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Abstract 

Ultrasonic Non-Destructive Evaluation (NDE) relies on the scattering of waves from 

discontinuities, such as fractures or voids, to probe media otherwise invisible to the naked 

eye. Whilst this has been industrially exploited for several decades within acoustically 

transparent materials, many materials maintain a microstructure that causes scattering of 

the propagating waves. This undermines the aforementioned premise as it becomes 

exceedingly difficult to discern the features of interest from the scattering inherent to 

microstructural features, thereby limiting the range of materials which can be reliably 

inspected, non-destructively. 

Experimental investigations confirm the challenges and significant shortcomings for the 

inspection of future industrial components where such microstructures are desirable for 

their mechanical properties. It is demonstrated that the rapid increases in scattering with 

the insonifying frequency severely limit the achievable sensitivity of conventional 

ultrasound techniques. 

A review of the latest advances in ultrasound technology, including signal processing 

and imaging algorithms, explore the opportunities to exceed current limitations and 

advance the capability of ultrasonic NDE. 

Establishing these advances, and those of future approaches, requires a rigorous 

definition of performance. In contrast to commonly adopted strategies, a novel strategy 

which considers the probabilities of detection and false alarms is proposed as a valuable 

benchmark that can be used to make objective comparisons in terms of performance 

between competing algorithms. 

Future progress will also rely on a better scientific understanding of scattering, which 

can be provided by powerful modelling tools. Here, Finite Element modelling is established 

to be very useful; it captures the complex scattering physics and allows an investigative 

flexibility which can provide extremely useful insights. 

Whereas previous studies have often been restricted to weak scattering assumptions, 

the present FE modelling capability now enables the study of more complex, highly 

scattering environments. This is demonstrated by investigating ultrasonic arrays, where 

through optimising their engineering, especially in terms of their configuration, significant 

performance enhancements are shown to be possible. 

These important scientific tools have enabled the assessment of the latest imaging 

algorithms, the optimisation of inspection configurations, and increased our understanding 

of scattering phenomena. Their use in the future enables wide possibilities towards further 

pursuing the ultrasonic inspection of highly scattering materials. 
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Ultrasonic array image of a cylindrical defect (red) within a highly scattering 

material. 



 

5 

 

 

 

Voor mijn vader en moeder.  

  



 

6 

 

Acknowledgements 

I would like to express my gratitude to all persons who helped me realise this work.  

I’m especially grateful to my supervisors: Prof Mike Lowe for his mentorship and 

inspiration without which this work would not have been possible; Dr Colin Brett for his 

continued support and guidance.  

For all the impromptu meetings which were very helpful, I’d like to thank Dr Peter 

Huthwaite.  

I have also benefited greatly from stimulating discussions with Prof Peter Nagy – an 

acknowledgement which now spans a generation.  

Finally, I’m indebted to all the members of the NDE group at Imperial College. When I 

first joined the group I could hardly even recognise an oscilloscope, let alone use one. For 

bettering that and many other of my shortcomings, special thanks to: Dr Remo Ribichini, 

Dr Wonjae Choi, Dr Nicholas Brierley, Dr Bo Lan, Dr Attila Gajdacsi, Dr Xi Xiaou, Dr 

Vatche Attarian, Dr Eli Leinov, Matthias Seher, Fan Shi, Julio Isla, Francisco Hernando 

Quintanilla, Gabor Gubicza, and Joe Corcoran.  

 

 



 

7 

 

Declaration of Originality 

The content of this thesis is the result of independent work carried out by myself under 

the supervision of Prof Michael Lowe. Appropriate references have been provided wherever 

the work of others has been used. 

 

Anton Van Pamel  

 

 



 

8 

 

Copyright Declaration 

The copyright of this thesis rests with the author and is made available under a 

Creative Commons Attribution-Non Commercial-No Derivatives licence. Researchers are 

free to copy, distribute or transmit the thesis on the condition that they attribute it, that 

they do not use it for commercial purposes and that they do not alter, transform or build 

upon it. For any reuse or distribution, researchers must make clear to others the license 

terms of this work. 

 

 



 

9 

 

CONTENTS 

1 Introduction ...................................................................................................... 15 

1.1 Industrial Motivation ....................................................................................... 16 

1.2 Problematic: Scattering ................................................................................... 19 

1.2.1 Attenuation .............................................................................................. 21 

1.2.2 Coherent Noise ......................................................................................... 21 

1.2.3 Anisotropy ................................................................................................ 22 

1.3 Aims and Objectives ........................................................................................ 22 

1.3.1 Roadmap................................................................................................... 23 

2 Ultrasonic Grain Scattering ............................................................................... 25 

2.1 Introduction ..................................................................................................... 26 

2.2 Polycrystalline Material ................................................................................... 27 

2.3 Scattering Attenuation: Early Beginnings ....................................................... 33 

2.4 Backscatter: Thompson Era ............................................................................ 38 

2.5 Signal Processing: Split Spectrum Processing ................................................. 41 

2.6 Ultrasonic Arrays ............................................................................................. 43 

2.6.1 Spatial Compounding ............................................................................... 44 

2.6.2 Multiple Scattering Filter ......................................................................... 45 

2.6.3 Super Resolution ...................................................................................... 46 

3 Experimental Demonstrations ........................................................................... 49 

3.1 Inspection of Future Power Plant Components .............................................. 50 

3.2 Attenuation Measurements .............................................................................. 57 

3.2.1 Background Theory .................................................................................. 57 

3.2.2 Methodology ............................................................................................. 58 



 

10 

 

3.2.3 Results and Discussion ............................................................................. 60 

3.3 Temporally and Spatially Incoherent Noise .................................................... 63 

3.3.1 Temporal Averaging ................................................................................. 63 

3.3.2 Spatial Averaging ..................................................................................... 66 

3.4 Conclusion ........................................................................................................ 69 

4 Benchmarking Methodology .............................................................................. 71 

4.1 Introduction ..................................................................................................... 72 

4.2 Imaging Performance ....................................................................................... 72 

4.2.1 Flaw Detection ......................................................................................... 73 

4.2.2 Flaw Characterisation .............................................................................. 78 

4.3 Imaging Algorithms ......................................................................................... 78 

4.3.1 Total Focusing Method ............................................................................ 80 

4.3.2 Phase Coherent Imaging .......................................................................... 80 

4.3.3 DORT MSF .............................................................................................. 80 

4.4 Data Collection ................................................................................................ 81 

4.4.1 Experimental Data Collection .................................................................. 82 

4.4.2 Simulation of Scattering Materials ........................................................... 83 

4.5 Measuring Reliable Detection .......................................................................... 86 

4.5.1 Segmentation Procedure ........................................................................... 90 

4.5.2 Further Sampling Considerations............................................................. 92 

4.6 Imaging Algorithm Evaluation ........................................................................ 93 

4.6.1 Results ...................................................................................................... 93 

4.6.2 Discussion ................................................................................................. 96 

4.7 Conclusions ...................................................................................................... 97 

5 Finite Element Model ....................................................................................... 99 

5.1 Introduction ................................................................................................... 100 



 

11 

 

5.2 FE Modelling of Polycrystalline Material...................................................... 102 

5.2.1 Generating Random Polycrystals ........................................................... 103 

5.2.2 Mesh Generation .................................................................................... 105 

5.2.3 Dimensional Considerations ................................................................... 108 

5.2.4 Efficient Simulations using GPU ........................................................... 110 

5.3 Mesh Validation Study .................................................................................. 111 

5.3.1 Mesh Scattering ...................................................................................... 112 

5.3.2 Mesh Convergence .................................................................................. 114 

5.4 Result Validation ........................................................................................... 119 

5.4.1 Attenuation ............................................................................................ 123 

5.4.2 Phase Velocity ........................................................................................ 125 

5.4.3 Grain Noise Considerations .................................................................... 128 

5.4.4 Dimensionality of Scattering .................................................................. 132 

5.5 Conclusions .................................................................................................... 134 

6 Array Optimisation ......................................................................................... 135 

6.1 Introduction ................................................................................................... 136 

6.1.1 Established Single Scattering Theory .................................................... 136 

6.1.2 Array Imaging Algorithms ..................................................................... 138 

6.2 Method: Simulation of Highly Scattering Materials ....................................... 138 

6.2.1 Modelling Polycrystalline Materials ....................................................... 138 

6.2.2 Array Model ........................................................................................... 139 

6.3 Results I: Simulation of Single Scattering Media .......................................... 143 

6.3.1 True Point Scatterer .............................................................................. 145 

6.3.2 Point Spread Function ........................................................................... 145 

6.3.3 Predicted Signal-to-Noise Ratio ............................................................. 148 

6.4 Results II: Simulation of Multiple Scattering Media ..................................... 148 



 

12 

 

6.4.1 Aberrated True Point Scatterer ............................................................. 149 

6.4.2 Aberrated Point Spread Function .......................................................... 149 

6.4.3 Signal-to-Noise Ratio .............................................................................. 152 

6.5 Results III: Experimental Illustration of the Backscatter Envelope ............. 159 

6.6 Discussion: Spatial Averaging Theory ........................................................... 161 

6.6.1 Results versus Single Scattering Theory ................................................ 161 

6.7 Conclusions .................................................................................................... 164 

7 Psuedo Colouring ............................................................................................ 165 

7.1 Introduction ................................................................................................... 166 

7.2 Concept .......................................................................................................... 166 

7.3 Signal Processing Methodologies ................................................................... 167 

7.3.1 RGB Colouring ....................................................................................... 169 

7.3.2 HSV Colouring ....................................................................................... 169 

7.4 Simulation Results ......................................................................................... 170 

7.5 Discussion and Conclusions ........................................................................... 175 

8 Spatial Filtering .............................................................................................. 177 

8.1 Introduction ................................................................................................... 178 

8.2 Spatial Filtering ............................................................................................. 178 

8.2.1 Analytical Validation ............................................................................. 180 

8.3 Numerical Results .......................................................................................... 184 

8.3.1 Numerical Validation ............................................................................. 184 

8.4 Convergence Study ........................................................................................ 185 

8.4.1 Longitudinal Wave Ratio ....................................................................... 187 

8.5 Array Simulation ........................................................................................... 188 

8.5.1 Model ...................................................................................................... 190 

8.5.2 Results and Discussion ........................................................................... 190 



 

13 

 

8.6 Conclusions .................................................................................................... 193 

9 Conclusions ..................................................................................................... 195 

9.1 Review of Thesis ............................................................................................ 196 

9.2 Key Contributions ......................................................................................... 197 

9.3 Future Work .................................................................................................. 199 

9.4 Thesis Publications ........................................................................................ 200 

References ............................................................................................................... 201 

 



 

 



 

15 

  

 

 

Chapter I 

1 INTRODUCTION 

Problem Definition 

 

 

 

 

 



 

16 

  

1.1 Industrial Motivation 

Approximately four-fifths of world energy demand is currently supplied by thermal 

power stations (IEA 2014). Independent of the driving fuel - whether coal, gas, nuclear, 

oil, or renewables including geothermal and solar thermal electric - the majority of 

electricity generation worldwide is thus fundamentally limited by the same thermodynamic 

laws. In practise these laws restrict the highest achievable generation efficiency by the 

maximum power plant operating temperature. Enabling higher temperatures therefore 

presents an opportunity to progress our energy generation capability, universally.  

During the last five decades however, the evolution of power plant operation 

temperature has stagnated. Scarcity of materials with sufficient high-temperature resilience 

have limited plants to operate around 565°C (see Figure 1.1a) and hence exceeding this 

barrier will require not only superior engineering materials but also economically feasible 

solutions.  

Engineers faced a similar challenge almost half a century ago when the early 

development of Sir Frank Whittle’s jet engine was hampered by the need to accommodate 

extreme temperatures. Eventually, nickel alloys proved ground-breaking and today, can 

make up half of a modern aero-engine. Currently, government research programs (e.g. US 

DOE Advanced Boiler and Steam Program and Europe’s AD700) have identified similar 

alloys, known as Inconels (Special Metals 2013), to realise next-generation power plants. 

By replacing present steels, super-alloys could conceptually enable power plants to operate 

at “ultra-super-critical” (USC) conditions (Bugge et al. 2006), close to 700°C, raising their 

efficiency from approximately 36% to 50+% (see Figure 1.1b) and reducing specific 

emissions by almost half.  

Despite this superior strength, one of the remaining obstacles is the associated increase 

in cost (Phillips & Wheeldon 2010). In comparison to aerospace applications, the sheer 

volume of nickel required for a single USC plant presents serious economic challenges. One 

way to reduce these costs is by prolonging the service life of components through diagnosing 

their structural health using Non-Destructive Evaluation (NDE). 
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(a) 

 

(b) 

Figure 1.1: (a) Evolution of power plant operating temperature (Eddystone 1 and Philo 6 are 
power plants), image adapted from (EPRI 2013) (b) Concept of ultra-super-critical power plants, 
image adapted from (IEA 2014). 
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Two main damage mechanisms (Webster & Ainsworth 1994; Viswanathan 1989) 

threaten power plants: the long-term accumulation of creep and fatigue. The former is the 

static high temperature life limiting mechanism, and the latter occurs through the thermal 

cycling of the plant, introducing defects which, when allowed to grow beyond a critical 

size, can cause catastrophic failure. To safely extend the service life of components thus 

starts by understanding the population of flaws that might be present within. This requires 

the ability to detect, size and characterise any flaws accurately, and with high reliability, 

so that their development with time can be predicted.  

Whereas surface breaking defects can be found using visual inspection, such as liquid 

penetrants and magnetic particle inspection, sub-surface ones require more advanced NDE 

technologies. Two techniques are available for the in-situ volumetric inspection of power 

plant components. Sub-surface defects can be found by employing either electromagnetic 

or mechanical waves, termed radiography and ultrasound respectively. Radiography 

requires costly measures to prevent any exposure to personnel within the vicinity and is 

poor at detecting defects whose plane is perpendicular to the direction of radiation. As wall 

thicknesses of future USC components are likely to increase, in order to withstand higher 

pressures, the need for increased penetration may require unfeasible levels of radiation. 

Consequently, ultrasound is the preferred method for inspection.  

Ultrasound relies on the scattering of waves from any discontinuities within a material, 

such as fractures or voids, which are received as echoes in order to locate and identify 

defects. In its simplest form, this can be achieved using a single transducer which both 

emits and receives ultrasonic waves, known as pulse-echo operation. Other formats consist 

of two transducers in a pitch-catch configuration, or a combination of both, which is used 

in a more modern ultrasound technology: multi-element arrays. For all these 

configurations, typical wavelengths are of the millimetre scale, although shorter 

wavelengths are desirable as this improves resolution and thereby also the ability to 

characterise objects.  

The evolution of future power plants will thus depend not only on sufficiently strong 

materials but also on the technical confidence, including the capability to perform reliable 

NDE. Inspection with ultrasound however, introduces new challenges. Aside from the 

appropriate alloying composition, these super-alloys would derive their superior creep 

strength from a coarse polycrystalline microstructure. This is where inspection difficulties 

arise due to scattering brought on by the material microstructure.  
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1.2 Problematic: Scattering 

Waves propagate freely in unchanging, homogenous media. A great deal of problems 

in electromagnetics, acoustics, and elastodynamics have been studied in this context: 

antennae, guided waves, and optical fibres amongst many others (Ishimaru 1978). Nature 

is often more complex however, and media can vary both randomly in space and time; 

waves propagating in such a medium vary randomly in amplitude and phase and are 

therefore more easily described by probabilities rather than deterministic laws. This 

constitutes a form of scattering such as that found by seismic waves propagating within 

different layers of the Earth’s sub-surface, or light scattering from particles in the 

atmosphere. Another form of scattering is that which arises from rough surfaces [see e.g. 

(Ogilvy 1991)] which is not dealt with here.  

Within ultrasonic NDE, scattering is encountered when the elastic waves propagate 

within heterogeneous media where either density or phase velocity (collectively known as 

the acoustic impedance) varies - usually spatially - occurring in the aforementioned super-

alloys, layered composites such as carbon reinforced plastics, and even conventional steels 

(e.g. cast components) can exhibit a sufficiently coarse microstructure. In fact, ultrasound 

is fundamentally limited by the onset of scattering once the wavelength becomes 

dimensionally similar to the characteristic dimension of the inhomogeneity of the 

propagation medium. This ultimately limits the range of materials which can be reliably 

inspected and restricts the maximum resolution which can be achieved.  

Scattering occurs within polycrystalline materials due to a contrast in phase velocity 

at each grain boundary of the microstructure. As the coherent wave is scattered, it becomes 

exceedingly difficult to discern the signals of interest, stemming from defects such as voids 

and fractures, from those inherent to the microstructural features of the material. This 

reduced ability to distinguish signals from noise, often quantified by the Signal-to-Noise 

Ratio (SNR), is illustrated in Figure 1.2 by comparing typical ultrasonic measurements 

from (a) a transparent and (b) a scattering material. The adverse effects of scattering can 

be summarised by discussing (1) an increased attenuation, (2) the introduction of coherent 

noise, and possibly (3) anisotropic effects.
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Figure 1.2 Schematic of a pulse-echo ultrasonic immersion inspection of a cylindrical defect 
within a (a) ultrasonically clean material and (b) a highly scattering material. Left shows the 
physical inspection layout and right displays the inspection information. Images adapted from 
(Feuilly et al. 2009). 
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1.2.1 Attenuation 

As waves propagate their energy dissipates and spreads causing the wave amplitude to 

decrease; this phenomenon is termed attenuation. The mechanism by which it occurs varies 

according to the propagation medium, but by and large it can be classified as the 

summation of diffraction (also known as beam spreading), absorption, and scattering, 

where only the latter two are solely properties of the material. 

Attenuation due to absorption effects usually follows a square dependency with 

frequency. In polycrystalline materials however, scattering introduces a new form of 

attenuation that dominates other forms, causing the overall attenuation to rise 

significantly. Attenuation will decrease signal amplitudes, which when maintaining the 

same level of noise, causes a reduction in SNR. 

In many other contexts of NDE, this can often be resolved by one of two solutions. The 

first is to increase the signal amplitude by increasing the original excitation intensity and 

the second consists of averaging repeat measurements. When inspecting polycrystalline 

materials however, neither of these are possible solutions due to scattering induced noise. 

1.2.2 Coherent Noise 

Noise is a ubiquitous limitation on sensing applications which can arise from a variety 

of sources. Most common, in for example the ultrasonic inspection of acoustically 

transparent materials, are the random fluctuations in an electrical signal due to thermal 

agitation. Due to its temporal incoherence, repeating the same measurement and averaging 

it with a previous measurement, allows a reduction of the noise by a factor which is dictated 

by the square-root of the number of averages. Hence in the absence of time restrictions, as 

long as incoherence is satisfied, any SNR is attainable.  

However, scattering induces temporally coherent noise in the form of backscatter and 

as previously hinted, averaging no longer provides benefits. Namely, repeating a 

measurement initiates the same scatterings events within the material as it remains 

unchanged, subsequently reproducing the same measurement of both noise and signal. 
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Equally, increasing the excitation signal amplitude in attempt to recover a loss in SNR, 

simply increases the noise linearly and thus maintains the same SNR.  

In combination with a reduced signal amplitude due to the increased attenuation, 

coherent noise can cause a severe drop in SNR, and without an immediate solution, 

presents the fundamental problematic for the inspection of these materials. 

1.2.3 Anisotropy 

Besides those previously mentioned, additional difficulty can arise due to macro-

anisotropy. Anisotropic materials have properties which are dependent on direction. A 

well-known example is composites, but metallic materials can also exhibit stiffness 

variations on a macro-scale (further discussed in Section 2.2). When this is the case, this 

can present challenges for an ultrasonic inspection as it affects wave propagation and causes 

deviations from the equivalent straight-ray path for an isotropic medium. The effect of 

anisotropy is analogous to a defocusing and skewing of the beam which reduces measured 

signal amplitudes rapidly. 

1.3 Aims and Objectives 

The work reported in this thesis explores the possibility to improve the ultrasonic 

inspection of highly scattering materials. This involves improving the capability to both 

detect and characterise - including classification and sizing - sub-surface flaws within coarse 

grained, polycrystalline materials. Since the ability to characterise is governed by 

resolution, realising this purpose rests on enabling inspections at the highest possible 

frequencies, despite the consequent increase in scattering, in order to maximise resolution. 

The project adopts an applied-research philosophy, such that no particular technology 

is pre-selected at the onset. Rather, the project is problem-driven, and openly explores and 

adopts the available technologies to realise its aims, including the review of current 

standings, benchmarking of the forerunning NDE techniques, and where possible, the 

development of new ideas and approaches.  
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The scope is defined by the practical requirements for inspections that are commonplace 

within the power generation industry. This defines in-situ inspections which typically occur 

during an outage, where operators perform contact measurements with a variety of 

ultrasound technologies. Certain complications are not considered however, such as those 

which can occur due to curved geometry, welds, and complex defects, which may also 

represent a large portion of current inspection challenges. 

1.3.1 Roadmap  

The key developments of the thesis are organised as follows: 

Chapter II: reviews the literature of grain scattering, including the currently most 

promising solutions. 

