated on Figure 4.11.a. The error on the

Figure 4.10. Velocity error against the scaled Courant number CFLX and mesh density N
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velocity is measured over a range of angles from 0 to 90 degrees and plotted on Figure

4.11.b,c,d,e. Small circles are plotted on the linear plots. These represent the amplitude

of the error predicted using the expression given in equation 4·13.       

It can be noted that, as seen in the case of square elements, longitudinal and shear

waves react in a similar way to the element distortion. At 90 degrees, the mesh density

is constant for all models. At this angle, the error is almost the same for all models and

matches the prediction of equation 4.13 very closely, within 0.08%. As the angle θ is

decreased, it can be seen that the error increases smoothly - in a similar way to that

observed for square elements - until it reaches its maximum. As would be expected, the

maxima are reached at different angles depending on R, but it is interesting to note that

the angle at which the maximum is reached matches the angle of the element diagonal

only for R equals 1. In other cases, an angle difference exists and increases non linearly

Figure 4.11. a) Shape of the different rectangular elements used in the mesh; Variation of the 
longitudinal (b and d) and shear (c and e) velocity error against the angle of incidence for various R 
plotted in a polar (b and c) and linear (d and e) fashion. The coloured circles indicate the error 
prediction along the element side and diagonal.
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as R moves away from 1. Interestingly, despite the drift of the position of the maximum

error, the actual value of the maximum very closely matches the predicted error given

using the diagonal of the element to evaluate the mesh density. The maximum

predicted error is within 0.2% of the actual error. Following the maximum value, the

error decreases smoothly to reach a minimum at 0 degrees. As expected, at this angle,

the error varies as the mesh density differs. The error prediction at this angle agrees

well with the actual result. It is therefore clear that the analytical predictions match the

results obtained at 0 and 90 degrees extremely well. 

The study of square elements showed that the prediction on the diagonal of a square

element could be used. For the other cases, it is also noticed that the analytical

prediction of the velocity error on the diagonal closely matches the actual maximum,

despite the fact that the diagonal angle does not match the angle at which the maximum

occurs. Over the cases studied, the difference between predicted errors and actual

maximum errors is 0.2%. It is therefore justified to apply the model devised for square

elements to rectangular elements.

4.2.2.3 Rhombus elements

In this case, the model used for the square elements study is sheared so that all elements

are deformed from a square to a rhombus. The models studied have a mesh density of

15 along the sides of the elements. A low CFL of 0.05 is used. The shearing angle γ is

varied from 0 to 45 degrees by 15 degrees increments. The error on the velocity is

monitored from -90 to +90 degrees, as in this case there is no symmetry in the

horizontal direction. Results for longitudinal and shear waves are plotted on Figure 4·7.

Small circles are plotted on the linear plots. These represent the amplitude of the error

predicted using the expression given in equation 4·13.  

All cases for both longitudinal and shear waves exhibit two maxima and two minima.

Contrary to the case with a mesh of rectangular elements, the minima occur at the same

angle as the diagonals. This corresponds with the minima and maxima for Lθ. As

shown on Figure 4.12.b and c, the values of the maxima and minima are well predicted

in a conservative manner. It can be noted that the difference between the prediction and

the measured error increases for maxima on the longest diagonal and decreases for

maxima on the shortest diagonal. This is more pronounced for shear waves than
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longitudinal waves. This phenomenon can be described as a stiffening of the element

along the longest diagonal and a softening of the element along the shortest diagonal.

As mentioned in the previous section, the critical factor determining the maximum

velocity error is the error on the longest diagonal for shear waves. The stiffening

occurring in this case is therefore beneficial to the modeller as it makes the predictions

more conservative and thus safe to use.

Figure 4.12. a) Shape of the different rhombic elements used in the mesh; Variation of the longitudinal 
(b and d) and shear (c and e) velocity error against the angle of incidence for various shearing angle γ 
plotted in a polar (b and c) and linear (d and e) fashion. The coloured circles indicate the error 
prediction along the element side and diagonal.
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4.2.2.4 Parallelogram elements

The mesh in this case is sheared and stretched. This means that the elements are

transformed from a square to a parallelogram shape. The mesh density is kept constant

in both the horizontal and the vertical directions. Contrary to the rhombus case, the

element sides are not of equal length. 

The models studied have a mesh density of 15 at 0 and 90 degrees. A low CFL of 0.05

is used. The shearing angle γ is varied from 0 to 45 degrees by 15 degree increments.

The error on the velocity is monitored from -90 to +90 degrees as in this case there is

no symmetry in the horizontal direction. Results for longitudinal and shear waves are

plotted on Figure 4.13. Small circles are plotted on the linear plots. These represent the

amplitude of the error predicted using the expression given in equation 4·13.    

The general evolution of the error agrees with the rhombus case. The error is the same

for all cases at 0 degrees and agrees well with the prediction. Contrary to the rhombus

case, but as for the rectangle case, there is a shift between the actual position of the

maximum and the diagonal where it would be expected. This confirms that the shift is

likely to be due to the difference in length of the two pairs of opposite edges. Despite

this shift, the actual value of the error and the predicted value on the diagonal agree

closely. As seen before, the maximum value for the shear wave error is increasingly

overestimated as the shearing angle increases. This is interpreted as a stiffening of the

element along its longest diagonal as it is deformed. The longitudinal wave does not

seem to suffer from this effect as strongly as the shear wave.
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4.2.2.5 Conclusion

The study of square element meshes has shown that the error along the element sides

and diagonals can be predicted by the expression: 

 (4·14)

where CFLX is the scaled Courant number and N is the mesh density.

Figure 4.13. a) Shape of the different parallelogramatic elements used in the mesh; Variation of the 
longitudinal (b and d) and shear (c and e) velocity error against the angle of incidence for various 
shearing angle γ plotted in a polar (b and c) and linear (d and e) fashion. The coloured circles indicate 
the error prediction along the element side and diagonal.
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Studies of deformed meshes made of rectangles, rhombi and parallelograms show that

this expression also enables the obtention of a correct conservative approximation of

the velocity error along the element sides and diagonals. This study looks at element

deformation where square elements are stretched with element side ratios up to 2 and

sheared up to 45 degrees. The main consequence of this point is that it indicates that as

square elements are deformed in such a way, they do not lose their precision

dramatically. Therefore, it is acceptable to apply such deformation to square elements

in practical models.

4.2.3 Linear triangular elements

This section investigates models made of linear triangular elements. In ABAQUS/

Explicit, the only element of this type is a 3 node linear triangular element called CPE3

[14]. Meshes made of equilateral, isosceles and scalene triangles are investigated.

4.2.3.1 Equilateral triangle elements

In this part, the influence of CFL and N on wave propagation in a regular mesh made

of linear equilateral triangular elements is investigated. A typical mesh is shown in

Figure 4.14.    

The critical time step for this case is determined by the value L0 and not the element

side length L30 or L90 as in the square element case, as explained in Section 2.3.1. The

Courant number CFL is varied from 1 to 0.05 and the mesh density N ranges from 6 to

30 along the element side. 

Figure 4.14. Schematic defining L0, L90, L30 and Lθ in a mesh of equilateral-triangular elements.
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A first series of models is run. The error on both shear and longitudinal velocities is

monitored over a range of angles from 0 to 90 degrees for a range of mesh densities

using a low CFL of 0.05. Results are presented in Figure 4.15.  

As expected there are symmetries at 0, 30, 60 and 90 degrees in both cases. The

longitudinal error is maximum at 30 and 90 degrees in the direction aligned with the

mesh where Lθ is maximum, and the error is minimum at 0 and 60 degrees where Lθ

is minimum. Between these points, the longitudinal error varies smoothly in a similar

fashion to the phenomena observed for quadrilateral elements. On the other hand, the

shear wave velocity error reaches its maximum at 0 and 60 degrees where Lθ reaches

its minimum and is unexpectedly close to zero at 30 and 90 degrees in the direction

aligned with the mesh. Between these extremes, the variation is smooth but, unlike in

previous cases, this variation cannot be described by a squared sine relation.

Figure 4.15. Variation of the longitudinal (a and c) and shear (b and d) velocity error against the angle 
of incidence for various mesh densities plotted in a linear (a and b) and polar (c and d) fashion.
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It is interesting to note that the value of maxima (at 30 and 90 degrees) and minima (at

0 and 60 degrees) of the error for the longitudinal wave and the maxima (at 0 and 60

degrees) of the error for the shear wave can be predicted accurately using the equation

defined previously for quadrilateral elements:

 (4·15)

with L the element size defined as in Figure 4.14. This is clearly shown in Figure 4.16.

This expression gives a general conservative value of the maximum error for a regular

mesh of linear equilateral triangular elements. Given that the minimum shear error is

zero at 30 and 90 degrees, all minima and maxima can be precisely predicted.        

For longitudinal waves, it can be noted that the variation of the longitudinal wave error

is precisely described by the following fitted expression:

 (4·16)

with E(0) and E(30) the error at 0 and 30 degrees and θ the angle in degrees.

Figure 4.17 shows the influence of CFLX on the value of the error on the longitudinal

velocity at 0 and 90 degrees and the shear velocity at 0 degrees. The error tends towards

zero as CFLX tends to 1. This confirms that the stability limit is not defined by the

smallest gap between nodes but by the transit time of a dilatational wave through the

Figure 4.16. Velocity error against mesh density for shear and longitudinal waves at 0 and 30 degrees.
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smallest element in the model as described in Section 2.3.1. Once again, it can be seen

that the errors can be fitted to the analytical expression:

 (4·17)

where  is value of the velocity error when CFLX tends to zero. 

It is therefore possible to predict the maximum longitudinal error along the element

side, the minimum longitudinal error along the altitude of the element and the

maximum shear error along the altitudes of the triangular element for any mesh density

N and relative Courant number CFLX by using the following expression:

 (4·18)

Figure 4.17. Velocity errors against CFLX for various mesh densities at a) 0 and b) 30 degrees.
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4.2.3.2 Isosceles triangle elements

This section looks into the influence of having a mesh of isosceles triangular elements

rather than equilateral ones. It is essential to be able to evaluate the impact of

deforming elements from the equilateral form as automatic meshing algorithms used

by standard FE package will commonly contain non-equilateral triangular elements. In

this study, we used a mesh similar to the one used previously but the mesh density is

kept the same in the y (vertical) direction whereas it is varied in the x (horizontal)

direction. This leads to a mesh constituted of same-size isosceles triangles in a similar

way to the equilateral case considered previously. The 7 isosceles triangles shapes used

for this study are shown in Figure 4.18.a. For each triangle, one angle is varied from

30 to 90 degrees while the two other angles are equal. It can be seen that the mesh

density will be constant in the vertical direction and is taken as 10 elements per

wavelength whereas the density in the horizontal direction is varied from 5.35 to 20.

The mesh is stretched in the horizontal direction and the mesh density is kept the same

in the vertical direction. The equal angles are varied from 75 degrees to 45 degrees

leading to a variation of the other angle φ from 30 to 90 degrees. Results of the

variation of the velocity error against the angle are shown on Figure 4.18.

Looking at the longitudinal wave error, it can be seen that the constant mesh density at

90 degrees leads to the error being between 1.35% and 1.70% and relatively close to

the estimate of 1.8% predicted by equation 4·18. Despite the constant mesh density in

this direction, one can see that the error drops systematically as φ is increased at this

angle. At 0 degrees, a much greater difference exists between cases. This is justified

by the fact that the mesh density varies strongly in this direction. Once again, the

prediction agrees closely with the actual values. Between these values, a cycle similar

to that for equilateral linear elements is observed. The maximum and minimum occurs

close to - but not exactly at - the location of the local maximum and minimum of Lθ.

These occur when Lθ is aligned with the mesh and when Lθ is perpendicular to the

opposite face of an element. Although the angular position of the maximum is slightly

incorrect, the predicted value of the error proves to be close to the actual minimum and

maximum. It is therefore possible for the modeller to predict the longitudinal velocity

error quite precisely using equation 4·18.
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For shear waves, a maximum (local for cases 5 to 7) occurs at 0 degrees. The value of

this maximum matches the prediction closely as represented on the Figure 4.18. For all

cases, another maximum (local for cases 1 to 3) occurs at an angle close to the direction

of the median of the upper triangle. The value of this maximum is also closely

predicted. Between these maximum values, the error varies smoothly toward minimum

values located at angles where Lθ is aligned with the mesh. For case 4 where φ is 60

degrees the triangle is equilateral, this minimum occurs at θ equals 30 degrees and is

close to zero. As φ is increased, the value of the minimum increases despite the fact

that Lθ is reduced. When φ is decreased from 60 degrees, the minimum error becomes

negative, meaning that the actual velocity is higher than the theoretical one. This

phenomenon occurs despite the fact that Lθ is increased and indicates a stiffening

effect along the longest edge of the element. The same effect occurs at 90 degrees when

minima (local for cases 1 to 3) occur. At this angle, a decrease of φ leads to an increase

Figure 4.18. a) Shape of the different isosceles-triangular elements used in the mesh; Variation of the 
longitudinal (b and d) and shear (c and e) velocity error against the angle of incidence for various 
values of φ plotted in a polar (b and c) and linear (d and e) fashion. The coloured circles indicate the 
error prediction along the element side and diagonal.
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in the minimum despite Lθ being constant whereas an increase of φ leads to a decrease

in the error. This decrease from φ equals 60 degrees means cases 5 to 6 have negative

errors at 90 degrees. The essential point is that, for case 7, the maximum absolute error

is 3% due to the measured negative error whereas the measured positive and predicted

maximum error is 0.8%. The deformation of the element leads to a strong increase of

the shear velocity along the longer edge of the element. This is critical when the longest

edge of the triangle faces a large angle as is the case for cases 5, 6 and 7.

These results strongly highlight that using two triangular linear elements to create a

“composite quadrilateral element” leads to results which will not match those of a real

quadrilateral linear element and should therefore be avoided.

4.2.3.3 Scalene triangle elements

This part looks into the influence of having a mesh of scalene triangular elements. The

mesh used for the equilateral case is sheared in a similar way to the parallelogram study

for quadrilateral elements. The mesh density is kept the same in the y (vertical) and x

(horizontal) direction at 10 and 11.55 elements per wavelength respectively while the

element is sheared in the y direction. The shearing angle varies from 0 to 45 degrees.

The 4 scalene triangular shapes used for this study are shown in Figure 4.19.a. Case 1

is the equilateral case while case 3 uses right (but not isosceles) triangles. Results of

the variation of the velocity error against the angle are shown on Figure 4.19.

For longitudinal waves, the variation of the error for cases 1, 2 and 3 is similar to what

was experienced in previous studies. For case 4, an unexpected minimum occurs at 22

degrees and an unexpected maximum occurs at -63 degrees. These could be explained

by the cumulation of the effects of mesh density variation and a stiffening and

softening of the element along the longest edge and the altitude from the longest edge

respectively. The effect explains why the overall maximum for case 4 is strongly

underestimated and the overall minimum slightly overestimated. A similar milder

effect is occurring for case 3 where the difference between the predicted and actual

maximum is 0.75%.

For shear waves, the variation of the error highlights the same issue observed with

isosceles triangles with large angle opposite long edges as the error becomes negative.
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Case 4 is the most critical case studied for triangle elements so far as the ratio of the

longest to the shortest edge is 1.62 and the long edge is opposite to an angle of 107

degrees. The stiffening effect is the most pronounced as the error reaches a maximum

negative value of 16.4% which is more than 10 times the maximum predicted error for

this case. This emphasizes that using highly deformed triangular linear elements for

wave propagation should be avoided.  

Figure 4.19. a) Shape of the different scalene-triangular elements used in the mesh; Variation of the 
longitudinal (b and d) and shear (c and e) velocity error against the angle of incidence for various 
values of γ plotted in a polar (b and c) and linear (d and e) fashion. The coloured circles indicate the 
error prediction along the element side and diagonal.
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4.2.3.4 Conclusion

The study of equilateral triangular element meshes has shown that the error along the

element sides and altitudes could be accurately predicted. The influence of the Courant

number on the error is confirmed to be similar to the one observed with quadrilateral

elements.

Studies of deformed meshes made of isosceles and scalene triangles shows that it is

possible to use predicted errors to conservatively evaluate the maximum error for

longitudinal waves. The situation with shear waves is rather different as it is observed

that an apparent stiffening of the deformed elements leads to a large increase in the

propagation velocity leading to a large velocity error that cannot be predicted in the

same way as was done in previous cases. This effect is a noticeable concern regarding

the use of linear triangular elements with automatic meshing algorithms.

