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Abstract

Quantitative imaging complements structural imaging by providing quantitative es-
timations of subsurface material properties as opposed to the sizes, shapes and
positions of scatterers available from structural methods. The ability to reconstruct
material properties from a series of wave measurements is extremely valuable in
a range of applications as it potentially allows diagnostic technology with supe-
rior sensitivity and selectivity. Breast cancer, for example, is stiffer and hence of
higher sound velocity than the surrounding tissue, so reconstructing velocity from
ultrasonic measurements could allow cancer detection. Using this concept, breast ul-
trasound tomography has the potential to significantly improve the cost, safety and
reliability of breast cancer screening and diagnosis over mammography, the gold-
standard. Key to unlocking this potential is the availability of an accurate, fast,
robust and high-resolution algorithm to reconstruct wave velocity. This thesis intro-
duces HARBUT, the Hybrid Algorithm for Robust Breast Ultrasound Tomography,
a new imaging approach combining the complementary strengths of low resolution
bent-ray tomography and high resolution diffraction tomography. HARBUT’s the-
oretical foundation is explained and applied to simulated and experimental, in-vivo,
breast ultrasound tomography data, confirming that it generates a step change in
image quality over existing techniques, revealing lesions that would not be visible on
a mammogram. This thesis also shows how, by combining data from many slices, the
out-of-plane resolution can be significantly improved compared to treating each slice
independently. HARBUT is applied to alternative problems including guided wave
tomography, which aims to quantify the remaining wall thickness of a potentially
corroded, inaccessible plate-like structure. Thickness estimates within 1mm for a
10mm nominal thickness plate were demonstrated for both simulated and experi-
mental data. The thesis finally investigates HARBUT’s performance with limited
view configurations, and introduces VISCIT, the Virtual Image Space Component
Iterative Technique, which accounts for the missing data, significantly improving

the reconstructed image.
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Chapter 1

Introduction

1.1 Motivation

The power of subsurface imaging has given humanity the ability to see beyond what
is visible with our own eyes, providing us with information that can be used to
make vital decisions such as whether it is necessary to perform an — often traumatic
— biopsy on a patient with suspected cancer, where to spend huge resources digging
for oil, or whether a pipe with a crack is likely to fail causing an expensive period of
inactivity. The initial discovery of X-rays over a century ago [1] has been followed
by the development of ultrasound [2], X-ray CT (Computed Tomography) [3] and
MRI (Magnetic Resonance Imaging) [4] imaging techniques in medical imaging,
with similar advances in geophysics using mechanical waves to provide subsurface
information. Non-destructive testing (NDT) is a field where imaging is increasingly
being used in the characterisation of defects [5]. These imaging techniques have
made a previously unachievable level of information available to help make more

informed decisions.

There is huge diversity in the types of waves that are used for imaging. An excellent
example of the diversity of electromagnetic waves used comes from astronomy, where
optical, infra-red, ultraviolet, gamma, radio and X-ray sections of the spectrum are

used to make discoveries about the universe. X-rays are also used in the high-profile
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1. Introduction

backscatter security scanners being introduced at airports around the world [6], and
radar - using radio waves - is used for applications such as detecting aircraft and
producing maps of weather patterns |7]. Imaging with mechanical waves likewise has
huge variety, with hand-held ultrasonic probes for medical imaging using megahertz
frequencies to produce acoustic waves [8], or geophysical imaging using seismic waves

of tens of hertz [9].

All of these wave-based imaging methods can be classified by whether they provide
structural or quantitative information. Often, a situation will exist where we wish to
detect a large discontinuity in material properties. An example in non-destructive
testing is crack characterisation, where the size and shape (i.e. the structure) of the
crack provides vital information about the life of the component, but the material
properties of the substance (typically air) within the crack itself is of no interest.
Similarly when using radar to scan for aircraft, the useful information obtained is the
position of each aircraft — obtained from the sharp impedance discontinuity between
the air and the aircraft reflecting measurable waves back to the receiver — rather than
any quantifiable data about each aircraft’s material properties. These methods are
classified as structural imaging, providing information about the locations, shapes
and sizes of structures. Structural imaging is well developed, with a wide range of
applications in areas such as ultrasonic medical diagnosis [8], radar 7], geophysics

[10] and non-destructive testing [5].

More subtle changes in local properties can often provide useful indications of cer-
tain physical phenomena, however. An example comes from the detection of cancer
masses within the breast, which are known to be stiffer than the surrounding tis-
sue. If the stiffness at all points throughout the breast can be determined in some
way, this would provide a mechanism to detect breast cancer. Methods reconstruct-
ing material properties like this are classified as quantitative imaging methods, in

contrast to the structural imaging methods discussed above.

Breast cancer diagnosis therefore has huge potential to benefit from advances in
quantitative imaging. Mammograms — which image the breast by physically com-

pressing it between plates then X-raying it — have become the gold standard in the
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1. Introduction

diagnosis of breast cancer and are used extensively in screening programmes. The
method relies on identifying cancer masses by their high density and hence increased
absorption of photons over the surrounding medium. A significant weakness of the
method is the problem of dense breast, where the density of the structures within
the breast is high, often masking the presence of cancer. Coupled with the greater
cancer risk associated with dense breasts, this is a major drawback of the method.
Additionally, the technique is often painful and relies on ionising radiation, which

paradoxically increases the risk of cancer.

One alternative solution is to use quantitative imaging to exploit the increased
stiffness of breast cancer, which is done in the field of elastography [11]. Standard
sonography hardware is used to reconstruct a pair of images — one undeformed
and one when a known external load is applied — and from these it is possible
to determine the strain field by correlating the images. The Young’s and shear
moduli, which define the stiffness, can be determined by solving the inverse problem
using this strain field. This quantitative imaging method has the potential to aid
cancer detection by improving the sensitivity of sonography, but is challenging to
implement because of the ill-posed nature of the inverse problem and its sensitivity
to noise [12]. These problems are in addition to the operator dependency problem

which is inherent in sonography.

Another example of quantitative imaging with ultrasonic waves is supersonic shear
imaging [13]. A moving, high amplitude source is synthesised by illuminating se-
quentially along an array. By moving this effective source faster than the shear wave
velocity, a shock wave can be produced, exciting an intense shear wave within the
medium. The effects of this shear wave are measured through repeated high speed
(5000 frames/s) imaging, using standard sonography methods. As with elastogra-
phy, a cross correlation method is used to establish the effects of the waves on the
medium and from this quantify tissue elasticity. This suffers from similar drawbacks

to standard elastography.

Common to all wave imaging methods — regardless of the wave type or frequency — is

the concept of an array of transducers; a number of measurements need to be taken
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(b)

Toroidal array 5 ¢
reas

Figure 1.1: Breast ultrasound tomography. In diagram (a), the patient lies prone with the
breast suspended in a water tank. A transducer array begins at the chest wall and gathers
sets of data at many slices through the breast. A cross section through the transducer
array is shown in (b), where the scattered field from a single illumination is measured by
the transducer array. (a) is from [14].

at different locations or in different directions in order to obtain enough information
to reconstruct an image. Modern advances in electronic hardware have allowed for
rapid improvements in both the numbers of channels available and the quality of the
measured data, and coupled with the availability of cheap computing power these

advances unlock significant potential for improved imaging technology.

These advances in array technology have allowed breast ultrasound tomography to
become an attractive alternative to mammography, while avoiding the inversion
problems of elastography. This uses the relationship that high stiffness corresponds
to high sound speed; therefore a quantitative image of sound speed would greatly
aid the diagnosis and detection of cancer. In breast ultrasound tomography, as
shown in Fig. 1.1, a circular transducer array surrounds the breast and illuminates
it with ultrasound waves from different directions. A matrix of scattering data can
be produced by collecting a column of scattered measurements for each illumination
and repeating for illuminations from all directions. The challenge is to utilise these
measurements in order to obtain a quantitative image of sound speed through the

breast, given the complex inhomogeneous nature of the breast.

The algorithm must deal with a variety of scales, from the sub-millimetre scales of
the milk ducts up to the hundreds of millimetres for the breast itself. In the middle
of these scales are the cancer masses themselves, which the algorithm must reliably

and accurately reconstruct. This multi-scale medium provides a significant challenge
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to imaging algorithms.

An additional challenge is that the complexity of the breast extends into three di-
mensions, when the circular array is more suitable for two. Obtaining complete data
from a 3D problem is much more challenging, since the number of transducers must
— in effect — be squared in order to capture information from the third dimension.
Devices have been built which attempt to capture 3D data, for example the system
developed by Karlsruhe Institute of Technology |15], but such systems are generally
highly undersampled due to the limited number of transducers, and hence struggle
to produce satisfactory images. A common alternative is to sweep or rotate a linear
array to obtain data sets at several out-of-plane locations (see e.g. [16-18]). The
data available from this method is still less than would be available from a full 3D
imaging array since the receivers are all in the same plane as the sources, and the
acquisition time is also significantly increased which causes problems with moving

subjects.

Non-destructive testing (NDT) is another area with the potential to benefit from
quantitative imaging. Early stage stress damage (i.e. prior to the appearance of
cracks) in a component is often associated with a localised change in ultrasonic
sound speed. While there are no sharp material discontinuities associated with the
damage which would appear with structural imaging, quantitative imaging methods
can instead be used to generate a map of sound speed and hence allow the severity

and extent of the damage to be determined.

Another NDT application for quantitative imaging is guided wave tomography. Of-
ten, large diameter pipes or similar plate-like structures can suffer from corrosion
which can locally reduce the thickness of the wall. By reconstructing wave veloc-
ity, the thickness can then be estimated using the known dispersion relationship.
Guided wave tomography therefore aims to use quantitative imaging methods to
reconstruct a map of the remaining wall thickness, enabling judgements to be made
about whether or not the wall has thinned enough to make failure likely. By contrast,
structural imaging would only provide an indication that there is a defect present

and its location, without any quantitative information about the wall thickness.
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The aim of this thesis is to develop quantitative imaging methods for ultrasound to-
mography. In contrast to structural imaging, despite the clear benefits of being able
to determine subsurface properties, quantitative imaging is relatively underdevel-
oped and hence holds huge potential for advances, with simple ray assumptions dom-
inating the majority of quantitative imaging applications, including X-ray CT [19],
breast ultrasound tomography [20-22|, and guided wave tomography [23,24]. These
ray approximations are highly limiting for ultrasound tomography because the res-
olution is severely reduced by ignoring diffraction [25]. Higher resolution methods
are available, such as diffraction tomography, which instead relies on the Born or
Rytov approximations [19]. However, the former is limited to low contrast, small
scatterers and the latter relies on phase unwrapping so is only suitable for simple,
low contrast scatterers with very little noise. In both cases these restrictions are

impractical for most ultrasound tomography applications.

One widely proposed alternative is non-linear, full wave inversion methods |26, 27].
These use numerical approximations of wave propagation (such as the finite dif-
ference method) to estimate the measurements which would be obtained from a
particular initial model (commonly the low-resolution BRT — bent-ray tomography
— image is used for this purpose). This model is then iteratively updated, usually
using a gradient descent method, in order to improve the model to better match
the measured data. While in principle such an approach can address the limitations
of the current methods, these are difficult to implement in practice because of the
presence of local minima and the significant computational expense of calculating
many forward models. Experimental uncertainties are difficult to account for in the
forward model, which means such algorithms are rarely robust and require very high

signal-to-noise ratios.

A new ultrasound tomography algorithm was developed for breast imaging, to ad-
dress the need for a robust, high-resolution method. Accurate sound speed re-
constructions through the breast have the potential to significantly improve breast
cancer diagnosis, leading to earlier detection and ultimately saving lives. The algo-

rithm is built on general principles which are widely applicable; the algorithm was
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therefore subsequently applied to other applications in NDT.

1.2 Outline of thesis

This thesis investigates quantitative imaging using mechanical waves. A new quan-
titative method, HARBUT (Hybrid Algorithm for Robust Breast Ultrasound To-
mography), has been developed to obtain high-resolution sound speed maps through
the breast by combining the complementary strengths of bent-ray tomography and
diffraction tomography. In this thesis I outline the theory behind HARBUT and
demonstrate its performance when applied to breast ultrasound tomography. The
method is then extended to guided wave tomography and stress damage detection
in the field of non-destructive testing, and modifications to the algorithm to improve

its performance for these different applications are investigated and recorded.

Chapter 2 introduces the forward scattering problem, and provides the mathematical
framework used throughout the thesis. The forward problem is first simplified using
the Born approximation. However, for many applications, notably breast ultrasound
tomography, the size and contrast of the scatterer is too great for the Born approxi-
mation to be valid. I make modifications to increase the range of applicability of the
model using a known inhomogeneous background. HARBUT is then introduced,
solving the inverse problem using this modified model and allowing a reconstruction

of wave velocity to be generated from a series of ultrasonic measurements.

HARBUT is applied to breast ultrasound tomography in Chapter 3. The method
is applied to both numerical and simulated data and is shown to provide robust,
fast resolution improvements over the widely used bent-ray tomography method.
I perform my reconstructions in 2D with data from a ring array surrounding the
breast, and I discuss the problems the 2D approximation causes in the resulting

image.

In Chapter 4 I introduce a 3D framework to solve the breast imaging problem

more accurately than in 2D. By using data obtained with the array at several axial
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locations — a synthetic aperture approach — I demonstrate how it is possible to

improve the resolution in the out-of-plane direction.

In Chapter 5 I apply HARBUT to a true 2D problem, guided wave tomography.
The small but high contrast corrosion defects of interest in guided wave tomography
are challenging to HARBUT, and I explore the solution of repeatedly applying
HARBUT to iteratively improve the solution, better capturing these high contrast
defects.

All the problems so far have considered a full view configuration, where the trans-
ducer array surrounds the scatterer allowing illumination from all angles. In many
cases it is not possible to completely surround the scatterer, rendering such a configu-
ration impractical. In Chapter 6 I apply HARBUT to a limited view configuration,
with a linear array placed on the surface of a component, parallel to a reflecting
backwall surface. Even taking advantage of the backwall reflections to provide ad-
ditional illumination angles, there is insufficient information from this data alone to
reconstruct the image. This chapter discusses how HARBUT performs with this lim-
itation. I also demonstrate VISCIT (the Virtual Image Space Component Iterative
Technique), showing how I can iteratively apply regularisation and store the result-
ing information in image space components, which are then used to significantly

improve the limited view reconstructions.

The conclusions of the thesis are summarised in Chapter 7, along with potential

areas for future work.
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Chapter 2

Forward and inverse scattering

theory

2.1 Introduction

The interaction of waves with a scatterer encodes information about the scatterer’s
properties. Extraction of this information from measurements of the field is an ill-
posed inverse problem [28] which is challenging to solve because of the complex,
non-linear nature of wave scattering. Therefore, any imaging algorithm typically
utilises a set of simplifying assumptions about how the waves propagate through the
object. Suitable assumptions depend hugely on the parameters of the problem being
considered, for example the scatterer size relative to wavelength or the impedance
contrast of the scatterer; the goal for any imaging problem is to find a suitable set
of assumptions which allow inversion to be performed in a fast and robust manner

for all anticipated scatterers.

An excellent example of this comes from X-ray CT. One might attempt to perform a
reconstruction which accounts for diffraction, refraction and reflection of the X-rays
as they propagate. However, when X-rays propagate through the objects typically
imaged, these phenomena have such a small effect that they can be completely

ignored. Instead, the waves can accurately be described by a straight ray model,
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2. Forward and inverse scattering theory

where the amplitude of each measured signal is obtained via a line integral of energy
absorption along the ray path. This straight ray assumption allows for fast, robust

CT reconstructions [19].

This chapter introduces the underlying theory of ultrasonic scattering and the sim-
plifying assumptions made to the model which will be used throughout this thesis.
This background theory is based on the acoustic model, which is the accepted model
of the behaviour of soft tissue, such as the breast, but can also be easily generalised
to other applications, as will be discussed later in the thesis. The second half of the
chapter then explains how, having made these simplifying assumptions, they can be
incorporated into the new imaging algorithm, HARBUT, the Hybrid Algorithm for
Robust Breast Ultrasound Tomography.

2.2 Forward Scattering Theory

The standard acoustic wave equation [29] is the accepted model used to describe

ultrasound propagation in many materials

1
p(r)

p(r)v.[ vp(r)]—c<r>2 L2 =0 (2.1)

where p(r) is the pressure at point r, p(r) is the density and ¢(r) is the sound speed.

By converting this to the temporal frequency domain it can be rewritten as
(V2 + k) = —O¢ (2.2)

where 1 is the scalar potential of the field (equal to the Fourier transform of the
pressure) and k, = 27 f/c, is the wavenumber of the background where f is the
frequency and ¢, is the sound speed in the background. Throughout this thesis the
subscript v is used to refer to this homogeneous background, which represents the
uniform material properties of the domain if no scatterer was present. The object

function, O(r), is the mathematical representation of the scatterer and is defined as
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2. Forward and inverse scattering theory

O(r) = ki[( ~ ) - 1] =P )V (). (2.3)

The aim of tomography is to reconstruct this object function. The second term in
(2.3) accounts for variations in the local density field, p [30]. The dependence of the
density term on the Laplacian means that it is only significant at an interface where
rapid changes in density occur. This term will therefore be low in many applications

and is considered negligible for the majority of this thesis.

In order to solve (2.2), the background wave field v, is defined as the solution to

the case where there is no scatterer present,

(V2 + k2)u =0 (2.4)
and the Green’s function, GG, as the solution to

(V2+ k)G, =6 (2.5)

where ¢ is the Dirac delta. Equation (2.5) can be solved analytically in 2D and 3D

to give the solutions

G2P (x,%x,) = —iHé” (ko R) (2.6)
exp (ik, R
G.7 (x,%0) = % (2.7)

where R = |x — xg| is the distance from the source to the measurement point.

Equations (2.2), (2.4) and (2.5) are combined [19,31] with Green’s theorem to obtain
an integral equation over the domain of the scatterer, 2, for the total field relative

to the uniform background field
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which is the classic Lippmann-Schwinger equation. Physically, this can be inter-
preted as the total field equalling the background field plus a superposition of
sources. These sources are responsible for the scattering effect of the medium, and
each has a strength —O%, which is the total field multiplied by the object function

at the location of interest.

The goal of tomography is to solve (2.8) given knowledge of v, and ¢ around the
aperture of the array. This problem is non-linear due to the presence of the unknown
total field i) under the integral, and requires the use of iterative methods for its
solution. A direct solution to (2.8) can be obtained with the Born approximation,

i.e. ¥ ~ 1, within the integral, so that

b~ — /ﬂ GO (2.9)

This corresponds to assuming that the incident field is not perturbed as it travels
within the object. However, due to the sound speed variation in the object relative
to the homogeneous background, the phase of ¢ will differ from that of v,. The
maximum phase error will increase as the sound speed contrast increases and as
the size of the object increases. For large objects of high contrast, this phase error
can approach 7 as the wavefield travels inside the object, so that ¢ ~ —1,, which
renders the Born approximation completely invalid. A criterion can therefore be
defined for the use of the Born approximation by requiring that the maximum phase
distortion must be less than 7 [19]. It is this that limits the use of the standard
Born approximation imaging methods for many applications. In the case of breast
ultrasound tomography, for example, the breast is typically around 100mm (50 at
A = 2mm) in diameter meaning that its sound speed contrast relative to the water
bath background must be less than 1% to meet this criterion, which is an unrealistic

assumption (see for example [21,32]).

In this thesis I address the phase problem by dividing the object function into a

sum of an ‘artificial” inhomogeneous background object function Oy, and a small
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perturbation Oy so that
O(r) = Oy(r) + Os(r). (2.10)

If only the inhomogeneous background were present, the background wave field, 1y,

and its corresponding object function O, would satisfy (2.2)
(V2 + k2 = —Opthe. (2.11)

On the other hand, by keeping (2.2) in terms of the total field ¢ but substituting in

(2.10), propagation within the actual object is described by

(V2 + k2 + Oy = —Os1h. (2.12)

As with the homogeneous case, a Green’s function GG, can now be defined, which

gives the response due to a point source in the inhomogeneous background
(V2 + K2+ Oy)Gy = 6. (2.13)

Using the same procedure as for the homogeneous background case the following

inhomogeneous equivalent of (2.8) is derived

ID = lbb - /QGbO(sl/JdX/. (2.14)

Provided Oy is sufficiently small, the v term under the integral can be approximated

with the background term 1, so that

b~ — /Q GOty (2.15)

which is a more accurate version of (2.9). Equation (2.15) is central to the DBIM
(distorted Born iterative method) that aims to solve (2.8) through an iterative

scheme [33]. For (2.15) to be sufficiently accurate the background medium has
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Figure 2.1: DT implementation achieved by filtering the beamforming image

to be selected so as to ensure that the phase difference between 1 and ), is much
less than 7. This is the inhomogeneous equivalent of the standard Born criterion as

given in [19].

In many cases, the sound speed contrast within the scatterer itself is generally low;
it is instead the overall contrast of the scatterer relative to the homogeneous back-
ground that breaks the standard Born approximation. This is particularly the case
for breast ultrasound tomography. Therefore, provided a background is available
that accounts for the average speed through the scatterer then the approximation
should be valid. Bent Ray Tomography (BRT), which ignores diffraction as its sim-
plifying assumption, provides a low-resolution estimate of sound speed through the
scatterer and hence provides a suitable background for many applications, as will

be demonstrated in later chapters.

2.3 The HARBUT Method

This section uses the formulation from the previous section as a basis for HARBUT,
the new imaging algorithm. The starting point is a particular implementation of

diffraction tomography (DT) that has been introduced in [34].

2.3.1 An implementation of DT

This method is outlined in Fig. 2.1 and consists of two main steps: beamforming

(BF) and the application of a filter. The beamforming algorithm is discussed first.

The coordinates x and y are introduced as the coordinates of the receiver transducer

and source transducer as shown in Fig. 2.2. Using these, and defining the scattered
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points through scatterer

Figure 2.2: Illustration of the coordinates used in the scattering integral. The integral
is performed across all points in the scatterer, €2, to produce a value for the signal at the
receiver x for the source y.

field as 15 = 1 — 1y, eq. (2.9) can be rewritten as

Ys(x,y) = —/QGU(X, x)O (X)), (v, x')dx'. (2.16)

The symmetry of this equation can be demonstrated by recognising that ¢, (y,x’) =
G.(y,x’) i.e. the field produced by an illumination at y can simply be replaced by

the equivalent Green’s function. This leads to

%mw~—4a@m%mmumﬂwﬁ (2.17)

Now consider a single point scatterer in a homogeneous background. In this case,

the equation is simplified from an integral to

Vs(x,y) = Gu(x, X )qG,(y, x) (2.18)

where the scattering potential of the point is ¢, located at x’. Knowing the location
of the point scatterer, (2.18) can be rearranged to determine the exact scattering

potential from a single scattering measurement, i.e.

Vs(X,y) (2.19)

7Gx X)Gu(y,x)
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In this equation, it can be considered that the 1/G, factors provide corrections to
the scattered field 14 so as to account for the phase shift and amplitude change as
the wave propagates through the medium. In general, however, the location of each
scatterer is unknown, and there are multiple scatterers present so that the signals

interfere and make the use of (2.19) unfeasible in its current form.

The solution considered here is to take advantage of the multiple send-receive pairs
in the data, rather than just the single pair as above. By integrating (2.19) for all
the receivers x and all the sources y in the array, the image at a prescribed point z

can be defined as

BF - @/}s(XaY) %
15 () = /S /S Gy (2.20)

where S is the aperture of the transducer array. For real, sampled data the continu-
ous integrals are replaced by discrete sums. Due to this integral /summing process,
if there is a scatterer present at the imaging point then the integrand will sum co-
herently leading to a large value, but if there is no scatterer at the point then the
summing will be incoherent and the result will be much weaker, with the values

cancelling themselves out.