Chapter III: familiarises grain scattering through three experimental investigations.  

Chapter IV: outlines a benchmarking strategy for evaluating state-of-the-art de-noising 

algorithms, and applies it to three of the currently most promising imaging algorithms. 

Chapter V: establishes Finite Element modelling for simulating wave propagation of 

elastodynamic scattering within polycrystalline materials in 2D and 3D. 

Chapter VI: extends the aforementioned Finite Element model into a framework to 

investigate ultrasonic array imaging within highly scattering media. 

Chapter VII: proposes a pseudo-colouring signal processing scheme for imaging highly 

scattering materials 

Chapter VIII: explores spatial filtering to reduce the contribution of shear waves within 

the scattered wave field, and introduces an initial investigation of its merits to ultrasonic 

NDE. 
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2.1 Introduction 

Our journey into ultrasonic grain scattering began more than half a century ago and 

remains ongoing today. The following review retraces its milestones starting with the first 

ultrasonic experiments with polycrystalline metals, during the 1940’s when ultrasound 

itself was still in its infancy. These pioneering experiments led to the discovery that 

ultrasonic waves interact with, and hence are sensitive to, polycrystalline microstructures. 

This spurred the study of the scattering induced attenuation, in pursuit of material 

characterisation, for the next three decades - here described in Section 2.3.  

The next era of research starts in 1989 when the crash of United Airlines flight 232 

culminated interest into another ultrasound application, that of flaw detection. In order to 

avoid further such tragedies and improve existing inspections, efforts now steered towards 

understanding the scattering induced noise. This era of research is covered in Section 2.4, 

when the FAA’s Engine Titanium Consortium (ETC) broke significant ground to 

ultimately improve the safety and reliability of aerospace engines today.  

Throughout the 1980’s, significant interest prevailed in signal processing techniques to 

supress noise sources such as clutter from radar. Frequency compounding techniques 

emerged and became a particularly interesting development for reducing grain noise, known 

today as Split Spectrum Processing, which is reviewed in Section 2.5.  

More recently, the introduction of multi-element arrays to ultrasonic NDE has enabled 

exciting opportunities for the inspection of noisy materials. In particular the emergence of 

advanced coherent noise filters (e.g. DORT MSF), spatial compounding techniques, and 

super resolution imaging, which are outlined in Section 2.6.  

Due to the abundant literature on this subject, this review is only a glimpse of 

approximately sixty years of research on grain scattering. For further reading beyond what 

is presented here, I recommend (Bhatia 1967; Papadakis 1981; Thompson 2002; Thompson 

et al. 2008). First however, we must define a polycrystalline material. 
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2.2 Polycrystalline Material 

Materials exist in a crystalline state, or as a crystal, when their microstructure is 

atomically arranged in a regular pattern. The material is then entirely formed from a 

continuous repetition of a single building block: the unit cell. As the unique constituent of 

the material, the unit cell holds the structural information for the entire crystal, and 

therefore also the material anisotropy which is determined by its symmetry. A fully 

symmetric unit cell produces an isotropic material, and one without it produces a fully 

anisotropic one. The latter is known as a triclinic crystal system and requires 21 unique 

single crystal elastic stiffness constants (SCESC) to describe its stiffness matrix. More often 

however, a certain degree of symmetry exists, leading to various patterns of anisotropy, 

which are described by the six remaining crystal systems: monoclinic, orthorhombic, 

tetragonal, trigonal, hexagonal, and cubic. The latter exhibits the highest order of 

symmetry and can be defined by just 3 independent SCESCs. 

Fully crystalline states seldom exist however, and more commonly, materials such as 

ceramics or metals, occur as aggregates of single crystals, termed a polycrystalline material 

(see Figure 2.1). A single constituent crystallite, also referred to as a grain, can vary in 

shape and size. The collective of these properties, known as the grain morphology, governs 

the macroscopic behaviour of the material. The manipulation of morphology has long 

enabled the creation of superior engineering materials, even dating back to early armourer’s 

practices. A more modern example can be taken from the aerospace industry, where turbine 

disks (Panetta et al. 2014) are manufactured to exhibit a large grained microstructure in 

the creep-critical outer diameter, whilst reverting to smaller grains near the inside diameter 

where fatigue is the limiting failure mechanism.  

Polycrystalline microstructures are governed by a number of processes, but in general 

are affected by the conditions during solidification of the material. Initial crystallisation 

occurs after the first melt during material manufacture, during processes such as casting, 

but it can also occur at later stages, for instance, during heat treatment where it is known 

as recrystallization. Most often, a prolonged cooling process allows coarser grains to form 

whereas quicker cooling promotes grain boundaries thereby yielding finer ones. 
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(a) 

 

(b) 

Figure 2.1: Comparison of (a) coarse and (b) fine polycrystalline microstructure. Both images 
shown on the same scale and represent approximately 1.2mm in width. 

 

Material C11 (GPa) C12 (GPa) C44 (GPa) A 

Tungsten 501 198 151 1 

Aluminium 108 61 29 1.2 

Alpha-Iron 237 141 116 2.4 

Nickel 247 147 125 2.7 

Silver 124 93 46 2.9 

Copper 168 121 75 3.2 

Lead 50 42 15 3.7 

Table 2.1: Cubic stiffness constants for several common cubic materials, sorted according to their 
anisotropic ratio which is related to their ultrasonic scattering strength. Source: Courtney, 
materials book.  
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Not only size, but also the grain shapes are a product of the material’s manufacture. 

The most basic grains, and to some extent also idealised, have approximately equal 

dimensions in all directions, known as equiaxed, and are formed in conditions of uniform 

temperature gradients during crystallization. Elongated grains, ones which are columnar, 

arise from either non-uniform temperature distributions, like those caused during welding, 

or through plastic deformation by forming processes such as rolling and extrusion. 

Elongated grains lead to preferential orientations, namely the crystallographic 

orientations within the polycrystalline material are no longer randomly distributed. The 

collective of these orientations can be described by Orientation Distribution Functions 

(ODF), which when entirely randomly distributed, denote a macroscopically isotropic 

material. When the material has a preferred orientation, due to for example elongated 

grains, the material is said to be textured as it exhibits macroscopically anisotropic 

behaviour. Some of the fundamental analytical tools to study textured materials were laid 

by (Roe 1965; Bunge & Morris 1982). 

The anisotropic stiffness properties of crystallites cause the material to be 

heterogeneous, which forms the underlying cause for scattering. Namely, two neighbouring 

grains which have different orientations, create a difference in wave velocity (an acoustic 

impedance mismatch) at their boundary. Consequently, an incident wave upon this 

interface causes a scattering event to occur, the strength of which is determined by the 

intensity of the impedance contrast. Hence the scattering strength of a material is in part 

determined by the maximum possible difference in stiffness which can occur through two 

orthogonal orientations. This quantity is numerically represented by the anisotropic ratio 

𝐴, given in Equation(2.1 for a cubic material. Table 2.1 lists this factor for some common 

materials and indicates their SCESCs.  

𝐴𝑐𝑢𝑏𝑖𝑐 =
2𝑐44

𝑐11 − 𝑐12
 

(2.1)

 

Now to illustrate the consequences of an anisotropic stiffness on elastic waves, we 

calculate the wave velocity versus propagation direction for a cubic single crystal material. 

This procedure uses the result for the dispersion relation (shown in Equations 2.2-2.4) 
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found in (Auld 1990) which considers a cube of dimensions X,Y,Z with propagation along 

the face X Z.  

(
𝑘

𝜔
)

1
= √

𝜌

𝑐44

 

(2.2) 

(
𝑘

𝜔
)

2
= √2𝜌 {𝑐11 + 𝑐44 + √(𝑐11 − 𝑐44)2 cos2(2𝜗) + (𝑐12 + 𝑐44)2 sin2(2𝜗)}  −

1
2 

 

(2.3) 

(
𝑘

𝜔
)

3
= √2𝜌 {𝐶11 + 𝐶44 + √(𝐶11 − 𝐶44)2 cos2(2𝜗) + (𝐶12 + 𝐶44)2 sin2(2𝜗)}  −

1
2 

(2.4) 

Once a solution for the phase velocity is obtained, we can insert the appropriate (
𝑘

𝜔
) 

into Equation 2.5 and 2.6 (Auld 1990) to obtain group velocity. 𝑙𝑥
  and 𝑙𝑧

  are (
𝑘𝑥

𝑘
) and (

𝑘𝑧

𝑘
). 
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]
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(𝐶𝑔)
𝑧

=
𝑘

𝜔
𝑙𝑧

[𝑐44 {𝑐11𝑙𝑧
2 + 𝑐44𝑙𝑥
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𝜔
𝑘

)
2

} + 𝑐11 {𝑐11 𝑙𝑥
2 + 𝑐44𝑙𝑧
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𝜔
𝑘
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} − (𝑐12 + 𝑐44)2𝑙𝑥
2]

𝜌 [(𝑐11 + 𝑐44) − 2𝜌 (
𝜔
𝑘

)
2

]
 (2.6) 

Figure 2.2 and Figure 2.3 graphically illustrate Equations(2.2) to(2.6). The slowness 

surface and Ray surface plot the reciprocal of wave velocity and group velocity respectively. 

The wave velocity can be seen to vary with direction in both figures, but importantly, 

mostly so for the quasi-shear wave. This denotes that at a given wavelength, shear waves 

perceive a larger impedance mismatch than their longitudinal counterpart which results in 

their much increased scattering. Shear waves are thus disadvantaged for the inspection of 

scattering materials. 

Now applying this to polycrystalline materials, where waves propagate through 

multiple crystals, the wave velocity consequently corresponds to an average of multiply 

rotated slowness surfaces. When the material is non-textured, given a sufficient 

propagation length, the wave speed converges to that of a macroscopically isotropic 
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medium. One well-known method to predict this value from the SCESCs is Voigt averaging 

(Voigt 1910). This enables the calculation of a Voigt velocity, shown for an orthotropic 

material in Equations 2.7 and 2.8.  

𝐸𝑣

=
(𝐴 − 𝐵 + 3𝛤)(𝐴 + 2𝐵)

2𝐴 + 3𝐵 + 𝛤
 

𝐺𝑉 =
𝐴 − 𝐵 + 3𝛤

5
 𝜈𝑉 =

𝐴 + 4𝐵 − 2𝛤

4𝐴 + 6𝐵 + 2𝛤
 

(2.7) 

𝐴 =
𝑐11 + 𝑐22 + 𝑐33

3
 𝛣 =

𝑐23 + 𝑐13 + 𝑐12

3
 𝛤 =

𝑐44 + 𝑐55 + 𝑐66

3
 

(2.8) 
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Figure 2.2: Slowness diagram for a typical cubic material. 

 

Figure 2.3: Group velocity variation for a typical cubic material. 
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2.3 Scattering Attenuation: Early Beginnings 

In the 1940’s, when pulsed ultrasound first emerged as a technique to characterise 

substances e.g. (Giacomini & Bertini 1939) and detect flaws buried within metals e.g. 

(Firestone 1946; Firestone 1942), Mason (Mason 1947) measured the scattering induced 

attenuation for an ultrasonic wave propagating within a polycrystalline medium. The 

experiment found the attenuation to increase with the fourth power of frequency, which 

suggested that the scattering mechanism was similar to that postulated by Lord Rayleigh 

(Strutt 1871a; Strutt 1871b) for visible light to explain the blue appearance of the sky. 

Two later experiments, which operated at higher frequencies (Roth 1948; Mason & 

McSkimin 1948), independently confirmed the existence of another scattering regime, a 

geometric one where the attenuation is independent of frequency and reduces with grain 

size. Lastly, (Huntington 1950) used a stochastic assumption to show that there also exists 

an intermediate behaviour which reduces the Rayleigh regime to a second order frequency-

dependence. Hence by the 1950’s, less than a decade after Firestone’s patent, the three 

scattering regimes (Equations(2.9,(2.10,(2.11) that we know today; Rayleigh 𝛼𝑅, stochastic 

𝛼𝑆, and the geometric attenuation 𝛼𝐺, were established. 

𝛼𝑅 ∝ 𝐷3 𝑓4 𝜆𝐷−1 ≫ 1 (2.9) 

𝛼𝑆 ∝ 𝐷1 𝑓2 𝜆𝐷−1 ≈ 1 (2.10) 

𝛼𝐺 ∝ 𝐷−1 𝑓0 𝜆𝐷−1 ≪ 1 (2.11) 

The three scattering behaviours can be intuitively explained in reverse order. Firstly, 

the geometric regime describes a polycrystalline material behaving as a thick-layered 

medium (each much larger than the wavelength). Increasing grain size here effectively 

reduces the number of interfaces an impeding wave has to cross, thereby reducing the 

number of reflections and therefore also reducing the attenuation. The stochastic regime 

occurs when the grain size reduces to the point that these layers dimensionally approach 

the wavelength. The reflections from each individual layer now begin to interfere with one 

another, and the attenuation starts to decrease despite adding more layers (interfaces) per 

unit distance. The attenuation mechanism here is dominated by the scrambling of phase 
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along the wavefront due to the changes in wave speed of each layer (now considering a 2D 

grid of layers). For example, if we think of each layer as adding a random phase, stochastic 

scattering denotes a regime whereby these random changes in phase do not average out 

even for long propagation distances. Finally within the Rayleigh regime, which occurs when 

the grain size is decreased further, the layers become sufficiently small compared to the 

wavelength (infinitesimally thin layers) that the behaviour approaches that of a 

homogenous medium, and any remaining scattering can be approximated by that from a 

random distribution of point scatterers.  

Now reversing the above sequence and starting with the Rayleigh regime, as the 

frequency increases each grain becomes apparently larger (dictated by the wavelength) and 

attenuation consequentially grows rapidly until it reaches a maximum at the geometric 

regime. The rates at which attenuation grows, in terms of frequency,  , and grain size 

dependence, are related across each scattering regime as shown in Equation(2.12. This 

result can be obtained from the rule of self-similar structures and is in part due to 

attenuation being defined as the loss per unit length and not per unit wavelength.  

𝛼 ∝ 𝐷𝑚−1𝑓𝑚 (2.12) 

One of the practical findings from these experimental discoveries by Mason et al. was 

that ultrasound is sensitive to the microstructural properties i.e. grain size of a material. 

An attenuation measurement could therefore enable the ultrasonic characterisation of these 

materials. This required an explicit solution to mathematically predict the attenuation 

coefficient in relation to the grain size, which was independently pursued by Lifshits and 

Parkhomovskii (Lifshits & Parkhomovski 1950) for cubic materials which was later 

extended by (Merkulov 1956) to incorporate hexagonal materials (and hence hereon 

referred to as LMP theory), and Bhatia and Moore (Bhatia 1959b; Bhatia 1959a) for 

orthorhombic materials. Their equations predicted the energy lost from an incident dilation 

and transverse wave due to grain scattering. These models made a step improvement over 

their predecessors by considering the mode conversions which occur as the wave propagates 

across a grain boundary. These early formulations applied to single-phased, weakly 

anisotropic materials exhibiting no texture and spherically (equiaxed) shaped grains. 
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By 1965, Papadakis (Papadakis 1965; Papadakis 1968) reviewed the separate formulas 

for each regime of attenuation, shown here for cubic materials in the Rayleigh 

Equation(2.13 and stochastic regime Equation(2.15. 

𝛼𝑙
𝑅 =

8𝜋3𝛾2𝑇𝑓4

375𝜌2𝐶𝑙
3 {

2

𝐶𝑙
5 +

2

𝐶𝑙
5} 𝛼𝑡

𝑅 =
2𝜋3𝛾2𝑇𝑓4

125𝜌2𝐶𝑡
3 {

2

𝐶𝑙
5 +

2

𝐶𝑡
5} (2.13) 

𝛾 = 𝑐11 − 𝑐12 − 2𝑐44 (2.14) 

𝛼𝑙
𝑆 =

16𝜋2(𝑐44 +
𝑐12 − 𝑐11

2
)2𝐷̅𝑓2

525𝜌2𝐶𝑙
6  𝛼𝑡

𝑆 =
4𝜋2(𝑐44 +

𝑐12 − 𝑐11
2

)2𝐷̅𝑓2

210𝜌2𝐶𝑡
6  (2.15) 

Where α is the attenuation in Nepers, 𝑡 and 𝑙 denote longitudinal and transverse waves 

respectively, 𝐶 is velocity, 𝜌 is density, 𝑇 is a measure of grain size with dimensions of 

volume, and 𝐷̅ is the average grain diameter. 

Through comparison with experiments (Papadakis 1963a; Papadakis 1963b; Papadakis 

1964b; Papadakis 1965), found better agreement when refining the existing equations to 

also consider the distribution of grain volumes (Papadakis 1964a). This changed 𝑇 in the 

previous Equation(2.13, the average volume of the grain, to an effective average volume 

𝑇𝑒𝑓𝑓 which is slightly larger than the original 𝑇 shown in Equation(2.16 where 𝑇𝑛 represents 

the volume of the 𝑛-th grain for counting a total of 𝑁 grains. The fact that this produced 

better results, was thought to explain why large grains dominate attenuation behaviour.  

𝑇𝑒𝑓𝑓 =
〈𝑇𝑛

2〉𝑁

〈𝑇𝑛〉𝑁
 where 〈𝑇 

1,2〉𝑁 =
1

𝑁
∑ 𝑇𝑛

1,2𝑁
𝑛=1  (2.16) 

Despite this early progress, available solutions shared two major assumptions. The first 

is that of spherical grains, where to an alternative was first presented by (Rokhlin 1972) 

who modelled the medium as rectangular parallelepipeds of equal size and derived the 

attenuation for longitudinal waves. Given its intuitive and simplistic approach, it delivered 

very good results (Stanke & Kino 1984) although unphysical ripples manifested due to the 

use of single-sized grains. 
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The second assumption is that of the Born approximation which reduced the solutions 

to single scattering. Hirsekorn (Hirsekorn 1982) was the first to amend this by 

incorporating multiple scattering into the derivation of attenuation and phase velocity for 

longitudinal waves (Hirsekorn 1982), shear waves (Hirsekorn 1983), textured materials 

(Hirsekorn 1985), and eventually multi-phased materials (Hirsekorn 1988). Her formalisms 

however, were more general than the solutions which relied on a truncated Born series and 

thus eventually neglected multiple scattering. Moreover, issues arose in the transient 

region, where the solution, similar to Rokhlin, still exhibited oscillations due to using a 

single-sized grains approximation. 

The reliance on both these assumptions, regularly-sized grains and single scattering, 

ended when Stanke and Kino (Stanke & Kino 1984) adopted a second order Keller 

approximation (Karal & Keller 1964) and a geometric autocorrelation function to describe 

the grain distribution. Where previously several equations were required, Stanke and Kino’s 

Unified Theory solved the complex propagation constant across all three scattering 

regimes. Within certain frequency bounds, its solutions produce the same results as those 

predicted by LMP theory, but it also predicts a transitional “bump” between the Rayleigh 

and Stochastic asymptote (see Figure 2.4).  

Today, the Unified Theory remains widely accepted (+200 cit.), with good validation 

against experimental measurements e.g. (Stanke 1985; Yang & Rokhlin 2011). Even so, the 

attenuation of polycrystalline materials remains an active topic of research, with various 

approaches [e.g. see (Weaver 1990)] and extensions existing today. Many of these consider 

more complex microstructures than those discussed here including: hexagonal (Yang et al. 

2011); multi-phased (Lobkis & Rokhlin 2010), and textured (Ahmed & Thompson 1996; 

Turner 1999) materials with elongated grains (Yang & Rokhlin 2012).
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Figure 2.4: Unified theory for attenuation of three cubic materials: aluminium, lead, and nickel. 
The x-axis plots the normalised frequency such that results depend on the product of wavenumber 
and average grain size. The normalised attenuation on the y-axis is plotted such that it is 
independent of grain size. The three asymptotical regimes and their frequency dependence m are 
labelled.  
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2.4 Backscatter: Thompson Era 

The attenuation studies described in the previous section laid an important foundation 

for understanding scattering and this was practically useful for material characterisation. 

Interest into another application of ultrasound, flaw detection, in particular the inspection 

of titanium billets, burgeoned in 1989 following the crash of United Airlines flight 232. 

Investigations into the incident concluded a hard alpha inclusion led to the catastrophic 

failure of the engine turbine disk. Within the same year, the Engine Titanium Consortium 

(ETC) was formed by the Federal Aviation Administration (FAA) which set out to 

improve ultrasonic inspections of scattering materials. This time, attenuation is only one 

piece of the puzzle, and hence these events initiated the study of ultrasonic backscatter. 

Across the next two decades, significant advances were made; one key contributor amongst 

many was Dr. R. Bruce Thompson who published several hundred articles with one of his 

long-time interests being ultrasonic backscatter within metallic materials (Margetan 2012).  