4.2.4 Modified quadratic triangular elements

This section investigates models made of quadratic triangular elements. In ABAQUS/

Explicit, the only element of this type is a 6 node modified quadratic triangular element

called CPE6M [14]. Meshes made of equilateral, isosceles and scalene triangles are

investigated.

4.2.4.1 Equilateral triangle elements

In this part, we investigate the influence of CFL and N on wave propagation in a regular

mesh made of quadratic equilateral-triangular elements as shown in Figure 4.20. The

mesh density N and CFL is expressed in terms of the node grid and not the actual

element size as it will be shown that this is what actually matters with this element type.   

As for linear elements, the critical time step is determined by the value L0 and not the

element side length L30 or L90. The Courant number CFL is varied from 0.9 to 0.05

and the mesh density N ranges from 6 to 30 along the element side. 
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A first series of models is run. The error on both shear and longitudinal velocity is

monitored over a range of angle from 0 to 90 degrees for a range of mesh densities

using a low CFL of 0.05. Results are presented in Figure 4.21.  

The results for longitudinal waves indicate that for any mesh density higher than 7 the

error remains close to constant at any angle. This is an interesting feature as it means

that the wave propagates in all directions at a constant velocity as one would expect in

an isotropic material. For a mesh density of 6 nodes per wavelength, the number of

elements per wavelength is 3. The inconsistency of the results in this particular case

Figure 4.20. Schematic defining L0, L90, L30 and Lθ in a mesh of quadratic equilateral-triangular 
elements.

Figure 4.21. Variation of the longitudinal (a and c) and shear (b and d) velocity error against the angle 
of incidence for various mesh densities plotted in a polar (a and b) and linear (c and d) fashion.
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indicates that this is not sufficient to correctly represent longitudinal wave propagation.

As the mesh density is increased, the strength of these inconsistencies decreases

indicating that the wave propagation is correctly represented. This point raises the

issue of the minimum number of elements necessary to represent the wave propagation

correctly and will be discussed further.

For shear waves, the pattern observed for all mesh densities is similar to the one

observed for linear quadrilateral elements as the maxima occur at 0 and 60 degrees and

the minima at 30 and 90 degrees with a squared sine variation between them.

The improvement in the consistency of the velocity for both longitudinal and shear

waves against the angle of propagation is an interesting feature. The fact that the mesh

density needs to be at least equal to 7 to correctly represent the wave propagation is of

limited importance. It indicates that the use of quadratic elements increases the

minimum computational needs, but this only affects a limited range of models. The

influence of the mesh density on the error is represented in Figure 4.22. 

Figure 4.22. Velocity error against mesh density for shear and longitudinal waves at 0 and 30 degrees.
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As the longitudinal velocity is constant against the angle, the error is plotted against

the mesh density defined by the node spacing on the edge of the elements. Plotting the

error for both longitudinal and shear waves at 0 and 30 degrees, it can be seen that the

errors for shear waves at 0 degrees and for longitudinal waves at 30 degrees agree well

with the prediction given for linear elements:

 (4·19)

where N is defined using Lθ as defined on Figure 4.20.

The plot also indicates the trend followed by the longitudinal error at 0 degrees as:

 (4·20)

The shear error at 30 degrees can also be predicted by:

 (4·21)

This validates that the maximum errors for quadratic and linear elements vary in the

same way and with the same amplitude as the mesh density varies but that the

minimum error follows different rules. 

The next point to look into is the influence of the Courant number CFL on the error. It

is varied from 0.9 to 0.05. The scaled Courant number CFLX varies from 0.78 to 0.043

for a longitudinal wave at 30 degrees and from 0.45 to 0.025 for a shear wave at 0

degrees. The errors for longitudinal waves at 90 degrees and shear waves at 0 degrees

are plotted against CFLX over the range of mesh density studied. Results are shown on

Figure 4.23. The variation of the error against CFLX is similar to the one experienced

for linear elements.
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The maximum error for both wave types is defined as:

 (4·22)

where N is the mesh density calculated using Lθ.

As a conclusion, quadratic elements have the advantage of an improved consistency of

the propagation velocity against the angle of incidence for both shear and longitudinal

waves. On the other hand, it was noted that the smallest mesh density to correctly

model wave propagation is 8 nodes per wave length (against 6 for linear elements). The

fact that the element size is doubled compared to linear elements reduces the capability

to represent small model features with a regular mesh but the quadratic variation of the

edge means less elements are required to represent features such as holes.  

Figure 4.23. Velocity errors against CFLX for various mesh densities at a) 0 and b) 30 degrees.
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4.2.4.2 Isosceles triangle elements

This study is similar to that done for linear isosceles triangular elements. The same

node grid is used but is filled with quadratic rather than linear elements. This means

that the mesh density is the same and the element size is doubled. The mesh density is

kept at 10 nodes per wavelength in the y (vertical) direction whereas it is varied in the

x (horizontal) direction from 5.35 to 20. The mesh is hence constituted of same-size

isosceles triangles. The 7 isosceles triangle shapes used for this study are shown in

Figure 4.24.a. For each triangle, one angle is varied from 30 to 90 degrees while the

two other angles are kept equal. The equal angles are varied from 75 degrees to 45

degrees leading to a variation of the other angle φ from 30 to 90 degrees. Results of the

variation of the velocity error against the angle are shown on Figure 4.24. 

Figure 4.24. a) Shape of the different quadratic isosceles-triangular elements used in the mesh; 
Variation of the longitudinal (b and d) and shear (c and e) velocity error against the angle of incidence 
for various values of φ plotted in a polar (b and c) and linear (d and e) fashion. The coloured circles 
indicate the error prediction along the element side and diagonal.
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For longitudinal waves, as seen previously, the error for the equilateral case is constant.

For other cases, the maximum and minimum are located at 0 and 90 degrees and a

smooth variation occurs between these 2 points. As the angle φ is reduced, the

maximum error is located at 0 degrees and the minimum at 90 degrees. For φ greater

than 60 degrees, the maximum is at 90 degrees and the minimum at 0 degrees. The

predictions given by equation 4·18 agree well with the actual minima and maxima and

are conservative for the maxima.

For shear waves, the variation follows a similar pattern to the one observed for bulk

waves although the undulation occurring for the equilateral case is visible on the other

cases but does not seem to influence the overall results. The prediction of the maxima

is accurate for all cases apart for case 1 for which the prediction is 0.9% below the

actual value. It is also noted that the prediction is not conservative for case 2 being

0.1% below the correct value. For all other cases, the estimate is conservative and

within 0.2%. It is therefore correct to use the estimates as outlined previously for

equilateral triangles.

It is very interesting to note the significant improvement observed for shear waves

compared to linear elements. The shear error does not deteriorate dramatically as the

element is deformed. Quadratic elements can be used without any fear of a small

deformed element giving a larger than expected error for shear waves. This allows the

modeller to use automatic meshing algorithms more confidently.

4.2.4.3 Scalene triangle elements

This part looks into the influence of having a mesh of quadratic scalene triangular

elements. The node mesh is the same as used previously for the linear case. The mesh

density is kept the same in the y (vertical) and x (horizontal) direction at 10 and 11.55

elements per wavelength respectively while the element is sheared in the y direction.

The shearing angle varies from 0 to 45 degrees. The 4 scalene triangular shapes used

for this study are shown in Figure 4.25.a. Case 1 is the equilateral case while case 3

uses right (but not isosceles) triangles. Results of the variation of the velocity error

against the angle are shown on Figure 4.25.



Chapter 4
On the influence of mesh parameters on elastic bulk wave velocities

121

For longitudinal waves and all cases apart from case 1, the error varies smoothly and

describes a full sine like cycle. Maxima are reached between 0 and 90 degrees and a

minimum between -90 and 0 degrees. The prediction for the maxima is calculated

along the longest edge of the element. The estimation is relatively accurate although,

as γ is increased, the margin grows larger. This is in line with the relative error that was

observed at 90 degrees for isosceles triangles.

Figure 4.25. a) Shape of the different quadratic scalene-triangular elements used in the mesh; Variation 
of the longitudinal (b and d) and shear (c and e) velocity error against the angle of incidence for various 
values of γ plotted in a polar (b and c) and linear (d and e) fashion. The coloured circles indicate the 
error prediction along the element side and diagonal.
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For shear waves, a similar pattern is observed although the undulation occurring for

case 1 (equilateral triangle), exists for all cases and modifies slightly the overall shape

of the curves. The predictions for the maximum error are calculated along the longest

element side and agree well with the actual results in a conservative way. Again, using

modified quadratic elements instead of linear ones dramatically improves the precision

of the shear wave propagation velocity.

4.2.4.4 Conclusion

The study of equilateral triangular meshes made of modified quadratic elements has

shown that the longitudinal velocity error is very close to constant for N superior to 7.

For shear waves, a velocity error variation exists but is limited. This variation is closer

to the one observed with square elements than with equilateral triangular elements. The

maximum error for both wave types is identified and an expression can be used to

predict its amplitude. The influence of the Courant number on the error is confirmed

to be similar to the one observed previously in this chapter.

Studies of deformed meshes made of isosceles and scalene triangles show that the error

predictions derived from equation 4.26 are quite accurate although not always

conservative in cases where deformation is high. The most important point of this

study is that, contrary to linear triangular elements, no dramatic degradation of the

error is noted for any wave type and deformation level. Therefore, it can be said that

this element type can be used deformed without concern. It can be noted that the

modified quadratic elements react to deformation in a similar fashion as linear

quadrilateral elements. In the same way, the velocity error for a mesh of linear square

elements and modified quadratic equilateral triangle elements is relatively close. Based

on these two facts, it can be said that modified quadratic triangular elements behave in

a similar way to linear quadrilateral elements.
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4.3. Implicit solving

4.3.1 Introduction

In this section, the influence of the mesh density and angle of incidence are

investigated for a range of element types.

The geometry and properties of the models are the same as in the explicit cases. The

excitation is applied in the same way apart from the fact that it is applied as a real

harmonic signal of unit frequency. Models are solved in the frequency domain by the

implicit direct-solution steady state scheme of ABAQUS/Standard [14]. As the model

is solved in the frequency domain, no time increment is used and no Courant number

applies to these models. The monitored displacements are processed in the same way

in order to measure the propagation velocity.

As ABAQUS/Standard offers a wider range of elements than ABAQUS/Explicit, the

following elements [14] are investigated: linear quadrilateral element (CPE4),

quadratic quadrilateral element (CPE8), linear triangular element (CPE3), modified

quadratic triangular element (CPE6M) and quadratic triangular element (CPE6). CPE4

and CPE8 elements are full integration elements and are not available in ABAQUS/

Explicit (which only has reduced integration linear quadrilateral elements available).

All studies start with a mesh made of square or equilateral elements. Following this,

the meshes are deformed in order to understand how the deformation impacts the

velocity error. The mesh density is varied from 6 to 30 and is defined in the same way

as in Section 2.3.1.

4.3.2 Linear quadrilateral elements

4.3.2.1 Square elements

The velocity errors for both shear and longitudinal velocities monitored over a range

of angles from 0 to 90 degrees for a range of mesh densities are plotted on Figure 4.26. 

It can be noted that the general variation of the error is the same as the one observed

with reduced integration linear square elements in Section 4.2.2.1. The amplitude of

the error for the longitudinal wave superimposes almost perfectly with the results from
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Section 4.2.2.1. For shear waves, the agreement is similar at 0 and 90 degrees but the

increase in error with reduced integration elements in the explicit case is stronger than

the full integration ones in the implicit case. This discrepancy is likely to be due to the

change in integration technique rather than the change in solving process. 

4.3.2.2 Rectangle elements

The meshes studied in this part are “stretched” in one direction to create rectangular

elements. The element size in the vertical direction y is kept the same for all models so

that the mesh density N in this direction is 15. The element size in the horizontal

direction x is varied so that the mesh density N varies from 7.5 to 30. The ratio between

the element side R=Lx/Ly is hence varied from 0.5 to 2 as illustrated on Figure 4.27.a.

The error on the velocity is measured over a range of angles from 0 to 90 degrees and

plotted on Figure 4.27.b,c,d,e. 

As seen with square elements, the longitudinal wave case matches the explicit case

almost perfectly and the shear wave case matches it at 0 and 90 degrees, but the

increase in error between these points is smaller than in the explicit case.

Figure 4.26. Variation of the longitudinal (a and c) and shear (b and d) velocity error against the angle 
of incidence for various values of mesh density plotted in linear (a and b) and polar (c and d) plots.
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4.3.2.3 Rhombus elements

Meshes in this case are sheared so elements are deformed from a square to a rhombus.

The models studied have a mesh density of 15 along the element sides. The shearing

angle γ is varied from 0 to 60 degrees by 15 degree increments. The error on the

velocity is monitored from -90 to +90 degrees and is plotted on Figure 4.28. 

In these cases, the amplitude of the error is similar to the explicit case for low

deformation. It diverges quite strongly (in particular for shear waves) as the mesh is

deformed but stays smaller than the explicit case error.         

Figure 4.27. a) Shape of the different rectangular elements used in the mesh; Variation of the 
longitudinal (b and d) and shear (c and e) velocity error against the angle of incidence for various 
values of R plotted in a polar (b and c) and linear (d and e) fashion.
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4.3.2.4 Parallelogram elements

The mesh in this case is sheared and stretched with a mesh density of 15 at 0 and 90

degrees. The shearing angle γ is varied from 0 to 45 degrees by 15 degree increments

as shown on Figure 4.29.a. Results are plotted on Figure 4.29.

The findings for the parallelogram case are in line with those of the rhombus cases.        

Figure 4.28. a) Shape of the different rhombic elements used in the mesh; Variation of the longitudinal 
(b and d) and shear (c and e) velocity error against the angle of incidence for various values of γ plotted 
in a polar (b and c) and linear (d and e) fashion.
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4.3.2.5 Conclusion

The study of the implicit cases with fully integrated elements shows that results for

these cases are similar to the ones obtained for the reduced integration cases solved

with the explicit solver. Two differences are noticed: the amplitude of the error tends

to be lower for fully integrated elements than reduced integration elements with shear

waves for all element shapes; deformation of elements leads to a reduction in error

compared to the explicit cases. Although not optimum, the general rule to determine

Figure 4.29. a) Shape of the different parallelogramatic elements used in the mesh; Variation of the 
longitudinal (b and d) and shear (c and e) velocity error against the angle of incidence for various 
values of γ plotted in a polar (b and c) and linear (d and e) fashion.
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the maximum velocity error established for explicit quadrilateral elements can be

adapted to implicit cases as:

 (4·23)

with Nmin, the mesh density along the longest diagonal.

4.3.3 Quadratic quadrilateral elements

It is important to mention that, in this case, as in Section 4.2.4.1, the mesh density is

determined in terms of node spacing not element side size.

4.3.3.1 Square elements

The velocity errors for both shear and longitudinal velocities monitored over a range

of angles from 0 to 90 degrees for a range of mesh densities are plotted on Figure 4.26.

Figure 4.30. Variation of the longitudinal (a and c) and shear (b and d) velocity error against the angle 
of incidence for various values of mesh density plotted in polar (a and b) and linear (c and d) plots.
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Looking at the results for quadratic square elements, it can be seen that the absolute

value of the error is much lower than for linear elements as it is smaller than 0.5% for

a mesh density superior to 8. Unlike all cases seen previously, the velocity is higher

than the theoretical value which explains why a negative error is plotted. As seen in

previous cases, there is a variation in the error but here the smallest error occurs at 45

degrees where the mesh density is at its lowest. This indicates that the approach to

predict the velocity error that was used for linear and modified quadratic elements

cannot be applied to this case.

4.3.3.2 Rectangle elements

The meshes studied in this part are “stretched” in one direction to create rectangular

elements. The element size in the vertical direction y is kept the same for all models so

that the mesh density N in this direction is 15. The element size in the horizontal

direction x is varied so that the mesh density N varies from 7.5 to 30. The ratio between

the element side R=Lx/Ly is hence varied from 0.5 to 2 as illustrated on Figure 4.31.a.

The error on the velocity is measured over a range of angles from 0 to 90 degrees and

plotted on Figure 4.31.b,c,d,e. 

Looking at the results for both longitudinal and shear waves, it can be seen that the

amplitude of the reflection is impacted by the deformation of the elements. The general

shape of the curves is similar to what was seen for linear quadrilateral elements

although the amplitude of the error stays in line with quadratic quadrilateral results. It

can be noted that the error is positive along the shortest edge of case 5. This indicates

a softening of the element in this direction and the error is higher than what would have

been expected at the mesh density in this direction.
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4.3.3.3 Rhombus elements

Meshes in this case are sheared so that all elements are deformed from a square to a

rhombus. The models studied have a mesh density of 15 along the element sides. The

shearing angle γ is varied from 0 to 60 degrees by 15 degree increments as seen in

Figure 4.32.a. The error on the velocity is monitored from -90 to +90 degrees and is

plotted on Figure 4.32.         