Equation (2.20) is a slightly modified version of the beamforming algorithm. Con-
ventionally, beamforming is performed in the time domain by applying a backwards
time shift to account for the shift that occurs as the wave propagates through the
medium. It does not make any correction for amplitude. As such, the true frequency

domain BF equation would be an altered version of (2.20),

BFx _ 77Z)S(X7Y) <
1) = | | e o e (2.21)

where the sign function is defined as sgn(x) = #/j2| so that only the phase component
of GG, is used. In this thesis the full value of the Green’s functions is included as
in (2.20) since this approach is more general. This would allow us, for example, to
account for background media which cause significant amplitude changes, such as

through attenuation.
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Figure 2.3: Flowchart of the stages which make up HARBUT, combining DT and BRT

As discussed in [34], the BF image is a distorted version of the DT reconstruction
with different weights applied to different spatial frequencies. The DT reconstruction
is obtained by removing this weighting from the BF image, which is done by Fourier
transforming the BF image, applying the weighting corrections, and transforming
the result back to the geometrical space. This approach is more flexible than directly
generating the DT image, and is essential for HARBUT, as presented in the next

section.

2.3.2 Combining DT and BRT

The case of imaging in an inhomogeneous background is now considered. This
process is similar to the homogeneous case, with the addition of the BRT algorithm

to provide a suitable background. Fig. 2.3 illustrates the process.

The first step is to perform the beamforming algorithm, this time accounting for
the background. Starting from (2.15), ¢, = G} is substituted and the source and

receiver coordinates x and y are included

P(x,y) ~ Py(x,y) — /Q Gy(x,x")0s(x')Gy(y, x')dx’. (2.22)

A BRT image is used to provide the background sound speed field. In this thesis BRT
image is generated by the method in [35], although the actual method used is not

critical to the success of the algorithm, provided it gives a reasonable low resolution
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reconstruction of the sound-speed. The Green’s functions for this background field
need to be calculated via a numerical simulation, where each illumination is calcu-
lated separately to provide wavefield values at all points in the imaging domain. An
eikonal equation solver |36] provides sufficiently accurate results throughout the do-
main, with significant speed advantages over alternatives such as frequency domain
finite difference; a secondary advantage of using ray-approximation-based methods
is that such solvers (and the solutions they provide) are often already available as
part of the BRT algorithm. The numerical method is only used to provide a phase

correction relative to the Green’s function in the homogeneous background, so that
Gy (xy) =G, (X, y) e (2.23)

where At is the difference in arrival time between the propagation in the background

model and in the uniform medium, calculated via the eikonal solver.

If a point scatterer in an inhomogeneous medium is now considered, it is possible
to follow through exactly the same logic as in Sec. 2.3.1 except starting with (2.22)
instead of (2.17) to give the BF image of the perturbation relative to the background,

Ps(X,y
2.24
//GbXZGbZY)dXdy ( )

where 15 = ¢ — 1y is the perturbation of the measured field relative to the back-
ground. Given that all of these quantities can be established, either from measure-
ments or numerical models, the modified beamforming image can be formed from
this equation. This is similar in approach to the Kirchhoff migration method used
in geophysics [37]. Kirchhoff migration is only used on reflected data, however, and
reconstructs the interfaces of impedance variations in the subsurface rather than

material properties.

The BF image generated from (2.24) is then converted to the DT image using
the filter introduced in [34]. Having obtained Os by filtering IP¥, it is combined
with the background velocity field according to (2.3) and (2.10), forming the final
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2. Forward and inverse scattering theory

HARBUT image. It should be observed that HARBUT solves (2.15); this process
corresponds to the first iteration of the DBIM [33]. However, the HARBUT approach
uses a different scheme to solve (2.15) based on the BRT starting model and the
combination of BF and DT. This combination represents the main novelty of the

method and is key to its robustness and speed.

2.4 Summary

This chapter has introduced the scattering framework used throughout this thesis
and from it developed HARBUT, the Hybrid Algorithm for Robust Breast Ultra-
sound Tomography. Linearising the scattering problem using the Born approxima-
tion allows for a relatively simple reconstruction algorithm, but since the Born ap-
proximation is only suitable for small, low contrast scatterers, the range of problems
to which it can be applied is extremely narrow. HARBUT uses an existing estimate
of the velocity through the scatterer, from the Bent Ray Tomography (BRT) algo-
rithm, to greatly increase the range of applicability of the algorithm; the scatterer
need only be of low contrast relative to the BRT velocity estimate for this method
to be valid. The next chapter investigates the suitability of HARBUT for breast
ultrasound tomography with the aid of a numerical model and a set of experimental

in vivo data.
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Chapter 3

Breast imaging with HARBUT

3.1 Introduction

Breast cancer is by far the most common cancer among women throughout the
world, with 411000 deaths per year [38]. Breast cancer screening programmes,
where women over the age of 40 to 50 years have their breasts regularly checked for
cancer, have been shown to reduce death rates [39,40]. The current screening gold-
standard is mammography, which projects X-rays through the breast so that the
absorption of the photons by the structures within produces shadows which form an
image. The detection of cancer is based on the assumption that the cancer mass is
denser — and hence absorbs more X-ray radiation — than the surrounding tissue. The
sensitivity (true positive rate) of the method is estimated at 68% to 88% [41], but
this drops to around 30% to 40% in radiographically dense breasts where structures
within the breast — parenchyma and stroma — mask the presence of cancer masses.
Dense breast is a common occurrence, affecting approximately 50% of women under
50 years and a third over [42], and it is also in the latter group that the risk of

developing cancer is the highest.

There are two main diagnostic tools complementary to mammography that are now
routinely used in the clinic. The objective of these is to increase sensitivity and

specificity (true negative rate). Magnetic Resonance Imaging (MRI) is one method,
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3. Breast imaging with HARBUT

producing accurate images and achieving high sensitivity [43]. However, its use leads
to a large number of unneeded biopsies due to its low specificity [44]. Additionally
the cost of examination is typically an order of magnitude more expensive than
mammography, and it relies on the injection of contrast agents, making it unsuitable

for widespread screening.

A second option used to aid diagnosis is sonography, which produces an image via
a handheld ultrasound array. Sonography is more sensitive in dense breasts than
mammography because it can distinguish between structures with similar density
but different acoustic impedance. However, being handheld, it is highly operator
dependent and its use is limited to situations where the areas of interest — an am-
biguous mass for example — have already been identified. This makes the technique

in its current form unsuitable for screening.

The possibility of improving the sensitivity and specificity of sonography has been
investigated since the 1970s within the framework of breast ultrasound tomography
[20,21,45-47|. Instead of the handheld probe, the breast is mechanically scanned
with a toroidal ultrasound array that encircles the breast as shown in Fig. 3.1. The
patient lies prone with the breast suspended in the water bath and the array is
repeatedly moved down to image slices through it. At each slice, a single transducer
provides an illumination, with the total field being recorded around the breast. This
process is repeated with the next transducer providing the illumination and so on
to obtain a full matrix of scattering data for each vertical location of the array.
This matrix is then used to reconstruct the mechanical properties of the materials
within the breast with the goal of using these to distinguish cancer from healthy
tissue. Identifying the characteristic mechanical properties of cancer within the
breast is key to achieve high sensitivity and specificity. Greenleaf first proposed
that cancer masses are characterised by higher sound speed and attenuation than

the surrounding medium [48]; recent work is suggesting a similar pattern [21].

Breast ultrasound tomography has the potential to address the main limitations
of mammography and sonography. By using ultrasound, there is no need to rely

on ionising radiation. Also, the design of the system means that the often painful
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Toroidal array

Breast

Figure 3.1: Schematic of the system for breast ultrasound tomography. (a) The patient
lies prone with the breast suspended in a water tank. A transducer array begins at the
chest wall and gathers sets of data at many slices through the breast. Shown in (b) is a
single illumination and the scattered field produced which is measured by the transducer
array.

breast compression needed by mammography is unnecessary, and the results are op-
erator independent. Breast ultrasound tomography, as sonography, is unaffected by
radiographically dense breasts that cause the high false negative rates with mammo-
grams, and is relatively inexpensive which would allow widespread use as a screening

technology.

The dominant approach in breast ultrasound tomography is Bent-Ray Tomography
(BRT) [21,22,45,46,49-53| which applies a ray-based approach to arrival times for
transmitted signals in order to produce — either directly in the case of straight rays
or with iterations for bent rays — a sound-speed map. This follows the approach
in X-ray CT based reconstruction systems which can rely on simple straight ray
approximations [54,55|. The diffraction that occurs around small scale objects is
ignored under this approximation, leading to a resolution limit of v/LX where L is
the maximum distance between the transmitter and receiver and A is the wavelength
[25,56]. In order to penetrate the breast, the minimum practical wavelength is 1mm,
and with a typical 200mm array diameter the resolution is around 10mm — too low

to detect small structures such as cancer at an early stage.

Higher resolution imaging methods based on the Born or Rytov approximations,
such as Diffraction Tomography (DT) [19, 31,57, 58|, are suitable for imaging fine

details of the breast architecture. However, DT is of little use in breast imaging
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because the object to be imaged must be small relative to A and of low contrast
relative to the background for the approximations to be valid. The breast is a large
object (around 50\ across at A = 2mm) and the contrast is high enough that the
criterion for the validity of the approximation, as given in [19], cannot generally be

satisfied for breast ultrasound tomography.

An alternative solution being considered is to improve the resolution of the BRT
image with an iterative full-wave inversion technique [26,27,59|. The method uses
the low resolution BRT algorithm to reconstruct a starting model of the breast
mechanical properties. The algorithm then runs a numerical computer simulation
to predict the signals that would be measured with the system in Fig. 3.1 for this
model. The target of the algorithm is to minimise the residual between the resulting
signal and the measured signal by updating the material properties of the breast;
the breast model that minimises the residual provides the final image. The model
refinement is generally achieved by a gradient-based stepping method. The first
issue with this technique is that the algorithm will only converge to the nearest
local minimum rather than the global minimum of the problem. Because of this,
the starting model — i.e. the image produced by the BRT algorithm — must already
be close to the global minimum. Also, the technique is susceptible to uncertainties
not considered in the forward model — for example transducer characteristics, 3D
effects, and noise which can lead to the the algorithm converging to an incorrect
solution. Speed is another significant drawback: a full set of illuminations needs to
be simulated at each step (and more to calculate the gradient) with many iterations

needed to generate the final image.

The previous chapter introduced HARBUT, the Hybrid Algorithm for Robust Breast
Ultrasound Tomography, which aims to address the need for a fast, robust, high-
resolution breast ultrasound tomography method, by adjusting DT to use a back-
ground sound speed estimate such as from the BRT method. This provides a mech-
anism to combine the complementary strengths of the BRT and DT algorithms to

reconstruct a high-resolution sound speed map.

This chapter applies the algorithm to a realistic numerical simulation and a set of
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experimental data of a human breast to investigate its performance. It should be
noted that the sound speed has the largest effect on the wave propagation and is
therefore of fundamental importance in reconstructing other parameters; the focus
of this chapter is therefore on sound speed. It is recognised, however, that density
could subsequently be determined from the reconstructed object function by using

multiple frequencies according to the approach outlined in [60].

This chapter evaluates the effects of the main experimental constraints which will

affect the nature and accuracy of the measurements. The factors investigated are:

1. 3D effects and sampling conditions. The array architecture shown in Fig. 3.1
is suitable for imaging 2D (i.e. uniform in the out-of-plane direction) objects.
The anatomy of the breast is fully 3D which would require a spherical array
to perform all the measurements required to satisfy the Nyquist sampling
criterion. Therefore it is important to understand whether the reconstruction

can be treated as 2D and what type of artefacts one could expect as a result.

2. Knowledge of ;. In order to form the beamforming (BF) image with (2.24),
the scattered field s = 1 — 1, needs to be known. Although ¢ is directly
available from the measurements, v, cannot be measured. It would therefore
be necessary to use a forward solver that predicts the outcome of the mea-
surements that would be taken if only the background medium was present.
However, for the calculations to be sufficiently accurate, one would need a very
accurate model of transducer response and to be able to account for 3D effects.
This challenge is magnified because |¢s| <{|¢], |15|}, meaning that even small
errors in the estimate of 1, would lead to large errors in 5. Therefore, it is

critical to understand whether ¢ could be used in (2.24) instead of 5.

3. Density. Once the object function has been reconstructed, the sound speed
and density have to be obtained by inverting (2.3). However, O (r) at a sin-
gle frequency does not contain sufficient information to extract both material
properties. As a result, it is important to understand if the density term in

(2.24) can be neglected to obtain sound speed only.
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4. Attenuative effects. As the incident wave travels through the breast, its am-
plitude will be reduced due to the attenuative properties of human tissue. It is
important to understand the effect this has on the resulting image and whether

it can be accounted for by the algorithm.

Sections 3.3 and 3.4 show how the proposed method addresses these points, but first
I introduce the forward model used to provide numerical data with which to test

the algorithm.

3.2 Forward Model

This section details a numerical model used to test HARBUT, as introduced in
Chapter 2. The aim is to demonstrate the robustness of the new algorithm by

generating data which reproduces realistic experimental conditions.

Such data is provided by a 3D model solved numerically with the Finite Difference
Time Domain (FDTD) method. This models sound speed and density in 3D, as well

as accounting for the size of the transducers in the z direction.

3.2.1 Physical model

Selecting a suitable, realistic breast model is challenging since the necessary material
properties of the breast are difficult to measure and tend to vary from person to
person. The wide range in quoted values (see for example [61-63]) reflects this
variation. Therefore, I use the more extreme, higher contrast values (which are
more challenging to breast ultrasound tomography algorithms) in order provide a

thorough test of the new algorithm.

The model is fully 3D to represent the actual shape of the human breast, as shown
in Figs. 3.2 and 3.3 for the sound speed and density respectively. A glandular region

forms the bulk of the breast model, with an irregular subcutaneous fat layer around
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Figure 3.2: 3D numerical model of a breast with non-uniform sound speed

the boundary. Material properties for the glandular region and fat are given in Table
3.1. Existing numerical studies have so far used data generated by 2D models used
to test breast ultrasound tomography algorithms; a novel aspect of this work is the

use of more realistic 3D data for this purpose.

The glandular region is represented by a random medium. Importantly at the low
frequencies used in breast ultrasound tomography, the presence of random variation
is the main cause of signal attenuation due to scattering. This attenuation is an
additional challenge for the imaging algorithm to overcome. I use a random medium
model based on that outlined in [63], although with longer correlation lengths due to
the relatively large spacing of the FDTD grid. Following the empirical relationship
that density tends to vary linearly with sound speed [32], T use the same random

field pattern for both density and velocity.

Five inclusions are placed in the model: three representing cancer masses and two
representing fat spheres. The material properties of these are given in Table 3.1
and the dimensions and locations in Table 3.2. The goal of the imaging algorithm
is to be able to detect these and identify whether each inclusion is cancer from the

reconstructed mechanical properties.
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Figure 3.3: Density field for the 3D numerical breast model

Table 3.1: Material properties of the structures in the breast phantom

Structure Sound speed Density Standard Correlation
(m/s) (kg/m®) deviation (%) Length (mm)
Water 1500 1000 - -
Glandular 1550 1060 2 1.5
region
Fat 1470 950 - -
Cancer 1580 1100 1 1.5
masses

3.2.2 Array model

A 450 transducer array (sufficient elements according to the sampling criterion in
[64]) is considered. The transducers are 12mm tall (in the out-of-plane, z, direction)
but thin within the plane of the array so as to act as line sources. The array
has a diameter of 120mm to limit the size of the propagation domain and hence
the computational burden of the 3D model. Each array element is excited with a

3-cycle Hann windowed toneburst at a centre frequency of 750kHz.
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Table 3.2: Dimensions of the inclusions in the breast phantom. Inclusion numbering is
performed clockwise from the top as shown in Figs. 3.2 and 3.3.

Inclusion Location (mm) Diameter (mm)

Number y 7 x y z Type
1 0 20 0 3 4 4 Cancer
2 10 0 0 9 10 9 Cancer
3 16 23 -1 7 8 8 Fat sphere
4 6 26 1 7 7 7 Cancer
5 -15 10 0 4 4 4 Fat sphere

3.2.3 Numerical simulation

A 3D FDTD modelling method is used with a standard Yee grid [65], with the mesh
terminated with efficient convolutional perfectly matched layers [66] to minimise re-
flections from the boundary of the domain. 14 nodes were used per 2mm wavelength,
so that the grid spacing is /7 mm. A domain of 861 by 861 by 189 nodes was used.
This is large enough for the 120mm array in the x and y directions and is 24mm
tall in the z direction to allow the beam to diffract as it travels into the domain. A
Courant number of 0.95 is chosen which gives a time step of 2.96 x 10~%s (based on
a maximum velocity of 1620m/s), therefore needing 4056 time steps for the 0.12ms
simulation (long enough for a wave in water to travel 1.5 times the array diameter).
The array locations are rounded to the nearest node so the recorded coordinates
for each transducer are adjusted accordingly. 450 separate simulations have to be
performed — one for each illumination. To model the effect of the transducer out of
the plane, each transducer is modelled as a set of in-phase point sources at all nodes

along a 12mm tall line.

A single illumination for this configuration takes around 4 hours to run on a single
core of an AMD Opteron 8384 2.7GHz processor. Parallelism was achieved in a
coarse-grained manner by running many — typically 64 — illuminations simultane-

ously. Using a cluster of two quad-core Intel Xeon E5462 2.8GHz processors per
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Figure 3.4: Through transmission time traces from the 3D FDTD simulation. The source
is at coordinates (+60mm, 0) and the receiver is diametrically opposite, at (-60mm, 0) in
the x-y plane. (a) is the incident time trace, i.e. the time trace without any scatterer
present to distort the wave field. The wave packet has become elongated by the numerical
dispersion from the coarse FDTD grid. (b) is the time trace with the phantom model of
Sec. 3.2.1 present. The signal arrives slightly earlier because of the higher average sound
speed along the path between the source and receiver when the phantom is present. There
is also an amplitude loss due to the wave’s energy being scattered by the phantom.

node and 40 nodes, the running of all 450 simulations was completed within around
48 hours, with quite a large dependency on the queueing system in place on the clus-
ter. These times are for the forward simulation only; the actual imaging algorithm,

running on a single computer, is several orders of magnitude faster.

3.2.4 Data Processing

Two sets of data are generated: an incident data set where the material properties
throughout the model are the same as that of water and the set for the case where the
breast phantom described in Sec. 3.2.1 is present. When performing experimental
measurements, the incident data set can be generated by taking measurements when
there are no objects present in the water bath. These data need to be processed

prior to passing them through the imaging algorithms.

Fig. 3.4 is a comparison of the unprocessed time traces from through transmission
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Figure 3.5: Matrices of processed data, plotted for all send-receive pairs. (a) gives
the arrival times of the modelled signals relative to the incident signal, estimated by a
frequency domain deconvolution. (b) presents the amplitude, taken at 750kHz. In both
plots, the regions marked 1 correspond to the transmit-receive pairs with a line-of-sight
passing through the subcutaneous fat layer and those marked 2 to the transducer pairs
that ‘see through’ the volume of the phantom.

from the transducer with coordinates (+60mm, 0) to the receiver at point (—60mm,
0). Fig. 3.4(a) shows the time trace for transmission through the water bath, i.e.
the incident field. The coda present is a result of numerical dispersion occurring
in the FDTD method due to the relatively coarse mesh. Fig. 3.4(b) is the same
measurement, taken when the phantom is present, showing the wave packet arriving
earlier than the incident wave. This is because the average sound speed along the

path between the source and receiver is higher when the phantom is present.

Fig. 3.5(a) presents this difference in arrival times, estimated for all send-receive pairs
relative to the incident field. The arrival time is defined as the time at which the first
disturbance is measured at the receiver. These have to be established quantitatively
in order to be able to perform the bent-ray tomography (BRT) algorithm; here T use
a deconvolution via the frequency domain. The regions marked as 2 correspond to
the send-receive pairs with a line of sight through the glandular region of the model;
the main effect is to make the waves arrive earlier due to the higher sound speed of
the glandular material. To either side of these diagonal regions, in the boundaries
marked 1, the waves do not pass into the glandular region but only pass through

the subcutaneous fat, which is slower than the water bath and leads to later arrival
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of the waves. These therefore appear lighter in the figure.

Fig. 3.5(b) gives the amplitude of each send-receive pair, produced at 750kHz by
taking a discrete Fourier transform of the measured data. The data have been nor-
malised such that they represent what would be seen if a unit point source was used
to provide the illumination. If there was no scatterer present then the field would be
the same as the Green’s function sampled around the array. Under this condition,
a singularity would be present along the principal diagonal due to the measurement
being taken at the source location. However, this singularity is removed by gating
off the incident signal for the source and surrounding measurements, which leaves

the dark stripe down the diagonal.

The bright boundaries (marked 1) are the waves which have passed solely through
the subcutaneous fat. The relatively high amplitude indicates that some form of
focusing is occurring. Waves passing through the bulk of the glandular region,
2, have lower amplitude due to the effects of the random glandular material that
scatters sound in all directions in space. The diagonal crossing patterns throughout

this region are due to the presence of the inclusions.

3.3 Results

Fig. 3.6 shows the separate stages of HARBUT compared to the original sound speed
model of the central slice of the phantom in Fig. 3.6(a). The BRT reconstruction
in Fig. 3.6(b) shows the expected low resolution characteristics since diffraction is
not accounted for. The reconstruction allows the detection of the subcutaneous fat
layer and the glandular region; however, the inclusions are not reliably detectable.
Enhanced BRT reconstructions are likely to be possible — for example through im-
proved arrival time estimates — but the improvements will still be fundamentally

limited by the algorithm’s inability to deal with diffraction.

Fig. 3.6(c) is the modified BF image using the background from Fig. 3.6(b). In
this reconstruction, the total field ¢ is used rather than the perturbation 5. The
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Figure 3.6: (a) The original central slice of the sound speed map as in Fig. 3.2, with
the locations of the transducer array marked. (b) is the BRT sound speed reconstruction.
This is used as the background for the corrected beamforming at 750kHz in (c), which is
then filtered to get the object function perturbation component Og given in (d). (e) is the
full object function O generated by combining (d) and the background object function Oy
calculated from (b). (f) is the hybrid sound speed reconstruction from the object function

(e).
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Figure 3.7: Standard DT reconstruction. The size and the contrast of the original
phantom (a) are large enough that the standard Born approximation is invalid, causing
the reconstruction (b) to have extensive artefacts that obscure the inclusions.

features are not clear at this stage. Converting to the DT image in Fig. 3.6(d),
using the filter from [34] based on the free space k,, allows all five inclusions to be
identified. This perturbation component is sufficiently small that the approximation
1 = 1, necessary for the algorithm to work is valid. The total object function in
Fig. 3.6(e) is calculated by combining O, from Fig. 3.6(b) and the O; in Fig. 3.6(d)
according to (2.10).

Fig. 3.6(f) is the final sound speed reconstruction obtained from Fig. 3.6(e) by
inverting (2.3) and ignoring density effects. All five inclusions can be very clearly
seen and all the irregular features of the subcutaneous fat layer are reconstructed.
The sharp boundaries at the edge of the model and at the edge of the glandular
region are blurred in the reconstruction; also the random medium representing the
glandular region appears more homogeneous. This blurring is due to an averaging
effect in the z direction that determines the so called slice thickness as discussed
in Sec. 3.4.1. However, the sound speed is correctly reconstructed and there are no
artefacts. The image is a dramatic improvement over the BRT reconstruction of

Fig. 3.6(b).

To demonstrate the effectiveness of HARBUT, Fig. 3.7(b) shows the reconstruc-

tion obtained with the standard BF/DT algorithm [34] with a homogeneous water
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background. Due to the size and contrast of the phantom relative to the water
background, the condition for validity of the Born approximation is violated. As
the illuminating field travels inside the phantom, it accumulates a phase delay larger
than 7. As a result, the total field that appears under the integral in (2.8) is in op-
position of phase with the free space incident field (which replaces it under the Born

approximation) leading to the artefacts in Fig. 3.7(b).

The current implementation of the BF /DT stage uses Matlab. To generate the 481
by 481 pixel image given the background correction data currently takes around 60
seconds on an HP z600 dual quad-core workstation without significant optimisation.
The background correction data, required to calculate Gy, are taken from the final
iteration of the BRT algorithm and therefore have no associated overhead. A C+4+
version of the algorithm has been written, using the excellent Figen matrix library

[67] which generates the image in around 5 seconds.