Prior to the ETC, the majority of backscatter literature arose from the previous pursuit 

of material characterisation. In particular, as an alternative to relying on coherent 

reflections for measuring attenuation, research into backscatter initiated to instead measure 

the decay of the backscatter noise (Goebbels 1980; Willems & Goebbels 1981). Similarly, 

(Nagy et al. 1987; Nagy & Adler 1988) studied backscatter to characterise aluminium 

porosity and showed fundamental differences between the attenuation of backscatter and 

that of coherent reflections. A coefficient for backscattering was first conceived by Madsen 

(Madsen 1984; Hall et al. 1989; Insana 1986), albeit for biological tissue, who realised that 

the backscatter noise is related to the incident field and a coefficient which is a property 

solely of the scattering medium.  

The ETC built on this foundation of backscattering literature and, similarly to the 

Unified Theory for attenuation, eventually developed the means to analytically predict 

grain noise, using what is known today as the Independent Scattering Model (ISM) 

(Margetan et al. 1993; Margetan et al. 1991; Margetan et al. 1994). The ISM was developed 

over several years, requiring several breakthroughs before its conception: 
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(1) One of the first challenges to study backscatter was to find a means to quantify 

it. The Figure-of-Merit (FOM) was introduced to this end which succeeded in 

experimentally measuring the inherent noise severity of a sample, independent 

of the inspection configuration used. Such a FOM can be directly related to the 

time-domain RMS noise 𝑁𝑟𝑚𝑠 observed in an A-scan. For example, for a given 

inspection configuration, a material having a FOM of 2 produces an A-scan 

with noise which is double that of a material with a FOM of unity. In the 

interest of brevity, a summarized Equation(2.17 is shown here.  

𝑁𝑟𝑚𝑠 ∝ 𝐹𝑂𝑀 𝐶1 ∭ 𝐶4(𝑥, 𝑦, 𝑧)𝑑𝑥𝑑𝑦𝑑𝑧
∞ 

−∞

 
(2.17) 

  

Where 𝐶1 represents the variables associated with the inspection 

configuration, the volume integral of 𝐶  represents the incident beam. 

Equation(2.18 shows the definition of FOM, where 𝑛 is the number of scatterers, 

𝐴𝑟𝑚𝑠 is an average of their scattering amplitude. 

𝐹𝑂𝑀 = √𝑛𝐴𝑟𝑚𝑠 
(2.18) 

  

(2) Despite having developed experimental methods to measure FOM, no means 

existed to predict it from known material properties. This matter was solved 

by (Rose 1991; Rose 1992; Rose 1993) who laid the foundation for calculating 

the backscattering coefficient of an untextured polycrystalline material. The 

frequency dependent backscatter for a cubic material, and its relation with 

FOM, is shown in Equation(2.19 (Thompson 2002).  

𝜂(𝜔) = 𝐹𝑂𝑀(𝜔)2 = (
𝜔2

4𝜋𝜌𝐶𝐿
4)

2

⟨𝛿𝐶33
2 ⟩ [

8𝜋𝐴𝑔
3

(1 + (2𝑘𝐴𝑔)
2

)
2

 
] 

(2.19) 

where 

⟨𝛿𝑐33
2 ⟩ =

16(c11
2 − 2c11c12 + c12

2 − 4c11c44 + 4c12c44 + 4c44
2 )

525
 

𝐴𝑔 is a correlation distance equal to half of the effective linear dimensions 

of the grain, 𝜔 is the angular frequency, and 𝑘 is the wave vector. Its results 

have been shown to agree with experiments to an absolute factor better than 2 

(Margetan et al. 1994). Rose’s model was further validated experimentally 
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through comparison with two-phase titanium (Margetan et al. 1991; Margetan 

& Thompson 1992). The ISM was also extended by (Yalda et al. 1996) into a 

time-domain simulation using Monte Carlo simulations with ‘reasonable 

agreement’ using copper.  

 

(3) Since steps (1) and (2) enabled the prediction of noise levels, the final keystone 

then was to combine this with a flaw signal model to enable the calculation of 

SNR. Conveniently, this had been solved earlier (Thompson & Gray 1983) by 

the Thompson-Gray beam model. This completed the ISM, as it now became 

possible to compare, in terms of SNR, the performance of different inspection 

configurations - thereby answering valuable questions such as optimising an 

inspection setup or establishing a smallest detectable defect size.  

The development of ISM made several contributions to ultrasonic NDE. Firstly, it led 

to the well-known rule of thumb (Margetan et al. 1997), that SNR is inversely proportional 

to square root of ultrasonic pulse volume (see Equation(2.20).  

𝑆𝑁𝑅 ∝ [
𝐴𝑓𝑙𝑎𝑤(ω)

√𝜂(ω)
]

1

√𝐵2∆𝑡𝑝
 

(2.20) 

𝐵 is the average beam diameter, ∆𝑡𝑝 is the sonic pulse length or the product of velocity 

and pulse time length, 𝐴𝑓𝑙𝑎𝑤  is the far field scattering amplitude of the defect. The formula 

also predicts the SNR to change according to the change in ratio between 𝐴𝑓𝑙𝑎𝑤 and 𝜂 with 

frequency. This led to the introduction of multi-zone transducers (Margetan et al. 2007), 

a configuration of transducers which each focus at a different depth within the billet, to 

improve overall SNR. The merits of focusing in this way are still used today in arrays 

(Wilcox 2011). 

Beyond phase I (Margetan et al. 2002), ETC launched a second phase to their program 

which continued the work on titanium (Margetan et al. 2007) but also applied their earlier 

findings to nickel-based alloys (Keller et al. 2005). This nickel-phase is probably the most 

comprehensive study of the ultrasonic behaviour of nickel super-alloys to date. To 

summarise some of the major findings from Inconel 718 and Waspaloy: the velocity was 
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found to be relatively uniform at different locations in the samples. Attenuation and 

backscatter noise, which were both correlated, were found to vary significantly with 

position however, with up to 20-70% change in the peak noise. This was probably due to 

microstructural changes, which showed that both attenuation and noise increased with 

grain size. The transducer originally developed for titanium inspection showed 

improvement, and increased sensitivity from a #5 (5/64”) to #2.5 and #3 (3/64”) to #1 

Flat Bottom Hole (FBH) in Waspaloy and In 718 respectively (Keller et al. 2005) for billets 

ranging from 8-14 inches. 

Whist the ISM may currently represent the best noise model for grain scattering, it has 

certain limitations. Foremost, as its name suggests, it is built on a single scattering 

approximation, which breaks down at the onset of multiple scattering for stronger 

scattering environments. Additional sources of error are discussed in (Anxiang et al. 2003). 

Most literature at this time was restricted to investigating single scattering environments 

due to the added complexity of multiple scattering, although exceptions can be found 

(Russell & Neal 1997; Turner & Weaver 1995).  

2.5 Signal Processing: Split Spectrum Processing 

Coherent noise is a problem not unique to NDE. Similar noise limitations exist for a 

variety of remote sensing fields, including radar and sonar where clutter deteriorates images 

of complex environments, medical ultrasound where speckle reduces contrast of internal 

organ imaging, and seismic imaging where heterogeneity within the earth’s subsurface 

causes backscatter. These fields have puzzled over coherent noise for over half a century, 

with attention that is unmatched by NDE. This has produced countless ideas and articles, 

one particularly interesting adaptation from this for grain noise suppression is Split 

Spectrum Processing (SSP), which was originally known to the radar community as 

frequency diversity or agility (Lind 1970).  

SSP was first introduced to NDE in (Newhouse et al. 1982) to enhance ultrasonic 

signals belonging to flaws, above those of grains, by exploiting frequency diversity. This 

relies on the assumption that the received spectrum of a random distribution of point 
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scatterers will exhibit minima due to destructive interference. This observation is an 

extension from a simpler scenario, where for a regularly spaced grid of scatterers, minima 

of zero amplitude occur in the received spectrum at predictable frequency intervals. SSP 

exploits this phenomenon by decomposing a single full bandwidth time-trace into multiple 

sub-bandwidth time-traces, each corresponding to a different frequency window. If the 

underlying assumption is true, a defect will manifest a frequency coherence (be present in 

the several sub-signals) whereas the grain noise will be incoherent. Recombining these sub-

signals, non-linearly, through for example multiplication, will amplify the defect amplitude 

and less so that of the noise.  

One of the early challenges for SSP was to address its parameter intensiveness. Namely, 

dozens of parameters require fine-tuning, starting with those associated with the separation 

procedure. These include: the number of filters, frequency overlap, bandwidth, apodisation, 

and their centre-frequency. Their combined effect was investigated and answered to some 

extent in (Karpur et al. 1987; Karpur et al. 1988) and (Karpur & Canelones 1992).  

Aside from separation, the recombination procedure presents another group of 

parameters which need to be determined. Here, three main categories exist: the original 

SSP, which utilizes minimization (Newhouse et al. 1982; Karpur et al. 1987) i.e. retrieves 

the minimum amplitude across the sub-signals, Polarity Thresholding (Bilgutay et al. 1989) 

which only accepts amplitudes when all windows have the same polarity, and the third 

category combines other order statistics filters such as the geometric mean (Saniie et al. 

1991). Other algorithms are variations of these three categories; such as Polarity 

Thresholding with probability scaling (Nguyen & Jayasimha 1994) which takes the 

minimum amplitude multiplied by a value calculated by the number of filtered signals with 

the same sign; Frequency Multiplication (Karaojiuzt et al. 1998) which multiplies the 

windows together; Squaring and Adding Frequency components (Karaojiuzt et al. 1998) 

squares and adds the signals; and Phase Deviation which is similar to polarity scaling. 

An example of SPP’s industrial application can be found in (Baligand et al. 1986; Rose 

et al. 1988), but in general, its uptake has been somewhat limited. As discussed in SSP’s 

seminal paper (Newhouse et al. 1982), this is partly due to a fundamental limit on the 

feasible improvement to SNR, because dividing an existing signal into sub-signals also 
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divides its SNR, and recombining them (linearly) would simply restore the original SNR. 

For instance, an evaluation of the Polarity Thresholding algorithm (Shankar et al. 1989) 

concluded that the algorithm shouldn’t be used when SNR is close to unity, and moreover, 

that SNR is enhanced at the cost of the Probability of Detection (POD). It has also been 

suggested (Newhouse et al. 1982) that SSP’s effectiveness decreases with grain size, due to 

multiple scattering effects which render its assumptions invalid. Another obstacle to SSPs 

widespread adoption, is its misrepresentation of amplitude information, and in association, 

the majority of industrially established defect sizing conventions. To summarize and 

illustrate the limitations of SSP, simply squaring a time-trace will increase SNR as long as 

the defect is detected (SNR is above unity), but actually increasing detection is the real 

challenge.  

Apart from SSP, many other signal processing methods have been devised to improve 

inspection of scattering materials which were not mentioned here. These include Wiener 

filters (Izquierdo et al. 2002), Wavelets (Rodriguez et al. 2004; Pardo et al. 2006), and 

adaptive filtering (Zhu & Weight 1994; Kim et al. 2001) amongst many others.  

2.6 Ultrasonic Arrays 

In recent years, ultrasonic arrays have been widely implemented across industry, 

favoured for their speed of inspection and ease of interpretation over conventional NDE 

(Wilcox 2013; Drinkwater & Wilcox 2006). The ability to beam-steer by phase-delaying 

elements means that one array can reproduce an inspection which would otherwise require 

multiple monolithic transducers. Once ensuing advances in instrumentation facilitated the 

acquisition of all send-receive time trace combinations available to the array (termed Full 

Matrix Capture (FMC)) (Holmes et al. 2005), the additional information captured in this 

way enabled arrays to further surpass their monolithic counterparts by creating 

synthetically focused images (Wilcox 2011). Although not particular to arrays, but to the 

images they provide, it is also worthwhile noting that objects can be detected within a 2D 

image, at a much higher noise level than within the equivalent 1D time-trace (e.g. A-scan). 



 

44 

 

Since the onset of arrays, numerous algorithms are available to post-process FMC data 

into an image, including wave-field extrapolation (IWEX) (Portzgen et al. 2007), the 

wavenumber algorithm (Hunter et al. 2008), and what is regarded in the NDE community 

as the most established algorithm: the Total Focusing Method (TFM) (Wilcox 2013; 

Holmes et al. 2005). Due to the benefits of focusing as outlined in Section 2.4, arrays 

currently present the best chance to successfully inspect a coarse grained material. 

Furthermore, arrays continue to hold the most promising opportunities to progress the 

inspection of scattering materials. The additional spatial information captured through 

FMC techniques, opens up new possibilities and has enabled the emergence of advanced 

imaging algorithms to further supress coherent noise sources. Three approaches which hold 

promise are categorised and reviewed here as follows: (1) de-noising algorithms which aim 

to reduce image speckle through spatial compounding. Examples of this category include; 

Phase Coherent Imaging (PCI) (Camacho et al. 2009; Camacho & Fritsch 2011), Spatial 

Coherent Imaging (SCI) (Trahey et al. 1986), and Spatially Averaged Sub-Array 

Correlation Imaging (Lardner et al. 2014) (SASACI). (2) a recent Multiple Scattering Filter 

(MSF) (Shahjahan, Aubry, et al. 2014) used in conjunction with the Decomposition for 

the Time Reversal Operator (DORT) (Prada et al. 1996) imaging algorithm, and finally 

(3) super resolution algorithms.  

Other promising approaches which have not been mentioned here are those which aim 

to recover performance losses due to anisotropy e.g. auto-focusing (Zhang et al. 2012) and 

deviation correction (Connolly et al. 2009), which are mainly applicable to welds. 

2.6.1 Spatial Compounding  

Spatial compounding techniques share similar underlying principles to frequency 

compounding; both involve, instead of a linear summation, the non-linear combination of 

signals. Spatial compounding techniques aim to amplify spatially coherent features, which 

relies on the notion that flaws will exhibit a stronger coherence than grain noise. Although 

its potential was realised early on (Shankar 1986), its interest in both NDE and medical 

fields has grown significantly with the arrival of arrays. The best known examples of such 

imaging algorithms are Spatial Coherent Imaging (SCI) (Trahey et al. 1986; Gerig & 
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Varghese 2004) and Phase Coherent Imaging (PCI) (Camacho et al. 2009; Camacho et al. 

2010). SCI compounds images of sub-apertures of the array, and PCI will multiply a regular 

delay-and sum image (i.e. TFM), with a weighting matrix which measures the coherence 

of instantaneous phase. 

Another more recent example, based on Dual Apodisation Cross-correlation technique 

developed for medical imaging (Seo & Yen 2008) is the SASACI (Lardner et al. 2014) 

algorithm. It operates by generating two TFM images, one for each odd receiver element 

of the array, and another for each even. These two images are then inserted into a 2D cross 

correlation function which produces a correlation matrix. This matrix is then multiplied 

by a conventional TFM image, where any pixel amplitudes which were incoherent between 

the two sub-aperture TFM images, are reduced in the final image. 

Similarly to frequency compounding, there has been ambiguity regarding the 

improvements offered by these new imaging algorithms. For example, (Jie et al. 2013) 

showed the improvements of SCI and PCI to be marginal. Results show that although the 

SNR can be increased in certain cases, PCI did not improve SNR values which were lower 

than unity and therefore does not affect actual detection performance.  

2.6.2 Multiple Scattering Filter 

DORT MSF is a very recent imaging algorithm which was originally researched in the 

context of the ultrasonic inspection of coarse grained nickel components found in 

pressurised water reactor components. It is based on the time reversal algorithm, DORT 

(Prada et al. 1996) which in its basic form, relies on calculating the singular value 

decomposition of the time-windowed T frequency f domain FMC matrix K(T,f) to achieve 

imaging of the inspected medium. In weakly scattering conditions, each i-th scatterer in 

the medium is related to a singular space of the i-th singular value λi. The corresponding 

singular vector Vi is the signal of delays to apply to the array to focus onto the scatterer, 

termed backpropagation.  

When noise dominates, such as that encountered in polycrystalline materials, significant 

singular values are no longer associated with scatterers of interest. Part of this noise, 

namely the multiple scattering portion, can be identified and reduced by exploiting the 
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deterministic phase relation along the anti-diagonals of the K matrix which should always 

occur, even for the response from a random distribution of scatterers, for single scattering. 

This procedure is termed a Multiple Scattering Filter (MSF) (Aubry & Derode 2009a; 

Aubry & Derode 2009b) and has shown great promise for detection in coarse grained 

materials (Shahjahan, Aubry, et al. 2014). DORT MSF involves applying the regular 

DORT algorithm to the filtered K matrix, Kf. The DORT MSF algorithm includes a 

detection criterion which aims to identify singular values which are associated with 

scatterers of interest and therefore merit back propagation. This is achieved by considering 

the statistical properties of the singular value distribution acquired from backscatter in a 

defect- free area for different frequencies f and depths related to time T. This method 

requires numerous FMCs of defect-free material which is known to be of similar 

microstructure. In applications of known, well-controlled, microstructure, this has been 

shown to generate significant improvement (Shahjahan, Aubry, et al. 2014).  

2.6.3 Super Resolution 

The spatial resolution of an imaging system is ultimately limited by the diffraction 

limit which conventionally relates the maximum resolution to half the wavelength. Super 

resolution imaging is devised to surpass this limit (see Figure 2.5). Whilst super resolution 

was first achieved some time ago, it is a relatively new arrival to ultrasonic NDE where it 

has since been experimentally shown that using an array it is possible to resolve points 

separated by λ/3 (Fleming et al. 2006). 

Such techniques are particularly attractive as higher frequencies - usually required to 

improve resolution, also experience increased attenuation and noise, which deteriorates the 

quality of information (SNR) and restricts the highest practically feasible frequency. Super 

resolution imaging circumvents this problem, enabling inspections at a lower frequency 

whilst still achieving a high resolution. 

This is challenging to achieve in practise, but in short, is only possible by considering 

second order multiple scattering effects. Traditional imaging techniques rely on the Born 

approximation which neglect these effects and hence tie their resolution to the diffraction 

limit. To explain how multiple scattering holds super resolution information, we will first 

discuss a simple scattering scenario.  
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Let us consider the interaction which would occur between an incident wave field and an 

object. During this interaction, the incident energy is scattered into propagating waves 

which can be detected at multiple wavelengths (far-field), but also non-propagating or 

evanescent waves (Simonetti 2006) which decay within the near-field (Fleming 2008). 

Whereas propagating waves are of the same wavelength as the incident field, evanescent 

waves are the result of the interaction with sub-wavelength spatial features of the object, 

and hence contain sub-wavelength information. By operating inside the near field, early 

pioneers broke the super resolution limit (Fleming 2008), for example with Near-field 

Scanning Optical Microscopes (NSOM).  

For many applications including NDE, this is not a viable option which eliminates the 

possibility of directly extracting sub-wavelength information carried by evanescent waves. 

Similar to propagating waves however, evanescent waves convert to both wave-modes when 

scattered. Therefore an evanescent wave which is mode-converted into a propagating wave 

can propagate multiple wavelengths and affect far-field energy levels. In this form, this still 

necessitates an incident evanescent wave, and hence would require at least one of the 

probes, either the transmitter or receiver, to be within the near-field. 

Even this limitation can be overcome by an effect known as tunnelling (Fleming 2008). 

If we introduce a second scattering object within the near-field of the original object, it 

allows the excitation of a propagating wave which generates evanescent waves during its 

first scattering event, which are then be converted into a propagating wave when scattered 

off the second object. This is a multiple scattering phenomenon and holds the key to the 

detection of sub-wavelength information within the far-field (Simonetti 2006).  

Many approaches now exist to achieve sub-wavelength imaging (Simonetti et al. 2008); 

Factorisation Method (FM), Time Reversal Multiple Signal Classification (TR MUSIC) 

(Asgedom et al. 2011; Marengo 2007; Lehman & Devaney 2003), and Maximum Likelihood 

(ML) (Simonetti et al. 2008) to list some.  
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Figure 2.5: Comparing super resolution imaging to conventional imaging of two point scatterers 
separated by 1/3λ. Source: (Fleming et al. 2006) 
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Chapter III 

3 EXPERIMENTAL 

DEMONSTRATIONS  

This chapter pragmatically explores grain scattering through 

three experiments: the first replicates a conventional industrial 

inspection by immersion C-scanning a representative USC component; 

the second aims to identify scattering by analysing attenuation; and 

lastly, the third experiment illustrates aspects of noise by averaging 

both temporal and spatially incoherent noise. 
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3.1 Inspection of Future Power Plant Components 

USC power plants largely remain a concept at this time. Many aspects including the 

eventual NDE challenges they will present, remain to some extent unknown. It was possible 

here to address this, and try to establish some of the current shortcomings, thanks to 

Siemens AG which loaned E.ON a sample specifically commissioned to meet this purpose. 

The sample is a step wedge of Inconel 625 (see Figure 3.1) which is cut from a larger 

cast thick-walled cylinder. Surface etchings indicate the grain size distribution to vary from 

sub-millimetre to tens of millimetres in a seemingly arbitrary spatial distribution. In terms 

of ultrasonic targets, besides the various backwall steps, the sample contains three 5mm 

diameter Side-Drilled-Holes (SDH) found at various depths.  

Whereas industrial power plant inspections involve contact ultrasound, it is desirable 

to eliminate sources of variability associated with contact measurements, and hence the 

data are collected in an immersion pulse-echo configuration (facility of Intertek, Derby). 