The deformation of the element from a square to a rhombus does not lead to a dramatic

deterioration of the error and is in line with amplitudes experienced before with

quadratic elements.

Figure 4.31. a) Shape of the different rectangular elements used in the mesh; Variation of the 
longitudinal (b and d) and shear (c and e) velocity error against the angle of incidence for various 
values of R plotted in a polar (b and c) and linear (d and e) fashion.
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4.3.3.4 Parallelogram elements

The mesh in this case is sheared and stretched with a mesh density of 15 at 0 and 90

degrees. The shearing angle γ is varied from 0 to 45 degrees by 15 degree increments

as shown on Figure 4.33.a. Results are plotted on Figure 4.33.

Results are relatively similar to the rhombus results except that the velocity error has a

higher amplitude. This can be explained by the fact that the mesh density in this case

is more strongly modified than in the rhombus one. 

Figure 4.32. a) Shape of the different rhombic elements used in the mesh; Variation of the longitudinal 
(b and d) and shear (c and e) velocity error against the angle of incidence for various values of γ plotted 
in a polar (b and c) and linear (d and e) fashion. 
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4.3.3.5 Conclusion

At a particular mesh density, quadratic quadrilateral elements have a much smaller

velocity error than linear quadrilateral elements. For square elements, the error is less

than 0.5% for a mesh density of 8. The velocities with this type of element are superior

to the theoretical value except for some angles with strongly deformed elements. This

element type copes generally well with small deformations.

Figure 4.33. a) Shape of the different parallelogramatic elements used in the mesh; Variation of the 
longitudinal (b and d) and shear (c and e) velocity error against the angle of incidence for various 
values of γ plotted in a polar (b and c) and linear (d and e) fashion.
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4.3.4 Linear triangular elements

4.3.4.1 Equilateral triangle elements

The error on both shear and longitudinal velocity is monitored over a range of angles

from 0 to 90 degrees for a range of mesh densities. Results are presented in Figure 4.34.

Results for this case superimpose almost perfectly with those of the explicit case with

linear equilateral triangle meshes. It is interesting to note that the implicit results match

the explicit ones obtained with a low CFLX. Findings from the explicit case can

therefore be applied to the implicit case, in which case, the CFLX in the former should

be replaced by zero in the latter.

4.3.4.2 Isosceles triangle elements

The meshes studied in this part are “stretched” in one direction to have isosceles

triangle elements. The element size in the vertical direction y is kept the same for all

models so that the mesh density N in this direction is 10. The element size in the

horizontal direction x is varied so that the mesh density N varies from 5.35 to 20.

Results plotted on Figure 4.35 show an excellent agreement with the explicit case.   

Figure 4.34. Variation of the longitudinal (a and c) and shear (b and d) velocity error against the angle 
of incidence for various mesh densities plotted in a linear (a and b) and polar (c and d) fashion.
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4.3.4.3 Scalene triangle elements

In this case, the mesh density is kept the same in the y (vertical) and x (horizontal)

direction at 10 and 11.55 elements per wavelength respectively while the element is

sheared in the y direction. The shearing angle varies from 0 to 45 degrees. Results of

the variation of the velocity error against the angle for a range of mesh density are

shown on Figure 4.36 and agree extremely well with results obtained in the explicit

case. 

Figure 4.35. a) Shape of the different quadratic isosceles-triangular elements used in the mesh; 
Variation of the longitudinal (b and d) and shear (c and e) velocity error against the angle of incidence 
for various value of φ plotted in a polar (b and c) and linear (d and e) fashion. 
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4.3.4.4 Conclusion

Results obtained with all shapes of linear triangular elements in the implicit case match

almost perfectly those obtained with the explicit case with low CFLX. This highlights

that the solving scheme has a limited influence compared to the element type used.

Figure 4.36. a) Shape of the different scalene-triangular elements used in the mesh; Variation of the 
longitudinal (b and d) and shear (c and e) velocity error against the angle of incidence for various 
values of γ plotted in a polar (b and c) and linear (d and e) fashion.
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4.3.5 Quadratic triangular elements

4.3.5.1 Equilateral triangle elements

The error on both shear and longitudinal velocities is monitored over a range of angles

from 0 to 90 degrees for a range of mesh densities. Results are presented in Figure 4.37.

The error on velocity measured in this case is much lower than that observed with

linear triangular elements. The absolute value of the error on velocity is lower than

0.4% for a mesh density greater than 8. As for the case of quadratic quadrilateral

elements, the measured velocity is higher than the theoretical one. The error is the same

for both wave types at 0 and 60 degrees. The velocity variation is not the same between

these two points as it increases for shear waves but decreases for longitudinal waves.

As for the quadratic quadrilateral elements, the prediction of the error devised for

linear and modified quadratic elements cannot be applied. The fact that the error is so

low means that the error is practically negligible.

Figure 4.37. Variation of the longitudinal (a and c) and shear (b and d) velocity error against the angle 
of incidence for various mesh density plotted in a linear (a and b) and polar (c and d) fashion.
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4.3.5.2 Isosceles triangle elements

The meshes studied in this part are “stretched” in one direction to create isosceles

triangle elements. The element size in the vertical direction y is kept the same for all

models so that the mesh density N in this direction is 10. The element size in the

horizontal direction x is varied so that the mesh density N varies from 5.35 to 20.

Results are plotted on Figure 4.38.    

Deformation of the elements leads to a modification of the error curves. The maximum

error is in line with what is expected and no loss of precision seems to occur in this

case.

Figure 4.38. a) Shape of the different quadratic isosceles-triangular elements used in the mesh; 
Variation of the longitudinal (b and d) and shear (c and e) velocity error against the angle of incidence 
for various values of φ plotted in a polar (b and c) and linear (d and e) fashion.

0

θ (deg) θ (deg)

e)d)

a)

φφφ φ φ φ

Case 2:
φ=50deg

Case 3:
φ=60deg

Case 4:
φ=70deg

Case 5:
φ=80deg

Case 6:
φ=90deg

Case 1:
φ=40deg

Er
ro

r o
n 

sh
ea

r v
el

oc
ity

 (%
)

0 10 20 30 40 50 60 70 80 90
-0.9
-0.8
-0.7

-0.4

-0.2

-0.6
-0.5

-0.3

-0.1
0

Er
ro

r o
n 

sh
ea

r v
el

oc
ity

 (%
)

0 10 20 30 40 50 60 70 80 90
-0.9
-0.8
-0.7

-0.4

-0.2

-0.6
-0.5

-0.3

-0.1
0

-0.4

0

-0.8

0

90
60

30

θ (deg)

Lo
ng

itu
di

na
l v

el
oc

ity
 e

rr
or

 (%
) 90

60

30

θ (deg)

-0.4

-0.8

0

Sh
ea

r v
el

oc
ity

 e
rr

or
 (%

)b) c)

φ

φ



Chapter 4
On the influence of mesh parameters on elastic bulk wave velocities

138

4.3.5.3 Scalene triangle elements

In this case, the mesh density is kept the same in the y (vertical) and x (horizontal)

direction at 10 and 11.55 elements per wavelength respectively while the element is

sheared in the y direction. The shearing angle varies from 0 to 45 degrees. Results of

the variation of the velocity error against the angle for a range of mesh density are

shown on Figure 4.39. 

Figure 4.39. a) Shape of the different scalene-triangular elements used in the mesh; Variation of the 
longitudinal (b and d) and shear (c and e) velocity error against the angle of incidence for various 
values of γ plotted in a polar (b and c) and linear (d and e) fashion.
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Results for both wave types up to case 3 show a relatively good behaviour but results

for case 4 clearly show a great increase in the velocity error along the longest triangle

edge. The absolute error reaches a value of 3.5% which is much higher than expected.

4.3.5.4 Conclusion

Quadratic triangular elements (CPE6 [14]) have been shown to provide good results

for equilateral and isosceles triangle shapes. Velocity error in these cases is very low

and is close to the amplitudes observed with quadratic quadrilateral elements. The

shearing of the element did not prove problematic up to the case of the right angle

triangle. For larger shearing, the velocity error dramatically increased along the longest

edge of the triangles. This phenomenon is similar to what was observed for linear

triangular elements. Element deformation is acceptable but should be limited.

4.3.6 Modified quadratic equilateral triangular elements

4.3.6.1 Equilateral triangle elements

The error on both shear and longitudinal velocity is monitored over a range of angles

from 0 to 90 degrees for a range of mesh densities. Results are presented in Figure 4.40.

Figure 4.40. Variation of the longitudinal (a and c) and shear (b and d) velocity error against the angle 
of incidence for various mesh densities plotted in a linear (a and b) and polar (c and d) fashion.
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It is interesting to note that the results agree very well with the ones obtained with the

same element type solved with an explicit scheme. The amplitude of the error for the

modified quadratic triangle elements is much higher than the quadratic triangle or

quadrilateral elements and is generally in line with the amplitude observed for linear

elements. Velocity error prediction as defined in Section 4.2.4 is valid in this case.

4.3.6.2 Isosceles triangle elements

The meshes studied in this part are “stretched” in one direction to have isosceles

triangle elements. The element size in the vertical direction y is kept the same for all

models so that the mesh density N in this direction is 10. The element size in the

horizontal direction x is varied so that the mesh density N varies from 5.35 to 20.

Results are plotted on Figure 4.42. As for the equilateral case, an excellent agreement

exists between the explicit and implicit cases. 

Figure 4.41. a) Shape of the different quadratic isosceles-triangular elements used in the mesh; 
Variation of the longitudinal (b and d) and shear (c and e) velocity error against the angle of incidence 
for various values of φ plotted in a polar (b and c) and linear (d and e) fashion.
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4.3.6.3 Scalene triangle elements

In this case, the mesh density is kept the same in the y (vertical) and x (horizontal)

direction at 10 and 11.55 elements per wavelength respectively while the element is

sheared in the y direction. The shearing angle varies from 0 to 45 degrees. Results are

plotted on Figure 4.42. Comparing implicit and explicit results shows an almost perfect

superimposition of results.

Figure 4.42. a) Shape of the different scalene-triangular elements used in the mesh; Variation of the 
longitudinal (b and d) and shear (c and e) velocity error against the angle of incidence for various 
values of γ plotted in a polar (b and c) and linear (d and e) fashion.
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4.3.6.4 Conclusion

As for the linear triangular elements, results for modified quadratic triangular elements

show an excellent agreement between explicit and implicit results. It is interesting to

note that this element type does not suffer from a great loss of precision due to the

deformation of the element. Modified triangular elements behave in a way closer to

linear quadrilateral elements than linear or quadratic triangular ones.

4.4. Conclusions

The study of reduced integration linear quadrilateral elements solved with an explicit

solver showed the influence of the scaled Courant number CFLX and mesh density N

on the velocity. Patterns were identified and permitted to define a fitted analytical

expression to evaluate with high accuracy the amplitude of the velocity error Ec at any

angle, any scaled Courant number and for a mesh density higher than 6:

 (4·24)

Following this, the study of deformed elements highlighted that the maximum error in

a mesh could be predicted using the fitted analytical expression defined for square

elements (see Equation 4·24). This indicates that this element type is not the subject of

dramatic loss of performance when deformed. Therefore using deformed quadrilateral

elements in a model is not an issue on its own but other factors should also be

considered. As quadrilateral elements are deformed, the maximum error will

consequently increase with the longest diagonal. Therefore, for a given maximum

acceptable error, the overall node density of a model will increase with the level of

element deformation. In other words, the number of degrees of freedom necessary to

cover the geometry of a model with deformed elements will be greater than with square

ones. On top of this, the reduction in the length of the shortest diagonal leads to a

reduction in the stable increment meaning that, for the same number of degrees of

freedom, a model with deformed elements can not be solved as quickly as one made of

square elements.

Ec 180 1 CFLX2–( )

N2
--------------------------------=
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With linear equilateral triangular elements, it was demonstrated that the error could be

correctly predicted using rules established for quadrilateral elements (see Equation

4·24) along the altitudes and element sides for longitudinal waves and along the

element sides for shear waves. The influence of the scaled Courant number CFLX and

mesh density N was confirmed at these positions and wave types. An error of zero was

measured for shear waves along the altitudes of the triangular elements. Deformed

mesh cases showed that this element type is sensitive to high levels of deformations as

the predicted error was more than tripled in one case (16.4% instead of 4.8%). Using

highly deformed linear triangular elements is therefore not advised. The author of this

work recommends that linear triangular element internal angles should all have values

higher than 50 degrees and lower than 70 degrees in order not to experience significant

loss of precision.

Modified quadratic equilateral triangular elements proved to have a close to constant

error against the angle for a given N when being solved with a low CFL. The maximum

amplitude of the error was in line with the one observed with linear elements and

defined using equation 4·24. The influence of CFLX and N was demonstrated to be

similar to previous cases. Modified quadratic triangular elements were shown to cope

well with being deformed like linear quadrilateral elements and unlike linear triangular

elements. Large deformation of modified triangular elements is therefore not an issue

and the author is confident that using linear triangular elements whose internal angles

are between 30 and 90 degrees will not cause a large loss of precision in the model.

For implicit solving, full integration linear square element results for longitudinal

waves showed very good agreement with the ones obtained with reduced integration

elements and the explicit solver. For shear waves, the plot had the same shape but the

error was marginally smaller (factor of 0.75). In a similar way to the explicit case, the

following fitted analytical expression can be used to define the velocity error:

 (4·25)

Deformation of elements showed similar (although marginally better) results when

compared to the reduced integration explicit case. Fully integrated quadrilateral

Ec
180
N2
---------=
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elements cope well with being deformed and the use of deformed ones in a model is

not a problem.

For a given mesh density, quadratic quadrilateral elements proved to strongly reduce

the velocity error to less than 0.5% for a node density higher than 8. Therefore, the

velocity error with this type of element is not a cause for concern compared to other

cases. Deformation of elements did not prove to be a problem. The two weaknesses of

this element type are that in ABAQUS it can only be used with an implicit solver and

that, as it is a quadratic element, geometric resolution (defined by the smallest

geometric size of an element) is halved compared to linear elements for a given node

density.

Linear and modified quadratic elements results for the implicit case matched almost

exactly results obtained with the explicit solver and therefore the findings are the same. 

Quadratic equilateral triangular elements were shown to lead to low velocity error as

were quadratic square elements, but proved to be sensitive to high levels of

deformation in the same way as linear triangular elements. Therefore the author

recommends limiting the internal angle range to 50 and 70 degrees.

Overall, the influence of the solver is ruled out, as element type and shapes are the

factor determining the velocity error. Unlike quadrilateral elements, all triangular

elements apart from modified quadratic ones were shown to be sensitive to element

deformation. This justifies why automatic meshing algorithms seek to minimize the

deformation and why modellers need to exercise caution when using linear and

quadratic triangular elements.

The angle of propagation in a regular mesh was shown to play an important part in the

amplitude of the velocity error as it leads to a non-negligible variation.

The mesh density was shown to be the driving factor influencing the velocity error for

all element types. The influence is not so noticeable for quadratic elements as the

velocity is highly accurate for any mesh density. For linear and modified quadratic

elements, its influence is much stronger. 
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An interesting point is that the difference in velocity between 2 meshes causes a

difference in acoustic impedance that may be partly responsible for possible reflection

occurring at their interface. The knowledge gained in this section regarding the

velocity error will be used in Chapter 6 which investigates local mesh refinement.
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Chapter 5 

Accurate modelling of defects using 

Finite Elements

5.1. Introduction

In the same way as a stress analysis engineer studying the stresses in a mechanical

component, an NDT engineer developing an ultrasonic inspection technique has to

make assumptions and simplifications in order to be able to numerically model the

interaction of a wave with a structural defect. In the past, the vast majority of wave

propagation work focused on strongly simplified defects. One reason for this is that

initial work is bound to focus on the simplest cases, but many modellers are ready to

go on to more complex problems. As computer power has developed exponentially,

new opportunities have arisen and have highlighted the fact that only a limited amount

of information is available regarding how to accurately model the interaction of elastic

waves with complex defects using FE.

One specific issue related to modelling wave propagation using FE is that a change in

element shape or size leads to a change of acoustic impedance that generates unwanted

reflections. As these reflections pollute the signal of interest, most NDT modellers

favour the use of regular meshes usually constituted of linear square elements. In this

context, it is well known that the correct representation of the wave propagation

phenomenon requires the mesh density to be at least 7 nodes per shortest wavelength.