3.4 Practical Considerations

In this section I discuss the practical aspects that were introduced at the end of

Sec. 3.1, points 1) to 4).

3.4.1 3D effects and sampling conditions

Fig. 3.8 compares the hybrid image from the 3D data as in Fig. 3.6(f) with a re-
construction using data from a similar simulation, except performed in 2D using
the central slice of Fig. 3.2. The 2D reconstruction has sharp boundaries at the
edge of the glandular region and the breast itself, which are both blurred in the 3D
version. The granular appearance of the random medium is also better defined in
the 2D reconstruction than the 3D. These differences are caused by blurring in the
z (out-of-plane) direction in the 3D reconstruction due to the finite height of the

transducer beam, as will be explained in this section.
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Figure 3.8: Comparison of the HARBUT reconstruction from 3D data (a) and 2D data
(b). The boundaries of the glandular region and the phantom itself in the 3D reconstruction
are blurred in comparison to the 2D reconstruction. The random medium which makes up
the glandular region is also more homogeneous in the 3D reconstruction. These effects are
a result of averaging in the out-of-plane direction.

For this purpose it is necessary to consider the 3D Point Spread Function (PSF)
which gives the response of the imaging system to a point scatterer. If the PSF
is space invariant, i.e. does not depend on the position of the point scatterer,
then the image is a convolution of the PSF with the original object function. The
PSF is space invariant for standard DT [34], assuming plane wave illuminations and
measurements taken in the far field, and here I assume that it can also be considered
space invariant for HARBUT due to the relatively low contrast of the background

sound speed map.

To generate the 3D PSF, a point scatterer at the origin — the centre of the array at
z =0 — is imaged with the transducer array at several axial locations; these images
are then stacked to form the point scatterer response. Fig. 3.9 gives the PSF for
the system considered in this chapter. In the x and y directions it is Imm (A\/2)
thick because of the Born approximation resolution limit, but in the z direction —
as shown in Fig. 3.9(d) — the response stretches out to around +4.5mm, using a

threshold of —6dB relative to the maximum.

Due to the convolution, each point in the final image will be a weighted average of

the object function in the z direction with the weights defined by the PSF projec-
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Figure 3.9: Normalised Point Spread Function at the centre of the array for the system
modelled in this chapter — 12mm tall transducers with an array diameter of 120mm. The
PSF is thin — about 1lmm (A/2) wide — within the plane due to the resolution of the Born
approximation used in the reconstruction. As shown in (d), taking a threshold at —6dB
relative to the maximum, the PSF extends in the region —4.bmm< z < 4.5mm, making
its height around 9mm. This is significantly wider than the in-plane PSF dimensions.

tion in Fig. 3.9. Fig. 3.10 illustrates this, showing how the tall nature of the PSF
blurs the reconstruction in the z direction and the effect this has on the 2D projec-
tion. The boundaries of the reconstruction of the elliptical inclusion are relatively
sharp because of the 3D boundaries being primarily in the z direction, however,
the oblique boundaries of the phantom itself are significantly more blurred. The

phantom reconstruction in Fig. 3.6(f) shows this blurring at the boundary.

The extent of the interval in the z direction over which material properties are
averaged defines the slice thickness. To estimate the slice thickness, a simple ‘spiral
staircase’ model is used. This consists of point scatterers at a series of heights and a
series of radii, with the points at each particular height being arranged in one radial

direction, forming the steps in the staircase. Fig. 3.11(a) shows this schematically.

The scatterers are placed at heights of 0-10mm with 0.5mm gaps and radii of 15-
50mm with 5mm gaps. Fig. 3.11(b) is the image obtained with the hybrid method

at one position of the array. For an ideal imaging system with Omm slice thick-
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Figure 3.10: Schematic diagram of the effect of PSF averaging. The averaging in the z
direction has little effect where the 3D boundaries are well aligned with the z axis, as with
the inclusion, forming the sharper boundary marked. When this is not the case, as with the
oblique boundaries of the phantom, significant blurring is visible in the 2D reconstruction.
This effect is seen in the reconstruction of Fig. 3.6(f).
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Figure 3.11: (a) is a schematic 3D diagram of the arrangement of scatterers in the spiral
staircase model. (b) gives the 2D reconstruction of data from such a model, simulated
with the 3D FDTD method, for heights 0-10mm at 0.5mm gaps and radii of 15-50mm at
bmm gaps. The artefacts surrounding each scatterer are a result of the relatively course
FDTD mesh used, rather than the imaging process, and are ignored. The transducers are
modelled as the 12mm tall line sources used in all the simulations in this chapter and are
at a radius of 60mm. There is a clear drop in response as the height of the scatterer is
increased due to the transducer beam height. Following Fig. 3.9(d), the 4.5mm z offset
points lie around the —6dB threshold, indicating this is the boundary of the slice captured
by the transducer array.
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ness the image should contain only a single set of eight scatterers along the radial
direction in the plane at z = 0. Instead, due to the spreading of the PSF in the
z direction, weaker reconstructions of the scatterers from different heights can be
observed. However, the amplitude of the reconstructed scatterers decays as the cor-
responding distance from the plane of the array increases. In particular a —6dB
drop in amplitude can be observed for the scatterers at z = 4.5mm, thus verifying

that the slice thickness is around 9mm.

The finite slice thickness is a result of the reduction in sensitivity of the transducer
array to scatterers at greater distances from z = 0. The sensitivity of the array
drops because there is a reduction in both 1) the amplitude of the illuminating
beam incident on the scatterer and 2) the sensitivity of the receiving transducer
to waves from the scatterer. Here, I consider only a point scatterer along the axis
of the array so that the distances to all transducers are the same, and therefore,
by the principle of reciprocity, 1) and 2) will both cause the same amplitude drop.
Therefore, the —6dB drop in array sensitivity, which defines the boundary of the slice
thickness, will be achieved when the illuminating beam and the receiver sensitivity
each drop by —3dB. Considering the Fraunhofer zone of a line transducer [68], the
thickness of the beam, B, at the centre of the array with a —3dB threshold is

B_ 0.884\7 4

= (3.1)

where 7. is the radius of the array and h is the transducer height. For the case
considered here, the —6dB slice thickness becomes 8.8mm at the centre of the ar-
ray, which is close enough to the 9mm slice thickness to verify the validity of (3.1).
Equation (3.1) shows that it is possible that the slice thickness could be reduced
by increasing the height of the transducers, although the benefit of this is limited
because the Fraunhofer approximation becomes invalid with large transducers. Al-
ternatively, a synthetic aperture approach could be used to reduce the slice thickness

as investigated in Chapter 4.
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3.4.2 The subtraction problem

The beamforming algorithm in (2.24) uses the field s, which is calculated as the
difference between the measured field and the background field

Vs =1 — s. (3.2)

However, to obtain the reconstructions in Fig. 3.6 I have used the total field ¥,
which is directly available from the measurements, in place of 5. Here, T justify

why this is possible.

In principle, v, could be calculated by solving (2.11) with the FDTD method. How-
ever, this would not be reliable in practice because the perturbation field s is
small compared to ¢ and 13, so any small errors in the estimation of v, will cause
large errors in v¢s. Errors in the v, estimation are unavoidable, mainly because of

uncertainty in the transducer response.

Here, T show that it is not necessary to perform the subtraction and it is sufficient

to form the BF image from the measured total field directly, i.e.

Is(z) = GzDGb dx’. (3.3)

For this purpose it is observed that the BF and filtering steps in HARBUT are
linear (for a fixed background) with respect to the measurements. This means that
I can define a linear operator, Jp7, that maps the measurements or data, d, onto an

image, i, i.e.

i =3pr(d). (3.4)

When the data correspond to ¥5 then Os = Tpr (15). If instead, the data correspond
to the total field then

Ipr (V) = Tpr (¥5) + Ipr (¥6) = Os + Tpr (1) - (3.5)
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Figure 3.12: Image generated by imaging ¥s = 1 in the corresponding background
velocity field. This is present in the final image if the subtraction is not performed. The
error is within £1m/s through the majority of the imaging domain.

The term Jpr (1) therefore represents the error caused by making the assumption
that the background field does not need to be subtracted. Fig. 3.12 shows Jpr (1)
converted to a velocity image for the 1, calculated for the BRT background of
Fig. 3.6(b). The velocity map is within £1m/s of the background except the region
outside the array where ring artefacts appear, which is an acceptably small error
given that the structures of interest have a sound speed contrast relative to the

background in the order of 5%.

This convenient property makes the proposed approach very robust because it means

that it is not necessary to estimate 1, thus avoiding significant sources of error.

3.4.3 Density

Here I show that density variations within the breast can be neglected.

Equation (2.3) defines the object function, which includes a term dependent on
the density field. The form of this term means that in order for the density to
contribute a significant amount to O (r), a large density gradient must be present.
Within soft tissue, density varies continuously; therefore the object function, O, is

mainly defined by the sound speed. Even if the density were to vary suddenly at
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Figure 3.13: Image of the density component present in a reconstruction from a 2D
simulation of the central slice

the interface of a cancer mass, the limited density contrast would still make the
density term in (2.3) negligible. This is shown in Fig. 3.13, which is the image from
a 2D model using uniform sound speed and the central slice of the density model of
Fig. 3.3. The sound speed map is obtained assuming that the density term in (2.3)
is negligible. If this were true the reconstructed velocity should be 1500m/s (the
same as the water background) across the image plane, but instead different values
of sound speed are seen where density discontinuities occur, showing that density
affects the sound speed reconstruction to some extent. However, the values of sound
speed significantly differ from the background velocity only at the boundaries of
sudden density variations. This leads to two main conclusions: 1) the absolute
value of density does not affect the velocity estimate; 2) the errors in velocity at
sudden density variations help the visualisation of these boundaries and therefore

aid the definition of complex morphologies.
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3.4.4 Amplitude correction

The amplitudes of the waves drop as they pass through the 3D breast phantom.
One cause of this is the random medium of the glandular region, which scatters
energy from the waves in all directions. Some of the energy is scattered out of the
plane of the array and is lost; 2D reconstructions ignore this so it becomes a form
of attenuation. A second amplitude loss occurs due to the oblique angle at which
the wave hits the phantom boundary. The wave is refracted slightly upwards (or
downwards depending on the relative sound speeds of the breast and the water)
which causes an amplitude drop due to the misalignment of the wave with the
receiver [69]. Appendix A contains a detailed analysis of this amplitude drop. In
experimental data both these effects will be present, along with the attenuation
caused by the material itself. This loss in amplitude, if it is not accounted for,
will cause the reconstructed object function perturbation Oz to be too small. One
solution to this problem would be to correct the amplitude loss in the same way
phase is corrected. A ray-based attenuation image could be formed in the manner
of the BRT image, which would include material attenuation, as well as 3D scattering
and deflection since the effects are inseparable. From this, the wave amplitudes at
all points in the domain for all illuminations could be calculated using a forward

model, which could then correct the Green’s functions used in the BF algorithm.

The simulations show that it is sufficient to assume that all received signals are
attenuated by a constant factor. This allows the correction to be applied by simply
multiplying all the measured signals by this factor. By taking the measurements of
Fig. 3.5(b), dividing by the equivalent incident field (i.e. the field corresponding to a
unit point source as defined by G, (x,y)), and averaging for the positions around the
array relative to the source, Fig. 3.14 can be produced. From this, the amplitude
drop factor was taken to be 0.5. Accordingly, prior to reconstructing the images

from this model, all the signals were multiplied by a correction factor of 2.
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Figure 3.14: Amplitude of signal around the array relative to the incident signal at
750kHz. Averaging has been performed across all illuminations by matching up the mea-
surements in the same positions relative to the source. The average amplitude drop of the
signal, caused by passing through the phantom, was taken to be 0.5.

3.5 In vivo results

Having demonstrated HARBUT’s performance for a set of simulated data and dis-
cussed the practical limitations, I now apply HARBUT to a set of experimental data
from a real human breast. This data set was acquired with the CURE (Computed
Ultrasound Risk Evaluation) system at the Karmanos Cancer Institute, Wayne State
University; details about the system are included in [21]. The array has 256 trans-
ducers and a diameter of 200mm. The transducers are 12mm tall and data is ex-

tracted from frequencies between 700 and 800kHz.

The arrival times were extracted by the method in [70] and a bent-ray tomography
image was generated using the method outlined in [22]. HARBUT was performed
taking this as a background, with each of the frequency components extracted,
and the resulting sound speed images were averaged to minimise incoherent noise

(following the approach in [58]).

The current state-of-the-art in breast ultrasound tomography, bent ray tomography,
is compared to HARBUT in Fig. 3.15. Tt is clear that HARBUT provides a signifi-

cant resolution improvement over BRT, with far more detail visible. Many sections
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Figure 3.15: Sound speed reconstructions through the breast using in vivo data. (a)
is the BRT method, the dominant method in the field of breast ultrasound tomography.
This reconstruction was performed with one of the most up-to-date methods, as outlined
in [22]. (b) is HARBUT, showing a significant resolution improvement over BRT.
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of tree-like structures are visible, which are typical of the blood vessels, milk ducts
and lymphatic vessels which can be found in the breast. Also, significantly more de-
tail of the cancer mass itself is visible, with a notable separate section to the bottom

right, marked with an arrow, which is completely missed by the BRT algorithm.

The slice thickness problem discussed in Sec. 3.4.1 will cause any features within
the slice thickness to be projected into the imaging plane. This can explain some
of the lack of clarity; we would expect to see many overlapping ducts and vessels
within the expected ~ 10mm slice thickness. Reducing the slice thickness, i.e. im-
proving the axial resolution, is a priority to improve the reconstructions. The next
chapter discusses a potential solution, using a fully 3D framework rather than the

2D approximation made here.

3.6 Summary

I have applied HARBUT, the Hybrid Algorithm for Robust Breast Ultrasound To-
mography, which provides a resolution improvement over bent-ray tomography while
avoiding the convergence and speed problems of iterative methods, to a realistic sim-
ulated breast model and experimental in vivo breast data. Diffraction tomography
methods are unsuitable for this purpose because the contrast and size of the breast
relative to the homogeneous water background breaks the Born approximation. By
reformulating the problem using an inhomogeneous background which is sufficiently
close to the actual sound speed map, the relative contrast can be reduced such that

the approximation becomes valid.

HARBUT is demonstrated to accurately reconstruct the sound speed through a
breast phantom model from 3D simulated data, despite sampling the wavefield with
an array architecture suitable for 2D imaging, and the presence of uncertainties such
as transducer response that are likely to occur in real experiments. At a frequency
of 750kHz, masses as small as 4mm in diameter can be clearly imaged. An in-plane
resolution of Ilmm was achieved, with a slice thickness of 9mm. Density contrast

and randomly varying material properties with sub-wavelength coherence lengths
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have little influence on the final reconstruction. 3D structures intersecting the plane
of the array are partially projected onto the imaging plane due to the size of the

slice thickness.

Applying HARBUT to in vivo data demonstrates that the algorithm performs well
with experimental data, with a significant resolution improvement over the more
widely used BRT algorithm. Small structures within the breast are visible, although
as shown with the simulated data, these structures will be projected into the imaging
plane because of the extent of the slice thickness. It is possible, by treating the
problem as fully 3D and combining data from multiple axial locations, to improve
the axial resolution and hence reduce the slice thickness; this is investigated in the

next chapter.
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Chapter 4

Three dimensional breast ultrasound

tomography

4.1 Introduction

While the principles of two dimensional imaging can often be easily generalised to
three dimensions, the complexities of adding another dimension often renders three
dimensional imaging impractical. One important reason is that, while arrays for 2D
imaging are formed from 1D lines or arcs of transducers, to capture the necessary
information in 3D with fixed arrays requires extension of the array into an additional
dimension. To obtain the same level of coverage in the third dimension as in the
original two, it is necessary to square the number of transducers, which is impractical

with current array technology.

One solution is to treat the 3D problem as though it was 2D, which would allow data
to be captured with a 1D array of transducers. For a 3D problem to be successfully
imaged in such a 2D framework, however, it must be quasi-uniform in the out-of-
plane direction; this is not the case for the breast, which typically varies by similar
amounts in all directions. Chapter 3 demonstrated the problems associated with
simplifying 3D to 2D, showing how each point in the 2D reconstruction corresponds

to an average of sound-speed values across the slice thickness. To improve this image
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Figure 4.1: Signals from scatterers outside the plane of the array. Since waves scattered
from A will travel further than from B, by a distance of (a1 + a2) — (b1 + b2), they will
encode an extra phase shift which contains information about the out-of-plane offset.

while maintaining the 2D reconstruction method, it is necessary to reduce the slice

thickness, which can be achieved by reducing the transducer beam width.

The beam spread angle of the far field transducer beam will always reduce as the
transducer width increases, so one approach is to go for taller transducers. However,
as the transducers become taller, the near field, whose beam height is typically simi-
lar to that of the transducer, dominates the imaging region. Given this compromise,
it has been found that is difficult to achieve better than the 9mm slice thickness

obtained with 12mm transducers in Chapter 3.

This chapter presents an alternative solution, inspired by synthetic aperture radar
techniques. As illustrated in Fig. 4.1, the signal measured from scatterer A, offset
out of the plane, will have a phase shift due to the additional distance travelled
compared to the measurement from scatterer B, which lies in the plane (a; + ag vs.
b1+ bs). This phase shift encodes information about the offset of the scatterer out of
the plane, and this can be exploited to help improve resolution in the out-of-plane

direction.

By moving the transducer array, a synthetic aperture can be formed in the axial
direction. By combining the data from multiple slices in a 3D framework, it is
possible to exploit the information encoded in the out-of-plane phase distortions of
Fig. 4.1 in order to obtain a significantly better axial resolution than with the 2D

assumption.

Using this principle, Simonetti and Huang [14] showed that under idealised condi-

tions, by combining data from many slices, and treating the problem as fully 3D, it
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is possible to completely populate the Ewald sphere, thus obtaining a resolution of
A/2 in all directions. The formulation requires that point sources and receivers are
used and are in the far field (i.e. sufficiently far away that any illumination can be
treated as plane waves); also the array ring has to traverse an infinite distance to

achieve maximum axial resolution.

The hardware is not available to approximate these requirements. The most signif-
icant problem is that point-source like transducers are difficult to produce; the size
of the transducer must be small to avoid directional effects, yet a large amount of
power must be passed through to obtain a reasonable amplitude wave. The ampli-
tude of the wave is particularly critical in 3D compared to 2D because the energy
spreads in an extra dimension, so the amplitude reduces as 1/r rather than 1/4/r
where r is the distance from the transducer. As a result of this compromise, to

obtain a sufficiently strong signal, the transducers must be quite directional.

This chapter discusses how to adjust the algorithm for a realistic transducer array
and applies it to a model representing typical structures within the breast. The
model used to test the algorithm here is chosen to satisfy the Born approximation;
this chapter therefore does not apply the full HARBUT formulation to the 3D data.
HARBUT is avoided because this helps to simplify the analysis, although it would

be easy to incorporate it at a later stage.

4.2 Theory

As explained in Chapter 2, the scattering problem under the Born approximation

can be expressed as
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Figure 4.2: Comparison of 2D and 3D k-space vectors. In 2D, as shown in (a), there are
only two source-receiver vector combinations which correspond to a particular point in the
k-space. However, in 3D, as shown in (b), there is an infinite number.

Born and Wolf [31] explain that, under the far field approximation, each measure-

ment corresponds to a Fourier component of the object function!
Vs (80,8) = —O [ku(80 — 8)] (4.2)

so to reconstruct the object function in 3D, the combination of send and receive
vectors needs to populate the Ewald sphere. This map of the measurements in the

spatial frequency domain is referred to as the ‘k-space’ through this thesis.

One theoretical approach would be to position a sphere of transducers completely
around the scatterer, allowing illumination and reception to be in any direction
which would completely fill up the Ewald sphere. Such an array is impractical, but

also contains significant amounts of redundant data.

Figure 4.2 shows this redundancy. In the 2D case of Fig. 4.2(a), each point in
the k-space corresponds to the mapping of just two sets of wave vectors; this pair

corresponds to swapping the source and receiver, which is known to result in the

LA fuller derivation is given in Sec. 6.2.1.
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Figure 4.3: Mapping of measured components into the k-space Ewald sphere with the
array at a fixed axial location. (a) shows a schematic diagram of scattering with the array
at a particular axial location, offset from the scatterer. (b) shows how the measurements
at each axial location map into a single disc of the Ewald sphere.

same value by the principle of reciprocity. In 3D, however, as shown in Fig. 4.2(b),
there is an infinite continuum of source-receiver vector sets which reach the same
point in the k-space. Only a single set of these vectors is needed to obtain the
required value. It is therefore unnecessary to have a complete array like this to fill

the Ewald sphere.

As Simonetti shows in [14], it is possible to completely fill the Ewald sphere with just
a single ring array moved axially. Figure 4.3 illustrates how, at each axial location,
the ring array populates a disc of the sphere; by changing the axial position the
k, component will change and the sphere can be filled. Simonetti proposed using
the BF to DT approach introduced in [34] to reconstruct the data obtained from
this configuration; the filter used, however, requires data that is sampled at uniform

angles of elevation rather than uniform linear intervals.

While obtaining such data was straightforward for the semi-analytical model used
in the paper to test the algorithm, it is not possible for practical applications of
breast ultrasound tomography. However, the solution is relatively straightforward;

as discussed in Appendix B, the correction in the filter from linear sampling to uni-
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form angular sampling is achieved by multiplying by sec? o, where « is the elevation

angle.

Another problem is the directivity of the transducers. Figure 4.4 plots the out-
of-plane variation of the beam from transducers with dimensions of 4mm, 12mm
and 20mm. Ideally for 3D beamforming, to obtain maximum axial resolution the
beam energy would be spread equally in all directions, which is clearly not the case
for the examples here. One solution is to compensate for the amplitude drop by
multiplying by the reciprocal of the beam amplitude when performing beamform-
ing, in exactly the same way the amplitudes of the Green’s functions are accounted
for in the formulation of Chapter 2. The problem with this approach is that the
beams contain points at which the amplitude reaches zero; compensating in this way
would therefore cause singularities. Also, the amplitude variations of the transduc-
ers are unknown — the models here use a simple ‘piston’ type arrangement where
the transducer behaves as a line of uniform phase and amplitude sources, but in re-
ality a number of practical uncertainties about the transducer behaviour will make

estimating the beam to any usable degree of accuracy impossible.

The approach used here is to simply ignore the amplitude variations caused by the
transducers in the out-of-plane direction, treating the data as if it had been obtained
by point transducers. As the amplitude of the beam drops at larger elevation angles,
the corresponding k-space components will also be reduced. These components are
the higher spatial frequencies in the axial direction, so reducing their amplitude is,
in effect, applying a low pass filter. This filtering is what limits the axial resolution

for this method.

It is possible to estimate this. I define a 6dB drop as the limit of the usable k-
space values. This corresponds to a drop of 3dB for both the source and receiver
(considering a point equidistant from both, such as lying on the central axis of the
array), which under the far field, Fraunhofer approximation [68], occurs at an angle

(in radians) of

(4.3)
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Figure 4.4: Transducer beam variation out of the plane of the array. Shown is the
amplitude of beams travelling through a distance of 200mm (the diameter of a typical
array) for (a) a 4mm transducer, (¢) a 12mm transducer and (e) a 20mm transducer.
Normalisation is performed against the peak value within each horizontal line. (b), (¢) and
(f) plot the amplitudes at a distance of 100mm (i.e. the centre of the array) and 200mm
(the opposite side of the array) for the 4mm, 12mm and 20mm transducers respectively.
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where h is the transducer height. The corresponding limit of the spatial frequency

components in the axial direction is

kz,lim = 2ku sin Qlim‘ (44)

This corresponds to a resolution limit of

~ 0.57h (4.5)

2 sin 6;,,

where the small angle approximation of sinf =~ # has been used. Therefore, using
this 3D framework leads to a resolution of roughly half the transducer height. In the
case of the 12mm transducer of Chapter 3, a 7Tmm resolution should be possible, a
slight improvement over the 9mm demonstrated under the 2D framework. However,
by selecting smaller transducers better suited to the 3D technique it will be possible

to improve this.