To investigate scattering changes with frequency, data was acquired at various frequencies 

by employing a combination of industrially standard, planar and focused transducers with 

centre-frequencies in-between 0.5MHz and 5MHz. Due to the relatively thick component, 

the transducer’s focal zone was always in front of the backwall which is not the ideal 

inspection scenario. The measurement electronics are configured, where possible, such that 

the backwall amplitude occupies 80% of the ADC range. The data are captured by 

predefining gates, as is commonplace for C-scans, where the peak amplitude and its time-

of-flight (TOF) within the gate is recorded. Both these metrics are stored as the probe is 

rastered along and across a face of the entire component, in this case with a lateral 

resolution of approximately 1mm. A steel cylinder of similar thickness was inserted into 

some of the scans, for illustrative purposes. In most figures the steel cylinder’s backwall is 

clipped, but in some instances a variation of backwall amplitude can be seen due to the 

presence of a flat-bottom-hole.   
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(a) 

 

(b) 

Figure 3.1: (a) Step wedge sample indicating three side-drilled-holes and a (b) schematic from its 
original casting.  
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A selection of the results are shown in Figure 3.2 to Figure 3.5 which display either the 

amplitude or TOF C-scan of the reflected signal from the backwall. The key findings can 

be summarised as follows: 

 Figure 3.2 and Figure 3.3 indicate the backwall amplitude (at a depth of 70mm) to 

vary significantly across the side face. The variation not only manifested as a 

fluctuation of amplitude - which may be expected from a scattering material - it also 

produced distinct patterns (regions of different behaviour) within the sample. This 

latter observation indicates a variation of attenuation with position, and is believed to 

be a consequence of grain size variations shaped by the manufacturing conditions. This 

has previously been observed for other nickel super-alloys by Thompson et al. 

(Thompson et al. 2008).  

 Figure 3.2 and Figure 3.3 generally indicate that higher frequencies lead to large 

increases in attenuation which significantly reduces backwall amplitude. This resulted 

in the backwall only being reliably detected at a frequency of 0.5MHz. 

 Figure 3.4 and Figure 3.5 show that alongside attenuation, surprisingly large variations 

in wave speed (5700-6000ms-1) were found throughout the block. This behaviour is 

believed to be evidence of preferential orientations (texture) within the material.  

Given that the sample is representative of future USC components, it is likely that at 

least some of these effects would be reproduced in future power plants inspections. The 

results, albeit limited from this initial investigation, suggest that depths of up to 50mm 

could only be reliably inspected at 0.5MHz, when using standard single transducer 

techniques. This is a relatively low inspection frequency, which at a wavelength of 12mm, 

would be insensitive to smaller defects and provide poor characterisation ability. In 

summary, the sample showed significant inspection difficulties, mainly attributed to its 

unpredictable variation in properties. 
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(a) 

 
(d) 

 

 

 

 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 3.2: Side A amplitude backwall C-scan, (a) 0.5MHz planar (b) 1MHz planar (c) 1MHz focused (d) dimensions (e) 2.25MHz focus (f) 5MHz planar. 
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(a) 

 
(d) 

 

 

 

 

 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 3.3: Side B amplitude backwall C-scan. (a) 0.5MHz planar (b) 1MHz planar (c) 1MHz focused (d) 2.25MHz planar (e) 2.25MHz focus (f) 5MHz 
planar. The circular feature present in the majority of the figures is a fine grain steel cylinder which is included for illustrative comparisons.  
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(a) 

 
(d) 

 

 

 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 3.4: C-scan TOF side B, (a) 0.5MHz planar (b) 1MHz planar (c) 1MHz focused (d) 2.25MHz planar (e) 2.25MHz focus (f) 5MHz planar. The 
circular feature present in the majority of the figures is a fine grain steel cylinder which is included for illustrative comparisons.
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(a) 

 

 

(b) 

 

Figure 3.5 TOF variation in opposite directions at 2.25MHz (a) side A (shown in Figure 3.4(e)) and (b) side B.   
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3.2 Attenuation Measurements 

We aim to observe scattering by experimentally quantifying the frequency dependent 

behaviour of attenuation within a coarse grained metallic sample. Before discussing the 

resulting attenuation measurements, the experimental theory and method, which consists 

of a pulse-echo immersion setup, follows.  

3.2.1 Background Theory 

Attenuation calculation 

Equation(3.1 defines a wave of amplitude 𝐴𝑧 propagating at a distance 𝑧 from a finite 

source with an incident amplitude 𝐴0. The forms of attenuation mentioned in Section 1.2.1, 

namely, scattering, and absorption are indicated by a subscript. 

𝐴𝑧 = 𝐷𝑧𝐴0𝑒−(𝛼𝑠+𝛼𝑎)𝑧 (3.1) 

The attenuation due to diffraction can be written as a coefficient 𝐷𝑧, and the absorption 

and scattering attenuation are henceforth jointly denoted by 𝛼. In a pulse-echo setup, the 

first and second coherent reverberations within a finite elastic medium bounded by parallel 

faces are introduced by Equation(3.2 and(3.3 as 𝐹 and 𝐵 respectively.  

𝐹 = 𝐷0𝐴0𝑒 
−𝛼𝑧0𝑅𝑤←𝑚 (3.2) 

𝐵 = 𝐷1𝐴0𝑒−𝛼𝑧1𝑇𝑤→𝑚𝑅𝑚←𝑤𝑇𝑚→𝑤 (3.3) 

These will be referred to as the frontwall 𝐹 and backwall signal 𝐵, each with their 

respective diffraction coefficient depending on the propagation distance, and where 𝑅 and 

𝑇 denote the reflection and transmission coefficient where subscript 𝑚 denotes metal and 

𝑤 denotes water and the arrow indicates the direction. The coefficients are calculated using 

a plane wave assumption and are independent of frequency. By dividing 𝐹 and 𝐵, and 

rearranging for the attenuation coefficient we obtain Equation(3.4.   
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𝛼 =
1

(𝑧1 − 𝑧0)
ln (

𝐹𝐷1𝑇𝑤→𝑚𝑅𝑚←𝑤𝑇𝑚→𝑤

𝐵𝐷0𝑅𝑤←𝑚
) 

(3.4) 

Taking Fourier transforms 𝐹’ and 𝐵’, and introducing the angular frequency 𝜔:  

𝛼(𝜔) =
1

(𝑧2 − 𝑧1)
ln (

𝐹′(𝜔)𝐷1𝑇𝑤→𝑚𝑅𝑚←𝑤𝑇𝑚→𝑤

𝐵′(𝜔)𝐷0𝑅𝑤←𝑚
) 

(3.5) 

Equation (3.5 enables calculating the frequency dependent attenuation from the Fourier 

transform of a measured frontwall and backwall signal. The calculation for the diffraction 

correction 𝐷𝑖  ensues.  

Diffraction Correction  

Beam spreading occurs due the finite extent of transducers and it is generally desirable 

to eliminate this element of attenuation as it does not reflect the material properties. A 

widely accepted solution is that from (Lommel 1885) and later (Rogers & Van Buren 1974) 

who provided an explicit solution shown in Equation(3.6). The underlying assumptions 

include a piston is set in a rigid baffle which oscillates harmonically into a homogenous 

fluid. In addition, a normal beam is considered such refraction effects are neglected.   

𝐷𝑖 = 1 − 𝑒
−𝑖(

2𝜋

𝑠
)

[𝐽0 (
2𝜋

𝑠
) + 𝑖𝐽1 (

2𝜋

𝑠
)]          𝑠 =

2𝜋𝑧𝑖

𝑘𝑖𝑎2   

 

(3.6) 

Where 𝑎 is the transducer radius, 𝑧𝑖 is the axial distance from the transducer, 𝑘𝑖 is the 

wave number in the relevant medium, and 𝐽0 represents the zeroth order Bessel function.  

3.2.2 Methodology  

The experiment adopts a pulse-echo immersion configuration where multiple 

measurements are taken at varying water paths (see Figure 3.6). The probe is maintained 

approximately centrally above the sample (see Figure 3.6c) to ensure no side wall 

reflections interfere. Each measurement is temporally averaged to sufficiently supress 

electrical noise sources. The probe comprises a 2.25MHz, single crystal transducer 

(manufactured by Olympus) which is excited with a broadband pulse. Once a time-trace 

is digitized, the frontwall and backwall signals are separately windowed at their zero-

crossings before calculating the attenuation as described in Equation (3.5. 
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(a) 

 
 

(b) 

 
 

(c) 

Figure 3.6: Experimental setup showing (a) schematic, (b) probe and a sample, (c) the Inconel 
sample.  
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The sample consists of an Inconel 617 block which was cut from a pipe. A macrograph of 

its microstructure is shown in Figure 3.7. Although no formal stereological analysis is 

performed here, qualitative analysis allows us to estimate the grain size of our sample in 

the order of 200-500µm. At the frequency used for this experiment with an approximate 

wavelength of 3mm, and thus with a wavelength to grain size ratio λd-1=15, suggests we 

should be operating within the Rayleigh regime. 

Wave velocities 

Before measuring attenuation, two remaining parameters need to be determined, in this 

case, ultrasonically. The velocity inside the sample is calculated by taking the time 

difference between successive backwall signals. The water wave speed is measuring the 

time-shift in the frontwall signal for a known depth translation of the probe (z-axis). 

Results shown in Table 3.1. 

 Inconel  Water 

Velocity (m/s) 5873.6 1494 

Standard deviation (1σ) n/a 0.6 

Table 3.1: Properties for Inconel and water. 

3.2.3 Results and Discussion  

The measurements for the frequency dependent attenuation are shown in Figure 3.8. 

Attenuation can be seen to grow rapidly with frequency. As described in Section 2.3, the 

power law is used here to identify the attenuation mechanism; Figure 3.8 shows that a 

power coefficient of approximately 3 is obtained. This confirms that the attenuation is due 

to scattering as it is higher than the second order dependence which would be expected 

from absorption phenomena. The expected Rayleigh fourth order dependence is not 

measured however. This is probably due to the relatively high frequencies used (λ>>d is 

not satisfied) which was a practical limitation of this experiment, as measuring at lower 

frequencies significantly reduces the attenuation values which increases the significance of 

experimental errors.   
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Figure 3.7: Macrograph of the Inconel 617 sample, revealing a coarse grain structure.
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Figure 3.8 Attenuation versus frequency for the Inconel sample. The blue line connects the data 
points and the error bars show the standard deviation of 10 measurements.  
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3.3 Temporally and Spatially Incoherent Noise  

Temporally and spatially incoherent noise is investigated here through two 

experiments. The first demonstrates conventional temporal averaging whereby temporally 

incoherent noise is averaged, and the second aims to replicate these results by exploiting, 

and thus demonstrating, the spatial incoherence of grain noise.  

3.3.1 Temporal Averaging  

The experimental setup constitutes a tank of glycerol in which a strand of hair (kindly 

provided by Misty Haith) is suspended to create a reflecting target. Glycerol is an 

attenuative but noiseless medium, such that any noise arises from electrical and thus 

temporally incoherent sources. A focused transducer with a 5MHz centre frequency, is 

immersed inside the fluid (see Figure 3.9) such that the target is within its beam path. In 

a pulse-echo setup, A-scans are recorded whilst varying the number of averages. 

The data are collected by increasing the number of averages in steps from 1 to 4096 in 

multiples of 2, to produce 12 data points, and recording 10 measurements for each point. 

Figure 3.10 shows two typical A-scans obtained after 1 and 4096 temporal averages. The 

two largest signals comprise the main bang (MB) at around 0µs, and a dual backwall signal 

from the floor of the tank is found at around 105µs. The backwall consists of an initial 

weak reflection between glycerol and plastic, and a subsequent stronger reflection when 

the wave reflects off the plastic to air interface. In between these two signals, is the 

reflection from our object, but Figure 3.10a indicates the signal is initially embedded within 

the noise. Sufficient temporal averaging reduces the noise to reveal a reflection at 45µs in 

Figure 3.10b. The hair reflection is relatively low in amplitude in comparison with that of 

the backwall as it is a relatively small scatterer.  

The SNR is quantified for each averaging step, by calculating the RMS of the noise, 

measured in an interval in the time record that is close to but but away from the hair 

reflection, and dividing it by the peak of the signal which is measured from the highest 

averaged A-scan (4096 in this case). As can be seen in Figure 3.11, the SNR improves with 

the square root of number of averages (or 10dB/dec in this case), as dictated by well-

established theory. 
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Figure 3.9: Experimental setup for a strand of hair suspended in Glycerol. 
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(a)  

 

(b) 

Figure 3.10 A-scans with (a) 1 average (b) 4096 averages, from a strand of hair suspended in 
Glycerol. 

 

 

Figure 3.11: SNR versus averages, n, plotted for the measured experiment and theory for the hair 
in glycerol experiment. 
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3.3.2 Spatial Averaging  

To demonstrate the spatial incoherence of grain noise, the above experiment is 

repeated, but this time replacing the hair in glycerol by a polycrystalline material immersed 

in water. The sample consists of an Inconel block of 44mm x 44mm x 200mm (shown in 

Figure 3.12) containing a sub-millimetre diameter SDH along its length and at 22mm 

depth. The transducer, with a centre-frequency of 20MHz, has a focal length of 95mm and 

is positioned such that it is focused at the depth of the SDH. The probe is then scanned 

along the length of the SDH to capture the SDH reflection embedded within independent 

measurement of backscatter noise. In order to supress electrical noise, 1000 temporal 

averages are used at each location. The success of this experiment depends on rastering 

the transducer by a sufficient distance, defined by the spatial correlation length of the 

grain noise(Yu et al. 2010), such that each noise measurement is independent. By shifting 

the probe at fine intervals, this was approximately calculated (correlation coefficient 

dropped to below 1/e) to occur for a 0.4mm shift. Figure 3.13 shows a typical A-scan (with 

no spatial averaging) in comparison to one which is spatially averaged 25 times. As can be 

seen, the initial SNR is close to unity, whereas the spatial averaging has enabled the SDH 

signal to emerge from the grain noise.  

Similar to the previous post-processing procedure, SNR is calculated and plotted in 

Figure 3.14. As can be seen, the grain noise does indeed spatially average out and improves 

SNR approximately according to the same law as temporal averaging (10.2dB/dec was 

measured).  
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Figure 3.12: Inconel block with SDH machined along its centre.



 

68 

 

 

(a) 

 
(b) 

Figure 3.13: A-scans with (a) 1 average (b) 25 spatial averages, from a SDH within a scattering 
material, Inconel. 

 

Figure 3.14: SNR versus number of spatial averages as measured from the Inconel block and 
compared to the theory. The measurements were taken with a focused immersion 20MHz probe.  
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3.4 Conclusion 

This chapter set out to provide some practical evidence of scattering. Some of the 

inspection difficulties for upcoming USC components were established. The experiment 

revealed that it was surprisingly challenging to perform ultrasonic immersion tests which 

monitor the backwall signal whilst scanning the probe along the face of the sample. Several 

mechanisms contributed to this effect: a variation in velocity with position, a suspected 

large variation of grain sizes within a single component, and a high attenuation which 

varied from point to point.  

Evidence of grain scattering was found by measuring the frequency dependent 

attenuation of a longitudinal wave propagating within a coarse grained sample. The 

measured power law was slightly lower than the expected fourth order Rayleigh scattering 

but still confirmed scattering behaviour. Well known averaging theory was demonstrated 

on temporally incoherent noise, but it was also shown to work when spatially averaging 

grain noise which is spatially incoherent.  



 

70 

 

 



 

71 

 

 

Chapter IV 

4 BENCHMARKING 

METHODOLOGY 

 

In recent years, array probes and Full Matrix Capture (FMC) imaging algorithms have 

unlocked exciting possibilities for improvements, such as advanced spatial de-noising 

algorithms. Typically such algorithms are established by adopting a variety of methods, 

which renders it difficult to compare them. In order to progress and objectively compare 

these algorithms we must rely on robust methodologies to quantify their performance. This 

chapter proposes such a methodology to evaluate the detection performance of imaging 

algorithms, applying this by way of example to three FMC imaging algorithms; Total 

Focusing Method (TFM), Phase Coherent Imaging (PCI), and Decomposition of the Time 

Reversal Operator with Multiple Scattering (DORT MSF). The methodology considers the 

statistics of detection, presenting the detection performance as Probability of Detection 

(POD) and probability of False Alarm (PFA). A test sample of coarse grained Inconel 625, 

manufactured to represent materials used for future power plant components and 

containing some simple artificial defects, is used to illustrate the method on the candidate 

algorithms. The data is captured in pulse-echo mode using 64 element array probes at 

centre-frequencies of 1MHz and 5MHz. All three algorithms are shown to perform very 

similarly when comparing their flaw detection capabilities on this particular case.  

This work is published in IEEE Trans. Ultras. Ferr. Freq. Control 2014 [P2]. 
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4.1 Introduction 

The emergence of advanced FMC array imaging algorithms, such as those mentioned 

in Section 2.6, is an exciting opportunity for NDE of scattering materials. The additional 

spatial information captured by FMC approaches can be exploited to ultimately improve 

NDE performance. If we are to progress, and adopt more advanced imaging algorithms, it 

becomes increasingly important to rigorously distinguish imaging algorithm performance. 

Answering this question however first requires a widely accepted definition of performance 

and a robust method of measuring it. Various methodologies have previously been adopted 

to compare imaging algorithms (Trahey et al. 1986; Lardner et al. 2014; Jie et al. 2013) 

where Signal-to-Noise Ratio (SNR) enhancement is commonly used to convey merits. As 

there exists no widely accepted method, to our knowledge, there remains an opportunity, 

and indeed an important need, to define an objective method and find a basis for future 

comparisons.  

This chapter proposes such a methodology to evaluate, from an NDE perspective, the 

detection performance of different imaging algorithms. Here, the subsequent Section 4.2 

discusses the importance to consider both detection and false alarm rates whereby Receiver 

Operating Characteristic (ROC) (Metz 1978) analysis is introduced as a tool to quantify 

detection performance. By way of example, three candidate algorithms (introduced in 

Section 4.3); TFM, PCI, and DORT MSF, are tested on a coarse grained power plant 

material in Section 4.6. Prior to the experimental results, the proposed approach is proven 

using simulated data (see Section 4.5) where complete knowledge of the inspected medium 

exists. Details on data collection for each method, experiment and simulation, are presented 

in Section 4.4.  

4.2 Imaging Performance  

NDE usually involves two aspects: flaw detection and flaw characterization; both 

involve some uncertainty and the intent of the latter is here assumed to also include sizing. 

Whilst imaging performance for NDE applications can be defined by these two indicators, 

the challenge lies in how to quantify them. Various methodologies have been adopted to 
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compare imaging algorithms; an alternative method is reasoned below by considering 

detection and characterisation.  

4.2.1 Flaw Detection 

Detection is purely related to signal and noise amplitudes, commonly packaged as 

Signal-to-Noise Ratio (SNR). Measuring SNR in cases where defects are not detected, by 

definition, is difficult when noise dominates signal, making it unusual for SNR values of 

less than one to be discussed. In a research context however, a priori knowledge of the 

defects often exists, especially when they are simulated or artificially created, which can 

be exploited to enable comparisons. Thus as a simplification, and applying this to the 

example of an ultrasound image, it is commonplace (Wilcox 2011; Jie et al. 2013) to assume 

that the pixel intensities corresponding to the predicted flaw-response location contribute 

as signal (although it contains signal plus noise) whilst all remaining pixels are classified 

as noise. The appropriate area of the image corresponding to the defect can be determined 

by predicting the flaw response through simulation or by observing a well detected 

experimental case.  

Whilst SNR is a useful indicator of imaging performance, it is valuable to note that 

there is not always a benefit in maximising it once detection is achievable. This is 

illustrated in Figure 4.1 to Figure 4.3, where three candidate algorithms (defined later) 

image a flaw using the same raw data. Because each algorithm produces an image which 

allows detection of the flaw, albeit at different SNRs and perhaps characterising ability, it 

can be reasoned that each achieve equal detection performance. As an example, once 

detection is achieved it is trivial to increase SNR, as merely squaring the pixel values in 

an image will double its SNR (Wilcox 2013); the difficulty lies in actually improving 

detection rates.  

Once signal and noise values are calculated, determining whether a target is detected 

can be achieved by setting a threshold. Using a predefined threshold for detection, however, 

such as the widely accepted SNR of 6dB, can be lenient towards non-linear algorithms and 

does not allow a trivial calculation to determine false alarms.  
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Figure 4.1: TFM images of three FMC captures along the SDH length, using a 64 element 5MHz array. TOP: SDH2@60mm. Bottom: SDH1@50mm 
(60dB) normalisation. The colour scale denotes increasing intensity from blue to red.  
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Figure 4.2: PCI images of three FMC captures along the SDH length, using a 64 element 5MHz array. TOP: SDH2@60mm. Bottom: SDH1@50mm (60dB) 
normalisation. The colour scale denotes increasing intensity from blue to red.
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Figure 4.3: DORT MSF images of three FMC captures along the SDH length, using a 64 element 5MHz array. TOP: SDH2@60mm. Bottom: 
SDH1@50mm (60dB) normalisation. The colour scale denotes increasing intensity from blue to red. 
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False alarms are important as detection should also incorporate reliability; in addition 

to defects which are detected or missed, the number of false calls each algorithm generates 

has to be recorded. Without this consideration, an algorithm which detects only the defects, 

and one which classifies everything as a defect both maintain a perfect detection record. 