When using a regular square mesh, defects and features are represented by adding or

removing elements. This can be thought of as a “LEGO” approach where the elements

are LEGO bricks. Clearly, the down side to this is that the geometric definition of

features and defects is dependent on the mesh size and orientation. As a consequence,

theoretical geometric edges not aligned with the mesh are approximated and

sometimes represented in a jagged fashion. This leads to discrepancies between the

theoretical and modelled geometries.
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It is generally accepted - although not thoroughly verified - that refinement of the mesh

leads to a convergence of the FE results towards the exact results. In some cases, mesh

refinement is applied in order to correctly model defects. The direct consequence of

this is an increase in the number of degrees of freedom solved and hence the

computational requirements of the model. Keeping the classic regular square mesh

approach, this raises the question of how fine a mesh needs to be refined - if at all - for

a particular defect or feature to be realistically represented from a wave propagation

perspective.

Another approach which has been less popular in the past is to use automatic meshing

algorithms using triangular elements. These are now widely available in commercial

FE packages. Aside from the lack of availability in the past, one reason why these

algorithms have not been commonly used in NDT wave modelling is that, in most

cases, elements are deformed when automatically generated. As deformation of

elements leads to a change of acoustic impedance and consequently reflections, the

mesh structure is key to appropriate modelling of wave propagation. On the positive

side, when using an automatic meshing algorithm, the geometry is represented more

closely than with the regular mesh approach presented above as the edges of the

elements follow the edges of the geometry. It would be beneficial to perform a

meticulous study to verify whether this approach is well adapted for the modelling of

the interaction of elastic waves with complex defects.

In this chapter, the two meshing approaches described above are tested for a range of

defects, element types and solving methods with both elastic wave types. The general

approach is to refine the mesh size for all these cases until an acceptable reference is

obtained in order to evaluate the evolution of the error as the mesh is refined. The

defects modelled included straight edges, circular defects of various sizes and cracks

of various sizes. These cases are chosen as they are commonly modelled in NDT and

should provide the foundations to more complex defect modelling.
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5.2. Model definition

As in the previous chapter, models are non-dimensional and the elastic material is

chosen so that the longitudinal and shear wavelengths are 2 and 1 units respectively:

Young’s modulus is 8/3, Poisson’s ratio is 1/3 and density is 1.The cases investigated

here are the reflection of bulk waves from:

• straight edges

• straight cracks at an angle of 80 degrees and of length 0.25, 1 and 4 units

• circular holes of diameter 0.25, 1 and 4 units

Models are 2D plane strain. Both shear and longitudinal wave generations are

considered, as models are excited by body forces being applied on four elements as

shown on Figure 5.1. Body forces rather than point forces are used in this Chapter as

they offer better mode purity. This generates an almost pure wave - shear or

longitudinal - and as the size of the source is only a fraction of a wavelength is a close

representation of a point source. The point located at the centre of the four elements is

referred to as the excitation point. As the body force load is dependent on the area of

the elements excited, the load is normalised so that the amplitude of the incident wave

is the same in all cases studied in this chapter.         

Models are run with ABAQUS 6.6-1 in both the time domain (explicit) and the

frequency domain (implicit). For the latter, the excitation is applied as a real harmonic

excitation whose frequency is 1; the complex displacement field is obtained directly

and used later to plot the absolute displacement field. For the explicit case, in order to

obtain an absolute displacement field similar to the frequency domain one, it is decided

to run two separate models: one with cosine and one with sine excitation of unit

frequency . The complex displacement field is obtained by adding the result of the

Figure 5.1. (a) Longitudinal and (b) shear wave excitation for a square element mesh and (c) 
longitudinal and (d) shear excitation for a triangular element mesh.

a) c) d)b)
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cosine case to the result of the sine case multiplied by i. The first half of a Hanning

window is used over the first 5 cycles in order to ramp up the amplitude of the sine and

cosine to a constant value in order to avoid exciting a broad range of frequencies. The

model is run sufficiently long so that the steady state is reached at all locations where

the displacements are monitored.

Implicit models are run using linear square elements with full (CPE4) and reduced

(CPE4R) integration, linear triangular elements (CPE3), quadratic triangular elements

(CPE6) and modified quadratic triangular elements (CPE6M). Explicit models are

only run using CPE4R, CPE3 and CPE6M as they are the only elements available for

this type of solver.

Appropriately dimensioned ALID are used for all models. In the case of square

meshes, the width of each sub layer in the ALID is one element. For triangular mesh

cases, as the model is generated using the interactive user interface of ABAQUS CAE

6.6-1, a fixed number of sub layers of width 0.25 are defined. Free meshing of these

layers is then performed.

In order to evaluate the influence of the mesh density on the accuracy of the results, the

following numbers of nodes per shortest wavelength are investigated: 6, 10, 15, 20, 25

and 30. This parameter is identified as the mesh density and is assigned the letter N. In

the case of regular square meshes, N is exact over the whole model. For triangular

element meshes generated by the free meshing algorithm of ABAQUS CAE 6.6-1, the

node spacing is specified on the internal and external boundaries of the model. A

variation in node spacing over the model exists but is limited overall. This leads to a

limited variation in the mesh density. There are two cases of interest where significant

local deviations can exist between the prescribed and actual node spacing: small linear

edges and small circular holes. When a linear edge is smaller than the node spacing, it

is defined by a single element. The node spacing on the edge is directly dependent on

the edge length and locally over-rules the prescribed node spacing condition. All

circular holes receive a special treatment that guarantees that they are not incorrectly

represented. The default setting of the free meshing algorithm of ABAQUS CAE 6.6.1

[14] means that a circular hole is defined by at least 8 nodes. This condition is used in

this work and locally over-rules the prescribed node spacing condition for small holes.
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5.3. Reflection from a straight edge

The first case investigated is that of the reflection from a straight edge. The geometry

of the model is presented in Figure 5.2.a. 

Three mesh cases are considered:

• square mesh at 0 degrees aligned with the edge

• square mesh at 45degrees to the edge resulting in a stair-cased edge

• triangular mesh generated with automatic meshing algorithm

These are shown on Figure 5.3.   

As shown on Figure 5.2.a, the excitation point is located 6 units away from the edge (6

shear wavelengths or 3 longitudinal ones). As the edge is jagged when the mesh is at

45 degrees, an error on the exact position of the edge exists. In this study, the outside

limit is used as the reference. The complex displacement field is monitored up to 24

units away from the excitation point along a line coincident with the excitation point

and parallel to the edge (see Figure 5.2). For a longitudinal wave excitation, the

displacements are monitored in the x direction and for a shear wave excitation, the

Figure 5.2. Straight edge model: a) with edge, b) without edge.

Figure 5.3. a) square mesh at 0 degrees aligned with the edge, b) square mesh at 45 degrees, c) 
triangular free mesh

a) b)
Area of study

ALID

Excitation point

Monitoring line

Monitoring direction
Longitudinal waves

Monitoring direction
Shear waves624

y
x
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displacements are monitored in the y direction. In theory, the incident displacement

field is zero in these directions and only the reflection from the edge is present. In

practice, some slight numerical issues (low amplitude noise, oscillation close to the

excitation point) exist on this line. In order to achieve high quality reflection fields,

each case was run with (Figure 5.2.a) and without (Figure 5.2.b) the edge being

modelled. For the models without the edge, models are extended behind the edge and

ALID are used to absorb incident waves. The complex displacement field of the case

without the edge is substracted from the one with the edge. Thus the slight coherent

numerical noise is removed. The absolute displacement along the monitoring line

measured in the direction described above is then plotted. The horizontal axis

represents the position of the monitoring point relative to the reference which is

excitation point as shown on Figure 5.2. The vertical axis indicates the amplitude of

the displacement. It should be mentioned that the general shape of the amplitude of the

displacement plots is the result of the interaction of shear and longitudinal reflection

resulting from the incident wave being reflected by the edge. As these two waves have

different properties, this causes interference patterns which result in the presence of a

central main lobe and side lobes.

Results obtained for the implicit models for longitudinal and shear wave excitation are

presented in Figure 5.4 and 5.5 respectively. Results for the explicit models for

longitudinal and shear waves are presented in Figure 5.6 and 5.7. This represents a very

large amount of data. In order to simplify the identification of cases, each plot is

associated with a letter and a number (e.g. D15). The number is the mesh density of the

case (row) and the letter identify the excitation, mesh and element types as indicated

on the column of the figures. A letter on its own (e.g. D) indicates the whole column.                 

The first point to be noted is that the results for all cases with a density of 30 agree very

well with each other and that, in most cases, the difference between the 25 and 30 cases

is negligible. These plots can therefore be confidently taken as references. In order to

highlight the discrepancies between these cases (i.e. the reference) and all other cases

where the density is lower than 30, the reference curves are plotted in red for each case

modelled.
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Figure 5.4. Implicit models for straight edge: Monitored absolute displacement for a longitudinal wave 
excitation using CPE4 and CPE4R meshes at 0 degrees, CPE4 and CPE4R meshes at 45 degrees and 
CPE3, CPE6 and CPE6M triangular elements. Thin red line is reference for N=30 for each case.
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Figure 5.5. Implicit models for a straight edge: Monitored absolute displacement for a shear wave 
excitation using CPE4 and CPE4R meshes at 0 degrees, CPE4 and CPE4R meshes at 45 degrees and 
CPE3, CPE6 and CPE6M triangular elements. Thin red line is reference for N=30 for each case.
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A and B show the results obtained with square element meshes at 0 degrees. The

difference between using full (A) or reduced (B) integration elements is negligible for

all mesh densities and they are therefore assessed jointly. It can be seen that there is a

good convergence towards the reference case (30) with an error of less than 3% for a

density of 20. A mesh of density 6 gives inaccurate results but increasing this value to

10 leads to a relatively correct representation of the phenomena occurring despite a

large amplitude error. 

C and D show the results obtained with square element meshes at 45 degrees. Results

for fully integrated elements (C) are very similar to the results obtained with a mesh at

0 degrees (A) whereas reduced integration element ones (D) differ noticeably. In this

case, one can see that the amplitude of side lobes oscillates on each side of the

Figure 5.6. Explicit models for a straight edge: Monitored absolute displacement for a longitudinal 
wave excitation using CPE4R meshes at 0 degrees, CPE4R meshes at 45 degrees and CPE3 and 
CPE6M triangular elements. Thin red line is reference for N=30 for each case.
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reference ones as the mesh is refined. This indicates that, despite a fine mesh (D25),

the stair-cased edge interferes with the correct representation of the reflection.

E, F and G show the results obtained with automatically generated triangular element

meshes. A convergence towards the reference occurs in the same way as for square

elements results (A). Quadratic elements (F) offer the best results with a good

agreement achieved for a mesh density of 15. Linear triangular elements (E) cause an

oscillation to occur on the side lobes and a mesh density of 25 (E25) is required to have

acceptable results. A similar, although milder, phenomenon occurs with modified

quadratic elements (G). 

Figure 5.7. Explicit models for a straight edge: Monitored absolute displacement for a shear wave 
excitation using CPE4R meshes at 0 degrees, CPE4R meshes at 45 degrees and CPE3 and CPE6M 
triangular elements. Thin red line is reference for N=30 for each case.
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Results for shear wave excitation are presented in Figure 5.5 and show a similar

behaviour to longitudinal waves except from the lack of oscillation (observed in E and

G but absent in L and M).

Explicit results presented in Figure 5.6 and 5.7 agree very well with the results from

the implicit solver with their respective element type. In other words, the results of the

CPE4R element type are the same when solved with an implicit (B) or an explicit

method (Q). Consequently the findings obtained for the implicit solver are also valid

for the explicit one. 

Overall, based on the plots for square element meshes at 0 degrees, it can be said that

this case provides superior results to square element meshes at 45 degrees and

triangular element meshes for the modelling of the reflection from a straight edge. The

use of square element meshes at an angle gives acceptable results but the oscillation of

the side lobes is a concern and could be explained by diffraction occurring due to the

jagged nature of the edge. Quadratic triangular elements give results close to square

elements with a mesh at 0 degrees. Linear triangular elements need a finer mesh than

the other triangular element types in order to provide accurate results and the

noticeable undulation on the side lobes is a concern. Modified quadratic element

meshes seem to offer a compromise between linear and quadratic triangular elements.

5.4. Reflection from a straight crack at an angle

In this part, the longitudinal and shear wave reflection from a crack at an angle are

studied. It should be noted that the angle and length of the modelled cracks have not

particular significance and are just sensibly chosen examples. The geometry of the

models is presented in Figure 5.8.a. The mid-point of the crack is located 10 units away

from the excitation point and the crack is at an angle of 10 degrees relative to the

vertical. Three crack lengths are used: 0.25, 1, 4. This permits a wide range of

reflection regimes for both wave types. 
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Two meshing strategies are used. On one side, a regular square mesh is used and nodes

are disconnected in order to create a crack following the edges of the elements in the

mesh. It can be seen as creating a free edge following the lines of the regular square

grid. This is achieved by using a MATLAB routine created by a summer placement

student, Sumeet Kale, under the guidance of the author. It defines a crack as close as

possible to the exact crack within the particular regular square mesh. On the other side,

a triangular element mesh generated by the free meshing algorithm from ABAQUS

CAE 6.6-1 is used. In this situation, the geometry of the crack is determined first and

then free meshing of the geometry is performed. The particular shape and mesh of each

crack generated with both methods is shown in each section where the particular

straight crack geometry is studied.

As shown on Figure 5.8, the displacement field is monitored on a line perpendicular to

the line joining the crack mid-point to the excitation point and over a length of 24 units

on each side of the excitation point. For a longitudinal wave excitation, the

displacements are monitored in the x direction and for a shear wave excitation, the

displacements are monitored in the y direction. In theory, the incident displacement

field is zero in these directions and only the reflection from the edge is present. In

practice, some slight numerical issues (low amplitude noise, oscillation close to the

excitation point) exist on this line. In order to achieve high quality reflection fields,

each case was run with (see Figure 5.8.a) and without (see Figure 5.8.b) the crack being

modelled. The complex displacement field of the case without the crack is substracted

from the one with the crack. The absolute displacement in the direction specified above

is then plotted.

Figure 5.8. Straight crack model: a) with crack, b) without crack.

a) b)
Area of study

ALID

Excitation point

Monitoring line

Monitoring direction
Longitudinal waves

Monitoring direction
Shear waves

10

24

10o

24

y
x



Chapter 5
Accurate modelling of defects using Finite Elements

158

5.4.1 Crack of unit length

The first case studied is the case of a crack of unit length. The actual cracks used for

these models are represented in Figure 5.9. When using a triangular mesh, the crack

geometry is exactly defined whereas the crack obtained with the square mesh differs

from the exact crack. This is highlighted in Figure 5.9 where the theoretical crack as

defined in Figure 5.8 is shown in red and the actual modelled crack in blue. Both lines

superimpose for triangular element meshes but do not for the regular square element

meshes. In both cases, as the mesh is refined, the number of elements defining the

crack increases. This should increase the accuracy of the reflection.    

Results obtained for the implicit models are presented in Figure 5.10 and 5.11. Results

for the explicit models for longitudinal and shear waves are presented in Figure 5.12.

In order to simplify the identification of cases, each plot is associated with a letter and

a number as in the previous sections.      

Figure 5.9. Definition of unit long cracks with triangular and square meshes. Blue line shows modelled 
crack and red line theoretical crack (which is the same line with triangular element meshes but not with 
regular square element meshes).
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Figure 5.10. Implicit models for a crack of unit length: Monitored absolute displacement for a 
longitudinal wave excitation using mesh made of CPE3, CPE6, CPE6M, CPE4 and CPE4R elements. 
Thin red line is reference for N=30 for each case.

Figure 5.11. Implicit models for a crack of unit length: Monitored absolute displacement for a shear 
wave excitation using mesh made of CPE3, CPE6, CPE6M, CPE4 and CPE4R elements. Thin red line 
is reference for N=30 for each case.
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Looking at the implicit results for a longitudinal wave excitation presented in Figure

5.10, it can be seen that, for all element types, there is a good convergence towards the

models with 30 elements per wavelength. In this case, the displacement fields are

almost perfectly matching for all element types. For all triangular elements, a mesh

density of 20 gives results very close to the reference. CPE6 elements (B) provide

higher quality than CPE3 (A) and CPE6M (C), with acceptable results being obtained

for N=10. Square elements (D-E) - in particular the reduced type (E) - have a slower

convergence. For shear wave excitation, the results in Figure 5.11 show a similar

pattern, although the rate of convergence for all element types is slower. A mesh

density of 25 is necessary for the error on the displacement amplitude to be negligible.