It is interesting to note that when reconstructing under the 2D model, the beam
should be as thin as possible to minimise slice thickness and improve resolution,
but under the 3D model, the beam should be as wide as possible for maximum
resolution. One possible solution to exploit this for improved reconstructions under
the 3D reconstruction method is to spread the beam wider through a divergent lens

placed on each transducer.

4.3 Model

A significant challenge in testing breast imaging algorithms is to find a suitable
model. The model needs to be simple enough that judgements can be easily made
about the performance of the algorithm yet sufficiently complex to represent the
structures that comprise the breast. Given that the model is 3D, another challenge

is how the model can actually be generated.

For this investigation a ‘tree’ type model was chosen. This can represent the complex

80



4. Three dimensional breast ultrasound tomography

I
v v
Draw small
section of branch
defined by vector D
with thickness T

Reduce T, reduce D length | After a few
slightly, change direction I jterations

of D by small, random :

amount |

|

|

Y
Splitinto

multiple branches

T

I Foreach

' branch

v

Split thickness T
between branches, reduce

D step length, set D
direction randomly

Figure 4.5: Algorithm for generating a tree-like model. Branches are drawn by stepping
along, randomly varying direction and reducing thickness and step length as the algorithm
progresses. After a certain number of iterations, each branch splits into several smaller
branches and the process repeats for each of these.

features common in the breast such as milk ducts, lymphatic vessels and blood
vessels. Such models can be generated fairly easily by computers; an outline of how
the algorithm I have developed works is presented in Fig. 4.5. Branches are drawn
as a series of short straight lines stepping a certain distance, each time adjusting
the direction by a random amount. After a certain number of steps the branch is
split, reducing the thickness and the step length by a certain amount and giving
each new branch a different direction. This process repeats, with each new branch
following the same path, until the branches have thinned sufficiently that they are

inconsequential. The algorithm can be performed easily with a recursive function.

There are a large number of parameters involved in this process, for example the
number of branches to split into (commonly two or three), or the random variation
in direction at each step. In the 1980s Viennot et al. |71] demonstrated how a wide

range of tree shapes could be generated by varying a few simple parameters. While
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this study was done in 2D, the results easily generalise to 3D.

This model was used to generate a tree structure; the parameters were varied until
a good solution was found where the branches were fairly well separated and clear
to identify yet complex enough to still be representative of actual structures within
the breast. Since judging the algorithm’s performance will require the image to be
viewed in 2D, it was decided to restrict the branches to lie within a single vertical
plane in the centre of the array. Since it is necessary for the image to be reconstructed
within the Born approximation, the material contrast was chosen to be low, with
1% increases in both velocity and density within the branches compared to the

background.

The transducer array had 250 elements and a radius of 40mm; this is smaller than
normal to reduce the computational strain. The transducers were 4mm tall line
sources; these are as small as practically possible in order to obtain a good resolution.

The array was positioned at 72 axial locations separated by 1mm.

A slice of 80mm by 80mm by 40mm was modelled, being meshed with 501 x 501 x 261
nodes, spaced to give 12 nodes per 2mm wavelength. The simulation step time used
a Courant number of 0.95 and the total time was the time for the wavefield in the
water background to pass across the array multiplied by 1.5. A three cycle toneburst

with a centre frequency of 750kHz was used to excite each transducer.

Since each illumination needed to be simulated separately, a total of 18000 fully
3D simulations had to be modelled. A cluster of 40 computers of eight cores each
was used for this purpose; around 64 simulations were run simultaneously on this
system. Each individual simulation took around four hours, and the whole set took

around eight weeks to complete.

4.4 Results

Figure 4.6 presents the results from this model. Figure 4.6(a) shows the original

model, generated by the algorithm explained in the previous section and illustrated
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Figure 4.6: Reconstructions of a tree-like model. (a) gives the original model, generated
by the method in Fig. 4.5. (b) presents the results obtained by treating each set of data
separately under the 2D framework then stacking the results. (c) presents the image
reconstructed using all the data sets together using the 3D framework discussed in this
chapter.

in Fig. 4.5. This is in the z-z plane, which is perpendicular to the plane of the
array; the plane lies along a diameter of the array. Figure 4.6(b) shows the results
obtained by the standard 2D technique used in Chapter 3, making the assumption
that within each slice there is negligible z-direction variation. Images were generated
at each z slice then these were stacked to form the 3D image. Figure 4.6(c) presents

the results using the full 3D framework outlined in this chapter. In both the 3D
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and 2D reconstructions, five frequencies were averaged together: 400, 450, 500, 550,

600kHz. The wavelength shown is that for the middle of these, 500kHz.

It is clear that the Fig. 4.6(c) reconstruction has significantly better axial resolution
than Fig. 4.6(b), confirming that the use of the more accurate 3D representation can
improve the reconstruction. The 3D framework obtains, through visual inspection,

a resolution similar to the prediction of Eq. (4.5), 2.3mm.

The resolution of Fig. 4.6(b) is significantly better than the slice thickness estimate
from Chapter 3. The approximations made there are suitable for fairly directional
beams, which is clearly not the case for the 4mm transducers given the plot of
Fig. 4.4(a). At large elevation angles, the phase shift illustrated in Fig. 4.1 is likely
to have a significant effect, which could be the cause of the resolution not being as

low as would be expected from the slice thickness.

One drawback of the improved accuracy of the 3D model is the speed. As shown
in (2.20), beamforming consists of performing a multiplication, then summing the
results (to approximate the integral) for all transducers. In 2D, this is just done
for the transducers in the plane. In the 3D method explored here, the number
of operations is then multiplied by the number of slices. In this case this reduces
the speed of the algorithm by a factor of 72 compared to generating a series of
separate 2D images and stacking. This can be rationalised to an extent if only the
transducer ring positions which actually illuminated each point were included in
the calculation, but the 3D method is still expected to be at least 20 times slower
than the 2D case. A C++ implementation of the algorithm took around 9 minutes
to perform beamforming for a single frequency of the reconstruction in Fig. 4.6(c),

although this could be improved through optimisation.

4.5 Summary

This chapter has explored synthetic aperture imaging to improve the axial resolution

of breast ultrasound tomography. Rather than assuming each slice to be quasi-
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uniform in the axial direction, as in the study of Chapter 3, here I have exploited
the way additional information is encoded in the data as the array is moved axially.
This imaging method uses the standard beamforming technique, but incorporating

data from all the slices at each point.

Under this fully 3D framework, the resolution was calculated to be around 0.57
times the height of the transducer. For 4mm tall transducers, imaging a complex
tree-type phantom representing some of the complex structures within the breast,
the 3D framework was shown to give a significant resolution improvement over the

standard 2D imaging method.

Having considered this 3D problem, the next chapter returns to the 2D framework

with an ideal 2D problem: guided wave tomography.
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Chapter 5

Guided Wave Tomography

5.1 Introduction

Corrosion is a significant problem in the petrochemical industry. Large, often in-
accessible areas must be inspected to establish the extent of the damage caused.
This is slow and difficult using conventional thickness-gauging methods which can
only measure thickness values directly beneath the probe. Low-frequency guided
waves have been used in Non-Destructive Testing (NDT) as a solution to long-range
inspection of pipes and other structures, which allows large areas to be scanned
without needing direct access [72-75|. However, while detection and location deter-
mination from these methods is good, they can generally only give rough estimates

of remaining wall thickness.

Guided wave tomography has been proposed as a solution to accurately estimate the
remaining wall thicknesses of corrosion patches in plates and large diameter pipes.
By utilising a guided wave mode which is dispersive, if frequency is fixed then the
wave velocity will become a function of thickness. One approach to guided wave
tomography is therefore to reconstruct the velocity map from a series of ultrasonic

measurements, then convert this back to thickness [23,76-78|.

To establish the minimum wall thickness, an accurate, reliable reconstruction method
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of sufficient resolution must be used. Most of the work done in guided wave tomogra-
phy uses the assumption that waves propagate as straight rays, ignoring both refrac-
tion and diffraction [23,24,76,79]. By ignoring refraction, the algorithm is limited to
low contrast defects, and ignoring diffraction limits the algorithm to large, smoothly
varying objects; both of these manifest themselves as reducing the resolution of the
reconstructed thickness map. The resolution limit is similar in scale to the size of
the first Fresnel zone, v/ L\ where L is the length from the source to the receiver
and A is the centre-frequency wavelength [25]. Slight resolution improvements are
possible by accounting for refraction in bent-ray tomography [78,80], but to increase

resolution further it is necessary to account for diffraction.

The Diffraction Tomography (DT) method was proposed by Malyaranko and Hin-
ders [80] to improve the resolution in guided wave tomography, and was investigated
by Belanger et al. [77] for some simple defects. DT is, however, limited by the use

of the Born approximation.

The Born approximation considers the field scattered by a defect to be a superpo-
sition of the scattered fields from many elemental scatterers. Under the approxi-
mation, these elemental scatterers behave independently, simplifying the scattering
problem and making inversion straightforward. However, in reality, as the wavefield
passes through a scatterer its phase will be distorted, meaning that the elemental
scatterers no longer behave independently. The Born approximation is therefore
only valid for defects where the phase distortion is low, such as with low contrast or

limited defect size [19,31].

In Chapter 2, HARBUT, the Hybrid Algorithm for Robust Breast Ultrasound To-
mography, was introduced, which uses the low resolution bent ray tomography
(BRT) algorithm as the background for DT. This allows the phase distortion through
the scatterer to be estimated and accounted for, which greatly increases the range of
applicability of the DT algorithm. The algorithm was shown to provide a fast, ro-
bust and high-resolution reconstruction of sound-speed through the breast, although
imaging a 3D problem using a 2D framework did cause resolution problems in the

axial direction.
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Figure 5.1: (a) shows the dispersion curves for the fundamental Lamb wave modes in
aluminium, for both phase and group velocity. The relationship between thickness and
velocity at a given frequency provides a means to determine thickness. (b) shows the
guided wave tomography configuration considered. Waves are excited by a single source,
hit the defect and are scattered in all directions. The scattered field is measured from all
directions by the transducer array. The process is repeated with each transducer in turn
providing the illumination, until data for all possible send and receive combinations has
been obtained.

This chapter investigates the suitability of HARBUT as a practical solution to es-
timate the thickness of a defect in a plate or large pipe from a circular array of
transducers. GW'T is an ideal 2D scattering problem, so any issues with 3D resolu-
tion discussed in the previous two chapters are avoided. HARBUT’s performance is
established with a range of simulated and experimental data, and modifications are
made to the algorithm to make it more suitable the deep, high contrast defects of

interest.

5.2 Method

Figure 5.1(a) illustrates the dispersion curves for Lamb waves in an aluminium plate.
These show phase and group velocity as a function of the product of frequency and
thickness, providing a mapping between thickness and velocity for a given frequency.
By assuming that no mode-conversion occurs at the boundaries of the defect (a
reasonable assumption given that thickness variation associated with corrosion is

likely to be continuous and slowly varying) the scattering of the Lamb waves can be
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simplified to the acoustic wave equation [29] in 2D. Given the frequency dependence

of the velocity, this is expressed for each monochromatic component of the wavefield

V2 (r,w) + k(r,w)*)(r,w) =0 (5.1)

where 1 (r,w) is the scalar potential of the field (equal to a single component of
the Fourier transform of the pressure) at point r, w is the angular frequency and
k(r,w) = w/c(r,w) is the wavenumber associated with the phase velocity ¢, which

is a function of thickness.

From this formulation, the scattering of Lamb waves at a single frequency behaves
in the same way as acoustic scattering, so any imaging algorithm developed for
acoustic scattered data, including HARBUT, can be used to image guided wave
data. However, there are a few differences between the HARBUT implementation

used for breast imaging and for GWT.

Firstly, GWT is a purely 2D problem, unlike the breast tomography studied in
the last chapter, conveniently avoiding the out-of-plane resolution issues. Secondly,
bent-ray tomography, using the arrival times of the waves, will produce a reconstruc-
tion of group velocity through the plate, whereas the single frequency components
used in the DT stage of HARBUT will correspond to phase velocity. It is therefore
necessary to convert from group velocity for BRT to phase velocity for use as a
background in DT. This is straightforward to do from the dispersion curves. For
consistency, in all images throughout this chapter thickness is plotted, having been

converted from group or phase velocity as appropriate.

Finally, GWT needs to be able to accurately determine very deep defects; these can
correspond to a much higher velocity contrast than appears in breast ultrasound
tomography, although their size relative to the wavelength is typically much smaller.

To better reconstruct these defects, an iterative HARBUT approach is introduced.
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Figure 5.2: Flowchart showing the stages of iterative HARBU'T.

5.2.1 Iterative HARBUT

For many applications of guided wave tomography, such as large diameter oil pipe
corrosion, it is important to detect and quantify large corrosion depths of up to 80%
of the wall thickness. This large thickness variation corresponds to a large velocity
contrast, and it is this which causes the Born approximation to break, despite the
defect’s size typically being just a few wavelengths. Such defects are sufficiently
small that they are unlikely to be well captured by the low resolution bent-ray
tomography method, which poses a problem since HARBUT relies on having a

sufficiently accurate background reconstruction.

The approach considered here is to recognise that, while it may not produce a com-
pletely accurate reconstruction because of the Born approximation not being satis-
fied particularly well, HARBUT will still provide an improvement over the bent-ray
tomography reconstruction. This improvement is exploited by iterating HARBUT
— taking an existing HARBU'T reconstruction and using it as the background for
another HARBUT stage in place of bent-ray tomography, as illustrated in Fig. 5.2.
At each step, O, becomes more accurate, minimising Os and allowing HARBU'T to
produce more accurate velocity maps. By iterating HARBUT many times its range

of applicability is extended to make it more suitable for small, high contrast defects.

As shown in Fig. 5.2, a Gaussian filter is applied to smooth the background before
the next iteration, which is a form of regularisation. This filter aims to remove as

many of the artefacts from each iteration as possible, while maintaining the true
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reconstruction values. Experience suggests standard deviation radii of around A to
A/2 for the Gaussian filter are good for this purpose; as the iterations progress and
the artefacts reduce this could, in theory, be reduced or even completely eliminated,

however this is not something explored in this thesis.

5.2.2 Convergence criterion

There is a need to establish a suitable criterion to stop the iteration process. A
parameter, (), is therefore defined as the average thickness change between iterations

over the damage area, relative to the background thickness

_J]T™ (@) = T ()| S(r)dr

(n)
@ T, [ S(r)dr

(5.2)

where T, is the uniform background thickness, 7 (r) is the thickness at position r
for iteration n and S is a function defining the damage area. T» is the thickness
field from the bent-ray tomography algorithm. S must be defined; this is done by
taking any reconstructed depth greater than 5% of the background thickness as

indicating there is a defect present, so

1 LT > 05
S(r) = - (5.3)

0 Bl <005

It is not expected to obtain a thickness estimate better than about 1% of the back-
ground thickness; a stopping criterion can be based around this. One solution would
be to stop when ) < 0.01, based on this being a change less than the thickness ‘res-
olution’. However, I choose a stricter limit, since (a) an average defect thickness
change is being considered, which might mask improvements in one area of a com-
plex defect, and (b) the cumulative effects of multiple iterations with small average
changes can sum to more than 1%. Based particularly on (b) and that, from expe-

rience, I expect 10 or fewer iterations, I adjust the criterion to

Q<1073
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5.3 Numerical results

5.3.1 Numerical model

To test the algorithm, a set of simulations were performed. The models were based
on the plate in Fig. 5.1(b), with absorbing boundaries placed around the edge to
remove edge reflections. The models were run using the commercially available
Abaqus Finite Element (FE) package. The 10mm thick aluminium plate (£ =
70.8GPa, v = 0.34, p = 2700kg/m?) was modelled as 10 layers of 1mm thick 3D
stress elements. In the in-plane directions 32 elements per wavelength at the centre
frequency were used. To model the thinning of the plate at a defect, elements were
removed from the surface; the element sizes were kept uniform. This allowed discrete
thickness depths spaced 1mm apart to be modelled, which was sufficient to model

the cases of interest.

An array of transducers was modelled by exciting and measuring nodes. Since the
array is circular and the mesh is a regular grid of cubic elements, each transducer’s
location was rounded to the nearest node; given the refinement of the mesh this
meant that the position was accurate to £\/64 which will not cause significant
problems. A 5-cycle Hann-windowed toneburst at 50kHz was used as a source,

excited in the out-of-plane direction to produce nearly pure Ay waves [81].

Abaqus Explicit was used, which steps in time to calculate the solution. Separate
simulations were necessary for each illumination, meaning that a simulation had to

be performed for each transducer to generate a full matrix of scattering data.

5.3.2 Data processing

First, the signals were processed to extract the arrival times. The signals were
enveloped via a Hilbert transform, then the arrival time was taken as the point at
which the enveloped signal intersected a threshold at 50% of each signal’s maximum.

The frequency domain data needed for the beamforming and DT stages of HARBUT
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were obtained by applying a fast Fourier transform to the time-trace from each send-

receive pair then extracting the frequency component(s) required.

As with the breast imaging in Chapter 3, it is important to calibrate the system
to account for the uncertainties which arise in transmitting and measuring signals.
While all aspects of the transduction system can theoretically be modelled to estab-
lish the cumulative effect on phase and amplitude (see for example [82]), there are
sufficient uncertainties that it is usually more efficient to calibrate the system using
measured data. This is true even when processing simulated data, since exciting and

measuring the wavefield often introduces a complex factor into the measurements.

Belanger et al. [77] performed their calibration at the imaging stage, by applying
a factor to make the DT image match the known feature depth. This factor was
then reused for all similarly obtained data sets. This relies on the assumption
that a perfectly calibrated image would capture the feature depth correctly. In the
examples explored in the paper, however, the Born approximation was very marginal
due to the high contrast of the defects. The DT-reconstructed defect depths were
therefore inaccurate, making the calibration constant from this method inaccurate

for general reconstructions.

The approach used in this chapter is to compare the full matrix of signals at a
specific frequency to that of a theoretical incident field. This incident field is excited
by a point source; the field is then given by the Green’s function

1

G (r) = = Hg" (kur) (5.4)

where 7 is the distance between the particular source and receiver. The target is to
calibrate the measured signals such that if there was no scatterer present (i.e. the
waves just passed through a homogeneous medium) they would equal the theoretical
incident field of (5.4). It is rare for a set of data from the homogeneous background
to be available; however, since any corrosion defect is typically confined in space,
it is usually possible to visually identify large sections of the matrix where the

line-of-sight between the send-receive pairs does not intersect the corrosion patch.
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These sections will be relatively unaffected by the scattered field, so can be used
to determine the calibration factor needed for the data. This approach was used to

calibrate all the simulated and scattered data in this chapter.

5.3.3 Reconstructions

The first model produced was an axisymmetric circular defect in the centre of a
64 transducer circular array. This had a thickness reduction of 50% (i.e. 5mm
remaining thickness) and a diameter of 60mm (~1.5\ at 50kHz). The original
model is illustrated in Fig. 5.3(a).

Figures 5.3(b) to (f) outline the stages of HARBUT for this defect. Figure 5.3(b)
presents the bent-ray tomography image of the defect. Given that the defect is only
60mm in diameter and the resolution can be estimated as VL ~ 174mm from the
width of the Fresnel zone [25], it is clear that the reason for the poor reconstruction
is primarily the limited resolution. The bent-ray image is used as a background for
beamforming (Fig. 5.3(c)) which is filtered to give the perturbation object function,
Os in Fig. 5.3(d). Combining this with the background bent-ray tomography image
gives the total object function in Fig. 5.3(e). This is then converted to a thickness

map in Fig. 5.3(f), using the phase velocity dispersion curve.

Also, HARBUT was iterated, stopping at five iterations since Q® = 7 x 107%,
less than the threshold of 1073, Figure 5.4 shows the cross section for the iterated
HARBUT reconstruction along a line through the centre of the defect, comparing
it to bent-ray tomography, standard DT and HARBUT. The centre of the DT
reconstruction has been inverted. This is a result of the Born approximation ignoring
the distortion of the illuminating waves. The bent-ray tomography reconstruction
underestimates the depth reduction because the resolution is not high enough to
capture the relatively small defect. By combining these two algorithms together
in HARBUT, a much better estimate of the thickness is obtained. The minimum
thickness taken from the HARBUT reconstruction is 5.5mm, only 0.5mm away from

the true thickness. [terated HARBUT reduces the reconstructed thickness estimate
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Figure 5.3: The HARBUT algorithm applied to a single central defect. The defect is
circular, 60mm in diameter, and has a thickness of 50% of the plate itself (i.e. 5mm
remaining thickness) - see the original map in (a). The 50kHz frequency component was
used in the beamforming and DT-based reconstructions. The A and VL scales shown
are 37.7mm and 174mm respectively. (b) shows the bent-ray tomography reconstruction,
which is low resolution so cannot capture much of the detail. This is used to correct
the beamforming algorithm in (c), which, when filtered produces the Os of (d). This is
combined with the background object function to give the total object function O in (e).
Converting this to thickness via the dispersion curves is shown in (f).
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Figure 5.4: Cross sections of the thickness reconstructions from simulated data for a
single circular defect.

to 4.7mm, overshooting the true value but reducing the error slightly.

Since the DT reconstruction is effectively a low-pass filtered version of the image,
even a perfect DT reconstruction of a square function would be expected to produce
an overshoot due to the missing high-frequency components. It could be that this

is the cause of the defect depth overestimate seen here.

A more complex model, with two defects, was tested. The initial 60mm, 50% thick-
ness defect was maintained at the centre, and an additional 30% thickness reduc-
tion (i.e. 7mm remaining) circular defect of diameter 100mm was added, offset by

200mm. This is shown in Fig. 5.5(a).

Figures 5.5(b) to (d) show the reconstructions of this model. Once again it can be
seen that the bent-ray tomography method, Fig. 5.5(b), has poor resolution, failing
to capture the size or depths of the defects accurately. There are also significant
artefacts around the boundaries of the defects; these are caused by diffraction in the
forward model, which is ignored by the imaging algorithm. The HARBUT method

of Fig. 5.5(c) significantly improves the resolution of the reconstruction, however
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Figure 5.5: Reconstructions of a two defect model. The central defect is 60mm in
diameter and 5mm thick, and the offset defect is 100mm in diameter and 7mm thick, as
shown in the original map of (a). (b) shows the bent-ray tomography image and (c) gives
the HARBUT image at 50kHz. (d) applies 5 iterations of HARBUT to the reconstruction.

some of the artefacts from the bent-ray tomography background do appear faintly.
Figure 5.5(d) shows that iterating HARBUT has removed the remaining bent-ray
tomography artefacts from the image. The resulting reconstruction is cleaner than

standard HARBUT.

Figure 5.6 presents the reconstructed cross sections along the line intersecting the
centres of both features. Multiple iteration HARBUT shows a slight improvement
over standard HARBUT for the central inclusion, but the offset inclusion recon-
struction overshoots the true value slightly. Both thickness estimates are within

0.7mm of the true values.

So far I have considered models of simple geometric shapes. While this simplicity
makes judging the new algorithm’s performance easier, it is important to ensure

the algorithm works with more realistic cases. Figure 5.7(a) shows a more realistic
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Figure 5.6: Cross sections of the reconstructions from simulated data for a plate with
two circular defects.

defect. It is a random defect with thicknesses varying between the 10mm background
and 5mm. The defect is challenging because of its complex shape and the large

sound-speed contrast associated with the thickness variation.

The standard diffraction tomography reconstruction in Fig. 5.7(b) demonstrates
clearly that the defect breaks the Born approximation. It is not possible to obtain
any meaningful depth information from this data. The bent-ray tomography re-
construction in Fig. 5.7(c) is better, producing a reasonable overall estimate of the

defect thinning, but failing to capture any of the details.

Figure 5.7(d) presents the HARBUT image, using Fig. 5.7(c) as a background to
improve Fig. 5.7(b). There are artefacts which result from the Born approximation
breaking, which indicates that Oy is too big, meaning that the bent-ray tomography
background is not accurate enough. However, despite this, some of the features of

the true thickness map are clearly visible in this reconstruction.