To calculate false alarms, the truthful outcome of any inspection must be known which 

once again requires the presumption that knowledge of the defects (true-positives) exists 

and thereby also the potential false-positives. 

This leaves two challenges: how to set a threshold and how to include reliability. One 

approach, which has enjoyed success in a variety of fields concerned with detection 

problems, is to rely on Receiver Operating Characteristic (ROC) analysis (Metz 1978). The 

ROC method was originally developed for RADAR to select an optimum operating point 

at which to distinguish enemy targets from allies and clutter (Zweig & Campbell 1993). 

Later the medical research community adopted the approach to interpret diagnostic 

accuracy and it subsequently received plentiful attention leading to further developments 

of analytical tools to interpret ROCs (Metz 1978). ROC analysis demonstrates the 

performance of a classifier, or for instance an imaging algorithm, by calculating true-

positive and false-positive rates, or in NDE terminology: Probability of Detection (POD) 

and Probability of False Alarm (PFA). This is an attractive approach as it circumvents 

the need for setting an arbitrary decision threshold by instead intentionally varying the 

decision threshold and observing the change in outcomes.  

The ROC method is also well equipped to operate in a low SNR environment, where 

defects are on the verge of detection. In order to compare imaging algorithms, particularly 

for NDE of difficult materials, it is precisely these conditions that are of interest. 

Comparing two different images in terms of their SNR alone, especially when both SNRs 

are low, does not often allow a meaningful comparison. For instance, the SNRs may have 

to be situated on opposing sides of the, for example 6dB, threshold before being able to 

distinguish detection performance. It must be noted however that it is not suggested to 

use ROC analysis to redefine detection standards and select a new detection threshold; it 

is merely suggested as a useful tool for evaluation and comparison of candidate algorithms 

on cases of interest. 
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4.2.2 Flaw Characterisation 

Once flaws are detected, their characterisation becomes important. To truly assess this 

aspect requires different types and sizes of defects which is usually problematic for 

experimental studies. This is also true for the sample that we will discuss later in this 

chapter, where the defects are relatively large when compared to a typical wavelength used 

in inspection. Inevitably, an investigation based solely on this case would quickly conclude 

that lower inspection frequencies are superior as grain scattering effects are reduced. It is 

therefore important to acknowledge that higher frequencies are in general necessary to 

detect smaller defects (although this can become a more complicated issue when 

considering scattering, this is beyond the scope of the current discussion).  

A previously adopted approach has introduced a resolution parameter (Holmes et al. 

2005) which measures the area of pixels which are within a 6dB (e.g.) range of the peak 

intensity signal-pixel. Measuring this however, commands detection with relatively high 

SNR as noise-pixels will otherwise contaminate the measurement. Difficult materials 

exhibiting low SNR, such as coarse grained materials, are therefore ill-suited for such 

resolution measurements. While characterisation remains an important performance 

indicator, when considering inspection of difficult materials, it follows secondary (in 

sequence) to detection. Thus this methodology will focus on detection and methods for 

assessing characterisation will be left to future investigation.  

4.3 Imaging Algorithms 

The three example algorithms considered were introduced in Section 2.6 and are hereon 

summarised; the Total Focusing Method (TFM), Phase Coherent Imaging (PCI), and 

Decomposition of the Time Reversal Operator with Multiple Scattering Filter (DORT 

MSF). Figure 4.1 to Figure 4.3 compares the images using the different algorithms of a 

relatively well-detected and weakly-detected Side Drilled Hole (SDH) in a coarse grained 

sample (further described in Section 4.3.1) using a 5MHz array. Figure 4.4 compares a 

similar image of SDH for the TFM and PCI algorithm using a 1MHz array.  
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(a) 

 
(b) 

Figure 4.4: (a) TFM (b) PCI array images of a single FMC capture of three SDHs at depths 
(50mm,100mm,150mm) and a corner reflection from a step at (135mm,-50mm), using a 64 
element 1MHz array. The SDH at (150mm,10mm) is hardly visible, but there is a clear gap in 
the backwall at 160mm (40dB normalisation). The colour scale denotes increasing intensity from 
blue to red. 
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4.3.1 Total Focusing Method 

TFM (Holmes et al. 2005) is named for creating an image which is synthetically focused 

at every pixel by using the standard sum-and-delay operation, more widely known as 

beamforming. The transmitting tx and receiving rx array elements are denoted i and j 

respectively, the x-coordinate signifies lateral position, the z-coordinate is the axial 

dimension, c0 is the wave speed, and the FMC matrix Hij(t) of dimensions N×N where N is 

the number of elements in the array. The image intensity, I, at location x, z, is given by 

Equation (4.1. The Hilbert Transform can be used to smooth the image. 
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4.3.2 Phase Coherent Imaging  

Phase Coherent Imaging (Camacho et al. 2009; Camacho & Fritsch 2011) amplifies the 

contribution of phase information by multiplying the original TFM image by a weighted 

matrix C according to the statistical phase φ variability of all N2 time traces (i,j) for a 

particular position (x,z). When all phases are equal, C=1, maintaining pixel intensity, 

whereas when they approach a uniform distribution C→ 0, reducing pixel intensities. This 

operation has shown promise (Camacho & Fritsch 2011) to inspect structurally noisy 

materials as backscatter signals are expected to exhibit greater phase variability than flaw 

signals. In this case I is given by:  
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(4.2) 

4.3.3 DORT MSF 

DORT (Prada et al. 1996) relies on calculating the singular value decomposition of the 

time-windowed, T, frequency, f, domain FMC matrix K(T,f) to achieve imaging of the 

inspected medium. In weakly scattering conditions, each i-th scatterer in the medium is 

related to a singular space of the i-th singular value λi. The corresponding singular vector 

Vi is the signal of delays to apply to the array to focus onto the scatterer. When structural 
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noise dominates, significant singular values are no longer associated with scatterers of 

interest. Part of this noise, multiple scattering, can be reduced by exploiting the 

deterministic phase relation along the anti-diagonals of the K matrix which occurs even 

for an unknown distribution of disorder, in this case the scatterers inside the medium, for 

single scattering. This procedure is termed a Multiple Scattering Filter (MSF) (Aubry & 

Derode 2009b; Aubry & Derode 2009a) and has shown great promise for detection in coarse 

grained materials (Shahjahan, Aubry, et al. 2014). DORT MSF involves applying the 

regular DORT algorithm to the filtered K matrix, Kf. Here G* is the complex conjugate of 

the Green’s function for a homogenous medium. In this case I is given by:   

),(),(),( * fTGfTVfTI iiDORT 
 

(4.3) 

The DORT MSF algorithm includes a detection criterion which aims to identify 

singular values which are associated with scatterers of interest and therefore merit back 

propagation. This is achieved by considering the statistical properties of the singular value 

distribution acquired from backscatter in a defect-free area for different frequencies f and 

depths related to time T. This method requires numerous FMCs of defect-free material 

which is known to be of similar microstructure. In applications of known, well-controlled, 

microstructure, this has been shown to generate significant improvement in detection 

performance (Shahjahan, Aubry, et al. 2014). However, in circumstances where the 

microstructure is spatially varying, such as in this study, the backscatter of defect-free 

material cannot be related to that from areas which contain defects, and therefore this 

potential advantage cannot be realised. 

4.4 Data Collection  

This chapter relies mainly on experimental data obtained from a coarse grained 

material to demonstrate the proposed methodology whilst simulated data is used to 

investigate its limitations. The experimental investigation provides an interesting outcome 

on how the algorithms perform on a real material and the simulated data allows us to 

generate data with a known outcome in order to contrast the evaluation results with what 

is expected. Table 4.1 summarises the parameters for each method of data collection, where 
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both serve to acquire FMC data of imaging targets: a defect in structurally noisy material. 

As different imaging algorithms may exhibit varying levels of sensitivity towards defects 

located at large angles, the array is always placed centrally above the defect such that the 

most optimistic scenario is considered: the defect is located where the array has the highest 

sensitivity. In terms of post processing, the data is filtered about the centre-frequency of 

the array used. Similarly, whereas previous research (Li et al. 2013) has shown that, for 

certain inspections, image SNR can be optimised by using sub-apertures of the array, this 

investigation uses the full aperture.  

Parameter Simulation 
Experiment: 

high freq. array 
Experiment: 

low freq. array 

Number of elements 32 64 64 

Element pitch 0.6mm 0.6mm 2.1mm 

Element width 0.5mm 0.5mm 1.6mm 

Element length 15mm 15mm 20mm 

Centre-frequency 5MHz 5MHz 1MHz 

Bandwidth (-6dB) 64% 65% 50% 

FMCs per defect 100 ~10 ~10 

Table 4.1: Summary of simulation and experimental parameters. 

4.4.1 Experimental Data Collection 

The experimental data are collected from the Inconel 625 block described in Section 

3.1. To summarise: the sample is representative of future power plant components and 

contains three 5mm diameter Side-Drilled-Holes (SDH) found at various depths as seen in 

Figure 3.1. The FMC data are acquired using two faces of the sample, in a contact 

configuration with the array orientated perpendicular to the SDH, to provide five imaging 

targets at different depths: 50mm, 60mm, 100mm, 110mm, and 150mm. For each target, 

array data sets are acquired at a series of locations along the SDH’s length, although in 

each case centrally above it, to capture multiple FMCs of the same defect surrounded by 

a varying microstructure. The maximum number of FMCs which can be acquired in this 

way is limited by the required minimum step between the measurement data sets, and the 

maximum available scan area, determined by the thickness of the sample. A minimum 
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separation distance ensures that each measurement is independent, dictated by and 

approximately equal to the grain size. In this case, the constraints permitted approximately 

ten independent FMC measurements per imaging target. Two 64 element array probes 

(manufactured by Imasonic, France), with different centre-frequencies of 1MHz and 5MHz, 

are employed to represent a relatively low and high inspection frequency (see Table 4.1). 

The arrays are controlled by an OPEN System (manufactured by Lecoeur, France) and 

excited using a negative square pulse having a time duration equal to half the period at 

the probe centre-frequency. 

4.4.2 Simulation of Scattering Materials 

In order to control the outcome of an inspection, an existing simulation model (Jie et 

al. 2013) is used to generate FMC data which are representative of those obtained from 

scattering materials. It assumes that image speckle associated with grain scattering can be 

generated by calculating the acoustic response from a random sub-wavelength distribution 

of point scatterers. Under a single-scattering approximation, such a response can be 

calculated even for a large numbers of scatterers (e.g. 5000), whereas this would be more 

challenging for a complete scattering model.  

The grain scatterers are represented by point scatterers which behave as 

omnidirectional scatterers with amplitude gS . It has been shown (Jie et al. 2013) that 5 

scatterers per wavelength squared is a representative and computationally efficient density 

of scatterers to include. At least 15 realisations are required to produce a converged SNR 

at this density (Jie et al. 2013).  

Realistic defects such as cracks can be introduced into the model by describing their 

behaviour using a scattering matrix (Zhang et al. 2008), calculated for example by Finite 

Element models. This chapter however only considers a defect in the form of another point 

scatterer with a scattering amplitude dS . The ratio, relative to the grain scattering 

amplitude Sg
, is defined as a shown in Equation 4.4. Assuming that the scatterer density 

is fixed, the level of backscatter can be controlled by varying a, where larger values lead 

to stronger scattering.  
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The frequency response ( )ijE   of a single point scatterer, for both grains and defects, 

is calculated using Equation 4.5. 
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 A(ω) is the frequency spectrum of the transmitted signal and r is the distance from 

array element i or j to the point scatterer. B is the transducer directivity function (Miller 

& Pursey 1954) where rx and tx denote reception and transmission respectively. Similarly 

the Green’s functions, Grx and Gtx calculate the complex amplitude and phase received from 

a particular combination of receiver and transmitter element from the point scatterer for 

a homogenous equivalent medium. As dictated by the Born Approximation, the FMC 

matrix H can be obtained by super-positioning the individual contributions Eg of all n grain 

scatterers and that of the defect Ed as shown in Equation 4.6. The inverse Fourier transform 

of H(ω) is used to extract the time traces and obtain the time-domain FMC matrix H(t). 
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The model simulates a 32 element 5MHz array (see Table 4.1) with two different 

scattering environments representing a strong and weak detection scenario, by setting a 

equal to 0.1 and 0.25 respectively. Each case involves 100 FMCs for different random 

realisations of grain scatterer positions, each realisation contains a single defect located at 

an axial depth of 20mm centrally below the array. Figure 4.5 shows one TFM image for 

each case.  
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(a) 

 
(b) 

Figure 4.5: TFM image obtained from simulated data. Both images contain a point source at 
(20,0) with (a) a=1/10 and (b) a=1/4.  The images are both normalised to their respective peak 

pixel intensity.  
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4.5 Measuring Reliable Detection 

Once the FMC data are acquired, they are post-processed to produce images for each 

algorithm. True to the rationale defined in Section 4.2, ROC analysis is used to compare 

the performance of each algorithm. Whereas this analysis has been used in a qualitative 

manner where operators interpret images, the method outlined here relies on a basic form 

of image segmentation to quantitatively identify image objects from noise. This is in part 

possible due to the relative simplicity of the imaging targets considered which produce 

simple shapes (e.g. circular) which can be recognized by their increased intensity compared 

to the background. Hence there is no need for more complex pattern recognition, although 

this could be an avenue worth pursing for future investigations which consider multifaceted 

defects. The procedure for producing ROC plots follows these steps: 

1) The images are converted into signal and noise datasets by adopting an image 

segmentation procedure. The procedure is possible because the defects are known, 

and is therefore only suited for a comparison methodology and not for real 

deployment with unknown defects. First, an area (a box) is mapped around the flaw 

response and the Root-Mean-Square (RMS) of the contained pixel intensities is 

calculated. This represents the signal amplitude and its area can be referred to as 

the signal box. For most experimental measurements, this will contain both signal 

and noise; a trade-off which increases and decreases depending on how well or poorly 

the object is detected. A TFM image of a simulated defect in a scattering material 

can be seen in Figure 4.6a where the outline depicts the signal box. The dimensions 

of the box are set to agree with the expected size of the flaw indication, determined 

by observing a well detected case, either experimentally or through simulation. Its 

shape can be modified according to the imaging target. For instance, in the case of 

inclined cracks, it may be more suitable to use two separated boxes which overlap 

with the crack tip responses. 

2) Determining the noise dataset involves segmenting the remainder of the image 

(minus the signal box) into sections, here for demonstration purposes, of the same 

dimensions as the signal box. These can be considered as super-pixels which, similarly 

to the signal box, are calculated from the RMS value of the sub-pixels they contain. 
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(a) 

 
(b) 

Figure 4.6 (a) Typical TFM image of a defect (outlined in white) in a scattering medium. (b) 
The processed version of the TFM image in (a) where the super-pixels and their RMS value has 
been calculated. The single super-pixel which corresponds to the defect is outlined in black. The 
area of omitted noise super-pixels which neighbours the signal pixel is shown in red.  
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The super-pixel version of the TFM image in Figure 4.6a is shown in Figure 4.6b. 

All the RMS values are then attributed to a noise dataset although any super-pixels 

which intersect with the signal box (the black outline in Figure 4.6b) are omitted 

from the noise distribution. The significance of the box dimensions is investigated in 

the following sub-section. 

3) This procedure is repeated for all images of the defect to produce multiple images 

containing the same defect and different background noise. The use of numerous 

images, namely acquiring multiple FMC data of the same imaging target, is 

important to obtain two data distributions, one for the signal amplitudes and another 

containing noise values. Typical histograms for the distribution of a well and poorly 

detected case for the TFM algorithm, corresponding to average SNRs of 8dB and 

3dB respectively, are shown in Figure 4.7. These histograms are obtained from 

simulated data using the model discussed in Section 4.4.2. Contrasting to real 

measurements, the simulated defect reflects a constant amplitude, which therefore 

only fluctuates according to noise in the defect box, and therefore its distribution is 

also similar to that of the noise. In experimental measurements however, like those 

of coarse grained samples, a variety of reasons can lead to signals fluctuating, 

including varying attenuation and anisotropy. 

4) The ROC is calculated by establishing thresholds, varying from 0 to infinity, to the 

noise and signal distributions. Any data which exceeds the threshold is regarded as 

detected; the POD is calculated by the proportion of signal data which satisfy this 

criterion whilst the noise data contribute towards false alarms (PFA). The threshold 

at zero produces the point (1,1) in the ROC space whilst that at infinity produces 

(0,0), and any thresholds in between result in a combination of POD and PFA. The 

ROCs for the two cases shown in Figure 4.7 can be found in Figure 4.8. The well 

detected case shows a POD/PFA trade-off where almost all defects can be detected 

without any false alarms. For the poorly detected scenario (Figure 4.8b), however, a 

significant number of false alarms arise before all defects are detected.  

5) The previous steps are repeated for each candidate algorithm to produce a ROC plot 

for each imaging target. 
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(a) 

 
(b) 

Figure 4.7: Examples of the signal and noise distributions for (a) a well detected case with an 
average SNR of 8dB and (b) a poorly detected case with an average SNR of 3dB. The 
distributions were measured from simulated data imaged using TFM. 

 
(a) 

 
(b) 

Figure 4.8: Examples of ROC curves corresponding to the (a) well detected case and (b) poorly 
detected case of Figure 5 for the TFM algorithm. 
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It is important to investigate and consider the limitations of the proposed method. To 

enable a further discussion of ROC plots requires quantifying a parameter to describe them; 

the Area Under the ROC (AUC) is usually defined for this purpose (Hanley & McNeil 

1982). Although there are drawbacks to reducing the ROC to a single index, it is a 

convenient description of the position of an ROC curve within the ROC space i.e. an AUC 

of unity denotes perfect detection and that of half describes the chance line corresponding 

to a randomised classifier. 

4.5.1 Segmentation Procedure 

Calculations of signal and noise amplitudes, whether this involves windowing a time-

domain signal or spatially segmenting an image, are susceptible to the settings used. In 

this case, the signal and noise box dimensions represent such settings and affect the 

outcome of the ROC curve by either lowering or increasing the measured signal and noise 

amplitudes. Although the method was previously demonstrated by using parameters that 

were judged to be sensible for box sizes, the AUC is now measured as a function of varying 

the size for both parameters in order to investigate their impact and thus the sensitivity 

of the outcome to this judgement. 

Figure 4.9 plots the AUC for both the well detected and poorly detected case. Both 

cases show that larger signal boxes increase false alarms, arising from the averaging effect 

which lowers the measured RMS amplitude. Noise boxes behave in the opposite way; small 

box sizes introduce peaks into the noise distribution which generate false alarms. From the 

well detected case, where it can be safely stated that the defect is detected, lower extremes 

for the noise box dimensions lead to a relatively sensitive result, which is undesirable. In 

this particular case the lower limit on the box size is 2mm for both signal and noise. For 

future investigations and use of this methodology, the appropriate choice of box size will 

depend on the imaging object and resolution of the algorithm considered. However, the 

results suggest that the method is largely insensitive to the box size, as long as extremes 

are avoided, and therefore this is not considered to be critical.  



 

91 

 

 
(a) 

 
(b) 

Figure 4.9: Influence of box size on ROC curve for the well detected case (a) and poorly detected 
case (b) of Figure 5. AUC is the Area Under the Receiver Operator Characteristics curve where 1 
represents perfect detection; and 0.5 a random classifier. 

AUC 

AUC 
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The image segmentation procedure can be compared to a spatial or even a frequency 

filter (even though it is mathematically more akin to a decimation operation). By adopting 

the same box size for signal and noise, the calculation assumes only noise objects of similar 

size to the signal can bring rise to false alarms. Such reasoning is similar to a measure of 

SNR which only considers noise occupying the same frequency spectrum of the signal as 

anything outside it can easily be filtered. Thereby, the procedure adopts the most 

optimistic detection scenario, analogous to considering a maximum SNR, whereby imaging 

artifacts of different sizes to the imaging target are omitted.  

4.5.2 Further Sampling Considerations 

A point of concern for any statistical method is the required sample size. There is no 

simple answer as to how many cases are required to ensure a particular statistical precision 

of an ROC curve (Metz 1978). It is known however that the precision does increase as 

more cases are included and as larger AUCs are considered. Increased precision allows 

smaller apparent differences between resulting curves to become meaningful in order to 

distinguish classifier performance. Therefore, if the analysis uses only a low number of 

images, only broad conclusions can be drawn between the imaging algorithms. Statistical 

analysis of the ROC approach can be found in (Hanley & McNeil 1982). In our case here, 

sample size does not pose a significant concern as convergence is not necessarily required 

to draw relative differences between algorithm performances. It is still beneficial however 

to include as many independent FMC data sets as possible for each defect.  