This can be explained by the fact that, for a given mesh density, the shear wave velocity

error is higher than the longitudinal one but also that the shear wavelength is shorter

than the longitudinal one making it more sensitive to numerical “defects” (changes in

element size in triangular meshes, steps in square meshes).

Figure 5.12. Explicit models for a crack of unit length: Monitored absolute displacement for a shear 
and longitudinal wave excitation using mesh made of CPE3, CPE6M and CPE4R elements. Thin red 
line is reference for N=30 for each case.
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For all mesh densities, explicit results shown in Figure 5.12 (K-P) superimpose almost

perfectly with the results obtained for the implicit ones with the same element type.

These are presented separately for completeness.

Overall, representing an average size straight crack at an angle of 80 degrees does not

seem to be challenging for either meshing strategy. The physics are modelled quite

accurately for any mesh density over 10. The main source of error is likely to be the

actual velocity error and its consequences on the reflection angles. Indeed, as angle of

reflection of a wave depends on the wave propagation velocity, an error on the

propagation velocity leads to an error on the angle of reflection. In the regular mesh

approach, the actual geometric difference between the theoretical crack and the actual

crack accounts for another source of error which can explain the slower convergence.

Once again, it is interesting to note that the use of free meshing with triangular

elements of various sizes does not harm the accuracy of the results.

5.4.2 Crack of length 0.25

The second crack case studied is the case of a crack of length 0.25. The actual cracks

used for these models are represented in Figure 5.13. This defect is more challenging

than the previous one as the number of nodes defining the defect is very limited in all

cases with only 9 nodes for the highest density. As in the previous case, when using a

triangular mesh, the crack geometry is exactly defined whereas the crack obtained with

the square mesh differs from the exact crack. As the defect is smaller than in the

previous case, the definition of the crack using a square mesh differs more strongly in

terms of shape but also in terms of length from the theoretical crack. When a square

mesh of density 6 is used, the algorithm does not generate any crack and therefore the

results for this case are of no interest as no reflection occurs. 
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Results obtained for the implicit models are presented in Figure 5.14 and 5.15. Results

for the explicit models for longitudinal and shear waves are presented in Figure 5.16.

In order to simplify the identification of cases, each plot is associated with a letter and

a number as in the previous section.                

Looking at the results for the longitudinal cases presented in Figure 5.14, it is

interesting to see that there is a convergence towards the results obtained with the finest

mesh for both triangular and square meshes, but this convergence is much slower than

the one observed for the crack of unit length. For quadratic triangular meshes of density

20, the error on the amplitude relative to the reference varies between 6 and 8%, but

for a density of 25 this error is almost negligible. The most likely explanation for this

is that independently of the mesh density the improvement in the quality of results is

caused by the increase in the number of nodes defining the crack. Using the free

meshing algorithm, the number of nodes on the crack is 5, 5, 9 and 9 for densities of

15, 20, 25 and 30. It can therefore be said that it is necessary to have at least 7 nodes

over the length of a crack to have an error smaller than 5% relative to the case with a

mesh of density 30. As mentioned previously, the agreement is very good between

Figure 5.13. 0.25 unit long crack definition with triangular and square meshes. Blue line shows 
modelled crack and red line theoretical crack (which is the same line with triangular element meshes 
but not with regular square element meshes).
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Figure 5.14. Implicit models for a crack of length 0.25: Monitored absolute displacement for a 
longitudinal wave excitation using mesh made of CPE3, CPE6, CPE6M, CPE4 and CPE4R elements. 
Thin red line is reference for N=30 for each case.

Figure 5.15. Implicit models for a crack of length 0.25: Monitored absolute displacement for a shear 
wave excitation using mesh made of CPE3, CPE6, CPE6M, CPE4 and CPE4R elements. Thin red line 
is reference for N=30 for each case.
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results for N=25 and N=30 for quadratic (B) and modified (C) triangular element types

indicating that the physical phenomena are very accurately represented. The fact that

the convergence is not as good with linear triangular elements (A) and that there is an

error of 13% between the linear and quadratic element cases for N=30 means that with

linear triangular elements the mesh needs to be refined further in order to model the

physical phenomena very accurately. Therefore, one can say that quadratic triangular

elements offer superior results to linear ones when modelling small defects. 

For square elements (D-E), cases for density 6 (no crack) and 10 (short vertical crack)

are ruled out. Convergence towards the reference occurs for both square element types.

Unexpectedly, the reference for the reduced integration elements (E) matches more

closely our best reference (for triangular quadratic elements) than the full integration

ones. No strong convergence has been reached for N=30; it is therefore difficult to

draw definite conclusions on the quality of the representation using square elements. It

can nevertheless be noted that, despite the coarse geometry of the crack and the

inaccuracy on the exact length of the crack, the reflection is relatively well modelled.

Figure 5.16. Explicit models for a crack of length 0.25: Monitored absolute displacement for a shear 
and longitudinal wave excitation using mesh made of CPE3, CPE6M and CPE4R elements. Thin red 
line is reference for N=30 for each case.
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The findings from shear wave excitation for all element types are in line with the

longitudinal ones.

For all mesh densities, explicit results in Figure 5.16 superimpose closely with the

results obtained from the implicit ones with the same element type and are presented

separately for completeness.

Overall, it is clear that not only the mesh density but also the number of nodes used to

define a short straight crack at an angle is crucial to accurately represent its reflections

from both longitudinal and shear waves. Quadratic triangular meshes offer a quick

convergence towards accurate results. The use of square meshes leading to only

roughly represented cracks give acceptable results. These are not as accurate as the

ones obtained with quadratic triangular elements. Linear triangular meshes would need

to be refined over 30 nodes per shortest wavelength to obtain the same result quality as

with quadratic triangular elements. The use of quadratic triangular elements is

therefore preferable to linear triangular and square ones in this case.

5.4.3 Crack of length 4

The last crack case studied is the case of a crack of length 4. The actual cracks used for

these models are represented in Figure 5.17. This defect is not as challenging as the two

previous ones in terms of correctly defining the geometry of the crack. With a square

mesh approach even with a mesh density of 6, the crack is well represented geometri-

cally. 

Results obtained for the implicit models for longitudinal and shear wave excitation are

presented in Figure 5.18 and 5.19 respectively. Results for the explicit models for

longitudinal and shear waves are presented in Figure 5.20.               

For both longitudinal and shear wave excitation, all element types show a quick

convergence towards their reference. The references are very closely matched for all

element types. For triangular elements, a mesh density of 10 gives acceptable results

and a mesh density of 15 limits the error on the amplitude to 2%. The error is negligible

for N superior or equal to 20. For square elements, the criterion is slightly more

stringent, with results for a mesh density of 20 being acceptable. 
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Figure 5.17. 4 unit long crack definition with triangular and square meshes. Blue line shows modelled 
crack and red line theoretical crack (which is the same line with triangular element meshes but not with 
regular square element meshes).

Figure 5.18. Implicit models for a crack of length 4: Monitored absolute displacement for a 
longitudinal wave excitation using mesh made of CPE3, CPE6, CPE6M, CPE4 and CPE4R elements. 
Thin red line is reference for N=30 for each case.
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Figure 5.19. Implicit models for a crack of length 4: Monitored absolute displacement for a shear wave 
excitation using mesh made of CPE3, CPE6, CPE6M, CPE4 and CPE4R elements. Thin red line is 
reference for N=30 for each case.

Figure 5.20. Explicit models for a crack of length 4: Monitored absolute displacement for a shear and 
longitudinal wave excitation using mesh made of CPE3, CPE6M and CPE4R elements. Thin red line is 
reference for N=30 for each case.
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Explicit results for all mesh densities superimpose closely with the results obtained

from the implicit ones with the same element type and are presented separately on

Figure 5.20 for completeness.

In this case, the relaxation of constraints regarding the number of nodes defining the

crack leads to a faster convergence of results for all techniques and element types.

5.4.4 Conclusion

The influence of the mesh density on the accuracy of results is confirmed by the present

study but most significantly the importance of the number of elements defining a defect

is demonstrated. The fact that it is much more difficult to obtain acceptable results for

a short crack than for a long one is easily understandable. It is interesting to note that

a large improvement in result quality was achieved when a limited refinement of the

triangular mesh caused a large increase in the number of nodes defining the smallest

crack (from 5 to 9). It shows that the number of nodes defining a crack has a strong

impact on the accuracy of the reflection. It is also worth noting that the regular square

mesh approach is more adapted to the long crack case than the shorter ones. However,

even with long cracks, a square mesh needs to be finer than a triangular one in order to

achieve the same accuracy. Local mesh refinement would be advantageous in models

where short defects are present if there are no issues with the mesh density transition.

This last point will be examined in the next chapter.

5.5. Reflection from circular defects

The reflection of longitudinal and shear waves from circular defects is studied. In each

case, a hole is located 10 units away from the excitation point. Three hole diameters

are used: 0.25, 1 and 4 units. This permits to have a wide range of reflection regimes

for both wave types. The general geometry of the models is shown in Figure 5.21.a.         

Two meshing strategies are used. On one side, a regular square mesh is used and

elements are removed in order to create a hole. This is achieved by using a MATLAB

routine created by a summer placement student, Sumeet Kale, under the guidance of

the author. It defines a hole as close as possible to the exact hole within the particular

regular square mesh. The criterion used to determine whether to generate an element

or not is the distance between the centre point of a potential square element in the node
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grid to the centre of the exact hole. If this distance is lower than the radius, no element

is created. This leads to a hole whose edge is jagged. On the other side, a triangular

mesh generated by the free meshing algorithm from ABAQUS CAE 6.6-1 is used. In

this situation, the geometry of the hole is determined first and then free meshing of the

geometry is performed. When using a triangular mesh, nodes are placed on the edge of

the exact hole and are then used to create elements. The number of elements on the hole

depends on the diameter of the hole. It is never lower than 8 as the curvature control is

set to the default setting of 0.1. It is important to note that with linear triangular

elements, the hole will be made of straight segments whose end points are located on

the exact circle whereas, with quadratic triangular elements, the hole is represented

almost exactly with curved segments.

The displacement field is monitored on a line perpendicular to the line joining the hole

centre point to the excitation point and over a length of 24 units on each side of the

excitation point as shown on Figure 5.21. For a longitudinal wave excitation, the

displacements are monitored in the x direction and for a shear wave excitation, the

displacements are monitored in the y direction. In theory, the incident displacement

field is zero in these directions and only the reflection from the edge is present. In

practice, each case was run with (see Figure 5.21.a) and without (see Figure 5.21.b) the

crack being modelled in order to achieve high quality reflection fields as this resolved

some slight numerical issues (low amplitude noise, oscillation close to the excitation

point). The complex displacement field of the case without the edge is substracted from

the one with the edge. The absolute displacement in the direction specified above is

then plotted.

Figure 5.21. Circular defect model: a) with circular defect, b) without circular defect.
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5.5.1 Hole of unit diameter

The first case studied is the case of a hole of unit diameter. The actual holes used for

these models are represented in Figure 5.22. The hole definition is very good with

triangular meshes whereas, with square elements, a noticeable difference exists for

coarse meshes. For a regular square mesh of density 15, two models are run: one using

a diameter of 1 and one with a slightly larger diameter of 1.01. The consequence of this

change in diameter is that an extra 8 elements are not generated in the second case.

These elements are shown in Figure 5.22 and are crossed in order to identify them.  

Results obtained for the implicit models for longitudinal and shear wave excitation are

presented in Figures 5.23 and 5.24 respectively. Results for the explicit models for

longitudinal and shear waves are presented in Figure 5.25.               

Results for the triangular meshes indicate a good convergence of the solution for both

longitudinal and shear wave excitation towards a common reference. Acceptable

displacement fields are obtained with 15 nodes per wavelength. A negligible error is

achieved with a mesh density of 20, although some unwanted low amplitude

oscillations are still present for linear and modified quadratic elements.

Looking at the results given by square meshes using the standard algorithm (blue and

red lines), one can see that the general physical phenomena are correctly represented

for N superior to 10 and 15 with longitudinal and shear wave excitation respectively.

Figure 5.22. Unit diameter hole definition with triangular and square meshes
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Figure 5.23. Implicit models for a hole of unit diameter: Monitored absolute displacement for a 
longitudinal wave excitation using mesh made of CPE3, CPE6, CPE6M, CPE4 and CPE4R elements. 
Thin red line is reference for N=30 for each case.

Figure 5.24. Implicit models for a hole of unit diameter: Monitored absolute displacement for a shear 
wave excitation using mesh made of CPE3, CPE6, CPE6M, CPE4 and CPE4R elements. Thin red line 
is reference for N=30 for each case.
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The reference matches the one for triangular elements indicating that the displacement

field is accurate at this density. There is an issue with the amplitude of the signal for N

up to 25. The convergence is not constant as the amplitude error is higher for a density

of 25 and 15 than for one of 20. This is much stronger with shear wave cases than with

longitudinal ones. Two possible sources of error combine to explain this. The first is

that the diameter at 0 and 90 degrees is smaller than the exact ones for densities of 15

(diameter of 0.88) and 25 (diameter of 0.96). This should give lower displacement

amplitude which is not the case here. Against this, with a shear wave excitation, a

density of 20 and an exact diameter at 0 and 90 degrees, the amplitude is lower than

the reference. This shows that the error on the diameter is not the major contributor to

the amplitude error. The low slope of the front face of the hole can not be resolved

accurately by the square mesh and a small variation on the density or diameter leads to

very different shape. At a density of 15, the front face of the hole is made of a flat area

of 8 elements out of the 14 on the diameter (57%) and in the same way, for a density

of 25, a flat area of 10 out of 24 elements (42%) whereas for a density of 20, it is only

6 out of 20 (30%). 

Figure 5.25. Explicit models for a hole of unit diameter: Monitored absolute displacement for a shear 
and longitudinal wave excitation using mesh made of CPE3, CPE6M and CPE4R elements. Thin red 
line is reference for N=30 for each case.
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In order to look at the influence of this, a hole of diameter 1.01 is generated. The small

change in the exact diameter means that the shape of the front face changes as the

crossed elements in Figure 5.22 are omitted. The flat central part of 8 elements changes

into 2 central elements bordered by 2 flat parts of 3 elements each. The results for this

modified hole are plotted with a green line on Figures 5.23 and 5.24. The change

causes the reflected amplitude at the excitation point to drop by 40% for the shear wave

despite the change in the actual diameter at 0 and 90 degrees from 0.88 to 1.12 units.

It is likely that this dramatic change can be explained by the fact that the front face of

the hole does not behave as a flat reflector in the new configuration. This may also be

the consequence of a change in the reflection interference pattern of the various steps

of the edge of the hole. The shear wave case is far more sensitive to this than the

longitudinal case. This shows that the way the jagged edge of the hole is defined

strongly influences the reflection from a hole in particular in the case of shear wave

excitation.

5.5.2 Hole of diameter 0.25

The second case studied is the case of a hole of diameter 0.25. The actual holes used

for these models are represented in Figure 5.26. The effect of the curvature control is

clearly seen for linear and quadratic triangular meshes up to a density of 15 and 20

respectively. It is worth mentioning that using the default setting, the number of

elements is at least 8 on the edge of the hole. This means that at least 8 and 16 nodes

are used for linear and quadratic elements respectively. The definition of holes using a

square mesh is much approximated. Given the findings of the previous part, this should

be reflected in the results.    

Results obtained for the implicit models for longitudinal and shear wave excitation are

presented in Figures 5.27 and 5.28 respectively. Results for the explicit models for

longitudinal and shear waves are presented in Figure 5.29.      

The results obtained with quadratic and modified quadratic triangular meshes for both

type of excitation show a good convergence with a negligible difference between N=25

and N=30. Convergence is slower with linear elements and errors still exist between

N=25 and N=30. An error of 4% exists between the reference for quadratic and linear
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elements. This indicates that an even finer mesh is required for the linear elements in

order to represent the reflection very accurately. For square meshes, the reflection

pattern is correctly represented for all mesh densities but, as seen previously, a

variation on the amplitude is caused by the actual diameter of the hole and the shape

Figure 5.26. 0.25 unit diameter hole definition with triangular and square meshes

Figure 5.27. Implicit models for a hole of diameter 0.25: Monitored absolute displacement for a 
longitudinal wave excitation using mesh made of CPE3, CPE6, CPE6M, CPE4 and CPE4R elements. 
Thin red line is reference for N=30 for each case.
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Figure 5.28. Implicit models for a hole of diameter 0.25: Monitored absolute displacement for a shear 
wave excitation using mesh made of CPE3, CPE6, CPE6M, CPE4 and CPE4R elements. Thin red line 
is reference for N=30 for each case.