I applied iterative HARBUT to the data from this model. At each stage a Gaussian
filter of A\/2 (18mm) standard deviation radius was used to blur the background.

98



5. Guided Wave Tomography

Diffraction Tomography (b) Bent-ray Tomography (C)

10

©

[e4]

~

Thickness (mm)

(2]

2 iteration HARBUT (e) 4 iteration HARBUT

8 iteration HARBUT ) 8 iteration HARBUT + noise (h) Convergence (i)
. Without
noise
10" 2 /
With noise
1 2 3 4 5 6 7 8

Iteration

Figure 5.7: Reconstructions of a complex corrosion patch. (a) is the original thickness
map. (b) is the standard DT reconstruction, and (c) is the bent-ray tomography recon-
struction. (d) gives the standard HARBUT reconstruction, showing an improvement over
both the bent-ray and DT. (e), (f), (g) give the results after 2, 4 and 8 iterations. (h) gives
the reconstruction after 8 iterations with artificial noise added to the data. (i) presents
the convergence parameter Q).

Figures 5.7(e), (f), (g) show iteration 2, 4 and 8. The image meets the criterion
outlined in Sec. 5.2.2 by 8 iterations as shown in Fig. 5.7(i).

The reconstruction of Fig. 5.7(g) captures well the features of the original model,
Fig. 5.7(a). This confirms that the reason for errors in the standard HARBUT
reconstruction was that the initial background, Oy, failed to capture all the detail

well enough, so Os broke the Born approximation.
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The non-iterative HARBUT method, having at its core the beamforming algorithm,
has been shown to be robust in the presence of noise [83]. Iterative methods, how-
ever, typically perform poorly when noise is present, often attempting to ‘overfit’
the solution to match the errors in the data. I have tested how the presence of noise
affects the convergence of iterative HARBUT by adding a noise matrix to the input
data prior to imaging. The noise matrix has a normally distributed amplitude with
RMS 50% that of the original matrix, and phase uniformly distributed from 0 to

2m. This corresponds to a very poor signal to noise ratio of 6dB.

Figure 5.7(h) gives the reconstruction of thickness with eight iterations in the pres-
ence of noise. It is clear that, while the noise does have an inevitable effect on the
image, there is no evidence of overfitting or convergence to an incorrect solution. It
is possible to see all the features of the defect and obtain a good estimate of the

minimum thickness.

Figure 5.7(i) plots the parameter Q™ for each iteration. Also plotted is the Q™
line for the case with noise. This provides additional verification that the algorithm

converges well even when significant noise is present. By 8 iterations the parameter

has reached the 1073 level for both sets of data.

Figure 5.8 compares the cross sections of 1 and 8 iteration HARBUT, bent-ray
tomography and the original along the dotted line in Fig. 5.7(a). Iterating HARBUT
shows a significant improvement over bent-ray tomography and standard HARBUT.
The figure also verifies the ability of the iterated method to establish the minimum

thickness accurately; in this case the 5mm minimum thickness is estimated as 5.1mm.

5.4 Experimental models and results

5.4.1 Experimental setup

The experimental configuration was based around Fig. 5.1(c), with an aluminium

plate of 1200 x 1200 x 10mm. One significant difference between the experiments
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Figure 5.8: Cross sections of reconstructions of the complex defect along the line marked
in Fig. 5.7(a).

and the FE simulations is the boundary conditions. The FE mesh is terminated
in absorbing boundaries to minimise any reflections; the experiment cannot include
such boundaries so the measured signals will include boundary reflections. For sig-
nals transmitted through the scatterer, it is possible to simply gate off the reflections
since these arrive later, but the signals reflected from the scatterer will be corrupted
by the boundary reflections. Therefore just the transmission subset is available for

imaging, which will result in a loss of resolution in the reconstructed image [31].

A single Ay source transducer was used, as described in [77]. This provides an
illuminating wavefield, which is then measured around the transducer array by a
Polytec OFV-505 laser Doppler vibrometer as in [84]. A 64 transducer array of
400mm radius was modelled, by moving the source to the first position and taking
measurements with the laser around each receiver location in the array, then re-
peating the process to build up a full matrix of data containing all the send-receive
combinations. A 5-cycle Hann-windowed toneburst at 50kHz was used as the input

signal.

101



5. Guided Wave Tomography

0.2 T T T
Gating function
0.1
>
()
°
2
5 0
€
<
-0.1
Processed time trace
Experimental time trace
025 0.2 0.4 0.6 08 1
Time (ms)

Figure 5.9: Experimental time trace from an axisymmetric central defect. Taking the
defect as the origin, the source was at (400mm, 0) and the measurement was taken at
(-324mm, 235mm) — corresponding to transducer 24 of 64. Noise was removed from the
time trace by multiplying by the gating function. The gating function was defined as 1
between ¢4 (the arrival time, 248us in this case), and ¢4 + 120us. Outside this region
the function smoothly returned to zero via a sine curve over a time of 40us.

5.4.2 Data processing

Arrival times were extracted in the same way as in Sec. 5.3.1. Whereas the rela-
tively noiseless simulated data was directly Fourier transformed to obtain frequency
domain data, the experimental data was gated beforehand to remove as much of
the experimental noise as possible. Inevitably unwanted modes will be excited and
measured, but since data is obtained from a regime where these travel at different

speeds, gating helps to remove these components.

The gating is illustrated in Fig. 5.9 for a single experimental time trace. The signal
start time was taken as the measured arrival time, and the end time 120us after. A
gating function was set to one between these times. Outside the region, the gating
function reduces from one to zero via a sine function over a time of 40us. At all
other times the gating function is zero. This gating function is multiplied by the

signal to remove unwanted noise.

A fast Fourier transform is then applied and the 50kHz signal component extracted.
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Figure 5.10: Imaging a single central defect, diameter 60mm, depth 50%, as in Fig. 5.3(a).
(a) gives bent-ray tomography, (b) shows diffraction tomography. (c) is a HARBUT re-
construction, and in (d) four HARBUT iterations have been applied.

As explained in Sec. 5.3.1, these frequency domain signals are then calibrated by

matching them to the field from a point source.

5.4.3 Experimental results

Figure 5.10 presents the images for a single defect at the centre, with the same
parameters as the FE model in Fig. 5.3: 60mm diameter, 50% (5mm) depth. Since
the model is axisymmetric, receiver measurements were only taken around half the
array for a single source and were then copied to generate all the send-receive com-

binations.

In Figs. 5.10(a) and 5.10(b), bent-ray tomography and diffraction tomography both
underestimate corrosion depth. As discussed in Sec. 5.3.1 this is because of the

limited resolution in bent-ray tomography and the Born approximation limit for
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Figure 5.11: Cross sections of the reconstructions from experimental data for a single
circular defect.

DT.

As shown in Fig. 5.11 and Fig. 5.10(c) HARBUT shows an improved estimate of the
defect depth, around 6mm thickness, Imm out from the true depth. Four HARBUT
iterations do not provide a significantly better estimate of thickness, an shown in
Fig. 5.10(d). Both HARBUT reconstructions (and the multiple-iteration version in

particular) show noticeable concentric ring artefacts, however.

A likely cause is errors in the measured data. Normally these errors would be incoher-
ent and would therefore vary between the send-receive pairs, and when imaged they
would be minimised through the summing process of the beamforming algorithm.
In this example, however, by reconstructing the entire 64 x 64 matrix of send-receive
pairs by repeating just 33 measurements, there is much less error cancellation. In
this case, any error in each signal would be expected to form an axisymmetric ring,

which is the sort of artefact seen in the reconstruction of Fig. 5.10(d).

To verify that this is the source of the errors, a non-axisymmetric model is consid-

ered. As with the FE models, a second defect of depth 30% (i.e. 7mm remaining)
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radius 100mm, offset from the centre by 200mm, is added. In this case measurements
from the full 64 x 64 send-receive combinations are required in order to reconstruct

the image, so the ring artefacts visible in the axisymmetric case should not be seen.

Figure 5.12 gives the reconstructions of the thickness from various methods. The
bent-ray tomography and DT methods both fail to provide accurate depth infor-
mation because of the resolution and Born limitations explained previously. Single
iteration HARBUT provides a significant improvement in the depth information.
With multiple iterations of HARBUT, improvements in the reconstruction are seen,
with the artefacts relating to the Born approximation breaking (for example between

the two defects) being reduced.

It should be stressed that while bent-ray tomography uses the broadband nature of
the signal to estimate the arrival time, the beamforming and DT steps in HARBUT
are monochromatic, i.e. they use the information contained in a single frequency
of the signal spectrum. In particular, Figs. 5.12(b)-(d) are obtained at 50kHz.
Belanger et al. [77] explored the idea of using all the data from the bandwidth by
averaging together images from many frequency components. This averaging can
help to minimise the effects of noise. However, when using an iterative method such
as HARBUT, one must decide on a strategy for how to use the available frequency

components at each iteration.

A typical approach (see for example [85]) for using multiple frequencies with itera-
tive methods is to begin with the low frequency components (which are lower res-
olution but more robust) and move up to the higher frequency components (which
provide higher resolution details). In the case considered here, only a relatively
narrow bandwidth is available (reasonable images can be generated from around 30-
60kHz) which limits the possible gains from starting at low frequencies. Instead, the
monochromatic image of Fig. 5.12(d) is taken as a background for a series of HAR-
BUT images with all the available frequencies, which are then averaged together
to give the final reconstruction. The advantage of this, rather than, for example,
using every frequency component at every iteration, is that the computation time

is significantly reduced — images for all frequencies only need to be generated at the
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Figure 5.12: Reconstructions from experimental data for a two defect model. The central
defect is 60mm diameter and 50% (5mm) deep, and the offset defect is 100mm diameter
and is 30% deep, as shown in Fig. 5.5(a). (a) is the bent-ray tomography method, (b)
is diffraction tomography, (c) is single iteration HARBUT, and (d) is HARBUT with 6
iterations. In (e), I have taken (d) as a background, and averaged together HARBUT
images from all the frequency components between 30 and 60kHz. This makes better use
of the bandwidth to minimise noise in the data. (f) plots the convergence parameter Q.
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Figure 5.13: Cross sections of the reconstructions from experimental data for two circular
defects in an aluminium plate.

final step. The resulting image has visibly fewer artefacts than the monochromatic
images, although the defect reconstructions themselves are not significantly closer

to their true values.

Figure 5.13 shows the cross sections of the images in Fig. 5.12. It confirms that bent-
ray tomography and DT underestimate the defect depths, while HARBUT gets a
better estimate. From iterated HARBUT, the defect thicknesses of 5bmm and 7mm
are reconstructed as 5.6mm and 6.6mm respectively, i.e. both are within 0.6mm of

the true values.

As explained by Belanger et al. [77], the 64-transducer array is undersampling the
field according to the criterion of 64|, which leads to a grating lobe at a radius
of 192mm. This grating lobe is visible in Figs. 5.12(b)-(e), and intersects the 70%
defect. This is likely to have an effect on the thickness estimate of the feature,
which could be the cause of the defect depth overestimate in Fig. 5.13. With the
exception of this undersampling artefact, there are no concentric rings as seen for
the axisymmetric case, confirming that these were caused by the process of copying

data.

107



5. Guided Wave Tomography

The convergence parameter is plotted in Fig. 5.12(f), once again showing a mono-
tonically decreasing function. This confirms that, even with experimental data,
iterative HARBU'T remains stable and well-behaved. In this case, 6 iterations were

needed to reach the convergence criterion.

The HARBUT algorithm is very fast. The bent-ray tomography method can be
completed in less than 10 seconds, and each HARBUT stage for a single frequency
with the 64 transducer array took around 5 seconds for a 210 x 210 grid on an
HP 7600 8-core workstation. The latter is using the Matlab implementation; as
discussed in Chapter 3 for breast imaging a C++ version of the algorithm runs
about 10 times faster. Even when using multiple iterations and averaging many
frequencies, the algorithm will be able to produce images within a practical time-

frame.

5.5 Summary

I have introduced HARBUT (the Hybrid Algorithm for Robust Breast Ultrasound
Tomography) to the field of guided wave tomography. The algorithm aims to recon-
struct the sound speed through a plate, which is linked, via the dispersion curves,
to the thickness; this provides a means to accurately map the residual thickness of

a plate-like structure.

In its original formulation, HARBUT provided a means to overcome the Born ap-
proximation, by using bent-ray tomography to generate a low resolution background
estimate, which then corrects the Born approximation used in diffraction tomogra-
phy. HARBUT therefore relied on the background estimate being sufficiently ac-
curate, which is difficult for the relatively small, high contrast defects expected in

guided wave tomography.

Here I have introduced iterative HARBUT to address the problem of high contrast.
By taking the standard HARBUT reconstruction as a background then repeatedly
applying HARBUT to step towards the solution, the algorithm becomes more suit-
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able for dealing with small, high contrast features. Accuracy was improved and
artefacts minimised by using the iterative HARBUT method; it was shown that
minimum depths could be estimated to within Imm for a 10mm thick plate for a
range of different defects for both numerical and simulated data. HARBUT avoids
the background field subtraction that is normally necessary for diffraction tomog-
raphy methods, and which is known to be a significant source of errors due to the

instability of baseline signals.

Having demonstrated HARBUT’s performance with an ideal 2D imaging problem,
with a circular, full view array, in the next chapter I begin investigating how it
performs under less ideal circumstances, with non-circular arrays providing limited

viewing angles.

109



Chapter 6

Limited view quantitative imaging

6.1 Introduction

This thesis has so far considered data sets taken from a full view array — an array
which completely surrounds the object and allows illuminations and measurements
from all possible angles. In many cases, however, only a limited area is available
around a component on which to place transducers, which greatly limits the range

of viewing angles and hence the amount of information which can be retrieved.

In a large number of ultrasonic limited view applications, the source and receiver
locations will be the same, so it is only possible to measure waves which have been
reflected back towards the sources. Such reflection data is often used in struc-
tural imaging to reconstruct sharp impedance changes (see for example in medical
beamforming [8] and most NDT applications [5]), but since quantitative imaging is
frequently interested instead in low contrast, often smoothly varying features, very
little reflection occurs and instead the information is encoded in the transmission

components, which will not be directly measurable by the array.

Given the difficulty of placing transducers under the ground, this limited view prob-
lem is of great interest in geophysical imaging. Mora [86] attempted to quantitatively

image beneath the earth’s surface using a linear array on the surface; the key to his
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algorithm was to consider the reflection from a sharp discontinuity (such as a layer
of rock). Waves travelling down through the earth will encode quantitative infor-
mation as they travel, and the discontinuity, by subsequently reflecting these waves
back to the array, provides a method to retrieve this information without having to

place receivers beneath the surface.

Mora proposes an iterative algorithm to utilise this principle to reconstruct a quan-
titative image in the presence of a large discontinuity. This iterative algorithm
works by obtaining a reconstruction of the locations of the reflective scatterers via
standard reflection imaging with an inhomogeneous velocity background, then, with
this knowledge, recognises that the waves reflected off these scatterers will encode
transmission information about the medium, using that to update the velocity back-

ground. This process is repeated until convergence.

As with many iterative methods, there is a significant problem with convergence to
local minima; the assumed initial velocity background must therefore be sufficiently
close to the true one for the algorithm to converge. There is also a requirement that
the array must be large enough that ambiguity in scatterer position due to velocity
errors is limited; with a larger array, more angles are obtained and a better estimate
of the position is possible when the background velocity is uncertain. However, in

many cases it is impractical to have such a large array.

A more recent, very similar example which uses the reflection from such a discon-
tinuity to aid quantitative reconstructions is the work of Natterer [87]. He too,
however, recognises that the initial velocity field must be close to the true field, and
his images all use a large array in order to obtain sufficient data. Natterer applies
his algorithm to ultrasonic imaging of a simplified numerical breast phantom from
a linear array with a backwall reflector, obtaining good estimates of sound speed.
However, there are significant practical uncertainties associated with this problem,
as discussed in Chapter 3, which are not addressed, and there is no evidence that

the algorithm works with experimental data.

A more representative study of limited view ultrasound breast imaging, which does
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use experimental data of a simple phantom, was performed by Huang |88,89]. Sim-
ilar to previous approaches, a single linear array was placed on the surface and
the transmitted components were reflected back from a parallel backwall reflector.
Quantitative imaging was achieved by using reflection imaging to obtain the outlines
of several inclusions, which are then used to segment the image. The signals are
then gated so only the components which reflect off the backwall are included; this
data contains the transmission information needed for quantitative reconstruction.
A bent ray tomography (BRT) reconstruction method uses this data to reconstruct
velocity, helped by specifying constant velocity through the segments defined from
reflection imaging. The significant drawback to such a method, however, is that the
breast is unlikely to be made of discrete, separable inclusions in this way — certainly
there is no clear way that the in vivo data reconstruction in Fig. 3.15 could be seg-

mented. If the features cannot be segmented then the method is largely redundant.

Even though a backwall reflector can provide useful transmission information about
a scatterer, particularly if its position is known, a finite length array will still only
be able to illuminate from a limited number of angles, restricting the amount of
information available. Often, these reconstructions can be improved through the use
of a priori assumptions. Examples include using wavelet transforms [90], maximum
entropy methods [91], restricting to positive contrast [92], and minimising total
variation [93,94], but it is often challenging to incorporate these methods into the

algorithm.

This chapter investigates the effects that a limited view will have on the HARBUT
method developed throughout this thesis. I primarily consider a configuration with
a linear array opposite a parallel backwall, as studied by Huang; the data obtained
from such an array (neglecting or gating out the weak direct reflection components)
can be treated as if it had been obtained from a pair of parallel arrays. This is

illustrated in Fig. 6.1(a) and (b).

Despite taking advantage of the backwall, some components are unavailable because
of the finite length of the array. I develop a solution to improve the imaging algo-

rithms for limited view configurations by taking advantage of a priori assumptions
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Figure 6.1: Scattering from an object with a backwall reflector. (a) shows two scattering
components. (b) shows how the backwall reflection component, expected to be much larger
than any other component due to the low contrast, can be treated as though it was obtained
from pair of parallel arrays.

about the component. However, while focused on this specific limited view problem,
the techniques developed here are general and can be applied to a range of limited
view configurations; as a demonstration of this, the method is applied to a limited

view configuration for guided wave tomography.

6.2 The limited view problem and regularisation

This section outlines the effects a limited view configuration will have on the in-
formation available and how improvements to the image can be obtained by using

regularisation.

6.2.1 Consequences of the limited view

To analyse the problem I begin from a Born model and assume that the transducers

are in the far field. Consider the scattering integral under the Born approximation,
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as introduced in Chapter 2

by s — /Q GOt dX'. (6.1)

As shown by Born and Wolf [31], with the far field assumption, the incident field

and Green’s functions become

wu — ez’kuéo‘x’ (62)

Gu — e*ikué.x/ (63)

where §g is the direction of the incident illumination and § points towards the

receiver. Therefore, (6.1) becomes

¢S ~ _/ﬂe—ikuﬁ.x’O(X/)eikuéo.x’dxl (64)

~ - / (G090 (x!) i (6.5)
Q

which is effectively a Fourier transform of the object function O
Vs (80,8) = —O [ky(80 — 8)]. (6.6)

The signal from each send-receive pair corresponds to the Fourier component of the
object function at k,(So — §). As shown in Figs. 6.2(a) and (b), by sweeping the
illumination and reception angles through 27 radians, it is possible to fill a 2k,, sized
disc, the Ewald limiting disc |31], thus allowing a resolution-limited version of the

object function to be determined via the inverse Fourier transform.

If the illumination and reception angles are restricted because of the array configu-
ration, only limited sections of the disc can be determined from the measurements.
A case with a single linear array measuring in reflection is shown in Figs. 6.2(c)

and (d). This reflection data clearly only contains high spatial frequencies, verifying
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Figure 6.2: The mapping of far field measurements to the 2D Fourier transform of the
scatterer under the Born approximation. (a), (c¢) and (e) show schematic diagrams of the
transducer layouts and (b), (d) and (f) show the corresponding Fourier components which
can be obtained from each layout. (a) and (b) show a full view array as considered in
earlier chapters; (c¢) and (d) are for a linear array obtaining data in reflection and (e) and
(f) show a pair of parallel linear arrays measuring transmission data.
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that the reflection components are of little benefit to quantitative imaging, but can

be used in structural imaging where only the outline of the structures are needed.

Finally, a case with a source array transmitting through the scatterer to the receiver
array on the other side is shown in Figs. 6.2(e) and (f). Note that this configuration
corresponds to the backwall reflection configuration being considered in this chapter,
provided there is negligible direct reflection back from the scatterer to the array, as
illustrated in Fig. 6.1. The data obtained fills an oo symbol in the k-space with

known Fourier components.

The challenge of limited view imaging is to reconstruct an image when only a limited

number of Fourier components, as in the examples here, are available.

6.2.2 Regularisation to obtain additional information

One solution to deal with the missing information is to simply perform a reconstruc-
tion with the unknown k-space components set to zero; in this way the image will
simply correspond to a filtered version of the true image. This filtering will, however,
introduce artefacts into the image. Sung et al. [92] showed how — in optical diffrac-
tion tomography, which approximates a far field problem — better reconstructions are
possible by using a regularisation assumption to obtain more suitable values for the
unknown k-space components. In that paper, the regularisation assumption is made

that the scatterer has a refractive index greater than or equal to the background.

This assumption is applied via an iterative algorithm. Figure 6.3 presents an ex-
ample of the process for a cylinder model. A set of known Fourier components is
obtained directly from the data because of the far field assumption, and is assembled
into the k-space image, as shown in Fig. 6.3(a). In this example a source array is
above the scatterer and the receiver array is below; this is the same as the example
of Fig. 6.2(e). Anything outside the known set is zero at first. This is inverse-
Fourier-transformed to give the image (Fig. 6.3(b)), then regularisation is applied
(negative values are set to zero) in Fig. 6.3(d). When subsequently forward-Fourier-

transforming back to the k-space, as shown in Fig. 6.3(c), the unknown components
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Figure 6.3: Schematic example of the approach used by Sung et al. [92] to obtain values
for the unknown Fourier components via a regularisation method. The original model was
a cylinder with an object function of 1, in a homogeneous background of object function
0. Fourier components from a limited view configuration with an array of sources above
and receivers below are assembled in the k-space in (a). By Fourier transforming, the
reconstruction can be obtained, as in (b), then regularisation is applied in (d), by setting
any value less than zero to zero. (c) demonstrates that this regularisation process gives
values to the unknown Fourier components. The estimates for these unknown values are
combined with the known values in (e). By replacing (a) by (e), the iterative process
is repeated until the unknown values converge such that they conform with both the
regularisation method and the known values.
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will now have non-zero values, which will better represent the knowledge about the
object. The estimates of the unknown values are then combined with the known

values in Fig. 6.3(e).

This process is iterated, with repeated application of the regularisation method then
correcting the known Fourier components. Upon convergence, the image will contain
all the known Fourier components and the unknown Fourier components will be set

to the necessary values to best meet the regularisation requirement.

As Sung et al. [92] demonstrated, it is possible to obtain very good reconstructions
of refractive index from limited view experiments with this method, provided data
is obtained in the far field. However, the near field problem, where the data does

not neatly map to Fourier components, needs an alternative technique.

6.3 A new approach to the limited view problem

So far, only the far field has been considered. This requires that the transducers are
far enough away that the field incident on the scatterer must be approximately a
plane wave, which is overly restrictive for the majority of ultrasonic imaging appli-
cations. Introduced here is a generalisation of the regularisation application method
outlined above, making it suitable for a much wider range of configurations. It is
stressed that the definition of ‘near field” used here is simply any problem where the

far field plane wave assumption cannot be used.

6.3.1 Virtual transducers

I begin, for simplicity, by considering the system using the Born approximation. To
solve the problem in the near field, I introduce ‘virtual transducers’ which complete
the full view. These virtual transducers are placed such that when combined with
the existing transducers, the array surrounds the scatterer. In the problem being

considered in this chapter, being treated as parallel arrays as in Fig. 6.1(b), the
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virtual transducers join the ends of the two arrays, forming a full view rectangular

array.