In a similar nature, curves drawn with a limited set of discrete data produces staircase 

effects. This can make the curve appear jagged (as we will see is the case for the 

experimental data in Figure 4.10 and Figure 4.11). This is investigated in (Zweig & 

Campbell 1993)where the ROC plots of binned and unbinned data are compared. It is 

shown that the ROC plot can be affected and its approximation becomes poor when the 

data becomes too coarsely binned. Once again, as more FMCs are included, the curves 

should begin to resemble their continuous equivalent. 
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4.6 Imaging Algorithm Evaluation 

Here we present an example of the evaluation of the performance of imaging algorithms 

using the proposed methodology. We use the array measurements obtained from the 

Inconel block as described in Section 4.4.1, and perform the imaging using the TFM, PCI, 

and DORT MSF algorithms.  

4.6.1 Results 

Figure 4.10 and Figure 4.11 show the ROC results for the detection of SDHs at various 

depths for low and high frequency respectively (1MHz and 5MHz). The points on the ROC 

show the step function, whereas the lines show the optimal performance of an algorithm, 

in ROC terminology this is named the convex-hull (Hanley & McNeil 1982). At low 

frequency (Figure 4.10), all candidate algorithms detected their target at all depths but 

the deepest (150mm). Even though some algorithms are superior in terms of SNR (e.g. 

Figure 4.1 to Figure 4.3), the ROC results show their performance in this case cannot be 

distinguished. For the purposes of a performance evaluation, this results in a redundant 

outcome and more challenging detection targets are required. Higher frequencies provide 

this situation: the same SDHs become more difficult to detect as grain scattering increases.  

At 5MHz, only the 60mm depth hole remained perfectly detected, the 150mm (Figure 

4.11d) and 100mm (Figure 4.11b) depth holes were not detected at all, and the 50mm 

(Figure 4.11c) and 110mm (Figure 4.11a) were partially detected. When defects are not 

detected, the ROC curve approaches the chance line which represents a randomised 

classifier, shown as a dotted diagonal line in Figure 4.10a. Whilst the higher frequency 

results provided the desirable test case where targets are on the verge of detection, the 

results indicate that there is little performance difference between the algorithms. Table 

4.2 summarises this by calculating the detection rates for all defects by arbitrarily setting 

an allowable PFA at 5% (threshold for 5% PFA shown in Figure 4.10).  
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(a) 

 
 

(b) 

Figure 4.10: Low frequency (1MHz 64 element array) ROC results for (a) the SDH at 60mm 
depth which here exemplifies perfect detection (all defects are detected without raising false 
alarms). The diagonal dotted line represents a random classifier or chance line. The threshold 
for a 5% PFA is also illustrated by the dashed vertical line. (b) ROC result for 150mm depth 
where the detection record is no longer perfect, but the candidate algorithms produce similar 
results. 
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(a) (b) 
 

(c) 
  

(d) 

Figure 4.11: High frequency (5MHz 64 element array) ROC curves for (a) 110mm, (b) 100mm, (c) 
50mm, and (d) 150mm depth SDHs. The detection rates can be seen to vary, where the defects at 
100mm and 150mm were particularly difficult to detect.  
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Imaging Algorithm Low Frequency High Frequency 

TFM 100% 51% 

PCI 100% 55% 

DORT MSF 100% 54% 

Table 4.2: Summary of results: portion of defects detected by each algorithm for a set 5% PFA. 

4.6.2 Discussion 

The results show that even though some de-noising algorithms seem to increase SNR 

when flaws are detected, this had no impact on actual defect detection for this inspection 

setup as the considered algorithms, TFM, PCI, and DORT MSF, all performed very 

similarly. This observation holds true for both 1MHz and 5MHz array data, even though 

the majority of defects were detected at the lower frequency and therefore it was not 

possible to distinguish algorithms. Although both PCI and DORT MSF detected slightly 

more defects, this was only in the order of a few percent (see Table 4.2) when considering 

the defect population for a given false-call rate (5%), and hence the difference was not 

statistically significant. 

Several possible reasons can explain the similarities in performance which were 

observed. Given the high levels of scattering noise, the material sample can be assumed to 

behave as a medium with an infinite number of scatterers, with only one of those scatterers, 

the SDH, being the scatterer of interest. For phase coherence to exist, and algorithms like 

PCI to exploit this, the scatterer of interest would have to exhibit a greater amplitude 

signal such that its signal and therefore also its phase dominates the signals originating 

from the remaining scatterers. In addition, the DORT MSF algorithm can be expected to 

perform better when the grains are well characterised and the threshold is implemented as 

is intended by its developers (Aubry & Derode 2009b; Aubry & Derode 2009a; Shahjahan, 

Aubry, et al. 2014). A lack of multiple scattering effects may also hinder its capacity to 

deliver  improved imaging performance in this example. 

Limitations of this particular comparison include the reliance on artificial defects. SDHs 

behave differently to real defects; signals received from cracks may be more phase 

incoherent which can cause algorithms such as PCI to behave undesirably as mentioned in 
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(Jie et al. 2013). Conversely, there may be characteristics of real defects that improve the 

performance of certain algorithms. Thus even though SDHs are an established benchmark, 

the conclusion for this specific case must be read with caution.  

Given that the sample is representative of future power plant components, it is 

worthwhile to discuss some of the inspection findings. Overall, the array detection results 

show the sample to be difficult to inspect, regardless of which algorithm is used. The 

varying scattering behaviour throughout the block meant that detectability of defects did 

not necessarily decrease with depth, as the 50mm depth SDH exhibited a lower detection 

rate than one at 60mm. The sample confirmed that there is still a need to improve 

ultrasonic NDE of these materials before they can be reliably inspected. It is important to 

emphasise again that these cases are presented as examples to illustrate our comparison 

methodology and do not infer general conclusions about these imaging algorithms.  

4.7 Conclusions  

This chapter proposed a methodology to enable the detection performance of different 

imaging algorithms to be quantified and thereby allow comparisons of the performance of 

algorithms for candidate inspection applications and thus to progress ultrasonic NDE of 

difficult materials. By relying on ROC analysis and taking into consideration both POD 

and PFA, the procedure aims to deliver a robust and objective evaluation. Investigation 

of its limitations and the impact of the required parameters suggest its settings are 

relatively insensitive to the results. The only main requirement is prior knowledge of the 

truthful outcome for an inspection, which in a research context is often the case. 

Advanced de-noising ultrasonic array imaging algorithms, PCI and DORT MSF, were 

matched with TFM for the detection of Side-Drilled-Holes (SDH) in a sample of coarse 

grained power plant material, Inconel 625. The results, applicable just to this particular 

case, show the algorithms to perform very similarly as no significant differences were 

observed in their performance. In other applications cases it may well be that there will be 

differences in performance, and it is proposed that this methodology would be useful to 

make such an assessment on arising cases of interest. 
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Chapter V 

5 FINITE ELEMENT MODEL 

 

Finite Element modelling is a promising tool for further progressing the development 

of ultrasonic NDE of polycrystalline materials. Yet its widespread adoption for simulating 

wave propagation and scattering within these materials has been held back due to a high 

computational cost. Within NDE, this has restricted current works to relatively small 

models and to two dimensions. The emergence of sufficiently powerful computing however, 

such as highly efficient solutions on graphics processors, is enabling a step improvement in 

possibilities. This chapter aims to realise those capabilities, to simulate ultrasonic 

scattering of longitudinal waves in an equiaxed polycrystalline material in both 2D and 

3D. The modelling relies on an established Voronoi approach to randomly generate a 

representative grain morphology. It is shown that both 2D and 3D numerical data show 

good agreement across a range of scattering regimes in comparison to well-established 

theoretical predictions for attenuation and phase velocity. In addition, 2D parametric 

studies illustrate the mesh sampling requirements for two different types of mesh, to ensure 

modelling accuracy and present useful guidelines for future works. Modelling limitations 

are also shown. It is found that 2D models reduce the scattering mechanism in the Rayleigh 

regime in comparison to scattering in 3D. 

This work is in print at the Journal for the Acoustical Society America 2015 [P7]. 
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5.1 Introduction  

Whilst modelling and simulation are becoming increasing crucial to modern day 

research, it can be particularly beneficial to study highly scattering materials. In 

comparison to experimental measurements: the interaction of multiple physics, noisy data, 

expensive samples, and often the need for their destructive testing, are all limitations which 

can be avoided through simulation. Perhaps unsurprisingly, there has been significant 

interest and efforts to simulate ultrasonic signals obtained from grain scattering media (see 

Chapter 2) - but it has proven challenging. Mathematical complexity: i.e. there are 

Rayleigh, Stochastic, and Geometric scattering mechanisms, and in addition the 

computational expense required to incorporate all effects such as multiple scattering, have 

both limited the benefit of modelling techniques.  

Even so there has been some success, for example, models such as the Unified Theory 

(see Chapter 2) have proven particularly useful to characterise polycrystalline materials by 

inversion from attenuation measurements (Stanke 1985; Papadakis 1968). As previously 

mentioned however, for ultrasonic flaw detection, the scattering induced noise is also of 

interest (Thompson et al. 2008). To that end, the currently most complete model is the 

Independent Scattering Model (ISM) (Margetan et al. 1994) which has significantly 

benefited ultrasonic inspections (Margetan et al. 2007) today. However, the ISM neglects 

multiple scattering which thus limits its applicability to relatively weak scattering media 

(Anxiang et al. 2003). Other models, such as those mentioned in Chapter 4, whilst very 

useful, are more simplistic and can be regarded heuristic.  

Recently however, researchers (Ghoshal & Turner 2009; Feuilly et al. 2009; Shahjahan, 

Rupin, et al. 2014; Lan et al. 2014) have considered numerical modelling such as the Finite 

Element (FE) method to overcome this limitation and confront more challenging scattering 

scenarios. In contrast to existing approaches, its ability to simulate time-domain signals, 

incorporating both attenuation and noise, whilst also including complex physics such as 

multiple scattering (Shahjahan, Rupin, et al. 2014), makes FE a promising candidate. Its 

flexibility and high fidelity will probably be instrumental to further progressing the 

development of ultrasonic NDE of polycrystalline materials.  
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Yet its widespread adoption has been held back due to a high computational cost which 

arises from having to numerically discretise the material’s microstructure. This has 

restricted current works to relatively small models e.g. of the order of 1000s of grains, 

which, while representing impressive progress is still only sufficient for a reduced range of 

feasible scattering regimes, and to 2 dimensions. The latter limitation, a 2D model, obliges 

several simplifications including: 

(1) The representation of grain size distributions of a 3D material in a 2D model. 

Namely, the grain cross-sections seen on a slice of a 2D material do not correctly represent 

the grain sizes of a 3D material.  

(2) The stiffness matrix, which is reduced according to plane strain assumptions and 

renders the model infinite in the collapsed dimension. 

(3) The scattering phenomena, which are not fully reproduced. For example, Rayleigh 

scattering is a 3D phenomenon which is closely linked to the scattering cross-section which 

is proportional to volume and therefore reduced in 2D environments where the scattering 

can only occur in the two dimensions.  

This chapter presents recent developments of realistically large and detailed FE models 

of ultrasonic longitudinal wave propagation within polycrystalline materials, demonstrating 

and evaluating new simulation possibilities in 2D and 3D. It investigates the capability of 

FE to model the different scattering behaviours across regimes as predicted by the Unified 

Theory, and assesses the significance of 2D assumptions through comparison with 3D 

simulations.  

This advanced modelling is now becoming possible because of the emergence of 

sufficiently powerful computing and new, faster modelling tools. Specifically, we make use 

of a highly efficient GPU based solver (Huthwaite 2014) for FE which has enabled larger 

studies e.g. up to 100,000 grains in 2D and 5000 in 3D. Although this approach can be 

suited to model a variety of microstructures, for this initial investigation, we consider a 

relatively simple microstructure, untextured, and comprising equiaxed grains of a single 

phase in a range between 100µm and 500µm. The chosen material is a relatively strong 

scattering medium, Inconel 600, of cubic symmetry.  
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As a further example of the utility of modelling such as this, recent research (Zhang et 

al. 2004; Zeng et al. 2010; Maurel et al. 2006) has raised interesting queries regarding our 

current understanding of grain scattering, including the role of grains as Rayleigh scatterers 

(Zhang et al. 2004) and whether it is not the material imperfections such as voids and 

inclusions which are contributing to that effect. FE can be useful in this matter by 

modelling a perfect polycrystalline microstructure, clear of flaws, and identifying the 

dominant scattering behaviour of the grains.  

The subsequent section provides a brief step-by-step outline for FE modelling of 

polycrystalline materials in 2D, continued by Section 5.3 which investigates its mesh 

sampling requirements. Section 5.4 introduces the 3D model. The main body of results is 

presented in Section 5.5 where numerical simulations of a 2D and 3D model are compared 

to theoretical results obtained from the Unified Theory. 

5.2 FE Modelling of Polycrystalline Material  

Finite Element modelling of polycrystalline materials has been successfully undertaken 

in various fields of research (Quey et al. 2011; Kamaya 2009; Zhang et al. 2011) including 

NDE (Ghoshal & Turner 2009; Feuilly 2009; Chassignole et al. 2009; Shahjahan, Rupin, et 

al. 2014; Lan et al. 2014) where it has been limited to 2D. Although several approaches 

have been adopted, all of those mentioned here that consider geometrically varying grains, 

rely on Voronoi tessellations (Aurenhammer 1991) to numerically generate a morphology 

which is geometrically similar to a naturally occurring polycrystalline microstructure. This 

has been accepted as a good approach by researchers in crystallography and textured 

materials (Kocks et al. 2000). Yet for wave propagation, several questions still remain: for 

example whether it can accurately recreate the complex scattering phenomena, and what 

type and density of mesh, one consisting of regularly shaped elements (structured), or one 

which allows for arbitrary element shapes (free), is best to use to deliver efficient but 

accurate results.  

This procedure was implemented, relying mainly on Matlab, although some bottlenecks 

were sped up using C++, and eventually Bash was used to coordinate running the models 

in batches. The Matlab portion involved approximately 10,000 lines of code which 
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eventually allowed for several model configurations, such as a plane wave mode, point 

sources, and adding/removing absorbing regions, and also various meshes including 

triangular or rectangular, or structured and unstructured. The next sub-sections provide a 

brief step-by-step description, and practical considerations for the aforementioned 

modelling approach.  

5.2.1 Generating Random Polycrystals 

Generating a random polycrystalline microstructure, as achieved in (Ghoshal & Turner 

2009; Feuilly 2009; Chassignole et al. 2009; Shahjahan et al. 2014), starts by randomly 

distributing points, or seeds, in a Euclidian space. Several options are available to do this, 

here we adopt the approach of starting with a regular grid of seeds, and perturbing their 

positions independently for each dimension according to a Gaussian distribution. The 

original grid spacing determines the mean grain size, and the spread of the perturbation 

determines the grain size distribution. A 2D example of this is shown in Figure 5.1a, where 

the seed density will determine the resulting average grain size. The coordinates of each 

seed become the site for a single grain by serving as an input to the Voronoi algorithm 

(Aurenhammer 1991). The algorithm subdivides the original space into regions, in the form 

of convex polygons, whereby each polygon encloses the area which is nearest to that 

particular seed (see Figure 5.1b). Once a Voronoi tessellation has been generated, it 

requires modification to make it suitable for FE modelling. This procedure involves clipping 

the boundaries for instance, a step previously described as regularization (Quey et al. 2011). 

Clipping to eliminate lines which are outside or partially outside the model space, is 

the only regularisation step required for structured meshes. This procedure becomes 

particularly cumbersome however (but essential) for unstructured meshes. This arises from 

the necessity to remove small lines and extreme angles composing the polygons, which 

would introduce undesirably shaped elements. Two schemes to regularise the mesh were 

considered during this project: (1) Undesired lines are identified and subsequently removed, 

leaving a gap in the tessellation, which then requires stitching. Whilst this option may be 

the least disruptive, it becomes increasingly complex to account for the enormous number 

of exceptions that can occur within a random tessellation of polygons.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.1: Illustration of the steps involving a Voronoi generation of polycrystals: (a) a 
random distribution of seeds; (b) the Voronoi tessellations produced by (a); (c) The 
regularized grain layout and (d) the random orientations assigned to each grain, here 
shown by arrows in the 2D plane for clarity (note zoomed scale of this image compared 
to the others). Colors are only illustrative. 
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For example, small lines occurring within the body or at the edges, intersections of multiple 

lines, or whether the alteration created new Voronoi-nodes, are all instances which need to 

be considered. Furthermore, during these adjustments, it is important to maintain the 

information of all vertices belonging to each grain, which is in part hampered by floating 

point errors. Although this approach was fully implemented and used for some time, 

ultimately an alternative approach was selected which was superior. Scheme (2) 

approximates the tessellation by rounding the number precision, such that all its vertices 

fall onto a fine grid, whose refinement is defined. This is similar to how a structured mesh 

would approximate the tesselation, except we can introduce a much finer grid to 

approximate it to. Although being more disruptive than the previous method, since this 

doesn’t destroy the Voronoi-node database, and doesn’t introduce quite the same level of 

staircasing effects as the structured mesh does, it is considered the more efficient scheme. 

5.2.2 Mesh Generation 

The minimum FE mesh discretisation for accurate modelling of wave propagation is 

usually constrained by the wavelength (Drozdz 2008). In this case however, whether using 

a structured or unstructured mesh, the objects to model, the crystallites, are often an order 

of magnitude smaller than the wavelength, which demands denser meshes whose refinement 

far exceed the said wavelength criteria. Two possibilities exist, which have previously each 

been adopted, either an unstructured mesh utilizing triangular FE elements (see Figure 

5.2a and Figure 5.3a) to conform to the complex boundaries of the Voronoi tessellation, or 

an approximation of the grains with a structured mesh (Shahjahan, Rupin, et al. 2014) 

(see Figure 5.2b and Figure 5.3b). The hazard with a structured mesh is that it leads to 

“ staircasing”  effects (Drozdz 2008) which become a poor approximation at coarse mesh 

densities (see Figure 5.2d) and can lead to tip diffraction from edges, and also to 

disproportionately strong reflections from waves that are normally incident to the plane of 

the flats (Drozdz 2008). When using an unstructured mesh however, the challenge is to 

maintain high quality triangles, i.e. close to equilateral shapes, such that there is minimal 

mesh scattering.  
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(a) (b) 

(c) (d) 

Figure 5.2: Meshed polycrystal using four different schemes: (a) free mesh (b) structured mesh 
(c) finer free mesh (d) finer structured mesh. Staircasing effects are illustrated in (b) and (d).  
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(a) 

 

(b) 

Figure 5.3:Typical grain mesh using (a) unstructured and (b) structured mesh for a 3D scenario. 
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For this purpose, several software solutions are available; for example good results were 

found, both in terms of the quality of meshes (no large deviations from equilateral, no large 

variations in element sizes) and the time required to generate them (e.g. order of minutes), 

using a Free software tool, Triangle (Shewchuk 2002). Using commercial software, such as 

Abaqus (Abaqus 6.14 2014), it was found that meshing can be a significant bottleneck to 

this type of modelling (e.g. 20 hours computation time), with the only solution to speed 

things up being to mesh several models in parallel. 

5.2.3 Dimensional Considerations 

In contrast to sub-3D modelling, fewer simplifications are necessary when all three 

dimensions are used. When 3D models are not feasible, reducing a polycrystalline material 

to a 2D model introduces certain simplifications. This includes the grain size distribution, 

which impacts, amongst other properties, the ultrasonic characteristics of the material. 

Whereas for 3D modelling approaches, the simple approach is to match the distribution of 

grain dimensions to that of the desired material, in 2D, this is not as trivial. Namely, a 

random cutting plane through a 3D tessellation of grains will not intersect every grain 

through its centre, rather, some intersections will occur off-centre and therefore reproduce 

smaller cross-sections. The study of interpreting 2D representations of 3D grains forms the 

basis of stereology (Underwood 1970) and is beyond the scope of this study. Here, we will 

assume a normal distribution of grain sizes in 2D (defined as the square root of area), as 

the one depicted in Figure 5.4, which assumes that our slice of a 3D material cuts every 

grain through its centre and therefore overestimates the grain sizes that would be seen in 

a proper 2D section. Whilst larger grains will increase the attenuation, we are making no 

claims regarding how this may compare to attenuation of a 3D material. Namely, it would 

be interesting as a future exercise to further investigate the opportunities and advantages 

of adjusting grain size distributions in 2D to better match the ultrasonic behaviour of a 

3D material; this would be important for rigorous modelling in 2D and is by no means 

straightforward to achieve.  
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Figure 5.4: Grain size distribution for a typical random realistation of an input 100µm grain 
size material. The grain size D in this 2D case is defined by the square root of area. 

 

  

Figure 5.5: Typical pole plot (ODFs) for a randomly generated material. The distribution of 
grain alignments over the whole sphere shows for this example that the generated material is 
indeed isotropic. The scales indicate the distribution of probability density for the orientation 
angles of the <110> and <111> crystallographic axis. 
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The orientation distribution function (ODF) of a polycrystalline material is another 

factor which determines macroscopic properties. For a single phase material, each 

crystallite should be assigned the same anisotropic stiffness properties but with a random 

crystallographic orientation to define a macroscopically isotropic material (see Figure 5.1d). 