Figure 5.29. Explicit models for a hole of diameter 0.25: Monitored absolute displacement for a shear 
and longitudinal wave excitation using mesh made of CPE3, CPE6M and CPE4R elements. Thin red 
line is reference for N=30 for each case.
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of the jagged edge. This variation is far from being as strong as in the previous case.

This is likely to be due to the fact that the curvature of the hole is higher relative to the

element size and that the behaviour of the hole is closer to a point scatterer.

5.5.3 Hole of diameter 4

The last case studied is the case of a hole of diameter 4. The actual holes used for these

models are represented in Figure 5.30. The curvature control has no effect even for the

coarsest of mesh. The definition of the holes using the square mesh approach provides

a jagged edge which seems to be geometrically close to the exact hole.  

Results obtained for the implicit models for longitudinal and shear wave excitation are

presented in Figures 5.31 and 5.32 respectively. Results for the explicit models for

longitudinal and shear waves are presented in Figure 5.33.        

Results for the triangular meshes show a good convergence for both longitudinal and

shear wave excitation towards a common reference. The error is negligible with a mesh

density of 20, although some unwanted low amplitude oscillation is still present for

linear and modified quadratic elements. For N=15, acceptable results are obtained.

With square elements, longitudinal wave excitation results converge towards the

reference of the triangular elements, but results for shear wave excitation are only

acceptable for N=30. For mesh densities lower than this, the expected single peak at

Figure 5.30. 4 units diameter hole definition with triangular and square meshes
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Figure 5.31. Implicit models for a hole of diameter 4: Monitored absolute displacement for a 
longitudinal wave excitation using mesh made of CPE3, CPE6, CPE6M, CPE4 and CPE4R elements. 
Thin red line is reference for N=30 for each case.

Figure 5.32. Implicit models for a hole of diameter 4: Monitored absolute displacement for a shear 
wave excitation using mesh made of CPE3, CPE6, CPE6M, CPE4 and CPE4R elements. Thin red line 
is reference for N=30 for each case.
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the excitation point is replaced by twin peaks that gradually disappear as the mesh is

refined. This confirms that shear waves are particularly sensitive to the jagged edge

that occurs when modelling a hole with a regular square mesh.

5.5.4 Conclusion

The study of the modelling of the reflection of waves from circular defects showed that

the use of triangular element meshes gives accurate results for small, average and large

holes. The strength of the method was demonstrated when modelling a small hole of

diameter 0.25 (a quarter of the shortest wavelength). The curvature control provided

by the free meshing algorithm set at the default setting (0.1) refined the mesh around

the location of the hole allowing a precise representation of the feature despite the

overall coarseness of the mesh. In this case, excellent results were obtained with

quadratic and modified quadratic elements for a mesh density of 20. A finer mesh is

required to achieve similar quality using linear elements. For other cases, all triangular

elements performed in a similar way providing high quality results for a mesh density

of 20.

Figure 5.33. Explicit models for a hole of diameter 4: Monitored absolute displacement for a shear and 
longitudinal wave excitation using mesh made of CPE3, CPE6M and CPE4R elements. Thin red line is 
reference for N=30 for each case.
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It was demonstrated that the use of a regular square mesh to model circular defects is

not appropriate unless a very fine mesh of density superior to 30 is used. Although the

method performed well with longitudinal excitation, shear wave excitation cases were

shown to be particularly sensitive to the way the edge of the hole is defined.

Performance was in fact better for the small hole case than for the average and large

hole cases.

5.6. Conclusions

This study has highlighted the challenges of modelling a range of defects using finite

elements. The use of a regular mesh was shown to perform very well to model a

straight edge when aligned with the mesh, but its inefficiency was demonstrated when

modelling features whose geometries do not follow the grid exactly. The issue of

correctly dimensioning a feature in a fixed grid (e.g exact crack length) length was

highlighted but can be easily resolved by adjusting the mesh density to fit the size of

the defect. It was demonstrated that this is not the main issue influencing the quality of

results. The stair-cased definition of the edges of defects proved to be the crucial

parameter influencing the quality of results. Even with large defects, relatively fine

meshes (N=25) performed poorly in cases dominated by shear waves. Therefore, the

regular mesh approach can only be confidently used to model defects not aligned with

the mesh when the mesh density is extremely fine (N>=30).

Local mesh refinement where only a small area around the defect is extremely finely

meshed would be advantageous in this situation. The use of two meshes of different

densities tied together, which would enable such a refinement to be achieved

economically, is investigated in the next chapter. 

Triangular meshes generated by the free meshing algorithm have proved to perform

well in most cases. The fact that the element size is not exactly constant did not cause

a deterioration of results. Dimensioning of the defect was better than with the regular

square mesh approach. As the geometry was defined using the interactive tools of

ABAQUS/CAE before meshing, straight defects were defined exactly. Circular

defects were well defined in all cases; this was helped by the curvature control which

in fact provided a local mesh refinement in the case where a small hole was modelled.
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Quadratic and modified quadratic elements proved to perform better in situations

where only a limited number of nodes defined a defect.

Overall, the author recommends using meshes of regular linear square elements for

models where features can be aligned with the node grid. Automatically generated

meshes made of modified quadratic triangular elements should be used in cases where

this can not be done or where features include curved edges.

The number of nodes that defines a small feature plays an important role in the quality

of the modelling of the interaction of a wave with the feature. In this situation, the

author would recommend using at least 8 nodes to define a feature in order to be

confident that the physical phenomenon is correctly represented.

With regards to the mesh density, it is difficult to provide a general rule. Nevertheless,

it can be said that a mesh density of 10 generally provides good qualitative results and

that a mesh density of 30 generally provides excellent qualitative and quantitative

results. It is therefore down to the modeller to decide what mesh density to use for a

particular model based on what is required from the model.
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Chapter 6 

Local mesh refinement

6.1. Introduction

As seen in the previous chapter, when using a mesh made of regular square elements,

it is challenging to accurately model defects whose geometry is not aligned with the

node grid. One technique targeted at correctly modelling the interaction of waves with

complex defects is known as the fictitious domain method. This technique is presented

in Section 6.2. Research is still active in this topic and has successfully shown to

improve modelling of complex defects but, to the best of our knowledge, the imple-

mentation of the technique cannot be achieved in commercially available FE packages

and requires the use of specialist FE codes. 

Let us consider a complex defect in a regular square mesh. As seen in Chapter 5, a

mesh density superior or equal to 30 nodes per shortest wavelength is necessary to

accurately define the defect whereas a mesh density of 10 or 15 would be suitable for

the rest of the mesh. Using an extremely fine mesh over the whole model would

provide satisfactory results but would also drastically limit modelling potential for

large components. A way of improving this would be to use a relatively coarse mesh

for the majority of the model but use a refined mesh in the local area surrounding the

defect. This would allow a precise representation of the interaction of the wave with a

defect while significantly reducing the number of degrees of freedom in the model. 

The work in this chapter solely focuses on local mesh refinement of a regular square

mesh using conventional tools available in the commercial FE package ABAQUS. The

advantage of opting for a commercially available solution is that it removes the need

to create and maintain a specialist code and strongly facilitates the transfer of the

capability to industry. The method investigated in this part consists in creating two

separate areas having a different mesh density and tieing them together. 
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There are two main issues which have not allowed this to be implemented straightfor-

wardly in FE models in the past. The first one is the fact that changing the element size

in a regular mesh of elements changes the acoustic impedance of the mesh. This fact is

confirmed by the findings of chapter 4 as it was demonstrated that wave velocities

depend on the type of element and the density of the mesh. The other issue is related

to the way meshes of different size are tied together. At the interface between meshes

of different densities, the displacements of both meshes on each side of this boundary

are matched closely. As this is not done perfectly, it causes reflections.

In this chapter, a range of FE models are created and studied in order to better

understand and quantify the influence of these sources of error.

6.2. Fictitious domain technique

6.2.1 Review

A recent review by Dr Elizabeth Skelton [28] offers a good overview of the technique.

The development of the fictitious domain method started in the early 1960s but only

gained momentum in the 1990s through the work performed at the INRIA research

centre in France. Early developments and a portion of the research that followed

concentrated on the implementation of the technique for elliptic equations [75, 76, 77].

Since our focus is on wave propagation problems, it is noted that developments of the

technique for the Helmholtz problem were performed in several papers [78, 79, 80].

Time domain methods were also developed for time dependent acoustic [29] and

elastodynamic [30] problems.

6.2.2 Presentation

Without getting into a detailed description of various mathematical implementations

and their implications, the general philosophy of the methods is to describe the area of

study and the defect separately and then to link them. A generally coarse (e.g. density

of 10 elements per shortest wavelength) regular square mesh describes the whole area

of study. The defect is created independently using a set of new variables. The equation

defining the boundary condition at the edge of the defect is coupled with the wave
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equation in order to solve the problem. The technique proved to work well for a variety

of cases and is still the subject of active research.

6.2.3 Conclusion

Despite the success of the technique, it requires the modification of the way the solver

computes the results. This unfortunately makes this technique not adapted to an imple-

mentation into a commercial FE package. Although the technique seems promising, as

the implementation in commercial FE packages is not possible, it is not investigated

further in this work.

6.3. Abrupt mesh density variation

In this section, the reflection from an abrupt change in mesh density is investigated.

6.3.1 1D wave propagation models

6.3.1.1 Model definition

As in the previous chapter, models are non-dimensional and the elastic material is

defined so that the longitudinal and shear wavelengths are 2 and 1 units respectively:

Young’s modulus is 8/3, Poisson’s ratio is 1/3 and density is 1. The general geometry

of the models is presented in Figure 6.1. Models are 2D plane strain, 100 units long and

1 unit thick but are constrained (i.e. displacement equal to zero) in order to have 1D

plane wave propagation. For 1D longitudinal wave propagation, the vertical

displacement is set to zero on the top and bottom surfaces of the model. In the case of

shear wave propagation, the horizontal displacement is constrained.

A regular square mesh is used over the whole model but it is split halfway (50 units

from excitation) into two parts. The density of the mesh is different between the left

and right hand sides. Both parts are tied together using the TIE function of ABAQUS

6.6-1 [14]. This function applies a rule that links the displacement of the nodes of the

boundaries of the two parts.

The excitation is applied using a uniform force of unit amplitude over the whole

thickness at the left hand extremity of the geometry. An ALID is used on the right hand
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extremity of the model to absorb incoming waves. Figure 6.1 shows a schematic of the

model geometry.  

Models are run with ABAQUS 6.6-1 in both the time domain (explicit) and the

frequency domain (implicit). For the latter, the excitation is applied as a real harmonic

excitation whose frequency is 1; the complex displacement field is obtained directly

and used later to plot the absolute displacement field. For the explicit case, in order to

obtain an absolute displacement field similar to the frequency domain one, two

separate models are run: one with cosine and one with sine excitation of unit frequency.

The complex displacement field is obtained by adding the result of the cosine case to

the result of the sine case multiplied by i. The first half of a Hanning window is used

over the first 5 cycles in order to ramp up the amplitude of the sine and cosine to a

constant value in order to avoid exciting a broad range of frequencies. The model is run

sufficiently long so that the steady state is reached at all locations where the

displacements are monitored.

For longitudinal waves, the horizontal displacement is monitored at the half thickness

line from 10 to 40 units away from the excitation. For shear waves, the vertical

displacement is monitored. A spatial FFT [61] is applied to the complex displacement

field in a similar way to the example presented in Section 3.5.3.1. As shown in Figure

3.25, the positive peak gives the amplitude of the incident wave generated by the

excitation and the negative one the amplitude of the wave travelling in the opposite

direction caused by the interface between the two parts of the model. The ratio of these

two amplitudes gives the reflection coefficient of the waves from the interface. As

explained in Section 3.5.3.1, the propagation velocity is given by the x-position of the

Figure 6.1. Definition of 1D model 

Ex
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Constraint u=0 or v=0 ALID{Right part of model: Element size=0.2{Left part of model: Element size=0.1{
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peak on the spatial FFT graph. In this case, padding is applied to the FFT to have a

precise value of the velocity.

Implicit models are run using linear square elements with full (CPE4) and reduced

(CPE4R) integration. Explicit models are only run using reduced integration linear

square elements (CPE4R) as they are the only linear square elements available for this

type of solver. The tie function is used with its default settings for implicit

(TYPE=SURFACE TO SURFACE) and explicit (TYPE=NODE TO SURFACE)

solvers with no adjustment on the position of the nodes as the two tied surfaces

superimpose perfectly. Element based surfaces are used with explicit and implicit

models. In both cases, following the user manual instructions, the surface with coarsest

mesh is set as the master surface. Details about the TIE function can be found in [14]. 

6.3.1.2 L wave 1D model using theoretical material properties

In the first model, only longitudinal waves are generated. The element size is 0.1 on

the left part and 0.2 on the right part. This corresponds to a mesh density of 20 and 10

elements per longitudinal wavelength. The theoretical material properties given above

are used.

The results obtained from the model give a reflection of 1.972% (-34.1dB) of the

incident wave in all cases. The fact that the same reflection is obtained for all solvers

and element types means that the integration type (full or reduced) and solver type

(explicit or implicit) do not influence the amplitude of the reflection at the interface

between the two meshes. This also confirms that implicit and explicit implementation

of the tie are correct. The following models are therefore run just with the implicit

solver and reduced integration elements. The propagation velocities measured on each

side of the interface are 1.992 and 1.966. This agrees very well with results obtained in

Chapter 4, as the predicted velocities at 0 degrees are 1.991 and 1.964 for a regular

mesh of 20 and 10 elements per longitudinal wavelength respectively. 
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As presented in [34], the reflection at 0 degrees based on the impedance is given by:

 (6·1)

where Z is the impedance, ρ the density and c the velocity. The subscript indicates the

density of the mesh.

Using the velocities measured in the model, the theoretically predicted reflection due

to the change in impedance is 0.657%. As the amplitude of the reflection is higher than

this value, the remaining part of the reflection may be due to the way the interface is

implemented.

6.3.1.3 L wave 1D model with matched acoustic impedance

The second model is similar to the first model but in order to separate the contribution

of the velocity error and the tie of the mesh, the acoustic impedances of both meshes

at 0 degrees are matched by adjusting the longitudinal velocities in both parts of the FE

model to be equal to the theoretical one (cLth=2) The velocity in the original FE model

cLor is defined by the theoretical velocity cLth multiplied by a ratio RL:

 (6·2)

with  (6·3)

The original velocity in the FE model cLor necessary to define RL is either measured

by spatial FFT in the model or derived by using the estimate given in Chapter 5.

As the error between cLor and cLth is small, the adjusted velocity cLadj is defined as: 

 (6·4)
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The density and Poisson’s ratio are kept the same but the Young’s moduli are changed:

,  and  (6·5)

The adjusted Young’s moduli for mesh densities of 20 and 10 are 2.765 and 2.688. The

adjusted velocities measured with the spatial FFT are 2.000 and 2.000 for densities of

10 and 20 elements. Therefore the theoretical reflection due to the change of

impedance should be 0%. The reflection coefficient given by the spatial FFT is 1.240%

(-38.134dB). As expected, matching the impedance has reduced the reflection

coefficient. Interestingly, the difference in the reflection coefficient of the first and

second models is 0.732% which is close to the predicted contribution of the change of

impedance in the first model (0.657%). It indicates that the total reflection from the

interface is equal to the sum of the change of impedance and the error due to the tie of

the 2 meshes.

6.3.1.4 L and S wave 1D model with matched acoustic impedance

In this model, both shear and longitudinal waves are modelled in separate runs. The

element size is 0.05 and 0.1 on the left and right part of the model respectively. The

mesh density is therefore 20 and 10 elements per shear wavelength and 40 and 20

elements per longitudinal wavelength. 

Theoretical material properties are used to start with. The measured reflection

coefficients in this case are 0.470% (-46.56dB) and 1.971% (-34.108dB) for

longitudinal and shear waves. The measured velocities are: cLleft=1.998, cSleft=0.996,

cLright=1.9918 and cSright=0.983. The reflection caused by the change of impedance is

predicted to be 0.155% and 0.657% of the incident signal. The reflection coefficient

for shear waves in this case is the same as the longitudinal one in the first 1D model.