These virtual transducers perform the same role as the unknown Fourier compo-
nents in the far-field case. Following this, the virtual transducer data is populated
by repeated application of regularisation to the image, such that they ultimately

conform to both the existing known data and to the regularisation.

It is necessary to have some form of forward modelling algorithm which can be used
to populate the virtual transducers. In the far field case the forward modelling was
implicitly performed via the Fourier transform, based on the Born approximation.
Paralleling this, the method chosen here is the Born forward model of eq. (2.9),
where the scatterer is split into many small component parts, each of which is
assumed to behave independently. Under this, the field measured can be calculated

by superposing the independent components together via an integral

77Z) ~ wu - /Q GquvbudX,- (67)

This is fast, and, importantly, uses the same approximation as the inversion method.
The integral is calculated by discretising it over a mesh with a spacing of less than
A/4; this is to avoid aliasing. Usually it is convenient to maintain the same grid for

imaging and the forward Born integral to avoid resampling.

The theory explained so far relies on the Born approximation, which is only ap-
plicable to small, low contrast scatterers. This thesis has introduced HARBUT,
the Hybrid Algorithm for Robust Breast Ultrasound Tomography, which extends
the Born approximation by using an approximate inhomogeneous background to
greatly increase the range of problems which can be solved. It is possible to gener-
alise the virtual transducer method to include such a background. For this discussion
I keep the background fixed; attention as later given to updating the background as
performed in the GWT study of Chapter 5. The virtual transducer concept here is
broadly similar to before; additional arrays of virtual transducers are introduced to

complete a full-view array, and are populated using data from a regularised image.

119



6. Limited view quantitative imaging

There are two changes over the Born model. Firstly, the background needs to be
accounted for when performing the imaging method — this follows the standard

HARBUT method introduced in Chapter 2.

Secondly, the forward model used to populate the transducers needs to be adjusted
to account for the background. Because of this, the integral used must be the

inhomogeneous version, eq. (2.15),

Vs =9 —thy~ — /ﬂ GyOsipdx’. (6.8)

Note that ¢ is produced by the integral equation, which is convenient since this is
the parameter required by the HARBUT imaging algorithm. By using the modified
versions of the forward and inverse solvers as outlined here it is possible to account
for a fixed inhomogeneous background and hence significantly increase the range of

problems which can be imaged while using virtual transducers.

6.3.2 Storing virtual components in the image space

The forward model integral of eq. (6.8), for a fixed background (i.e. constant G, and
1y terms) is linear. The same is true of the inhomogeneous beamforming integral of
eq. (2.22) which forms the basis for the HARBUT inversion algorithm. This linearity

provides an opportunity to greatly optimise the algorithm.

These processes can be expressed as operators. As in Chapter 3, I define a linear

operator, J, that maps the measurements or data, d, onto an image, 1, i.e.
i=73(d). (6.9)

This operator can be used when a background is present, including the specific case
when this background is homogeneous, which corresponds to the standard Born

approximation. The first step is to image the limited view data v,
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which then has regularisation applied to give O,.,. I then introduce the forward

operator §, which is the inverse of (6.9)

d=75i). (6.11)

Under the virtual transducer method, data for the full view array can be obtained

using this operator on the regularised image

¢Teg,full = S(Oreg)- (612)

The next stage is then to replace the appropriate sections of this data need with the

true, known values. This can be expressed as

wfull = wreg,full - wreg,lim + wlim (613)

where Yyire 1im corresponds to the components of 1,¢4 s Which overlap the known

values in y;,. Finally, the new object function value is obtained with

Orur = T (Vgun) (6.14)

which can then be used as the starting point for the next iteration. While the ap-
proach in the previous sections has attempted to explain this in a physical, intuitive
way, expressing the process mathematically as I have done here presents opportuni-

ties for significant optimisation.

Equation (6.12) can be substituted into (6.13), and the result can be substituted

into (6.14), giving

OfUll = j [S (Or‘eg) - ¢reg,lim + wlzm] . (615)

Since the operators are linear, each term can be treated independently. The first

term on the right hand side is simply a forward model then an inversion; these two
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operators cancel and can be removed. The last stage has been calculated in (6.10)

and can therefore also be simplified, which leads to

Ofull - O'r'eg -7 (¢reg,lim) + OlinL- (616)

There are several things to note here. Clearly, removing the forward and inversion
steps in the first term leads to the algorithm being much faster; it is also more
robust since I am eliminating an imaging process which can introduce artefacts. The
method does still require a forward model to be run, however, but only to populate
Yregim, Which is much less computationally demanding. A second optimisation
appears because the Oy, term only depends on the measured data (provided the
background does not change if using HARBUT) so only needs to be calculated once

for all iterations.

The virtual transducers are now redundant.! The information from the regularisa-
tion process, which was previously included in the virtual transducers, is stored in
the image space, i.e. in the remainder O,¢y — J (Yyirtiim). The method is therefore

referred to as the Virtual Image Space Component Iterative Technique, or VISCIT.

6.3.3 Regularisation methods

VISCIT relies on a regularisation method to synthesise the unknown components;
to emphasise the generality of this technique, little attention has so far been given

to a suitable regularisation method. Here, I outline such a method.

As discussed earlier, there are a wide range of regularisation approaches which can
be used to aid the reconstruction of images with limited view data. One of the
most common is to assume that the reconstructed values must all lie either above,

or below, the background value. This is appropriate in many practical examples,

! The previous sections outlining the idea of virtual transducers are included for two reasons.
Firstly they provide a convenient starting point for the explanation given here. Secondly, while I
do not directly use virtual transducers in this thesis, the concept may well be of interest in other
areas, such as when using non-linear algorithms which cannot take advantage of the simplifications
I have described in this section.
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6. Limited view quantitative imaging

such as guided wave tomography, where it is known that corrosion can only reduce
the thickness, so the thickness throughout the domain must be less than or equal to

the background.

Introduced here is a refinement of this. It is observed (see for example the image
in Fig. 6.3(b)) that the peak contrast features of a limited view image are often
well reconstructed, but that artefacts spread from these features which can swamp
the lower contrast features. Figure 6.4(a) illustrates this. However, it should be
possible to define a threshold which lies below the peak contrast features, but above
the artefacts which accompany it. By setting everything below the threshold to
zero contrast and maintaining the values above the threshold, it should be possi-
ble to eliminate most of the artefacts while maintaining the peak features of the

reconstruction; this is shown in Fig. 6.4(b).

This image of the peak features can be used as O,.,. By containing only features
which should be true, the additional data from the virtual image space components
should help the next reconstruction, which should accordingly have fewer artefacts
associated with the missing data, as shown in Fig. 6.4(c). Because of the lower
artefacts, the next application can reduce the threshold slightly. Accordingly, more
of the peaks in the image are above the threshold, but without their associated
artefacts. At this point the process repeats, each time reducing the threshold until

all the true features are reconstructed.

This thresholding method makes the assumption that the velocity is either always
above or always below the background. Because this is the case for many applica-

tions, all the models considered in this chapter use this assumption.

6.4 Algorithm

A flowchart of the complete VISCIT algorithm is included in Fig. 6.5. Initially, let
us consider a case which lies fully within the Born approximation, and hence ignore

the steps corresponding to the inhomogeneous background (illustrated in blue). An
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Figure 6.4: Schematic outline of the thresholding regularisation method. The initial
reconstruction is shown in (a), with a threshold applied in (b) and the subsequent VISCIT
reconstruction is shown in (c).
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Figure 6.5: HARBUT for a limited view configuration using VISCIT. The stages in blue
are needed to incorporate a background into the algorithm, which is necessary to extend
the range of the algorithm beyond the Born approximation.
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initial image is generated from the measured, limited view data, and regularisation is
applied. I then run a forward model of this regularised image using eq. (6.7), followed
by an inversion, to obtain an image of the effect the limited view array would have
on the regularised image. This is then subtracted off from the regularised image to
obtain the remainder O,.y — J (Yyirt1im), 1.€. the virtual image space components.
This can be added to the original limited view reconstruction of the object function

to obtain the new image.

At this stage I check for convergence; an automated convergence criterion has not yet
been developed but the algorithm is presently terminated when the image has visibly
stopped changing between steps. If it has not converged, the image can be used to

replace the limited view object function in the next iteration of the algorithm.

Many limited view configurations do not form convenient uniform-radius arcs, so
the standard circular beamforming to diffraction tomography filter is therefore not
suitable. Appendix B outlines the alterations needed to make the algorithm suitable

for a general array.

It is possible to use an inhomogeneous background in the algorithm to help overcome
the limitations of the Born approximation. The background stages are illustrated
in blue in the flowchart. An initial background can be obtained from the BRT
algorithm. Firstly, this is used in the generation of the initial limited view HARBUT

image.

When the forward solver needs to be run, O, is subtracted from O,., to give the
Os which is then run through the integral of eq. (6.8). The resulting synthetic
data can be inserted straight into the HARBUT algorithm, which uses the same
background again to reconstruct a new Og, which is then added to O, again. This

is then combined with O,., and Oy, as in eq. (6.16).

After the convergence check, there is the option to use the improved image to up-
date the background, Oy; this is particularly useful since, because of the limited view
configuration, the initial background image from BRT will often be poor. It is pos-

sible, therefore, to repeatedly update the background as in the iterative HARBUT
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method introduced in Chapter 5 for guided wave tomography (GWT).

A problem now lies in how to perform both the VISCIT and the background update
iterations in a logical manner to converge to the right solution. From the GWT
study in Chapter 5, it was seen that typically around 10 iterations of HARBUT
were needed. By contrast, around 100 regularisation iterations were needed in [92]
for the known information to propagate fully to the unknown spatial frequency
components. While this is obviously dependent on the nature of the regularisation
used, it is likely that many more iterations will be needed to populate the unknown
virtual transducer values than for HARBUT to converge. My approach is therefore
to apply several VISCIT iterations with a fixed background, then use the resulting
image as the new background and repeat the process. One advantage of this is that
each VISCIT iteration requires fewer steps and hence less computational power than

the HARBUT iterations.?

Experience has shown that the best approach is to update the background more fre-
quently early on since this is fundamental to obtaining the correct phase distortions
through the object. In this chapter I therefore use a geometric progression, perform-
ing 2" regularisation iterations before updating the background, and repeating the

process for n = 0,1, 2...

6.5 Numerical model parameters

Figure 6.1(a) presented the backwall model considered in this chapter. All the
images here are reconstructed by considering the problem as a set of two parallel

arrays, reconstructing a mirrored object, as shown in Fig. 6.1(b).

The model is 200mm wide and the array to backwall distance is 50mm. This aims

to represent a typical backwall problem. A variety of acoustic scatterers were placed

20ne useful optimisation is that the distorted Green’s functions G need only be calculated once
for any particular background. They can then be re-used multiple times by both the forward solver
and the HARBUT algorithm. Calculating the distortions is the slowest stage in the algorithm; this
is therefore a significant optimisation.
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in a homogeneous background medium of water, although the theory is equally valid

regardless of the background medium.

The array has 128 elements spaced by 1.5mm. The centre frequency was 1.5MHz
and a 5-cycle Hann window was used. The array was modelled as a series of point
sources; these were generated by exciting individual nodes at the appropriate loca-
tion. Because of the spacing of the elements and the grid, no rounding was needed

in the positioning of the array elements.

A 2D acoustic model is run to simulate the problem, using the finite difference, time
domain (FDTD) method. Convolutional perfectly matched layers [66] surrounded
the model on three of the four sides, with the exception being the backwall which
reflected as though it was sound-soft. The grid was 3200 by 910 nodes, spaced by
A/16.

Because [ am treating the data as though it had come from two parallel arrays rather
than the backwall reflection, any component outside the main backwall reflection
will correspond to the direct reflections of Fig. 6.1(a). This effectively forms noise
in the data and is removed by gating. To do this for each send-receive pair, the
approximate arrival time of the wave is estimated by calculating the distance and
assuming a homogeneous background. Since I am imaging low contrast scatterers
this gives a good estimate of where in the time trace the useful signal lies, making

the gating straightforward.

The actual arrival times, used for BRT, were estimated by enveloping the signal and
taking the point at which it exceeded a threshold of 50%. The frequency components

were obtained by performing a Fast Fourier Transform (FFT) on the gated signals.

6.6 Numerical results

Three numerical models were run; one of a simple case to test the algorithm with
five inclusions of a variety of sizes and contrasts, one of a more realistic Gaussian

type velocity variation and one of a more complicated scatterer.
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6.6.1 Five circular inclusions model

Figure 6.6 presents the results for the first model. The original model is shown
in Fig. 6.6(a) and consists of a uniform medium containing five circular inclusions.
Three have 2% contrast (1530m/s) and are sized 5bmm, 10mm and 15mm in diameter
and the remaining two both have diameter 10mm with 1% and 5% contrast (1515m/s
and 1575m/s).

It is clear that the standard reflection imaging in Fig. 6.6(b) can detect the discon-
tinuous boundaries of the objects, but it is not possible from this to quantitatively
determine the sound speeds within each inclusion. Figure 6.6(c) shows the BRT re-
construction, showing the expected low resolution; in this case the resolution can be
estimated as VLA ~ 10mm [25]. Interestingly the image shows diagonal, ‘X’; shaped
artefacts which extend to the ends of the transducer array; these are a common re-
sult of this limited view configuration (see for example [95]). Since the inclusion is
spread over a larger area by the artefacts, a lower contrast is needed to obtain the
same arrival time offset, which is why the reconstructed contrasts are lower than the

original.

Diffraction tomography is shown in Fig. 6.6(d). The Born approximation is violated
for all but the 5mm and 1% inclusions. The artefacts are a result of the limited view
and the Born approximation. Using the BRT image as a background, as is done in
the HARBUT reconstruction of Fig. 6.6(e), improves the reconstruction slightly, but
the BRT background is not accurate enough to avoid Born approximation artefacts
completely for the high contrast inclusion. The limited view is shown to have an

effect here, with the ‘X’ shaped streaks visible.

Finally, VISCIT is presented in Fig. 6.6(f). The virtual image space components
are populated using the thresholding regularisation method. The threshold fraction
starts at 0.8 (i.e. the threshold is set to a contrast of 80% of the maximum) and is
reduced by a factor of 2 at each iteration. 31 iterations are performed to obtain the
final reconstruction. As explained in Sec. 6.4, background updates are performed

after 2" iterations, where n = 0, 1, 2...; in this case the background was updated five
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Figure 6.6: Algorithm performance with different sizes and contrasts. The wavelength
is 0.8mm. The transducer array lies at the top surface of the image and the backwall
coincides with the bottom surface. (a) gives the original sound speed map, consisting of
three 2% contrast (1530m/s) inclusions sized 5mm, 10mm and 15mm in diameter, and two
10mm inclusions of 1% (1515m/s) and 5% (1575m/s). Reflection imaging in (b) shows
no quantitative information; (c¢) shows that BRT is poor resolution and exhibits diagonal,
‘X’ shaped artefacts. The Born approximation is violated for most of the inclusions, as is
clear from (d), the DT reconstruction, which is also poor because of the limited view. It is
clear that HARBUT does provide an improvement, as shown in (e), but the high contrast
inclusion in particular is poorly reconstructed with many artefacts. (f) presents HARBUT
with VISCIT, which has few artefacts and is able to accurately capture the sound speeds
and shapes of all five inclusions.
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times during the 31 VISCIT iterations.

The shapes of the inclusions are all well defined and there are few artefacts. Impor-
tantly for quantitative imaging, the sound speeds in each of the inclusions are very
close to the original model. The top and bottom surfaces of the inclusions are poorly
defined, which is to be expected given that the transmission data does not encode
any information about these surfaces. There is the possibility that this aspect could
be improved by combining it with the reflection data of Fig. 6.6(b), which captures

well the top and bottom surfaces.

Overall, VISCIT works well, but it could be that the example used here is well
suited to it. Since the model has discrete inclusions containing constant sound
speeds, it would be expected that the thresholding approach would be particularly
appropriate. I now consider a more realistic example to test the algorithm more

thoroughly.

6.6.2 Gaussian profile example

Early stage stress damage is unlikely to form discrete circular patterns as in the
previous example. Here, I use a Gaussian function to define a more realistic veloc-
ity change corresponding to stress damage. The Gaussian has a peak of 1505m/s
against a 1500m /s background, and a 5mm radius. In metallic components, it would
also be expected that the grain boundaries would cause further scattering, which
would manifest itself as noise in the data. To model this I add a randomly varying
background, as used in the breast model of Chapter 3 — in this case varying from
1499 to 1501m/s with a correlation length of 1.5mm — to the Gaussian sound speed
variation. This combination of slowly varying sound speed and small scale ran-
dom variation is completely different to the previous example and should be more

challenging to the algorithm. The results are shown in Fig. 6.7.

Figure 6.7(a) shows the original model. Figure 6.7(b) shows that reflection imaging
is totally unsuitable for detecting this form of damage, due to the lack of discontinu-

ous boundaries to reflect waves back to the array. BRT, DT and standard HARBUT
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Figure 6.7: Reconstructions from a model representing stress damage within a metal
component. The original model (a) is formed by summing a 5m/s Gaussian of radius 5mm
to a random background. This background had a correlation length of 1.5mm and varied
between 1499 and 1501m/s. (b) shows that without the presence of sharp boundaries,
reflection imaging is completely unsuitable for detecting this early stage damage. (c) gives
the BRT image, which, as in Fig. 6.6(c) features diagonal artefacts. (d) shows diffraction
tomography, again with the diagonal artefacts. Because of the low contrast of the scatterer,
the Born approximation works well so there is no sign of the Born artefacts seen before.
HARBUT, in (e), shows a slight improvement over (d) although the diagonal artefacts are
still present and the reconstructed values are underestimates of the true values. (f) shows
HARBUT with VISCIT, confirming that the method is suitable for more realistic sound
speed maps.
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are shown in Fig. 6.7(c), (d) and (e); all perform reasonably well although do un-
derestimate the sound speed and contain the diagonal artefacts seen before. The
Gaussian also appears elongated in the vertical direction. HARBU'T does not show a
significant improvement over DT because the low contrast means that the scattering

is well modelled by the Born approximation.

Figure 6.7(f) shows HARBUT with VISCIT, obtained using the same parameters
and same numbers of iterations as in the previous example. This performs well,
capturing the peak sound speed of the original and producing a far more accurate
representation of the Gaussian. The regularisation method of thresholding to min-
imise artefacts seems to work well, despite the threshold not being well suited to the

slowly varying nature of the Gaussian.

6.6.3 Complex scatterer

The Gaussian model provides a good representation of a typical area of stress dam-
age, and it has been demonstrated that the algorithm performs well with this model.
To demonstrate the suitability of the technique for a wider range of problems, I now

consider a more complex scatterer than the simple shapes considered so far.

The sound speed map chosen is derived from the complex defect used in the guided
wave tomography study of Chapter 5. This is scaled to vary between the 1500m/s
background and 1510m/s at its peak, and is shown in Fig. 6.8(a).

Figure 6.8(b) gives the reflection image, which, as shown in the examples before,
shows little meaningful information. Figures 6.8(c), (d) and (e) show BRT, DT
and HARBUT reconstructions, which as expected show the diagonal limited view
artefacts. The Born approximation is quite well suited to the low contrast, so little
gain is achieved by using HARBUT over DT. As in previous cases, none of these

three methods capture the sound speed particularly accurately.

Figure 6.8(f) shows the VISCIT HARBUT image (again generated with the same

parameters), capturing all the details of the original, and obtaining good estimates
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Figure 6.8: Reconstructions of a complex feature. (a) shows the original, complex scat-
terer. Little detail is visible in standard reflection i 1mag1ng (b). The resolution of BRT, as
shown in (c) is too poor to be able to identify any of the features. (d), showing diffraction
tomography, does capture some of the features, but there are significant artefacts and the
sound speeds are not accurate. (e) is the HARBUT reconstruction, which obtains a more
accurate reconstruction, but again shows significant limited view artefacts. (f) shows how
the VISCIT method obtains better sound speed estimates, although a few artefacts are
visible.
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of velocity throughout the scatterer. As before, VISCIT combined with the thresh-

olding approach has minimised all the artefacts while maintaining the true features.

6.7 Experimental results

Experiments contain a wide range of uncertainties which can act to corrupt measured
data. By their nature these effects are difficult to accurately model using numerical
methods; it is therefore vital to verify that any new imaging method works with

experimental data.

This chapter has so far primarily considered imaging using a linear array opposite
a reflecting backwall. The limited view problem for quantitative imaging exists
in other fields too; here I consider guided wave tomography (GWT), the problem

investigated in Chapter 5 with a circular, full view array.

While the circular array is convenient for imaging, in practice in GWT it is rarely
feasible to encircle the defect in this way. A more common approach is to have
two parallel rings of transducers placed around the circumference of the pipe. By
unwrapping the pipe into a flat plate, the problem becomes that of reconstructing

a quantitative image using data from two parallel arrays.

Since any waves passing off the top of the unwrapped ‘plate’ will reappear on the
bottom, due to the circular nature of the pipe, this unwrapping is not a completely
accurate representation. However, with suitable gating to remove superfluous waves

this is a good approximation.?

Here, I evaluate the effects of the limited view problem with experimental GWT
data and test VISCIT’s performance to solve the problem. I reuse the full view, two

defect data from Chapter 5 and utilise only limited sections of this data to synthesise

3Interestingly these helical waves can be exploited to improve the reconstructions, since they
provide additional illumination angles over those contained in the standard parallel arrays and
hence effectively increase the size of the array. The challenge is how to extract and separate each
wavepacket from the measured signals. Volker and Bloom [78] claim to do this to extract arrival
times for ray tomography, but to avoid such complications here I only consider direct waves.
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a pair of limited view arrays.

Figure 6.9 gives the results from this for a variety of limited view array sizes. Figure
6.9(a) shows the original thickness map and Fig. 6.9(b) gives the full view image.
The first column of the remaining images shows standard limited view HARBUT,
and the second column shows HARBUT with VISCIT. All VISCIT reconstructions
are performed with 63 iterations while updating the background six times, using the

geometric progression ordering discussed earlier.

In the second row, Figs. 6.9(c) and (d), the transducers in the top half of the
array are taken as sources and the bottom half are set as receivers. This results
in the removal of certain send-receive combinations from the data set. There are
noticeable artefacts in Fig. 6.9(c), using the standard reconstruction method, which
result from (in effect) setting the unknown k-space components to zero. Importantly
for quantitative imaging, setting the unknown values to zero results in a significant
underestimate of the contrast of the defects. Using VISCIT, as shown in Fig. 6.9(d),

achieves a much better result.

The next row shows what happens if only 75% of the transducers are used. Figure
6.9(e) shows how the artefacts expand as the arrays reduce in size. By contrast,
VISCIT in Fig. 6.9(f) remains relatively free of artefacts and maintains good es-
timates of thickness. There are slight distortions in the shape of each defect, but

these do not affect the results significantly.

The results are similar when 50% of the transducers are used in Figs. 6.9(g) and
(h), although by this point the relatively small apertures are significantly distorting
the defects in VISCIT, and the increased reconstruction size is accompanied by a

reduction in contrast.

The 25% view shown in Figs. 6.9(i) and (j) takes this trend further. While the
standard reconstruction does not allow any features to be identified, VISCIT sepa-
rates out the two defects. These are extremely elongated, however, and accordingly
underestimate the contrast. This trend is to be expected; by considering a signal

from just a single send-receive pair, it is possible to reconstruct the velocity between
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Figure 6.9: Limited view GW'T results; these correspond to the full view images of
Fig. 5.12. All images shown here are monochromatic and use the 50kHz component from
a set of experimental data. (a) shows the true model, a 10mm plate with two circular
defects; the central one has thickness Smm and diameter 60mm and the offset one has
thickness 7mm and diameter 100mm, and is offset by 200 mm from the array centre. (b)
shows the standard full view result for comparison. For the remaining images, the first
column, i.e. (c), (e), (g) and (i) shows standard limited view imaging with HARBUT and
the second, i.e. (d), (f), (h) and (j) shows VISCIT. In (c) and (d) the top half of the array
is used as sources and the bottom half as receivers. In (e) and (f) the transducer arrays
have been reduced; only 75% (i.e. 24 sources, 24 receivers) are used. (g) and (h) reduce
that to 50% and (i) and (j) only use 25%, i.e. eight sources and eight receivers. All the
VISCIT reconstructions used six HARBUT iterations and a total of 63 VISCIT iterations
in the geometric progression discussed in Sec. 6.4.
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Figure 6.10: Cross sections through the VISCIT images in Fig. 6.9, taken along a hori-
zontal line passing through the centre of the array. As the amount of available information
is reduced, the reconstructed contrast is reduced.

as simply an average speed between the source and receiver, which would both un-
derestimate the peak contrast and stretch the defect. Despite this trend, it is clear

that VISCIT produces a significant improvement over HARBUT on its own.