To achieve this, the three reference Euler angles, which define orientation, may be 

randomly distributed such that their orientations lie equally spaced on the surface of a 

sphere, as explained by (Shahjahan, Rupin, et al. 2014) for example. Figure 5.5 shows the 

result of rotating orientation angles in 3D for 2000 grains, illustrated by pole plots (the 

established form of display for ODFs in materials science (Lan et al. 2014)). As can be 

seen, as desired, a macroscopically isotropic material has been achieved.  

Finally, the 2D simplification leaves two possibilities, one in which the orientation 

distribution is only in the plane, hence a plane strain model is possible; the other in which 

the distribution is in 3D, and then needs to be approximated for 2D. Plane strain 

assumptions then neglect the stiffness constants associated with the third dimension, when 

reducing the stiffness matrix from 3D to 2D. The latter is adopted here for the 2D 

modelling.  

5.2.4 Efficient Simulations using GPU 

Due to the increased mesh density, FE modelling of polycrystalline microstructure is 

computationally expensive. To reduce this cost and thereby enable parametric studies, the 

work here employs a relatively new FE solver, Pogo (Huthwaite 2014). Pogo exploits the 

sparsity and highly parallelizable nature of the time explicit FE method, which allows the 

very efficient use of graphical processing units (GPUs) instead of conventional computer 

processing units (CPUs) to execute the computations in parallel. It has been shown that 

this can result in speed improvements of up to two orders of magnitude (Huthwaite 2014) 

when compared to commercially established CPU equivalent software. For example, timing 

of a typical simulation undertaken in this chapter, when running a 6.1x106 degrees of 

freedom model, was measured to be 67 times faster using a GPU setup based on 4x Nvidia 

GTX Titan graphics cards when compared to 2x Intel Xeon 8-core E5-2690 2.9GHz CPUs 

using general purpose CPU software. 
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5.3 Mesh Validation Study 

Here we investigate the spatial sampling requirements for both types of mesh mentioned 

in Section 2.3 to guarantee sufficient modelling accuracy whilst also preserving 

computational cost. In order to achieve this, both the mesh scattering (Section 3.1) and 

mesh convergence (Section 3.2) are evaluated for a plane wave model. The computational 

cost for such multiple runs however is far too great in 3D, and therefore no parametric 

studies are feasible. Instead, the knowledge gained from the 2D mesh studies, regarding 

the mesh requirements, will be used later to create a 3D model.  

The studies in the following Sections 3.1 and 3.2 rely on three different realisations of 

a polycrystalline material, Inconel 600, using the material properties taken from 

(Shahjahan, Rupin, et al. 2014) and shown in Table 1. Each model consists of a different 

average grain size: 100µm, 250 µm and 500 µm. As computational costs increase for finer 

grains, this range was limited to keep costs manageable whilst also representing a range of 

grain sizes of interest to NDE.  

Material Property Inconel 600 

C11 234.6 GPa 

C12 145.4 GPa 

C44 126.2 GPa 

ρ 8260 kg/m3 

Table 5.1: Material constants for cubic Inconel 600 (Shahjahan, Rupin, et al. 2014).  

Figure 5.6 shows an example simulation by one of the models used in the study. It is a 

coarse-grained material represented in 2D by a strip 42mm long and 12mm wide in plane 

strain. A 3-cycle-toneburst with a 2MHz centre-frequency is applied to the line of nodes, 

at the left side where x=0mm, which forms the excitation line-source. The model uses 

symmetry boundary conditions at the top and bottom edges (where y=0mm and y=12mm 

in Figure 5.6) such that the nodes are constrained in the y-direction. This creates a plane 

wave which can be seen to propagate in the positive x-direction. The backscatter can be 

recognised from the random fluctuations in amplitude trailing the plane wave. 
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5.3.1 Mesh Scattering 

Successful simulation of grain scattering can only be achieved if the scattering from 

element boundaries, here termed mesh scattering, is significantly less than the grain 

scattering itself. Mesh scattering arises from heterogeneity introduced by irregular element 

shapes, such as those encountered in unstructured meshes, and can be reduced by 

increasing mesh density at the cost of additional computation. In order to assess this, some 

unstructured mesh models are run for which the grain noise is eliminated, so that the noise 

is solely due to mesh scattering. This is achieved by assigning isotropic stiffness properties 

to the grains in this part of the study.  

To quantitatively compare results for different mesh densities, the mesh noise is 

represented by considering the average backscatter energy received by the individual 

excitation nodes. This is calculated from both the temporally and spatially averaged 

intensity i.e. the root-mean-square (RMS) value of the time-domain backscatter received 

at the different nodal positions, denoted by 𝑆𝑟𝑚𝑠. The signal is windowed such that it 

corresponds to a time after the excitation signal and before the arrival of the reflected 

signal, which represents a time window where the received energy, in absence of mesh 

scattering, is anticipated to be zero. For clarity, this is analogous to analysing a time 

window in-between the frontwall and backwall of a typical pulse-echo time trace 

encountered in ultrasonic NDE. A worthwhile remark here is that the noise is combined 

such that it corresponds to the backscatter seen by spatially infinitesimal receivers, whereas 

in more practical simulations, the mean displacement response across multiple nodes may 

be considered, which then suppresses the noise level by spatial averaging. Thus this is a 

relatively harsh case to present, but nevertheless allows useful comparisons. 

Figure 5.7 plots the mean mesh scattering noise (in dB, with reference to the peak of 

the excitation signal), 𝑆𝑟𝑚𝑠 as a function of the mean element edge divided by the 

wavelength at centre frequency, eλ-1, or elements per wavelength. As expected, the mesh 

scattering decreases as the mesh becomes more refined. In general, the mesh scattering is 

very low (i.e. all results here are below -40dB) for the range of investigated mesh densities. 

As the mesh is refined, the unstructured mesh results seem independent of the grain size 

used once an initial threshold is achieved.  
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(a) 

 

(b)  

 

(b) 

Figure 5.6: FE simulation of longitudinal plane wave propagating from left to right within 

a 2D slab of polycrystalline Inconel for different times after (a) 1.5µs (b) 4.5µs and (c) 

7.5µs. The colour scale is the normalised displacement amplitude with reference to the 

peak excitation amplitude from -100% to 100%. 
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It is important to acknowledge that these results do not provide an all-encompassing 

criterion for mesh refinement. The refinement requirement will be model-specific and 

depend on the severity of the grain noise and on practical compromises on model size. It 

is crucial however, to suppress it to a controlled degree and this simple approach allows 

any candidate case to be evaluated.  

Structured meshes, which exhibit no variation in element shape, do not require the 

above considerations and hence clearly outperform unstructured meshes according to this 

criterion. As they do not conform to the grain boundaries however, it is yet unclear whether 

they can correctly model the scattering behaviour, which is addressed in the next section.  

5.3.2 Mesh Convergence 

It is also important to achieve adequate convergence of the propagating wave pulse. 

The same models are used as in the previous section, namely with three different grain 

sizes, except that the anisotropic properties of the grains are now introduced (as described 

in Section 2.2) and thus the wave will be affected by grain scattering. Two metrics are 

employed to measure convergence, the centre-frequency attenuation, and the group 

velocity. 

As a measure of the propagating wave, the received displacements are now spatially 

averaged across all the nodes which lie on the right side edge where x=42mm in Figure 

5.6, emulating a pitch-catch plane-wave configuration. The centre-frequency attenuation 

convergence is calculated as a difference in amplitude between the peak of the received 

time-domain Hilbert envelope A and that of the converged solution Ac. The converged 

solution, Ac, is obtained from the highest available density mesh. Similarly, the measured 

group velocity Vg, which is calculated from the time-of-flight, as measured from the Hilbert 

envelope peak, is subtracted from the converged solution Vc. To clarify, an error of 0.05 

would correspond to a 5% difference in group velocity from that of the converged solution.  
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Figure 5.7: Mean normalised mesh scattering noise (in dB, with reference to the peak of the 
excitation signal) versus number of elements per wavelength for several unstructured meshes, each 
conforming to polycrystalline material with a different average grain sizes.  
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Figure 5.8 and Figure 5.9 plot, as a function of the mean element edge length e per 

mean grain size d, the convergence of the centre-frequency attenuation and group velocity 

respectively, for three different grain sizes, using a structured (S) and unstructured mesh 

(F). As can be seen, both attenuation and velocity converge as mesh density is increased, 

and velocity converges quickest. At ten elements per linear grain dimension, both metrics 

are converged to within 1% error for all grain sizes considered which agrees with the 

findings of (Shahjahan 2013) for another type of mesh, a rectangular structured mesh.  

The progress of convergence reveals that both meshes converge at a similar rate, 

although the structured mesh seems to converge more monotonically. In the case for an 

unstructured mesh, the element size distribution can vary by several orders of magnitude 

within a single model which results in time stepping disadvantages in comparison to 

structured meshes. This is due to the need to satisfy the critical time step (Bathe 1996) 

throughout the model, defined by the smallest element length emin in the model, which may 

cause oversampling for other elements which are larger, increasing their chance of 

accumulating numerical noise.  

The results for the different grain sizes are somewhat unexpected, namely, the 100µm 

model seems to converge at a lower mesh density in comparison to the coarser grains. This 

can be explained however by a lower grain scattering induced attenuation for the grain 

size model of 100µm (which has a larger wavelength to grain size ratio), and hence at 

coarse mesh densities, the mesh scattering, in that specific case, introduces similar levels 

of attenuation. It can also be noted that convergence for the 500µm grain model initiates 

with a relatively small error which increases before eventually converging again. Comparing 

the results for both figures shows however, that at the lowest mesh density, the received 

signal peak-amplitude may be within 2% of its converged solution, the group velocity error 

remains unconverged and at a maximum (see Figure 5.9). The total attenuation is caused 

by both mesh and grain scattering (for reference, the mesh scattering induced attenuation 

will typically be in the order of a few percent for the models simulated here, whereas the 

grain scattering induced attenuation is typically an order of magnitude larger), the latter 

is governed by differences in velocity by adjacent grains. At very low mesh density, the 

velocity error is large, and the low attenuation we see here may be a fortuitous result due 
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Figure 5.8: Convergence of normalised centre-frequency attenuation against elements per grain for 
structured (S) and unstructured meshes (F). Results are shown for three different grain size 
models, 100µm (triangular maker), 250µm (rectangular marker), 500µm (circular marker). The 
centre-frequency attenuation can be seen to converge within 1% at approximately 10 elements per 
grain.  



 

118 

  

 

 

Figure 5.9:  Normalised group velocity convergence against the number of elements per grain for 
structured (S) and unstructured meshes (F). Results are shown for three different grain sizes, 
100µm (triangular marker), 250µm (rectangular marker), 500µm (circular marker). Both meshes 
can be seen to converge to within 1% at approximately 6 elements per grain dimension. 
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to an artificially increased mesh scattering and reduced grain scattering. In any case, it is 

clear that we need both velocity and attenuation to be converged for a useful solution. 

This work refrains from advocating a particular choice of mesh, instead it has been 

shown that both types are viable options for modelling a polycrystalline microstructure 

and offer similar performance i.e. offer similar accuracy for the same computational cost. 

Therefore, the choice of which to use will be largely determined by the particular modelling 

application, which is also why within the modelling community today, both unstructured 

and structured meshes are in use. However, for the relatively simple models which will be 

considered in the subsequent sections, unstructured meshes add unnecessary complications, 

and hence we have selected structured meshes on this occasion.  

5.4 Result Validation  

The numerical results are evaluated for 2D and 3D FE models, adopting structured 

meshes on this occasion, and comparing their results with expectations from theory. 

Similarly to the mesh convergence study, both attenuation and velocity are measured, 

except that now both the attenuation and the phase velocity are evaluated as functions of 

frequency. 

The theoretical values were obtained by computing the complex longitudinal 

propagation constant as defined by the Unified Theory (Stanke & Kino 1984) using the 

material properties outlined in Table 1. Our implementation of the Unified Theory 

calculation was validated by reproducing both results (the attenuation and phase velocity 

plots) for another cubic polycrystalline material, iron, presented in the original paper 

(Stanke & Kino 1984). 

In 2D, six FE models are considered, three for each grain size, 100µm and 500µm, and 

each excited by a different centre-frequency 3-cycle-toneburst. The range of frequencies 

applied (see Table 2) are believed to represent a good range of interest, and were limited 

by increases in computation costs for cases outside this range. 
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Model 2D D=100µm 2D D=500µm 3D D=500µm 

Centre Frequencies 2MHz 3MHz 5MHz 1MHz 2MHz 3MHz 1,2,and 3MHz 

Number of grains 60 x103 100 x103 100 x103 30 x103 23 x103 25 x103 5 x103 

Length (mm) 100 50 50 150 75 25 40 

Width (mm) 6 20 20 50 75 250 4x4 

Degrees of Freedom 12 x106 20 x106 31 x106 5 x106 8 x106 8 x106 16x106 

Table 5.2: Parameters for three models with different grain sizes, 100 µm and 500µm for two 2D 
models, and 500 µm for a 3D model.  

The 3D model created here measures 4x4x40mm and counts 5210 randomly orientated 

Inconel grains with an average grain size of 500µm. For a closer view, only a slice of the 

full model is shown in Figure 5.10 which was created using Neper (Quey et al. 2011). 

Similarly to the 2D model, a plane wave is created by imposing symmetric boundary 

conditions on the rectangular plane surfaces of the model and applying a 3-cycle tone burst 

to the nodes which lie on the end-surface, seen as a square plane surface at the end of the 

picture in Figure 5.11. The key statistics of the model are shown in Table 5.2. Once the 

model is solved, post-processing involves calculating the mean nodal displacement of the 

nodes which lie on the end-face opposite to the excitation plane, thereby emulating a pitch-

catch configuration. 

The single 3D FE model, detailed above, is solved for various centre frequency 

excitations in the range of 1-3MHz. Both 2D and 3D model parameters are detailed in 

Table 5.2. To enable comparisons to theoretical results which provide results for a mean 

field, analogous to an infinite plane wave, the dimensions of each FE model are adjusted 

to ensure sufficient spatial averaging of the received displacements and reduce the effect of 

phase aberrations and noise. This is a demand which grows with frequency and grain size, 

thereby increasing computation costs, and therefore this defined the frequency range of 

interest for this chapter. Similarly, although multiple realisations would ideally be 

considered to gather more statistics, only this one realisation is considered here. 

Nevertheless, since a large number of grains are considered in each realisation, significant 

variations in the determined quantities would be unexpected, such as the attenuation and 

phase velocity, if we were to repeat the calculation for further realisations. 
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Figure 5.10:  Slice (4mmx4mmx10mm) of the 3D model of a polycrystalline material with 500µm 
average grain size where the shades denote different grains. The full model contains 5210 grains 

and 16x106 degrees of freedom. 
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Figure 5.11:  3D FE simulation for a plane wave propagating throughout a polycrystalline 
material, Inconel, with an average 500µm grain size, shown at three different times: 1.5 µs, 3.5µs, 

and 4.5µs.
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5.4.1 Attenuation 

To start we compare the 2D and 3D FE results. The numerical attenuation is calculated 

by comparing the two frequency spectra corresponding to the transmitted signal and the 

pitch-catch received signal. This can be achieved by Fast Fourier Transforming the 

windowed time-domain signals and dividing the resultant frequency amplitudes, as 

explained by (Kalashnikov & Challis 2005) for example. Figure 5.12 shows attenuation 

against frequency for three cases. The results show that attenuation increases with both 

frequency and grain size, which suggests, at least initially, a good qualitative fit with the 

expected behaviour. By also plotting the power fitting coefficients for each simulation 

curve, we can further evaluate the results and determine the dominant scattering 

mechanism. This indicates that a fourth order frequency dependence for the Rayleigh 

regimes is only produced for the 3D simulation, whereas in 2D, only values close to three 

are produced. This might be explained by the 2D simplification, where the scattering cross-

section is now proportional to the area and not volume of the grain; we expect that this 

would reduce the Rayleigh scattering to a third order frequency dependence in 2D, 

according to, for example the observations by (Chaffaı̈ et al. 2000), although we are not 

aware of formal proof (see Section 5.4.4 for more details). This also confirms that the grains 

behave as Rayleigh scatterers and shows that, in this specific case, other scatterers, such 

as voids or material imperfections were not required to explain the dominance of Rayleigh 

scattering at low frequencies (Zhang et al. 2004).  

Now we can compare the attenuation in the simulations to the theoretically predicted 

equivalent. According to the approach outlined by Stanke (Stanke & Kino 1984), the results 

are normalised such that they are independent of the mean grain size d. In Figure 5.13, 

the attenuation coefficient α, normalised through multiplication with d, is plotted against 

the normalised frequency (product of wavenumber k and d) on a log-log scale. Some 

ambiguity exists regarding the appropriate choice of d, as previous works (Ghoshal & 

Turner 2009) have used several values, namely, the mean grain size plus/minus one 

standard deviation of the grain size to match numerical and theoretical results. Although 

the choice of d significantly affects the results, in this work we have only used the mean 

grain size to normalise the results. 
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(a) (b) 

 

(c) 

Figure 5.12: Frequency dependent attenuation in dB/cm against frequency, for (a) 100µm (b) 500µm 
grain sized material in 2D and (c) in 3D for 500µm. As expected the attenuation increases with 
frequency and grain size. The best-fit power coefficient is plotted for all nine (three per model) 
simulations, where the subscript denotes their centre-frequency in MHz. In the long wavelength to 
grain size ratios, the power coefficient approaches the Rayleigh result, whilst at higher frequencies, 
they converge towards the stochastic limit. 
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The Unified Theory, as shown in Figure 5.13, indicates the three scattering regimes; 

Rayleigh for kd<<1, stochastic kd≈ 1, and geometric kd>>1, which can each be recognised 

from their respective gradients, m, relative to their anticipated frequency dependence. In 

between the Rayleigh and stochastic regime, a transitional regime (Stanke & Kino 1984) 

exists where the frequency dependence can vary before converging to the stochastic 

asymptote.  

As can be seen in Figure 5.13, the numerical results show good agreement with the 

established theory suggesting FE has the capacity to model the changing scattering 

behaviours across frequency. The match is not perfect, however, since the 3D model 

underestimates and overestimates at low and high frequency, respectively. In this case, the 

3D model seems to agree slightly better with the theory in comparison with 2D, but the 

difference is marginal, and as previously mentioned, largely dependent on the choice of d. 

This would suggest that even with a simple assumption which overestimates the grain size, 

good matching with the behaviour of a 3D material is possible. Given the complex and 

random nature of these materials, these results are considered to be satisfactory. 

5.4.2 Phase Velocity 

Along with a complex frequency-dependent attenuation, propagating elastic waves in 

these materials exhibit small changes in phase velocity. Here we compare predictions of 

the Unified Theory to numerical results for phase velocity, obtained by comparing the 

phase angles of the transmitted and received signal. This can be achieved by Fast Fourier 

transforming the windowed time-domain signal and subtracting their unwrapped phase as 

explained by (Kalashnikov & Challis 2005) for example. 

Figure 5.14 shows phase velocity as a deviation from the Voigt velocity (Voigt 1910), 

which is an average velocity for an equivalent macroscopically isotropic medium, calculated 

from the material elastic constants in Table 1. The x-axis plots the same logarithm of 

normalised frequency log(kd) as described in the previous section.  

The results show that FE matches well with the Unified Theory, and there is good 

trend matching in the dispersive region, which is accurate to within 1%. The 3D results 

suggest a better match than 2D in this case.
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Figure 5.13: Normalised attenuation coefficient versus normalised frequency for a longitudinal 
wave in polycrystalline Inconel for for three different models, a 100um 2D (triangular maker), 
500um 2D (rectangular maker), and 500um 3D (circular marker). The three different scattering 
regimes are indicated (dashed lines) with their respective gradients m. The attenuation results can 
be seen to compare well to the Unified Theory (black solid line). The empty markers are for 
labelling purposes only, and hence are not indicative of sampling.
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Figure 5.14: Normalised variation of longitudinal phase velocity against normalised frequency, for 
three different models of polycrystalline Inconel, a 100um 2D (triangular marker), 500um 2D 
(rectangular marker), and 500um 3D (circular marker). The results can be seen to compare well to 
the Unified Theory for both 2D and 3D finite element results. The empty markers are for labelling 
purposes only, and hence are not indicative of sampling.  
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5.4.3 Grain Noise Considerations 

Thus far it has been shown that FE is capable of simulating the scattering physics with 

satisfactory attenuation and phase velocity accuracy. The remaining step then is to validate 

the grain noise which is also incorporated into the FE data.  