The number of elements per considered wavelength is the same in both cases. This

leads to the error on velocities being the same and therefore the change of impedance

being the same. It indicates that both shear and longitudinal waves interact in the same

way with the interface at equivalent number of elements per wavelength.

νadj νth= ρadj ρth= Eadj RL
2Eth=
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The material properties are adjusted in order to match the longitudinal wave acoustic

impedance on both sides of the model. The velocities then are: cLleft=2.000,

cSleft=0.997, cLright=2.000 and cSright=0.983. The reflection caused by the change of

impedance is predicted to be 0% and 0.484% of the incident signal. The measured

reflection coefficient for the longitudinal wave is 0.309% (-50.19dB) and for the shear

wave is 1.795% (-34.92dB). In both cases, the drop in reflection coefficient matches

the change in the contribution of the change of impedance. This confirms the findings

of the previous model.

Following this, the material properties are adjusted in order to match the shear wave

acoustic impedance in both sides of the model. The velocities then are: cLleft=2.006,

cSleft=1.000, cLright=2.026 and cSright=1.001. In this case, the velocities in the right

hand side of the model are higher than in the left one. This leads to a negative reflection

contribution due to the impedance change which indicates a phase shift of 180 degrees.

It is predicted to be -0.496% and -0.050% of the incident wave. The reflection

coefficient for the shear wave is 1.240% and for the longitudinal wave is -0.197%. The

negative sign indicates a phase shift. The results for the shear wave are in line with the

previous cases. For the longitudinal wave, it is very interesting to note that the

reflection coefficient (-0.197%) is also very close to be the sum of the contribution due

to the change of impedance (-0.496%) and the interface (0.309%). This indicates that

it should be possible to completely remove the reflection by matching the reflection

due to the interface with a reflection due to an impedance change of equal amplitude

and opposite phase.

Finally, the material properties are adjusted in order to match both the shear and

longitudinal wave acoustic impedance in both sides of the model. 
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It is necessary to adjust the Young’s modulus and the Poisson’s ratio to do this.

 (6·6)

with  (6·7)

 (6·8)

with  (6·9)

As the error between the FE and theoretical velocities is small, the adjusted velocities

cLadj and cSadj are defined as: 

 (6·10)

 (6·11)

As we want these velocities to match the theoretical ones, we have:

 (6·12)

The density is kept equal to 1 but the Young’s moduli and Poisson’s ratios are changed.

Replacing cLadj and cSadj in 6·12 with 6·10 and 6·11 and doing some algebra, we have:

,  and  (6·13)

In this model, we therefore take: Eleft=2.686, νleft=0.3319, Eright=2.747 and

νright=0.327. This gives: cLleft=2.000, cSleft=1.000, cLright=2.000 and cSright=1.001.

The reflection caused by the change of impedance is predicted to be 0% and -0.050%
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of the incident signal with longitudinal and shear waves respectively. The measured

reflection coefficient for the longitudinal wave is 0.309% (-50.19dB) and for the shear

wave is 1.240% (-38.13dB). In both cases, the drop in reflection coefficient matches

the change in the contribution of the change of impedance compared to the non

adjusted case. In this situation, the reflection is only due to the interface between the 2

parts.

6.3.1.5 L and S wave 1D model with varying acoustic impedance

This model is similar to the previous one except that in this case, the Young’s modulus

and Poisson’s ratio are kept at their theoretical values in the left part of the model

where the element size is 0.05 whereas the ones for the right part where the element

size is 0.1 are varied parametrically.

To start with, the Poisson’s ratio is kept constant and the Young’s modulus is varied

from 2.65 to 2.8 for the longitudinal wave and 2.65 to 2.95 for the shear wave. The

reflection coefficient is measured as the Young’s modulus is varied. The results are

plotted in Figure 6.2. The reflection coefficient due to the impedance mismatch

between the 2 parts of the model is calculated using Equation 6·1 and is plotted against

the Young’s modulus of the right part of the model. The difference between this and

the total reflection is also plotted. 

The first point of interest is that with both wave types the variation of the reflection

from the FE model is linear against the Young’s modulus. The impedance part of the

reflection also varies linearly and with a slope close to the one of the total reflection.

This is confirmed by the fact that the difference between these 2 curves, although not

constant, varies linearly with a low slope. As mentioned in the previous part, it can be

considered that the total reflection is made of the sum of the contribution due to the

impedance mismatch and the one from the tie. In the previous plot, the difference

between the FE and impedance related reflection is plotted as the reflection due to the

tie. The assumption is made that the calculated and actual reflection due to the

impedance mismatch are equal. As it is likely that a small discrepancy between these

2 exists, the plot for the tie reflection therefore includes this source of error. It is
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possible that this discrepancy is the reason for the reflection due to the tie not being

constant but given the results from the previous model, this is unlikely. It can be said

with a fair degree of confidence that the variation in the reflection due to the tie is

mainly due to the variation of the Young’s modulus rather than a change in the

difference between the calculated and actual reflection due to the impedance

mismatch.

The variation in Young’s modulus leads to a variation in the overall reflection which

is largely driven by the change in the impedance. It can be seen that the reflection due

to the interface is higher for the shear wave case than the longitudinal one. Using

results from 6.3.1.2, it is clear that this is not related to the wave type but to the mesh

density and indicates that the interface reflection varies with the mesh density and that

Figure 6.2. Reflection coefficient for longitudinal and shear waves against Young’s modulus.
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it is dependent on the number of elements per wavelength of the considered wave. This

point is investigated in detail further in this chapter.

Following this, the Poisson’s ratio is varied from 0.32 to 0.335 and the Young’s

modulus from 2.6 to 2.9. The reflection coefficient is measured as the Young’s

modulus and Poisson’s ratio are varied. The results are plotted in Figure 6.3. The

reflection coefficient due to the impedance mismatch between the 2 parts of the model

is calculated using equation 6·1 and is plotted against the Young’s modulus in the right

part of the model. The difference between this and the total reflection is also plotted in

Figure 6.3.

The variation of the reflection coefficient against the Young’s modulus and Poisson’s

ratio is close to linear for both parameters and wave types. The reflection due to the

Figure 6.3. Reflection coefficient for longitudinal and shear waves against Young’s modulus and 
Poisson’s ratio.
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impedance changes varies in a similar fashion. This means that, as can be seen on the

figure, the reflection due to the interface is relatively stable over the whole range of

parameters. As seen in the previous case, the amplitude of the reflection due to the

interface is not the same for both wave types and depends on the mesh density.

Given the shape of the total reflection surfaces, it should be possible to find a point

where there is no reflection for both wave types. Making the assumption that the

surfaces are flat ones, the equations for the reflection coefficient for longitudinal and

shear wave are found to be:

 (6·14)

 (6·15)

The total reflection is therefore zero for both waves when the elastic properties in the

right part of the model are: Young’s modulus=2.8372 and Poisson’s ratio=0.3208.

A FE model is run for these parameters. The reflection is 0.006% (-84.52dB) and

0.005% (-85.75dB) for longitudinal and shear waves respectively. These values are

negligible and confirm that it is possible to remove the reflection from both wave types

at a given angle by adjusting the Poisson’s ratio and Young’s modulus.

6.3.1.6 L wave 1D model with different mesh ratio

As seen previously, the reflection due to the interface is close to constant when the

acoustic impedance in one side of the model is changed but it varies noticeably with

the mesh density. In this model, only longitudinal waves are studied as it was

demonstrated that the reflection from the interface is independent of the wave type.

The theoretical material properties as defined in Section 6.3.1 are used. The mesh

density of both parts of the model is varied from 6 to 40 elements per longitudinal

wavelength. The reflection coefficient is measured over this range of values and is

plotted in Figure 6.4.a. The reflection due to the change in impedance calculated by

using the measured velocities in each part of the model with equation 6·1 is plotted in

Figure 6.4.b. The difference between these 2 reflections is considered to be the

reflection due to the tie. This is plotted on a linear and log scale in Figure 6.4.c and d.  

RCL 9.02E– 86.8ν– 53.44+=

RCS 9.69E– 20.8ν 20.82+ +=
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Figure 6.4. a) Total reflection, b) Reflection due to the impedance change, c) and d) Reflection due to 
the tie (linear scale and log scale).
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The total reflection varies smoothly as the mesh densities are varied. As expected,

central to all graphics in Figure 6.4 is a line of symmetry of zero reflection. Figure 6.4.d

highlights that the reflection due to the tie is largely dependent on the mesh densities

of both parts of the model. The reflection coefficient due to the tie and the impedance

for a range of combinations of meshes in the situation where material properties are the

same are presented in Table 6.1 and 6.2. It is interesting to note that the reflection

caused by the tie contributes about twice as much as the one due to the impedance.       

6.3.2 2D wave propagation models

As seen in the previous part, the reflection from the interface between 2 meshes can be

made equal to zero at normal incidence. In this part, the effect of removing the

reflection at one angle is investigated over the full angle range of 2D models.

6.3.2.1 Model definition

The 2D model is similar to the models used for the study of Chapter 4. At the centre of

the model is a 70 unit square made of a fine mesh of density 20 elements per shortest

wavelength. This square is bordered by a 9 unit thick layer made of a coarser mesh of

Table 6.1.Table of reflection coefficients due to the tie between two meshes in %
N 15 20 25 30 35 40
10 0.995% 1.325% 1.478% 1.561% 1.608% 1.639%
15 0.329% 0.482% 0.565% 0.612% 0.643%
20 0.152% 0.235% 0.281% 0.312%
25 0.082% 0.128% 0.159%
30 0.045% 0.076%
35 0.030%

Table 6.2.Table of reflection coefficients due to the impedance difference between two 
meshes in %

N 15 20 25 30 35 40
10 0.481% 0.646% 0.720% 0.759% 0.786% 0.802%
15 0.165% 0.238% 0.278% 0.304% 0.321%
20 0.073% 0.113% 0.1393% 0.156%
25 0.039% 0.066% 0.082%
30 0.026% 0.043%
35 0.016%
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density 10 elements per shortest wavelength which is bordered by a 6 unit thick ALID

of the same mesh density. This is shown in Figure 6.5. 

Both shear and longitudinal wave generations are considered. Models are excited by

body forces being applied on four elements as in Chapter 5. This generates an almost

pure wave - shear or longitudinal - and, as the size of the source is only a fraction of a

wavelength, is close to a point source. The point located at the centre of the four

elements is referred to as the excitation point. This point is located at the centre of the

model. A 10 cycle Hanning windowed tone burst of centre frequency 1Hz is used. 

The model is run for two cases. In one case, it is run using the reference material

properties defined in Section 6.3.1.1 in both the coarse and fine mesh parts. In the other

case, the material properties are the theoretical ones in the fine mesh part and the

adjusted ones in the coarse mesh part in order to have zero reflection for both wave

types at 0 degrees as defined in Section 6.3.1.5. The displacement fields in the top right

corner at t=30 and t=60 for longitudinal and shear waves respectively are plotted in

Figure 6.6.  

Unlike in the 1D model, the waves decay as they propagate, due to beam spreading.

The colour scale is adjusted so that the colour range covers the range of amplitude from

Figure 6.5. 2D model geometry

Excitation
point

ALID

Coarse mesh

Fine mesh
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Figure 6.6. Absolute displacement field in the top right corner of the 2D models. Longitudinal wave 
excitation with a) theoretical and b) adjusted material properties. c) Definition of wave packet 
positions. d), e), f) same with shear wave excitation

a) 

b) 

d) 

e) 

f) 

Incident longitudinal wave 
Incident shear wave
Reflected longitudinal wave 
Reflected shear wave 

c) 

ALID 

Coarse mesh

Fine mesh

Scale: 10 units =1.15cm
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0 to 1% of the desired incident wave when it hits the interface between coarse and fine

meshes. All data above 1% is coloured in grey. The position and propagation direction

of the different wave packets are schematically represented in order to simplify under-

standing.

Looking at the results for longitudinal wave excitation, it can be seen that there is a

noticeable longitudinal wave reflection occurring at 0 degrees in the case using the

theoretical material properties everywhere. The amplitude of this wave at 0 degrees is

about 0.5%. It confirms that in the case of an abrupt change in mesh density the implicit

and explicit cases give similar results. The use of adjusted properties significantly

reduces the amplitude of the reflection for low angles of incidence but the amplitude

of this reflection seems to increase with the angle of incidence. The shear wave

reflection is reduced by the change in properties but has a similar amplitude variation.

Shear wave results carry similar findings. The shear wave reflection is not seen at 0

degrees but can be clearly identified at higher angles of incidence.

It can be concluded that the use of adjusted material properties based on the 1D model

does not provide a significant gain in 2D compared to the non adjusted case. The

explanation for this is two fold. First, as the angle of incidence varies, the visible

acoustic impedance of the meshes changes because the mesh density is altered.

Therefore the exact opposition of the reflections due to the tie and the impedance

change does not exist anymore. Secondly, as mode conversion exists for angles

different to zero, the reflection characteristics at each angle changes. Unique

combinations of waves exist for each angle of incidence and means that there is a

strong increase in the complexity of the problem. 

Minimising the reflection due to the change of impedance over the full range of angle

of incidence is an achievable target. Significantly reducing the reflection due to the tie

below its original value is unlikely to be easily achievable if at all possible.
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6.4. Gradual mesh density variation

As discussed previously, in a model where 2 meshes using the same material properties

but having different mesh densities are tied together, a reflection occurs at the

interface; this reflection is caused by the change of impedance and the error in the tying

of the meshes. This latter contributes twice as much as the former. It would be

beneficial if the reflection due to the tie could be reduced significantly. A solution

which is investigated in this part is to have a gradual change in mesh density rather than

an abrupt one.

6.4.1 1D wave propagation model

The 1D model is similar to the 1D models used in the previous part in all aspects apart

from the way the mesh density change is achieved. In this case, the change in mesh

density is achieved over a number of layers so that the mesh density is varied by 1 unit

per layer. The layers are made of square elements whose dimension vary as the mesh

density is varied. This is shown in Figure 6.7. 

The effect of the impedance change is removed by matching the acoustic impedance

for both wave types at 0 degrees in every part of the model as described in Section 6·13.

The impedances are adjusted to 2 for longitudinal waves and 1 for shear waves in all

parts of the model. It is run in the time domain with the explicit solver. The excitation

consists of a 10 cycles tone burst of unit centre frequency. The thickness is 1 unit. The

left and right parts are 75 and 100 units long respectively. The central part where the

gradual change of mesh density occurs is 0.62 units long.   

Figure 6.7. Definition of 1D model with gradual mesh density change.

Ex
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Constraint ALID{Right part of model: Element size=0.2{Left part of model: Element size=0.1{
Gradual interface{



Chapter 6
Local mesh refinement

200

The absolute displacement fields obtained at times 64 and 128 for longitudinal and

shear waves are plotted in Figure 6.8. At these times, the incident wave packets have

travelled through the interface. As previously, the colour scale is adjusted so that the

colour range covers the amplitude from 0 to 1% of the incident wave. This is done to

highlight low amplitude signals. All data above 1% is coloured in grey. 

In both cases, the incident wave packet goes through the interface with almost no

change to its amplitude but it can be seen that reflection from the interface occurs in

both cases. Their amplitude is 0.52% and 0.32% of the longitudinal and shear incident

wave packet. In the longitudinal wave case, it can be noted that the reflection is more

spatially spread than the incident signal. This does not appear to be the same in the

shear wave case. After the interface, the longitudinal wave packet is followed by a trail

of waves similar to the reflection one. The striking feature in both cases is the presence

of unexpectedly high displacements localized around the interface. For the fields

plotted above, the maximum displacement is 10.5% and 0.65% of the incident

longitudinal and shear wave packets. Given that boundary conditions are set such that

the model should behave as a 1D one, the fact that these displacements are not constant

in the vertical direction indicates numerical problems caused by the gradual interface.

This shows that the use of a gradual change of mesh density does not significantly

reduce the reflection from the interface. It also causes numerical issues in the model.

Figure 6.8. Absolute displacement field for a) longitudinal and b) shear wave excitation models with a 
gradual change of mesh density at t=34 (longitudinal) and t=68 (shear).

Incident wave packet{Reflection{
Incident wave packet{Reflection{

Gradual
interface{
Gradual
interface{

a)

b)

X scale: 10 units =1.18cm Y scale: 1 units =1.4cm
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6.4.2 2D wave propagation model

The 2D model is similar to the 2D models used in Section 6.3.2 apart from the way the

mesh density change is treated. In this case, the mesh density change occurs over a

range of layers as in the 1D study of this section. Figure 6.9 shows the way this is

achieved in the 2D model. The mesh density is varied by 1 unit for each layer to

gradually change the mesh density from 10 to 20. The Young’s modulus and Poisson’s

ratio are adjusted to minimize the reflection due to the impedance change at 0 degrees.    