Finally, Fig. 6.10 shows the thickness plotted along the line intersecting the centres
of the two defects. The 100% limited view reconstruction shows little deviation from
the full view reconstruction, but as the aperture angle reduces, the reconstructed
contrast reduces too. The 75% coverage reconstruction obtains an estimate of mini-
mum thickness within 1.2mm of the true value; this compares to around 0.8mm for

the full view configuration.

6.8 Summary

This chapter has introduced VISCIT, the Virtual Image Space Component Iterative

Technique, to aid imaging with limited view arrays. Extra information, obtained
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by applying regularisation, is stored in the image space and is combined with data

from the limited view array to improve the reconstruction.

The limited view configuration introduces diagonal, ‘X’ shaped artefacts spreading
from each feature. The regularisation method exploits the fact that these artefacts
are of lower contrast than the dominant feature. It reconstructs the peak contrasts
first, by applying a threshold to the image to remove the lower contrast artefacts, and
stores this in the virtual image space components. The data from these components
then helps the next iteration of the image, reducing the artefacts, so the threshold

can be reduced accordingly. This process is iterated until the image converges.

VISCIT was demonstrated to outperform standard HARBUT, DT, BRT and re-
flection imaging for three models: a set of five circular inclusions of various sizes
and contrasts, a low contrast Gaussian representing early stage stress damage, and
a more complex scatterer with several peaks. When testing it with limited view

experimental guided wave tomography data, a similar improvement was observed.
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Chapter 7

Conclusions

7.1 Thesis Review

New algorithms for quantitative subsurface imaging with mechanical waves have
been developed through this thesis. The techniques introduced can provide sig-
nificantly improved information about the material properties beneath an object’s

surface through improved resolution, robustness and accuracy.

Chapter 2 outlined the theory behind HARBUT (the Hybrid Algorithm for Robust
Breast Ultrasound Tomography). It began by introducing the forward scattering
model used to simplify the wave equation. This was then used in the inversion
method allowing a velocity map to be obtained. Under this model, the velocity
field was split into two components; a slowly varying, low-resolution background,
which could be obtained by bent-ray tomography (BRT), and a low contrast, high-
resolution remainder which was suitable for diffraction tomography (DT). The dis-
tortion of the wavefield as it passes through a scatterer is mostly accounted for by
the low-resolution background, and can be incorporated into DT by adjusting the
focusing used in the beamforming (BF) algorithm, which forms the basis of the DT
image. The chapter explained how this allows a high-resolution reconstruction to be

obtained without being constrained by the overly restrictive Born approximation.
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Chapter 3 applied HARBUT to a representative numerical model of the breast to
evaluate its performance, and also tested it with experimental in vivo data. The
method was shown to perform well, achieving significantly higher resolution recon-
structions of sound speed than the widely used BRT algorithm, allowing cancer
masses to be more clearly identified. One drawback to the array configuration used,
however, was the axial, out-of-plane resolution, which was demonstrated to be poor
because of the large slice thickness. The effect of this was to project any features
within a thickness of around 9mm into the imaging plane, potentially obscuring the
details of the structures within the breast. Chapter 4 showed how this slice thickness
problem can be reduced by treating the problem as fully 3D.

HARBUT was applied to guided wave tomography in Chapter 5, improving the ac-
curacy of reconstructions from this 2D problem. Lamb waves were transmitted in
the wall of a plate-like structure, and measured from a circular array. Velocity re-
constructions from HARBUT were converted to thickness via the dispersion curves,
obtaining accurate estimates of minimum thickness even for complex defects, allow-
ing remaining component life to be accurately estimated. This was demonstrated

for both simulated and experimental data.

Imaging when only a limited view array was available was considered in Chapter
6. Quantitative imaging is particularly sensitive to the limited view problem, es-
pecially when there are no transmission components available. This chapter solved
the problem by using waves reflected from a parallel backwall to obtain transmis-
sion components and using regularisation methods in conjunction with VISCIT, the
Virtual Image Space Component Iterative Technique, which can be used to reduce

the limited view artefacts.

7.2 Main findings

Reconstructions in the field of breast ultrasound tomography are usually performed
using the BRT algorithm, which ignores diffraction and therefore is limited to a

resolution of around 10mm. By comparison, cancer masses of interest are typically
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5mm and up, and hence there is significant potential to miss important, early stage
tumours. The new method developed in this thesis, HARBUT, by combining the
complementary strengths of BRT and DT, has been shown to significantly improve
resolution in the image to around Imm without needing to resort to slow, unstable,
iterative full-wave inversion methods. The performance was demonstrated for a
realistic 3D simulation (as published in [P5]) and verified with experimental, in vivo

data (to be published in [P9]).

A significant challenge when reconstructing breast images from a toroidal array
surrounding the breast is the large slice thickness; any features within a finite slice
will be projected into the plane to form the image, which manifests itself as a limited
resolution in the axial direction. By treating the data as fully 3D, rather than 2D
as in the majority of breast ultrasound tomography algorithms, it was possible to
improve the axial resolution from about 9mm to around 2.3mm. This has huge

potential to improve breast cancer detection using ultrasound.

The field of guided wave tomography uses guided waves to determine the thicknesses
of defects within a plate-like structure; this is commonly achieved by using the
dispersion curves to map thickness to wave velocity. The defects are usually too
small for the widely used, but limited resolution, ray tomography methods to detect.
Methods based on the Born approximation are also unsuitable because of the very
high contrast associated with the wall-thickness reductions of interest, which can
be up to 80%. By combining BRT and DT together, HARBUT again helps this
situation, using BRT as a background to improve DT. However, because the BRT
reconstruction used as a background is usually so poor, further improvements are
possible by taking the resulting HARBUT image as a background and repeating
the process. By applying several iterations of HARBUT it was possible to reliably
and robustly reconstruct minimum thicknesses of defects to within about 1mm for a
10mm plate, whereas the other methods rarely produce an estimate accurate to more
than +£3mm for representative defects. This was demonstrated for both simulated

and experimental data, and has been submitted for publication [P§|.

Quantitative imaging is particularly sensitive to the limited view problem, when the
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object to be imaged has restricted access preventing a full view array from being
placed around the scatterer. While a number of solutions have been proposed to deal
with this problem, few have been shown to work with a representative, realistic data
because of the assumptions necessary to image with the missing data. This thesis
has introduced VISCIT, the Virtual Image Space Component Iterative Technique,
which was shown — in conjunction with a thresholding regularisation technique —
to allow accurate velocity reconstructions to be obtained from limited view arrays.
This was demonstrated to be stable for a range of models of varying complexity,
providing far more accurate reconstructions compared to standard methods. The
robustness of the algorithm was confirmed when using it to image experimental

guided wave tomography data with a variety of limited view arrays.

7.3 Areas for future work

Within the field of breast ultrasound tomography, there are several future avenues
which could be pursued. One of the main areas for improvement is in selecting a suit-
able array configuration for breast ultrasound tomography. Chapter 4 demonstrated
the limitations of the traditional ring array because the height of the transducers
causes a very directional beam. Given that the alternatives for 3D breast ultrasound
imaging are generally limited to mechanically scanning a standard linear array across
the breast [96], or the undersampled system of [15], there is a clear need for further
study to develop an improved array configuration. This is not a straightforward
problem; Chapter 4 showed how there is significant redundancy in collecting data
from all possible directions, so there is a significant challenge of collecting suitable
data such that a good resolution in all directions can be obtained without collecting
unnecessary information. The expense of building arrays is high, so such a study

would need to be performed numerically prior to investing in hardware.

The use of computational simulations is underdeveloped in ultrasonic breast imag-
ing, largely being restricted to overly simplified, unrealistic 2D simulations. While

this thesis addressed this with two sets of data from sophisticated 3D models, given
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the inevitable advances in processing power there is massive potential to develop

more realistic models which could greatly aid the understanding of this area.

Current computer hardware limitations meant that a suitable data set to test the
full HARBUT algorithm in 3D was unavailable. As detailed in Chapter 4, while the
theory can be logically extended such that HARBUT should work well with such
a model, it is important to obtain some validation with a numerical simulation.
Following on from this, the verification of the method with suitable experimental

data is important.

One of the important discoveries described in this thesis is the VISCIT method of
Chapter 6, which was shown to have huge potential to improve limited view quan-
titative imaging. At present, the method does not utilise any of the reflection data
from the array. Depending on the application, this might contain useful informa-
tion, particularly if a wide bandwidth can be extracted from the data. The algorithm
could therefore be further developed to include wideband reflection data to improve

the quantitative images.

One aspect not considered in the application of VISCIT to the early stage stress
damage detection problem is that the problem is generally not acoustic as assumed
in Chapter 6, but will instead be elastic. As a result, mode conversion will be likely
at the backwall reflector so studies will have to be performed to help understand

how this will affect the reconstructions.

The iterative HARBUT method introduced in Chapter 5 included a stopping crite-
rion to determine when the algorithm had converged. VISCIT has not yet had such
a convergence criterion developed. Since the change between iterations is going to
significantly depend on the thresholding level and will be further complicated by the
fact that HARBUT is iterated too, a careful study will need to be done to find a

stopping criterion which will be suitable for all problems.

At present, the thresholding method contains the assumption that the sound speeds
of the image features all lie one side or the other of the background. However, it

is possible that the method could be extended to a more general case by applying
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the threshold both sides of the background, at equal distances from it. Anything
between the two thresholds could be set to the background value and anything
outside maintained. Whether this (or a similar) approach would work needs to be

investigated.
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Appendix A

Ultrasound transmission through a

penetrable cone

A.1 Introduction

The scattering of waves from simple 3D objects has received considerable interest.
Morse [29] calculated the solution for scattering from an impenetrable cylinder,
and this approach has been extended to scattering from finite length cylinders [97,
98], cylinders within penetrable cylinders [99,100], two cylinders in close proximity
[101,102] and random configurations of cylinders [103]. The problem of scattering
from a sphere and variations of this has similarly been extensively addressed (e.g.

[104-109]).

Despite this large body of work on scattering from cylinders and spheres, the ma-
jority of work on cone scattering is limited to impenetrable boundary conditions
(see [110] for a comprehensive list), with little attention paid to the penetrable cone.
The latter is of practical interest in breast ultrasound tomography. A typical config-
uration is illustrated in Fig. A.1. A toroidal transducer array is placed horizontally
into a water bath, which acts as a coupling medium. The patient lies prone with
the breast in the water bath, in the middle of the transducer array. The array illu-

minates and measures ultrasound transmission through the bulk of the breast, and
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Figure A.1: A practical example where understanding scattering from a penetrable cone
is useful: breast ultrasound tomography. The bulk effect of the waves passing through the
breast is approximated by acoustic transmission through a cone.

these measurements are used to reconstruct tomographic images of sound speed in

a similar way to X-ray CT [47].

The breast tapers in the axial direction, causing a deflection of the ultrasonic beam
outside the array plane and a subsequent drop in the transmission signals |58, 69].
It is therefore important to understand how much the ultrasound transmission is
affected by the shape of the breast and how much it is affected by its internal
structure |[111]. In the first approximation, this effect can be studied by assuming a

conical shape for the breast.

The main papers which consider the penetrable cone are by Lyalinov [110,112,113]
and Jones [114]. In these works, the solution is derived in the form of an integral or
infinite sum, which can then be calculated numerically by a semi-analytical approx-
imation. Although these methods provide valuable computational tools, physical
approximations relating characteristic parameters of the problem to the transmitted
amplitude are not available. Besides giving an insight into the scattering problem,
physical approximations are instrumental in the design of scattering experiments

such as those used in breast ultrasound tomography technology.

The aim of this appendix is to understand the physics that underpins the complex

phenomenon of refraction of an ultrasonic beam through a penetrable cone and
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Figure A.2: The cone distorts and scatters the field produced by the source transducer.
The resulting field is measured by the receiver. The output plane is used to plot the output
of the FDTD simulations in Sec. A.3.

to provide a physical approximation that links the characteristics of the scattered
field to the parameters of the problem. In breast ultrasound tomography, arrays
of rectangular transducers — both linear and toroidal — are used to provide the
illuminations and measure the resulting field. Therefore, in this appendix I consider

such transducers rather than plane wave illuminations and point measurements.

Section A.2 formulates the acoustic cone scattering problem, which is then used in
Sec. A.3 to simulate ultrasonic transmission numerically with the Finite Difference
Time Domain (FDTD) method. Section A.4 presents the physical approximation
considering the case when the transducers are diametrically opposed. The approxi-
mation is validated against the FDTD results and its range of applicability is defined.

The results are then generalised to the case of off-axis transmission in Sec. A.5.

A.2 The cone transmission model

Figure A.2 presents the model considered. A source transducer provides the illu-
minating wavefield which interacts with the cone and is subsequently measured by

the receiver transducer. Both the cone and the background medium are acoustic
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materials, i.e. waves in them obey the acoustic wave equation [29]

p(r)v.[ vp(r>]—c<r>2 =0 (A.1)

1
p(r)
where p(r) is the pressure at point r, p(r) is the density and ¢(r) is the sound speed.

The transducers are modelled by Huygen’s principle [82,115], with the surface of
the source transducer modelled as a series of point sources of identical phase and
amplitude. Similarly, the measured signal from the receiver transducer is the sum of
the signals taken from all points on its surface. Here, the spacing between points is
set to be less than /10, where X is the wavelength, which ensures the resulting field
or measurement is sufficiently close to the limit where the discrete sum is replaced
by a continuous integral. I consider rectangular transducers, so the parameters that

define the beam are transducer width and height.

The cone itself is defined by its diameter in the plane at z = 0, its sound speed and
density, and the angle of the boundary relative to the z axis. The central axis of the
cone is assumed to be fixed at x = y = 0; since both transducers can move relative

to it generality is maintained.

In this appendix I consider the conditions encountered in breast ultrasound tomog-
raphy. The diameter of the cone at z = 0 is of the order of 100\ at a typical
A = lmm which is required to achieve full breast penetration due to attenuation.
In this regime, refraction dominates. By contrast, the transducer dimensions are
of the order of 10\, which allows diffraction of the beam to occur. T investigate
contrasts of up to 10% where the acoustic equations are valid. Larger contrasts are
likely to correspond to solid objects, where the elastic equations are more suitable

for describing the material behaviour than the acoustic equations.

The primary effect of a density contrast between the cone and the background is
to increase the impedance contrast and hence the reflection of the wave’s energy
which results in a drop in transmission amplitude by energy conservation. For a
density contrast of about 10%, the reflection coefficient will remain fairly small so

this loss is considered negligible. The density is therefore kept uniform at 1000kg/m3
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throughout, simplifying the analysis without losing generality.

A.3 Numerical study

This section presents a series of numerical simulations of a transducer beam scattered

by a cone.

This simulation outputs the amplitude of the beam on the output plane of Fig. A.2
in the previous section. A source transducer produces a beam which is transmitted
through the cone then projected onto the output plane. The source transducer
height, h, is 20mm, the width, w, is 4mm, and ry; = 80mm. The output plane is at
r = 80mm. The background sound speed is 1500m/s and the density is 1000kg/m?.
The cone radius is rg = 40mm and the aperture of the cone is 90°. 3 is defined

as the angle of the boundary relative to the vertical; since this is half the aperture,

B = 45°.

The Finite Difference Time Domain (FDTD) method is used to perform the simula-
tion. The explicit time stepping nature of the method means that memory usage is
O(N), where N is the number of degrees of freedom, whereas for implicit solutions
this typically becomes O(N?). This allows simulations with many more degrees
of freedom to be performed, which is vital for the 3D simulations considered here.
A staggered Yee grid discretisation method [65] is used on the coupled first order
acoustic equations of pressure and velocity [29]. The mesh is terminated with per-
fectly matched layers [66, 116] to minimise reflections from the boundaries of the

domain.

The domain is —81mm < z < 81lmm, —60mm < y < 60mm, —28mm < z < 28mm.
Using a spacing of V12 = 1/emm, this corresponds to 993 by 741 by 357 grid points
including ten-node-thick boundary layers. Using a Courant number of 0.95 to deter-
mine the time step, 4345 time steps were needed, which gives enough time for the
wave to pass across the domain and halfway back again. The calculations were per-

formed using single precision floating point numbers. The simulation took around 6
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hours to run on a single core of an AMD Opteron 8384. The time domain data were
recorded for a grid of points on the output plane; subsequently Fast Fourier Trans-

forms were performed to convert each time-based signal to the frequency domain.

Figure A.3 plots the amplitude of the beam on the output plane at 750kHz for 7
different cone sound speeds: 1650, 1560, 1530, 1500 (i.e. a homogeneous field), 1470,
1430 and 1350m /s which correspond to sound speed contrasts of +10%, +4%, +2%,
0%, -2%, -4% and -10% respectively. Also plotted in Fig. A.4(a) is the amplitude

along the y = 0, x = 80mm line for all the cones.

The presence of the cone causes the beam to be deflected in the z direction. The
results show that for cone sound speeds below the background, the beam is deflected
upwards, and for cone sound speeds above the background the beam is deflected
downwards. The extent of deflection is dependent on the contrast level. Both of
these effects are a result of refraction at the surfaces of the cone, as predicted by

Snell’s Law.

The lower sound speed cones cause the maximum amplitude of the measured beam
to increase relative to that measured without the cone present. This corresponds
to the focusing effect of the cone; the width of the beam is less and its energy is
concentrated into a narrower area. Conversely the high sound speeds defocus the
beam and spread the energy out more, resulting in lower amplitude. This result is

similar to that observed for an acoustic cylinder [29].

The shape of the beam is affected by the contrast level. The lower sound speeds
show a clear upturn at the edge of the beam, forming a ‘smile’ shape. This is less
pronounced at lower contrasts and at the higher sound speeds a downturn is visible
at the edges. These results suggest that the beam deflection increases away from

the plane y = 0.

To model the effect of a receiver transducer diametrically opposite the source, the
complex values of the wavefield in the output plane across the area corresponding to
the receiver, in this case —2mm < y < 2mm, —10mm < z < 10mm, can be summed.

The modelled responses at each cone sound speed are plotted in Fig. A.4(b); the
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Figure A.3: 3D transmission through the cone, as calculated by a FDTD simulation.
Each shows the amplitude of the beam across the output plane of Fig. A.2 for different
cone velocity values at 750kHz.
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Figure A.4: (a) gives the amplitudes along the y = 0 lines for each of the simulations
in Fig. A.3, showing how the deflection increases with contrast. (b) estimates the receiver
transducer response through a Huygens approach of summing across the surface of the
transducer. Values in (b) are normalised against the value that would be generated if no

cone was present.
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plotted values are relative to the equivalent measured incident field. There is a clear

amplitude drop as the contrast increases and the beam is deflected more.

Performing repeated simulations to establish trends as the parameters change is im-
practical because a) the large number of independent parameters, including sound
speed, boundary angle, cone diameter and transducer height, mean that many sim-
ulations would be necessary for a full understanding and b) the simulations take a
large amount of time and resources to run. I therefore develop a simplified approx-

imate analytical model to help generalise the effects of the various parameters.

To proceed with the analysis, I define the ‘transducer plane’ as being the vertical
plane passing through the centre of the cone and the centre of the face of the source
transducer. I also define the ‘array plane’ as being the horizontal plane at z = 0. T
start the analysis by considering the behaviour of the beam within the transducer

plane.

A.4 Amplitude drop within the transducer plane

By firstly studying transmission in the transducer plane, it is possible to develop
an understanding of the trends that occur in the measured signal, which can subse-
quently be expanded to the full 3D problem. I firstly demonstrate how the wavefield
within this plane behaves like the wavefield scattered in 2D by a prism of the same
properties. For this purpose I use a 2D FDTD simulation, which had half the mesh
spacing of the 3D model and was run on a graphics card using NVidia’s CUDA
technology. In effect, the 2D simulation corresponds to a model that is uniform in
the y direction, meaning that the cone is treated as a trapezoidal prism of infinite
extent in the y direction and both the source and receiver transducers have infinite

width.

The output along x = 80mm, y = 0 is plotted for both the 2D and 3D simulations in
Fig. A.5, for the 1350m/s sound speed cone from the previous section. Each curve is

normalised such that the maximum amplitude of the beam without the cone present
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Figure A.5: Comparison between the 2D and 3D amplitude on the central plane. Each
is normalised such that the maximum value of the incident beam is 1 in the corresponding
2D or 3D model.

will be 1.

The 2D result has a peak amplitude greater than 1. This amplitude increase relative
to the incident beam is due to the wedge focusing the wave field as it deflects it
upwards. The 3D result shows an additional focusing, which is due to the circular
cross section of the cone in the z-y plane and is similar to what is seen for a penetrable
cylinder [117|. However, this cylinder focusing effect is limited, so that the two curves
are within a few percent, which means that this effect can be treated as negligible.
The overall trends of the 3D model are captured by the 2D model, so it can be
assumed that the behaviour on the central plane of the 3D model can be predicted

by 2D simulations.

A.4.1 Plane wave illumination with finite-sized receiver

Now consider a plane wave illumination in the plane of the generatrix. While such
an illumination is not achievable in practice, it does allow diffraction at the source
to be neglected, providing a convenient starting point for the analytical approach.
Because refraction dominates, Snell’s Law can be used to model the deflection. The

deflection at the first surface, ; [see Fig. A.6(a)|, therefore depends on the boundary
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angle [ as

sin(f — 01) _a

sin 3 co’ (4.2)

where ¢; is the sound speed of the cone and ¢ is the sound speed of the background.

The total deflection d5 after the second interface becomes

sin (B+d2) _
Sn(ro) o (A-3)

By solving these two equations, the deflection angle of the wavefield incident on the

receiver transducer can be determined.

Figure A.6(a) shows how the waves are rotated by the cone and consequently hit the
transducer at an angle. Given a particular deflection angle d,, the z component of the
rotated wavenumber is k, = kgsind, and the z component is k, = kg cos o, where
ko = 27 f/co is the wavenumber in the background at frequency f. The wavefield is
integrated across the finite surface of the transducer to give the response relative to

that of the undeflected wavefield

ffﬁ? exp [i (ko + k,2)] dz

f—h}/52 exp (ikox) dz
= —sinc (k,h/2) exp [iz (k, — ko)] (A.4)

where the transducer height is taken as h and the sinc function is defined as as
sinc(z) = sinx/z. Figure A.6(b) compares this analytical expression to a 2D FDTD

simulation of the transducer plane.

The result demonstrates that as the contrast increases, the deflection of the refracted
waves increases and the measured amplitude decays. This reduction occurs due to
the transducer integrating the wavefield across its surface. If the wave fronts are
parallel to the surface, as is the case when there is no cone present, the phase
at all points on its surface is constant, leading to constructive interference and a

strong response. As the direction changes, a phase difference occurs across the
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Figure A.6: Plane wave interaction with the cone, where 8 = 30 degrees (a) The refrac-
tion causes the wave field to be rotated. The effect of the transducer is to integrate the
wavefield across its surface. (b) The estimated measurements from the transducer relative
to the equivalent incident wavefield, for both the FDTD (dashed lines) and the analytical
result (solid lines) of eq. (A.4). As the field gets rotated more, the integration causes the
measurements to cancel, ultimately resulting in the zero for the 15mm tall transducer with
the 1350m /s wedge. This is shown in (c) and (d).

surface, causing a degree of cancellation and reducing the amplitude of the integral.
Complete cancellation is achieved at the 15mm transducer size for the 1350m/s
cone. The wavefield interacting with the transducer when this cancellation occurs
is shown in Figs. A.6(c) and A.6(d). In this case it is clear that the Huygens sum is

performed across a complete cycle of a sine wave, which cancels completely.