The displacement fields in the top right corner of the model at t=35 and t=70 for

longitudinal and shear wave respectively are plotted in Figure 6.10. The colour scale

is adjusted so that the colour range covers the amplitude from 0 to 1% of the incident

wave when it hits the gradual interface. All data above 1% is coloured in grey.

Figure 6.9. Gradual mesh density change for the 2D model.

Figure 6.10. Absolute displacement field in the top right corner of the 2D model with a) theoretical and 
b) adjusted material properties.

Fine mesh {

Coarse mesh {
Transition zone {

Scale: 10 units =1.15cm

a) b)
         Incident wave packet

        Incident wave packet

Interface Interface
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As for the 1D model, it can be seen that gradual mesh density change as implemented

in this case leads to a deterioration of the displacement field. This confirms that gradual

change of mesh density with ties is not a viable option to achieve local mesh

refinement.

6.5. Conclusions

The study of 1D models with abrupt change in density shows that the reflection is due

to the change in impedance and the tie of the meshes. It is shown that the reflection due

to the impedance change can be predicted using results from Chapter 5. This part of the

reflection can be adjusted so that the overall reflection is zero for both wave types in

the 1D model. In such case, it has the same amplitude but opposite phase as the part

due to the tie of the meshes. 2D models show that this adjustment of the impedance

leads to a significant reduction in the reflection at 0 and 90 degrees of incidence but

that it is still noticeable at other angles of propagation different to the ones simulated

in the 1D model (0 and 90 degrees). It is unlikely that it is possible to remove the

reflection for all angles using this method. The contribution of the impedance change

and tie at 0 degrees for a range of combination of mesh density in cases where

theoretical material properties are used are presented in Tables 6.1 and 6.2. It gives

modellers an estimate of the amplitude of reflection to expect if the technique is used

and shows that the amplitude, although not negligible, is limited.

As the impedance reflection can be made equal to zero at a given angle and as the tie

is the main contributor to the reflection, the idea of reducing the reflection due to the

tie by using a gradual change in mesh density is investigated. The gradual change in

mesh density is achieved by using a series of layers of varying mesh densities between

the 2 meshes. Results from the 1D and 2D models show that this technique does not

reduce the reflection significantly and causes localized numerical problems close to the

interface although there is room for more detailed parametric studies.

Overall, local mesh refinement of a square mesh as implemented in this chapter with

an abrupt change in mesh density has shown to work correctly but generates reflection

at the interface. This can be an acceptable configuration in some cases. In other cases,
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the use of an automatically generated modified quadratic triangular mesh (which does

not use ties) is likely to be the best option. This is discussed in Chapter 7.
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Chapter 7 

Conclusions

7.1. Review of thesis

The work in this thesis investigates ways of improving elastic wave modelling in

isotropic solids using commercially available FE packages. The focus is on developing

new techniques as well as gaining a better understanding of the existing techniques.

Knowledge of the interaction of waves with defects and structural features is crucial in

order to develop satisfactory ultrasonic NDT applications. As applications are

developed for increasingly challenging situations, the use of numerical modelling has

proved in many cases to be the most effective and cost efficient way of assessing

potential problems early in the development process. Despite the exponential increase

in computational capacities in recent years, there are many cases which remain out of

reach.

The choice of commercially available FE packages is motivated by the fact that they

enable new techniques to be quickly transferred to industry where these products are

already or could easily be available and where a specific unsupported research code

would be difficult to maintain.

Chapter 2 presents the theoretical basis of the bulk and guided wave propagation

phenomena modelled in this work. Details of the numerical scheme used in this work

are provided.

The implementation of the radiation of waves outside the area of study is studied in

Chapter 3. Following the assessment of the available techniques, 2 types of absorbing

layers are selected: Perfectly Matched Layers (PML) and Absorbing Layers Using

Increasing Damping (ALID). The implementation of both methods is discussed. It is

shown that the correct definition of layers parameters is crucial to the achievement of

numerical efficiency. Analytical models are developed in order to facilitate the

determination of these parameters for bulk wave and 2D plate guided wave problems.

Analytical model results are validated against FE validation cases results.
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Demonstrator cases for bulk and guided waves are developed to demonstrate gains

achieved by the use of the techniques. The procedure of time domain reconstruction of

frequency domain results is explained and validated. The ease of use of the frequency

domain method to obtain reflection coefficient curves is presented and results are

compared with published results.

In Chapter 4, the influence of meshing parameters on the wave propagation velocities

in an elastic isotropic medium is investigated. Longitudinal and shear wave

propagation are considered. The impact of the time step, mesh density and angle of

propagation is studied for a range of element types with time domain models solved

with an explicit scheme. The impact of the mesh density and angle of propagation is

studied in a similar way for a range of element types with frequency domain models

solved with an implicit scheme. Steady state is modelled in both cases using a time

domain explicit solver and a frequency domain implicit solver. The consequence of

element deformation is looked into.

In Chapter 5, a range of defects is modelled: straight edges, straight cracks at an angle

of 80 degrees of various lengths and circular holes of various diameters. Longitudinal

and shear wave propagations are considered. For each case, the mesh density is

gradually refined to a very fine level in order to obtain a reference. Steady state for

explicit and implicit solvers is achieved in the same way as in the previous chapter.

Two meshing methods are compared. Automatically generated meshes made of

triangular elements and regular meshes made of square elements are assessed.

The use of local mesh refinement techniques in regular square meshes is investigated

in Chapter 6. One method investigated consists in tying together 2 meshes of different

mesh densities. 1D and 2D models are used to evaluate the technique. Results obtained

in Chapter 4 are used to improve the performance of the technique. The second method

investigated achieves the mesh density change gradually through the use of a series of

tied layers. The performance of this method is measured using 1D and 2D models.

7.2. Summary of findings

7.2.1 Absorbing layers

The study of PML and ALID in wave propagation models has shown that a significant

reduction in a model’s geometric size can be achieved through their use. Analytical
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models provide a fast and efficient way of defining the layer’s parameters and therefore

offer a significant improvement over trial and error methods. Demonstrator cases have

highlighted the gains obtained by using ALID or PML and have also shown that PML

achieves smaller model sizes than ALID. This can be explained by the fact that with

PML the layer matches the impedance of the area of study perfectly whereas for the

ALID the strength of the decay is limited by the impedance change it causes. As a

consequence, for a given case, ALID is generally thicker than PML. It is also more

sensitive to waves incident at high angles, leading to a necessary increase of the area

of study in order to minimize the model size. As the aim is to stretch modelling

capabilities, this gives an advantage to the PML technique but it has to be balanced by

the fact that, to our knowledge at the time of writing, COMSOL is the only mainstream

FE package that allows implementation of PML. The implementation is limited to

frequency domain solving with implicit solvers whereas ALID can be implemented to

be used with any FE package which allows Rayleigh damping. The actual performance

comparison depends on the type of result required.

A user wishing to obtain frequency domain results such as the reflection coefficient

from a defect has a choice of directly using either PML or ALID. The two best

combinations investigated are ABAQUS with ALID and COMSOL with PML.

ABAQUS models were solved using the “Direct-solution steady-state dynamic

analysis” procedure of ABAQUS/Standard which uses a direct implicit solver.

COMSOL offers a range of direct and iterative implicit solvers. Direct solvers have

proved to be robust and efficient but limited in term of the number of degrees of

freedom that can be solved. Iterative solvers showed improvement in terms of speed

and memory but convergence proved difficult. Overall, in our experience, using

COMSOL 3.2 and ABAQUS 6.6, COMSOL did not match the performance of

ABAQUS for a given number of degrees of freedom. Given these two combinations it

is therefore not possible to clearly recommend one of them, as the best solution

depends on the specific details of the model considered.

For time domain results, the most straightforward approach is to use ABAQUS/

Explicit with ALID. The explicit solver of ABAQUS uses the central difference

algorithm. It is particularly attractive for large models as it is faster and more memory

efficient than an implicit solver. This technique is recommended for most cases where

time domain results are required. One alternative is to solve the model in the frequency
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domain and reconstruct the time domain results by performing an inverse Fourier

transform.

7.2.2 Influence of mesh parameters on the elastic bulk wave velocities

The study of reduced integration linear quadrilateral elements solved with an explicit

solver showed the influence of the scaled Courant number CFLX and mesh density N

on the velocity. Patterns were identified. These permitted rules to be defined to

evaluate with high accuracy the amplitude of the velocity error at any angle, any scaled

Courant number and for a mesh density higher than 6. Following this, the study of

deformed elements highlighted that the maximum error in a mesh could be predicted

using the rules defined for square elements. This indicates that this element type can

cope well with being deformed.

With linear equilateral triangular elements, it was demonstrated that the error could be

correctly predicted using rules established for quadrilateral elements along the

altitudes and element sides for longitudinal waves and along the element sides for shear

waves. The influence of the scaled Courant number CFLX and mesh density N was

confirmed at these positions and wave types. A zero error was measured for shear

waves along the altitudes of the triangular elements. Deformed mesh cases showed that

this element type is sensitive to high levels of deformation as the predicted error was

more than tripled in one case (16.4% instead of 4.8%).

Modified quadratic equilateral triangular elements proved to have a close to constant

error against the angle for a given N when being solved with a low CFL. The amplitude

of the error was in line with the one observed with linear elements. The influence of

CFLX and N was demonstrated to be similar to previous cases. Modified quadratic

triangular elements were shown to cope well with being deformed like linear

quadrilateral elements and unlike linear triangular elements. For implicit solving, full

integration linear square element results for longitudinal waves showed very good

agreement with those obtained with reduced integration elements and the explicit

solver. For shear waves, the plot had the same shape but the error was marginally

smaller (factor of 0.75). Deformation of elements showed similar results to the reduced

integration explicit case except that the reduction in error compared to the prediction

was more pronounced with fully integrated elements. Therefore, fully integrated

quadrilateral elements cope well with being deformed. For a given mesh density,
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quadratic quadrilateral elements proved to strongly reduce the velocity error. Rules

established in previous cases could not be applied to this case but given that the

velocity error is less than 0.5% for a mesh density higher than 8, it can be understood

that the velocity error with this type of element is not a cause for concern. Deformation

of elements did not prove to be a problem.

Linear and modified quadratic elements results for the implicit case matched almost

exactly results obtained with the explicit solver. Quadratic equilateral triangular

elements were shown to lead to low velocity error as were quadratic square elements,

but proved to be sensitive to high levels of deformation in the same way as linear

triangular elements.

Overall, the influence of the solver is ruled out as element type is the factor

determining the velocity error. Unlike quadrilateral elements, all triangular elements

apart from modified quadratic ones were shown to be sensitive to element deformation.

This justifies why automatic meshing algorithms seek to minimize the deformation and

why modellers need to exercise caution when using triangular elements.

The angle of propagation in a regular mesh was shown to play an important part in the

amplitude of the velocity error as it leads to a non-negligible variation.

The mesh density was shown to be the driving factor influencing the velocity error for

all element types. The influence is not so remarkable for quadratic elements as the

velocity is highly accurate for any mesh density. For linear and modified quadratic

elements, its influence is much stronger. 

7.2.3 Accurate modelling of complex defects using Finite Elements

This study has highlighted the challenges of modelling a range of defects. The use of

a regular mesh was shown to perform very well to model a straight edge when aligned

with the mesh, but its limitations were demonstrated when modelling features whose

geometry does not follow the grid exactly. The issue of correctly dimensioning a

feature in a fixed grid was highlighted and can be easily resolved by adjusting the mesh

density to fit the size of the defect. It was demonstrated that this is not the main issue

influencing the quality of results. The stair-cased definition of the edges of defects

proved to be the crucial parameter influencing the quality of results. Even with large

defects, relatively fine meshes (N=25) performed poorly in cases dominated by shear
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waves. Therefore, the regular mesh approach can only be used with extremely fine

meshes (N>=30). 

Triangular meshes generated by the free meshing algorithm have proved to perform

well in most cases. The fact that the element size is not exactly constant did not cause

a deterioration of results. Dimensioning of the defect was better than with the regular

square mesh approach. Straight defects were defined exactly. Circular defects were

well defined in all cases; this was helped by the curvature control which in fact

provided a local mesh refinement in the case where a small hole was modelled.

Quadratic and modified quadratic elements proved to perform better in situations

where only a limited number of nodes defined a defect.

7.2.4 Local mesh refinement

The study of 1D models with an abrupt change in density shows that the reflection is

due to the change in impedance and the tie of the meshes. It is shown that the reflection

due to the impedance change can be predicted using results from Chapter 4. This part

of the reflection can be adjusted so that the overall reflection is zero for both wave

types in the 1D model. In such case, it has the same amplitude but opposite phase as

the part due to the tie of the meshes. 2D models show that this adjustment of the

impedance leads to a significant reduction in the reflection at 0 and 90 degrees of

incidence but that it is still noticeable at other angles of propagation different to the

ones simulated in the 1D model (0 and 90 degrees). It is unlikely that it is possible to

remove the reflection for all angles using this method. The contribution of the

impedance change and tie at 0 degrees for a range of combination of mesh densities in

cases where theoretical material properties are used are presented for reference in

Chapter 6. It gives modellers an estimate of the amplitude of reflection to expect if the

technique is used and shows that the amplitude, although not negligible, is limited.

As the impedance reflection can be made equal to zero at a given angle and as the tie

is the main contributor to the reflection, the idea of reducing the reflection due to the

tie by using a gradual change in mesh density is investigated. The gradual change in

mesh density is achieved by using a series of layers of varying mesh densities between

the two meshes. Results from the 1D and 2D models show that this technique does not

reduce the reflection significantly and causes numerical problems localized close to the

interface.
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Overall, local mesh refinement of a square mesh as implemented in this chapter with

an abrupt change in mesh density has shown to work correctly but generates reflection

at the interface. This can be an acceptable configuration in some cases. In other cases,

the use of an automatically generated modified quadratic triangular mesh (without ties)

is likely to be the best option.

7.3. Future work

7.3.1 Absorbing layers

It is mentioned that mass and stiffness proportional damping can be used in ALID. As

stiffness proportional damping can lead to a dramatic reduction in the time increment

in an explicit scheme, only mass proportional damping is used. For the implicit

scheme, this is not the case and the simultaneous use of both damping types may lead

to increased performance and could be investigated.

The bulk wave analytical models are valid for all cases (up to 3D) but the guided wave

model is only valid for 2D plates. It would be beneficial to develop similar models for

other guiding structures. In particular, in the field of Structural Health Monitoring

(SHM), the development of a model for 3D plates would be of particular interest. In a

similar way, a pipe analytical model would enable the creation of absorbing layers for

this type of system.

Models using PML with viscoelastic materials will need to be investigated as PML

proved to perform poorly when evanescent waves are present.

7.3.2 Influence of mesh parameters on the elastic bulk wave velocities

The work presented in this thesis is limited to a range of 2D plane strain elements. The

study of other element types would increase the scope of the current study. It would be

of particular interest to perform 3D elements studies.

As there are subtle differences in the way packages are implemented, small differences

may exist between packages. Reproducing some of the models presented in this thesis

with other FE packages should show that the results presented here can be used for

other packages. It should be noted that despite this, it is expected that the principles

developed here apply to all programs. 
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Another aspect that would require additional work is the investigation of irregular

triangular element meshes such as those generated by automatic algorithms. Regarding

this, it would be beneficial to evaluate whether the irregularity of the mesh causes some

noise. If this occurs, the level of noise should be quantified.

7.3.3 Accurate modelling of complex defects using Finite Elements

It would be interesting to continue the present study by investigating more complex

defects, as it was noted that automatic triangular element meshing of high curvature

surfaces or short linear segments by free meshing algorithms leads to an increase in

mesh density in their vicinity. The investigation of this phenomenon for critical cases

may enable advances in the modelling of complex defects.

7.3.4 Local mesh refinement

The local mesh refinement technique of regular quadrilateral meshes presented in this

work did not lead to the achievement of extremely low amplitude reflection at the

interface and it seems unlikely that it would be possible to achieve it. The use of

automatically generated meshes made of triangular elements seems to be the most

promising technique for the achievement of local mesh refinement. Indeed, based on

results obtained in Chapter 5, no numerical problem was noticed when mesh

refinement in a triangular mesh was applied by the free meshing algorithm to define

small circular defects. As it is expected that numerical problems will occur in extreme

cases of mesh refinement, it would be interesting to determine the limits of this

particular refinement technique.
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