Between the cancellation points, maxima occur, which decay as the transducer size
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increases. At each successive maximum, an additional wave cycle will be present
on the surface of the transducer, meaning that the remaining non-cancelling sec-
tion is constrained to a increasingly small fraction of the surface. Relative to the
measured amplitude of the incident, undeflected wave, which will increase linearly
as the surface area increases, each successive maxima will therefore have a lower

amplitude.

One of the assumptions made in eq. (A.4) is that all energy is refracted by the
boundary of the cone; i.e. there is no reflection. The close matching between the
FDTD and the analytical values demonstrates that this assumption is reasonable for
the levels of contrast used here. This is one area where a density contrast could have
an effect on the result by increasing the boundary impedance and hence increasing
the reflection coefficient. However, assuming that density contrasts are low this will

not have a significant effect on the results.

When a wave travels from a slower medium to a faster one, total internal reflection
occurs whenever the critical angle 6. = arcsin (¢1/¢y), is exceeded. For a high sound
speed cone, this can only occur at the first interface, when the wave enters the cone.
Conversely for cones with sound speeds less than that of the background, total
internal reflection can only occur when the wave leaves the cone. For the fairly low
contrasts and boundary angles being considered here, the critical angle is unlikely
to be reached. However, it could be encountered when larger angles occur in the

full 3D model, as will be considered later.

A.4.2 Finite transmitter and receiver

The plane wave illumination used in the previous section is experimentally difficult

to reproduce, so now the analysis is extended to account for a finite-sized transducer.

Here I demonstrate that the main effect the cone has on the beam from a finite-sized
transducer is to alter its direction while leaving its shape and amplitude unchanged,
provided the cone sound speed is relatively low contrast compared to the background.

In other words, the beam is rigidly rotated by d9, the deflection angle calculated in
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Figure A.7: Analytical model for estimating transmission response. The effects of the
refraction of the cone (a) can be estimated from the straight beam as shown in (b).

eq. (A.3). Therefore, it is possible to decouple ray-based refraction caused by the

cone, and beam diffraction from the transducer aperture.

To predict the amplitude at the receiver one can proceed as illustrated in Fig. A.7.
The effect on the measured signal of the transducer beam being deflected upwards is
modelled by having a straight transducer beam and moving the receiver transducer
to the equivalent position relative to the beam, as shown in Fig. A.7(b). Huy-
gen’s summation can then be used across the surface of the receiver to estimate the

measurement that would be taken.
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0o was calculated for the plane wave case in the previous section. When accounting
for the beam, it is necessary to calculate the location offset, A. Through trigonom-

etry, this becomes
A = [Lcosf + (r, — Lsin 8 — rg)] cos dy (A.5)

where 7 is the radius of the cone in the array plane, r, is the distance between the

centre of the cone and the receiver transducer and

27’0 sin (51
I — A.6
cos (B + 61) (4.6)
is the distance between the point the ray leaves the cone and the intersection of the

cone with the x axis.

To verify that the model of Fig. A.7 produces the correct trends, it is compared
to the output from a 2D FDTD simulation. Although most parameters are fixed
for a single FDTD simulation, by recording time traces at many points in the z
direction at the line of the receiver transducer, many different sized transducers can
be modelled at the post-processing stage by summing across particular sections of
the line. Of course this means that — in general — the receiver transducer will not
be the same size as the source, which is unlikely to be the case in reality, but the
data produced will enable a comparison to be made between the analytical model

and FDTD to determine accuracy. Figure A.8 performs this comparison.

The results show excellent agreement. Even at the higher contrast (where the ap-
proximations are less valid) the analytical model is close to the FDTD response and
captures the same trends. This indicates that for the ranges being considered here,
the underlying assumptions of the analytical model, that the refraction causes the
beam to deflect without changing shape or amplitude, are reasonable. It is therefore

possible to assume that the trends predicted by the model are valid.

The combined ray /source diffraction approach is similar to that presented in [118,
119]. Here, instead of a single ray, however, separate rays are drawn from each

elemental area of the source transducer to the point of interest. Each of these
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Figure A.8: Comparison of the analytical model of Fig. A.7 and the FDTD data for
a range of different receiver transducer sizes. Normalisation is calculated relative to the

same measurement without the cone present. The source transducer height is 12mm and
B = 30 degrees.

elemental areas is considered a point source and the response at the point of interest
corresponding to each is determined by the distance calculated from the ray path.

By summing all these responses the field can be calculated at the point of interest.

This approach is more accurate than the one given here, since it does not assume that
the beam will rigidly rotate upon being refracted. The benefit of this approach is that
the refraction effect is separated completely from the diffraction of the beam; this
allows the parameters relating to the transducer to be separated from the parameters
which control the path of the beam. As well as being easier to generalise, this method

is also faster since only a single ray path needs to be determined.

The approach introduced in this section and illustrated in Fig. A.7 provides an
important insight into the mechanism of ultrasound transmission through the cone.
In fact, depending on the extent of beam deflection, it is possible to define two
regimes according to whether the equivalent receiver transducer location lies inside
the main lobe of the source beam or not. If the receiver transducer lies within

this region, the amplitude of the transmitted beam varies little across the receiver
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aperture, and the receiver response depends on the phase distribution as in the
case of the plane wave illumination. On the other hand, outside the main lobe, the
amplitude of the transmitted field drops significantly and experiences very rapid
variations in space. As a result, the receiver response will be much weaker and
strongly dependent on transducer position as well as the phasing effect. Clearly,
this condition is not suitable for measurements aimed at probing the interior of the
cone as in breast ultrasound tomography because signals would be highly sensitive
to the position of the breast relative to the transducers. Next the condition that

separates the two regimes is defined.

Using the Fraunhofer approximation [68] to model the far field of the beam, it is
possible to estimate, based on A and the distance between the transducers, whether
the receiver is within the central lobe. The equivalent angle between the centre line

of the source transducer and the receiver of Fig. A.7(b) can be calculated as

A
0, ~ (A7)

Ts + T

taking the distance from the source transducer to the centre of the cone as r;. The

limiting angle of the central lobe — i.e. the first zero — can be established as

elim — é

. (A.8)

with h defined as the height of the transducer and A as the wavelength |68]. There-

fore, the condition for the receiver to be within the main beam of the source is

A h
~ <1

Ts + 1 A (A.9)

It is assumed that the model of Fig. A.7 is accurate provided the condition in
eq. (A.9) is satisfied. Outside this region, the amplitude will depend on the ampli-
tudes of the grating lobes. An estimate of the maximum expected amplitude can
be obtained by considering the peak of the first grating lobe. This has amplitude
0.217 in the far field using the Fraunhofer approximation [68], so it is assumed that
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the maximum amplitude measured outside the region defined by eq. (A.9) is around
20% of the undeflected value, i.e. a significant fraction of the energy is lost. Given

the low amplitude, the results in this region are not extensively studied further.

A.4.3 Parametric study

Under the decoupled beam diffraction/cone refraction model, the large number of
parameters of Sec. A.2 can be significantly simplified and reduced. In particular,
it can be concluded that the refraction is controlled purely by the material prop-
erties of the cone whereas the beam shape is controlled purely by the transducer

characteristics.

To study the transmission phenomenon, the total angular deflection d5 is first deter-
mined from eqs. (A.2) and (A.3). It is possible to calculate A exactly with eq. (A.5),
but this would mean maintaining a large number of parameters, making the results
difficult to generalise. Assuming that the transducers are at a large distance from
the origin of the Cartesian coordinate frame, it follows that 6, = 6, = d5/2 where 0,

and 0, are defined as in Fig. A.7(b).

Using the Fraunhofer approximation [68], the field produced by a transducer is

_exp (tkoR) i (koh sin 93) (A.10)

where R and 6, are the polar coordinates of point p relative to the centre of the
source transducer, taking 6, = 0 perpendicular to the surface. The response for a
receiver transducer can be calculated by integrating the field in eq. (A.10) across its
surface in the same way as for the plane wave model in eq. (A.4). Since this case lies
in first regime of transmission, the amplitude remains approximately constant across
the surface, so only the exp (ikgR) term varies. If the Fraunhofer approximation is

then applied again to approximate this term in the far field as a plane wave, it can
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Figure A.9: The effect of transducer size on the response with different 9 values. The
transmitter and receiver have the same size.

then be integrated across the receiver surface, giving the relative response as

(A.11)

T — sine? {koh sin ((52/2)]
2 b)

where it is assumed 05 = 6, = d5/2 from before.

Under this approximation, it is possible to simplify the validity criterion of eq. (A.9).
The first zero of the beam function in eq. (A.10) is taken as the boundary of the

beam, giving the criterion as

h

A

02

S| <L (A.12)

Figure A.9 plots the response as a function of transducer size at different values of
2. This is done using the far field approximation of eq. (A.11) and, for comparison,

using the more exact Huygens approach for the receiver positioned at . = 100\.

The approximation shows very good agreement for most of the range. For each
do curve, however, there is a a slight divergence just before the validity limit of
eq. (A.12) breaks. This suggests that the receiver has become sufficiently tall that

it is no longer entirely contained within the main beam and the locally plane wave
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Table A.1: Actual responses for the cone simulations of Sec. A.3 compared to the es-
timated responses from eq. (A.11). Responses are given as percentages of the signals
measured without the cone present. Both the transmitter and receiver have width 4mm
and height 20mm.

S(;(:;Z S((;;ll;ls(; o1 (rad) 9, (rad) relislf)znmszt?gé) reslﬁ)crllc:eal(%)
1350 0.0956 0.2442 < 20 10
1440 0.0392 0.0855 53 44
1470 0.0198 0.0413 87 85
1530 -0.0202 -0.0389 88 83
1560 -0.0408 -0.0757 61 51
1650 -0.1058 -0.1772 < 20 17

assumption breaks down. It is therefore important to recognise the limitation of

eq. (A.12) as the transducers become larger.

The response from eq. (A.11) is compared to the 3D simulations of Fig. A.3(b).
For each of the cones simulated, the J, values are calculated by solving eqs. (A.2)
and (A.3). The response is then calculated using eq. (A.11). These estimates are

compared to the results of the 3D simulation in Tab. A.1.

A good estimate of the response for a variety of sound speeds above and below that
of the background is obtained. The estimated responses are typically within around
10% of the 3D simulations; more importantly the trends predicted by the analytical

model are shown to be valid.
The process for estimating the transducer response can be summarised as follows:
1. The total deflection ds is calculated from the material properties and geometry
of the cone according to egs. (A.2) and (A.3).

2. The criterion h|dy/2| /A < 1is applied to check whether the receiver lies within

the main beam. If not, it can be assumed that there will be a significant — at
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least 80% — amplitude drop.

3. If the receiver does lie within the main beam, the response can be estimated

from eq. (A.11), making the assumption that the receiver is in the far field.

A.5 Deflection outside the transducer plane

The previous section has considered the deflection of the transducer beam as it
passes through the centre of the cone. However, as can be seen by the ‘smile’ shapes
of Fig. A.3 in Sec. A.3, the deflection caused by the cone increases outside this plane.
Here the ray theory is extended to explain this trend for a fixed source transducer,

then the effect this will have on the measured amplitude is considered.

A.5.1 The ‘smile’ effect

The transducer is treated as a point source with a series of rays diverging from it,

each of which is then projected through the cone.

The previous section demonstrated how the deflection caused by the cone along the
central plane could be predicted by ray theory. In Snell’s Law, the incident angle is
the angle of the incident ray relative to the normal of the surface separating the two
materials. For the interaction with the cone, the incident angle has to be treated as
a combination of two angles in different planes, as shown in Fig. A.10. The resulting

compound incident angle, 6, will therefore be larger so a greater deflection will occur.

By using trigonometry to calculate the incident angles and utilising Snell’s Law, it
is possible to calculate the path within the cone, how it interacts with the second
interface and where it ultimately intersects the output plane. Figure A.11 shows

three such ray paths.

As the incident angle in the z-y plane increases from lines 1 to 2 to 3, it can be seen

that the overall deflection increases because of the compound incident angles. This
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Figure A.10: 3D incident angles. The angle ¢ is a combination of 6., and 6,, such that
sin @ = sin 0, sin 6,....

results in the rays’ intersection with the output plane forming a ‘smile’ pattern,
which matches the behaviour of the 3D FDTD simulation, as was visible in the

higher contrast transmitted fields of Fig. A.3.

A.5.2 Amplitude drop outside the transducer plane

Having used Snell’s law to determine the path of the ray through the cone, the
corresponding amplitude drop is now calculated. The decoupling approach used
before, separating beam diffraction from cone refraction, can be applied here too.
The additional dimension, however, adds significant complexity, since it is necessary
to account for two angular deflections and two displacement offsets in the horizontal

and vertical planes.

It can be observed that the far field of a rectangular transmitter transducer in 3D
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Figure A.11: Paths through the cone plotted for three different rays. The deflection is
clearly increased as two incident angles are combined. A ‘smile’ pattern can be seen in a
similar way to the result of the 3D FDTD model in Fig. A.3.

is the product of the fields of two linear apertures in 2D [68]

ety [ (wzx ika? , hz ikz*
Ulx,z)= i)\yA {smc ()\_y) exp ( % )} [smc ()\_y> exp (E)} (A.13)

where A = wh is the area of the transducer. The field is the product of the field of

a linear aperture in the vertical plane and that of a linear aperture in the horizontal
plane. This suggests that it is possible to treat the amplitude drop problem by
considering two separate 2D problems. First the transmission amplitude due to

a prism equal to the cross section of the cone in the vertical plane joining the
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Figure A.12: Estimates of the transducer response as the transducer is moved away from
the transducer plane. The solid lines are the values derived by summing sections of the
FDTD responses of Fig. A.8. The dashed lines are the analytical estimates.

transmitter and receiver is estimated. Then the transmission amplitude due to a
circular cylinder is calculated. In each case the amplitude is normalised with respect
to the transmission measurement without the scatterer. Finally the two transmission

amplitudes are multiplied to obtain the 3D normalised transmission coefficient.

Figure A.12 gives this response for transducers in different y locations in the x =
80mm output plane of Fig. A.2. The response is relative to the result which would
be obtained if the transducers were held in the same locations and the cone was
removed. Compared are the transducer responses calculated from the ray-based ap-
proximation outlined above and the responses calculated by summing the results of
the 3D FDTD simulation across the rectangular aperture of the receiver at different
positions along ¥. In all cases the receiver transducers remain orientated to face in
the —% direction, with their faces matching the size of the source: 20mm tall and

4dmm wide.
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The FDTD lines and the ray approximations are shown to match reasonably well
— even the 1350m/s case which is outside the ‘central beam’ threshold, causing the
significant relative offset at y = 0. In all cases the normalised signal can be seen to
drop as the receiver moves away from the transducer plane. This is caused by the
additional ray deflection which occurs towards the edge of the cone, resulting in a
lower relative signal. It should be emphasised that normalisation is performed rela-
tive to the transducer measurement of the undisturbed beam in the same position,
so this amplitude drop is not a result of transducer beam spreading in the horizontal
plane. The drop shown in Fig. A.12 as y increases is therefore purely a result of the

presence of the cone deflecting the waves.

The compound angle effect present in the 3D model increases the possibility of the
critical angle being reached. This is particularly true for rays hitting the cone bound-
ary close to grazing incidence. For cone sound speeds greater than the background,
total internal reflection can occur as the ray enters the cone, but for cone sound
speeds of less than the background, this can happen as the ray attempts to leave the
cone. In the model performed here, such rays are disregarded. It would be expected
at these low contrasts that these effects will only be present in a limited section
of the parameter space, so in general it is possible to consider them negligible; the

FDTD results of Fig. A.3 show no evidence of extensive total internal reflection.

A.6 Conclusions

The problem of transmission through a penetrable acoustic cone has been investi-

gated to determine the effects on practical ultrasound measurements.

I have studied the combined effect of diffraction occurring at the aperture of the
transducers and refraction through the cone. The beam emerging from the cone
can be approximated by rigidly rotating the beam in the free background medium

through an angle that can be estimated by Snell’s law.

There are two regimes that characterise the strength of transmission. In the first
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regime the receiver is contained within the main lobe of the beam radiating from
the transmitter. Here the incident beam intersecting the surface of the receiver can
be approximated as a plane wave and the strength of transmission measurement
depends on the phase distribution along the height of the receiver. In the second
regime, the receiver is outside the main lobe and the phase oscillations along the
receiver are accompanied by large amplitude variations that lead to a significant

transmission amplitude drop.

I have provided an analytical expression that marks the transition between the two
regimes. Moreover, by using the plane wave approximation within the first regime,
a surprisingly simple solution can be derived, allowing one to predict the amplitude
drop for the many parameters of the problem directly. Outside the first regime, the
amplitude drop is in excess of 80% of the incident field.

Transmission with two diametrically opposed transducers can be studied considering
a 2D problem based on the vertical cross-section of the cone. However, off-axis
transmission requires the consideration of an additional 2D problem defined by the
horizontal cross-section of the cone. Combined, these account for amplitude drop
in the vertical and horizontal directions respectively; the total drop is given by the

product of these two values.

The analytical trend and physical approximation introduced reported will be of
significant practical benefit in the design of future breast ultrasound tomography

systems.
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Appendix B

Beamforming to diffraction

tomography for a non-circular array

Many configurations do not correspond to the circular array (or a section of a cir-
cular array in the case of a limited view array) considered throughout this thesis.
An alternative is therefore needed to deal with more general array configurations.
Here T address the modifications which must be made to make the HARBUT imple-
mentation suitable for a general array, starting by considering the BF to DT filter

discussed in Chapter 2.

Simonetti and Huang [34] derived the filter by analytically comparing the point
spread function of the BF algorithm in the far field for a circular array with that of
DT. Here, I introduce a more general approach to deriving the filter which can be
extended to other array configurations. I begin with the BF equation from Chapter

2

)

BF _ Vs(X,y) -
I (Z)_/S/SGU(X,Z)GU(Z,y)d dy. (B.1)

If the problem can be treated as far field, plane wave Green’s functions can be
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substituted

[F(z) = / _sB0.8) e e (B.2)
S

S e—ikué.zeikuéo .z

— / / eihu(3=80)-2y) (3. 8)d8qdB. (B.3)
SJS

This has similarities to the standard inverse 2D Fourier transform
F(x) = / e™*F(k)dk (B.4)

where the function is also multiplied by the exponential term and integrated. The
difference lies in how the integration is performed. The standard inverse Fourier
transform does this linearly across the k-space, however, the BF algorithm instead
performs the integration along the circular arcs mapped out in the k-space as the
source (Sg) and receiver (§) vectors are varied. This introduces a weighting into the
transformed data. This weighting causes the distortion in BF, which is removed by

Simonetti and Huang’s filter to convert into DT.

It is possible to perform a coordinate transform in the integral, changing from in-
tegrating around the different directions of the transducer array, as in eq. (B.3),
to integrating across the k-space, as in the standard 2D Fourier transform (B.4).
The Jacobian determinant of the transform will define the weightings applied to
each spatial frequency component, and hence should equal the BF to DT filter. The
derivation is straightforward and will not be included here for brevity; the weighting

becomes

1

k)= ——
wike) = s

(B.5)

where (3 is the angle between the source and receiver vectors and k, = k, [So — §|,

with k, being the wavenumber in the uniform background as defined in Chapter 2.
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Imaging point
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Transduger array

Figure B.1: Coordinates for calculating BF weightings for a linear transducer array

k, is related to

ko
pu— B.
cos 3 o, (B.6)

which allows the weighting to be rewritten as

w(ky) = ! | (B.7)

krkuv L= (z’Zl)Q

This matches the result from [34], although there are some constants which result

from the Fourier transforms and far field normalisations which are not considered
here. This method of deriving the filter is more flexible than the original technique,

making it suitable for a variety of configurations.

The previous analysis assumes that measurements are uniformly taken at equiangu-
lar intervals around the scatterer, which is only true for a circular, far field array.
If the angular spacing is no longer uniform, the integral of eq. (B.3) will be further

distorted, so additional weightings would need to be incorporated into the filter.

This is demonstrated for a linear array. The parameters are defined in Fig. B.1,

such that

[ = Dtana. (B.8)
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In order to incorporate this into the weighting, the rate of change along the length
of the array as the angle, o, changes needs to be included in the Jacobian term.

This is calculated as

dl

o= D sec? . (B.9)

This can be easily incorporated into the filter in the k-space by first calculating o
for the linear source array, calculating dl/da, doing the same for the linear receiver
array, then multiplying them both by the standard weighting of eq. (B.7) to obtain
the final overall weighting.

This filtering approach is built on the far field assumption: since the array is distant
from all points in the image, the illumination angle corresponding to a particular
transducer will remain constant as the imaging point changes. In the near field the
angles of the transducer array vary with position. In order to correctly account
for this, each pixel in the image would, theoretically, need its own filter, which is
impossible. A better solution is to incorporate some or all of the weightings into the
beamforming integral of (B.1) rather than applying a filter as a post-processing stage.
Since each pixel is calculated separately, the correct weightings for each position can
be included at this stage rather than having to use a single set of weightings for the

whole image, as is the case for the filter.

It is noted that in the earlier chapters, successful images were reconstructed from a
circular array without accounting for the positional variation of the filter. Figure B.2
illustrates why this is possible. Figures B.2(b) and (c) show how the filter remains
relatively constant for a circular array as its location is changes, explaining why
the images of the earlier chapters did not exhibit any significant filtering artefacts.
For a square array, however, the filter is much more complex, and can no longer
be approximated as constant in space, as shown in Figs. B.2(e) and (f). The offset
filter of Fig. B.2(f) becomes discontinuous, and the discontinuity magnitudes and
locations depend on the position, making the use of a single filter for all parts of
the image inappropriate. In this case it is more appropriate to include angular

weightings directly in the beamforming integral.
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Figure B.2: Near field position dependency of filters. Note that just the angular spacing
component is present; the weightings of eq. (B.7) are not included for clarity. (a) and (d)
show the circular and square array configurations respectively, and mark the two points
at which the filter is calculated. (b), the circular array filter at the centre, and (c), the
circular filter at the offset location, show that the filter remains relatively constant when
the position changes for the circular array. (e) shows that the square array filter is far
more complex, and (f) shows that as the position varies, discontinuities appear in the filter
which move as a function of position; as such the filter for the square array cannot be
approximated as constant in space.

Finally it should be noted that the implementation of the algorithm relies on dis-
cretising the BF integral of (B.1). This discretisation provides a convenient mecha-
nism to correct for irregular angular spacings for general arrays. When the integra-
tion is discretised, each component value is multiplied by the angular ‘contribution’

of each transducer and summed to integrate around 27 radians

I%7(z) =~ ifj Vslxisyr) 5059 (B.10)
° Gu(xiaz)Gu(Z7YT) o
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Transducers —
\ Linear ‘contribution’
of transducer

><66 angular ‘contribution’

Image point

Figure B.3: The angular ‘contribution’ of a transducer, used in the BF integral discreti-
sation. Note that the extent of the transducer here is considered to be from halfway from
the previous transducer to halfway to the next transducer; this definition is such that the
sum of all angular contributions should sum to 27 if a full view configuration is used, or
to the angular extent of a limited view array.

where N is the number of transducers, 7 and r are illumination and reception trans-

ducers respectively, and 06; and 66, are the angular contributions.

The angular contributions are defined as in Fig. B.3. The surface of the array
is divided into lengths associated with each transducer, importantly with no gaps
between; as such the boundary of each length is defined as the halfway point between
two transducers, rather than being the physical limit of the transducer. The angle
subtended for each length defines each 60 term. If a full view configuration is used,
the sum of all these angles should be 27; if not then the sum will be equal to the

angular extent of the array.

By using eq. (B.10), the irregular angular spacing of the transducers is automatically
accounted for. Accurate sound speed maps can then be obtained from this image

via the standard BF to DT filter.
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