As an initial assessment, attenuation and grain noise are interdependent phenomena as 

they are both governed by the same scattering physics. In this regard, the results for 

attenuation in the previous section also show promise for FE’s ability to accurately model 

grain noise. Unlike attenuation however, noise is a spatially incoherent quantity, and hence 

the assumptions mentioned previously, such as reducing the model to 2D, may bear 

different implications. A thorough investigation of these limitations would require 

simulating hundreds of models to average numerous independent measurements of noise 

e.g. 500 has been used by (Margetan et al. 1994). This is beyond the scope of this work, 

and instead we will use the previously obtained simulation data to consider two simple 

scenarios. It is thought that this will provide an initial understanding and useful insight 

for future studies.  

The first scenario quantifies the average backscatter received by individual nodes. As 

there are many receiving nodes, this enables temporal and spatial averaging of the 

fluctuating grain noise but since single nodes correspond to infinitesimally small 

transducers, it only offers relative comparisons which are not physically representative. In 

fact, for such a receiver, the backscatter noise will be artificially high. The backscatter 

noise, Nrms, is calculated from the RMS value of the normalised time-displacement response 

during an 8µs time-window, corresponding to a time between but also away from the 

excitation and received signals. The resulting values, calculated for all the receiving nodes, 

are then averaged to produce the mean RMS backscatter <Nrms>. To clarify, an Nrms of 0.1 

would signify an average grain noise level of 10% relative to the peak displacement of the 

incident plane wave (not attenuated). 

The second scenario similarly involves calculating the backscatter, Nrms, but for a 

receiving transducer with a finite size. We investigate the implications of modelling a 

transducer in 2D compared to 3D, by assuming the example of a circular transducer. For 
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the 3D simulation, this entails averaging the displacement across a circular surface with 

radius r. In 2D, this reduces to an averaging of displacement along a line of length 2r. 

Unlike the previous scenario, averaging across multiple independent transducers is 

impossible in this case, and hence Nrms is an un-spatially-averaged metric of the grain noise. 

This offers limited confidence for comparisons between simulations although some 

averaging is achieved by virtue of the multiple nodal results contributing to each transducer 

signal. Instead, the radius r is increased and the behaviour of Nrms for the 2D and 3D 

simulations is observed. 

Figure 5.15 plots the mean RMS backscatter, <Nrms>, for simulations of varying centre-

frequency shown in Table 2. The results confirm the expected increase in grain noise, both 

with frequency and grain size, for 2D and 3D simulations alike. Figure 5.16 compares the 

2D and 3D results for 500µm grains by plotting the RMS backscatter Nrms for an increasing 

transducer radius. A maximum radius of 2mm was achievable for the 3D model due to size 

constraints (4x4mm cross-section).  

Comparing the data points in 2D and 3D for the smallest radius in Figure 5.16, the 

results are similar to those of Figure 5.15 with the exception that the grain noise in 2D is 

higher for the 2MHz simulation than that of 3MHz. This is most likely a consequence of 

being restricted to an insufficient sample size to evaluate grain noise, which could be solved 

by averaging the grain noise for a batch of simulations.  

Now taking into account the effect of increasing transducer radius, for both the 2D and 

3D simulations, the grain noise in Figure 5.16 can be seen to decrease with receiver radius 

which is due to spatial averaging. It must be noted that this does not necessarily imply 

that SNR would also improve by increasing transducer radius, as the received signals from 

targets of interest may also decrease. Of the two simulations, the 3D receiver sees the 

sharper decline in grain noise with increasing radius which is explained by the spatial 

averaging progressing quicker over a 2D area than a 1D line. Similarly, spatial averaging 

can be expected to progress quicker at higher frequencies as the backscattered field exhibits 

a spatial correlation length which is inversely proportional to wavelength. The results at, 

for example r=2mm, in this specific case, demonstrate that reducing the model to 2D 

caused the grain noise level to be approximately three times higher than for a fully 3D 

simulation. This suggest that 2D and 3D models cannot be directly compared in terms of 

grain noise level, unlike for attenuation and phase velocity. 
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Figure 5.15:  Normalised mean RMS backscatter noise (calculated from each nodal displacement) 
for different centre-frequency fc simulations for 100μm 2D (triangular marker), 500μm 2D 
(rectangular marker), and 500μm 3D (circular marker). The backscatter noise can be seen to 
increase with frequency and grain size for all simulations. 



 

131 

  

 

 

 

Figure 5.16:  Normalised RMS backscatter grain noise against receiver radius r, for three 500µm 
models in 2D and 3D, each with varying centre-frequeny of 1, 2 and 3MHz. The backscatter noise 
can be seen to spatially avarage as the transducer radius increases.  
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5.4.4 Dimensionality of Scattering  

In support of the previously observed dimensional behaviour of Rayleigh scattering, 

some additional simulations are run, this time however with repeat runs. This provides 

some indication of the variability of our calculation of attenuation and its power coefficient. 

In order to remain well within the Rayleigh scattering regime, materials are generated with 

a mean grain size of 100µm and insonified by a plane wave excited at a centre-frequency 

of 2MHz. Due to the necessity to run a statistically significant number of models - 10 are 

used here - instead of reconfirming the fourth order frequency dependence for 3D scattering, 

which would be extremely computationally expensive, it is far more efficient and equally 

instructive to instead confirm the relationship in 1D. The previous observations predict a 

second order frequency dependence for 1D scattering. The implementation of the 1D grain 

model is shown in Figure 5.17a, which is essentially reduced to a multi-layered material, 

with randomly varying thickness and stiffness for each layer. The 2D models remain 

unchanged from the previous results. The attenuation versus frequency plots in Figure 

5.17b-c confirm the expected behaviour. It can be seen that the Rayleigh scattering 

mechanism has indeed reduced by an additional power in Figure 5.17b when scattering 

occurs in one dimension. Figure 5.17c reconfirms the third order frequency dependence for 

2 dimensional equivalent. The variation in the power law obtained is sufficiently small to 

provide good confidence in the results. 
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(a) 

 
(b) 

 
(c) 

 

Figure 5.17: (a) 1D model layout where indicating layers of random thickness and random 
anisotropic orientation, attenuation results in (b) 1D and (c) 2D for 10 realisations of a 100µm 
grain size material with a 2MHz centre-frequency.   
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5.5 Conclusions 

This chapter has set out to present and assess new progress in capabilities of Finite 

Element (FE) modelling to simulate ultrasonic scattering of longitudinal waves in an 

equiaxed and untextured polycrystalline material, for both 2D and 3D. The modelling 

adopts an established Voronoi approach to randomly generate a representative grain 

layout. Relying on a recently developed GPU FE solver, Pogo, large parametric studies in 

2D and a single 3D model became feasible. The 2D parametric studies illustrated the mesh 

sampling requirements for two different types of mesh and different levels of mesh 

refinement, to ensure modelling accuracy and present useful guidelines for future modelling 

of these materials. During comparison to established theory, for both 2D and 3D, the 

numerically calculated attenuation and phase velocity showed good agreement across a 

range of scattering regimes. This is the first achievement of useful results at sensible scale 

in 3D and also the first time that FE has been shown to match to the Unified Theory. 

Hence this suggests, with relatively simple descriptions of these materials, that this type 

of numerical modelling has the ability to capture the key physics. Modelling limitations 

were also found. It was shown that 2D models fundamentally reduce the power of the 

frequency dependence of the scattering mechanism in the Rayleigh regime. Furthermore, 

the grain noise differs significantly between 2D and 3D simulations which is an important 

characteristic to consider for real applications. Overall, it is proposed that the progress and 

understanding presented in this chapter will aid the ongoing improvement of FE 

simulations of ultrasonic NDE of polycrystalline materials.  
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Chapter VI  

6 ARRAY OPTIMISATION  

 

A Finite Element modelling framework is outlined to simulate the ultrasonic array 

response of elastic waves propagating within highly scattering, polycrystalline materials. 

Its utility is demonstrated by investigating the performance of arrays, within both single 

and multiple scattering media. By comparison to well-established single scattering models, 

it is demonstrated that FE modelling can provide new insights to study the stronger 

scattering regimes. In contrast to established single scattering results, it is found that phase 

aberrations significantly hamper array performance, and that the noise becomes spatially 

incoherent. Consequently, Signal-to-Noise Ratio (SNR) no longer increases monotonically 

with respect to increasing aperture, which suggests that maximum apertures are not 

necessarily optimal. Furthermore, by measuring the SNR of the individual transmit receive 

combinations of the array, it is found that through separating the emitter and receiving 

source, it is possible to reduce the received backscatter. 

This work has been submitted to NDT&E 2015 [p8]. 
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6.1 Introduction 

This chapter outlines a FE modelling framework, developed as an extension to that in 

Chapter 5, which enables the investigation of ultrasonic array imaging of highly scattering, 

polycrystalline materials. It details modelling devices which allow the isolation of different 

physical phenomena (e.g. element directivity, beam spreading, attenuation, backscatter) 

and therefore enables new and useful insights into the effects of scattering – particularly 

without relying on a single-scattering assumption. The methodology is applied to a 

relatively simple but also general case such that it both illustrates and investigates the 

fundamentals of array performance. The approach is now also ready for a wide variety of 

simulations where it can be useful in future evaluations of performance: for instance to 

determine the optimal configuration for a more practical inspection, quantify the smallest 

detectable defect, or assess new data processing algorithms such as new candidate array 

imaging algorithms.  

The subsequent sections are organised as follows. Section 6.2 outlines the FE 

methodology to investigate an array probing a polycrystalline medium. Section 6.3 builds 

on established theory by studying array performance within a single scattering 

environment. Section 6.4 repeats this same procedure but extends this to stronger 

scattering media by introducing polycrystalline material properties. Section 6.5 compares 

the single scattering theory to those obtained from the highly scattering material 

simulations. But first, before setting out with these studies, we explore the currently 

established theory for determining detection performance of an array imaging a noisy but 

single scattering medium. 

6.1.1 Established Single Scattering Theory  

Single scattering models, such as the aforementioned ISM (Margetan et al. 1993; 

Margetan et al. 1997), determined that SNR is inversely proportional to the ultrasonic 

pulse volume for monolithic transducers. This led to the adoption of focused transducers 

to improve sensitivity of industrial inspections of scattering materials. More recently, 

Wilcox (Wilcox 2011) (and others e.g. (Felice et al. 2015)) found similar results for arrays 
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by showing SNR to depend on the Point-Spread Function (PSF) of an array (see Equation 

(6.1).  

𝑆𝑁𝑅(𝒓) =
𝑞

𝜇

|𝑃(𝒓, 𝒓)|

√∫|𝑃(𝒓, 𝒓′)|2𝑑𝑟′
 (6.1) 

Here μ is the backscatter coefficient, derived for polycrystalline materials by Rose (Rose 

1992) and q is the scattering potential of the imaging target. Outside these two parameters, 

the remainder of Equation (6.1 is defined by two Point Spread Functions, e.g. 𝑃(𝒓, 𝒓′) is 

the image response at 𝒓 of an idealised single point scatterer located at 𝒓′. Thus the 

remaining fraction is solely determined by the imaging system and is equivalent (Wilcox 

2011) to the reciprocal of the square root of the normalized PSF area, σ. For our purposes 

of finding an optimum, only relative SNR is of interest, and hence in the studies presented 

here we can disregard (Felice et al. 2015) the two parameters μ  and q and redefine a 

relative SNR, denoted by 𝑆𝑁𝑅̅̅ ̅̅ ̅̅  and related to σ in Equation (6.2. 

𝑆𝑁𝑅̅̅ ̅̅ ̅̅ ∝
1

√σ
    (6.2) 

 

The relation between 𝑆𝑁𝑅̅̅ ̅̅ ̅̅  and the PSF has several interesting connotations. It firstly 

implies the monotonic increase of SNR which thus maximises when using the largest 

possible aperture (Li et al. 2013). Aside from providing a definition of the focusing ability 

of the array, as shown in Equation (6.2, the PSF also allows the prediction of SNR under 

single scattering assumptions. The PSF area, σ, is a widely used metric and can be 

quantified in various ways (see e.g. (Holmes et al. 2005)), the approach adopted here is to 

calculate the area of the PSF which encompasses half its peak.  

The PSF comprises the imaging system and can thus be controlled by optimising the 

array and the imaging algorithm; we will focus on the former using a specific choice of 

imaging algorithm.  
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6.1.2 Array Imaging Algorithms 

Within the field of ultrasonic array imaging, there has been a recent surge of advanced 

imaging algorithms such as those initially outlined in Section 2.4 (see e.g.(Aubry & Derode 

2009a; Simonetti 2006)) which have shown impressive progress. As highlighted in Chapter 

4 however, it has proven challenging to supress coherent noise and thereby increase imaging 

performance beyond that provided by standard sum-and-delay beamforming. 

Consequently, the currently most popular algorithm, the Total Focusing Method 

(TFM)(Holmes et al. 2005), for the time being, remains the benchmark. It offers high 

performance as well as relative simplicity. Thus this chapter will rely on TFM for its 

investigations and illustrations; it is expected that the findings will be equally relevant for 

other imaging algorithms. 

6.2 Method: Simulation of Highly Scattering Materials 

Here we discuss the adopted methodology, firstly the incorporation of polycrystalline 

material properties into FE, followed by the array model, which consists of a noise and a 

signal model.  

6.2.1 Modelling Polycrystalline Materials 

The methodology from the previous Chapter 5, to incorporate polycrystalline material 

properties within an FE mode, is adopted here. The mesh used here comprises a structured 

grid of triangular elements, sampled such that the length of the element edge is finer than 

at least one tenth of the average grain size d to meet the criteria for convergence.  

Given the computational cost, the relatively large dimensions necessary for our studies, 

and the interest here in performing multiple analyses in order to pursue a range of studies, 

the models discussed here are limited to a 2D domain. As mentioned previously, this 

simplification introduces certain model limitations: the scattering mechanism is reduced to 

a third order frequency dependence in the Rayleigh regime, and it is not obvious how to 

relate the spatially incoherent fields, namely the grain noise, perceived by a 2D transducer 

to that of a 3D one. It was previously shown however that 2D models overestimate the 
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absolute level of noise as there is less spatial averaging which occurs across the length of 

the transducer, as opposed to an equivalent area in 3D. Despite this lack of absolute 

accuracy, the relative accuracy is expected to be good, as the overall frequency dependent 

scattering behaviour has been shown to correlate well to established theory. This is deemed 

sufficient as we are primarily interested in examining trends and principles rather than 

absolute performance metrics. Moreover, the principles discussed in this chapter will apply 

equally well in 3D, and since 3D representation has been shown to be possible, it will only 

be a matter of deploying these methods in 3D once this becomes computationally feasible.  

6.2.2 Array Model 

The layout for the general ultrasonic array model used hereon is depicted in Figure 

6.1a. The model typically simulates N=128 element arrays which are fully sampled, such 

that the array pitch and width both measure half a centre-wavelength. The array data 

acquisition adopts a Full-Matrix-Capture (FMC) (Holmes et al. 2005) approach which 

involves sequentially exciting all N array elements, and for each excitation, calculating the 

response also on all N array elements. The excitation at the ith element of the array is 

simulated by applying a piston-like force which is perpendicular to the contact surface 

(producing a longitudinal wave amongst others), to all the nodes which correspond to the 

footprint of the ith array element. In reception, the nodal displacements of all the nodes 

belonging to the jth array element are averaged, again taking the component of 

displacement in the direction normal to the surface. Varying both j and i from 1 to N, this 

populates an FMC matrix, H, of dimensions N×N×t where t corresponds to the number of 

time samples.  

Noise Model 

Before the introduction of any imaging target within the model, this procedure yields 

an array response matrix, HN, which pertains solely to the grain noise (and reflections from 

the structural boundaries). This can be thought of as an artificial baseline measurement, 

as is commonly referred to in Structural Health Monitoring (Croxford et al. 2007).  
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(a)  

 

 

(b) 

 

Figure 6.1: (a) Schematic of the Finite Element array model layout (not drawn to scale) and (b) 
schematic of the true point scatterer implementation into FE. 
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This is useful for separately analysing the signal and noise data which enables the 

modelling of the true SNR. This is a valuable tool in general, as investigations are often 

limited to measure signals which contain noise, thereby constrained to solely measuring 

positive SNRs (as discussed in Chapter 4) which offer a limited utility as a performance 

metric. There are several ways to circumvent this, one being subtraction (Van Pamel et 

al. 2015), and another which is outlined in the proceeding sub-section.  

Signal Model: True Point Scatterer  

To obtain the previously defined PSF, we desire an ideal, omnidirectional scatterer - 

here referred to as a true point scatterer (TPS).  A widely accepted practise is to use voids 

or disconnections within an FE mesh to simulate defects and scatterers. The obvious 

procedure to create a single point scatterer then would be to constrain or disconnect a 

single node. However, this does not produce a true omnidirectional scatterer; instead of the 

desired isotropic scattering, the scattering amplitude of the longitudinal wave varies with 

angle, dropping to null as the difference between the incident and scattered wave 

approaches 90°.  

This is circumvented here by exploiting the properties of reciprocity which allows us to 

reverse the sender and receiver. Instead of insonifying the domain from the array, and 

looking for scattering back from the defect, the defect is used to insonify the domain, and 

the projected field is received at the array. The principle of reciprocity is then used to 

complete the send-receive signals and calculate the array FMC. This approach allows any 

desired scattering characteristic to be implemented, in this case uniform omnidirectional 

scattering.  

The implementation of a circular wavefront outgoing from the point scatterer is 

achieved here by radially exciting six neighbouring nodes of a structured mesh in a 

hexagonal arrangement (see Figure 6.1b). To finally obtain the FMC corresponding to the 

signal model, requires the convolution of the 1xN vector of received signals with its 

transpose, to obtain an NxN data matrix, Hs. The resultant wave field from such a point 

source is illustrated in Figure 6.2, within (a) an isotropic and (b) polycrystalline medium.  
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(a) 

 

(b) 

Figure 6.2: FE illustration of the wave field emanating from a true point source 
(TPS) propagating after 5µs within (a) isotropic homogenous and (b) polycrystalline 
material. The colour scale denotes the displacement amplitude at the selected time.  
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One noteworthy consequence of this approach is that the scattering potential of our 

imaging target (denoted by q in Equation (6.1) is arbitrarily defined by the excitation 

amplitude defined in the FE simulation.  Moreover, we cannot calculate an effective 

incident amplitude for the circular wave, as a singularity exists at the centre where the 

radius equals zero and the theoretical incident amplitude tends to infinity. In our case 

however, as discussed in Section 6.1.1, we are only interested in a relative SNR to find an 

optimum, and hence to clarify this, we shall distinguish from the SNR by the term 𝑆𝑁𝑅̅̅ ̅̅ ̅̅  to 

denote a relative quantity. 

6.3 Results I: Simulation of Single Scattering Media 

The single scattering theory (Wilcox 2011) outlined in Section 6.1 is now used to 

validate a Finite Element model of an array operating within a single scattering medium, 

here modelled by a random distribution of point scatterers within an isotropic material. 

By adopting a single scattering assumption, we can solve the PSF for each scatterer 

independently (Wilcox 2011; Jie et al. 2013). Furthermore, when considering both the noise 

scatterers and the imaging target as omnidirectional scatterers, the solution of one PSF 

provides that for all others – be it grain noise or target (Wilcox 2011; Jie et al. 2013). This 

approach purposefully neglects any multiple scattering effects, which serves as a benchmark 

for comparisons when the polycrystalline microstructure is introduced later on (see Section 

6.4).  

The model defines a fully sampled N=128 element array, generating a 3-cycle tone-

burst longitudinal wave with a 2MHz centre-frequency in contact with an isotropic elastic 

material. The medium is arbitrarily defined by a longitudinal wave speed of 6123m/s 

(E=230GPa, ν=0.3, ρ= 8200kg/m3). Three defect scenarios are simulated to calculate the 

signal FMC, Hs, for a TPS defined by the procedure in Section 6.2.2, and introduced 

respectively at a 25mm, 50mm, and 75mm depth within the material. 
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(a) 

 

(b) 

Figure 6.3: Scattering matrix for a TPS embedded in isotropic material at a 50mm depth showing 
(a) amplitude normalised by the peak, and (b) wrapped instantaneous phase shown in radians 
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6.3.1 True Point Scatterer  

The behaviour of our model TPS within an isotropic material is validated by calculating 

apparent scattering matrices (Wilcox & Velichko 2010) from Hs. An amplitude scattering 

matrix procedure follows (Wilcox & Velichko 2010), however unlike classical scattering 

matrices our setup comprises a linear array with a limited view to sample the wave field, 

rather than a circumferential full view configuration. Adopting the notation of an analytical 

signal (Gabor 1946) the amplitude matrix used here plots the instantaneous amplitude 

A(t0), where t0 corresponds to the arrival time of the signal, as a function of incident θi 

and scattered θs angle (defined in Figure 6.1), to produce a 2D matrix A(θi,,θs). A phase 

matrix is also calculated which follows the same syntax but instead of amplitude, calculates 

the instantaneous phase φ(t0) to obtain φ(θi,θs). An example of how to calculate both 

instantaneous amplitude and instantaneous phase can be found in (Feldman 2011). 

As can be seen from the amplitude scattering matrix in Figure 6.3a, the TPS defect 

exhibits omnidirectional scattering behaviour, as intended. Due to the absence of noise and 

attenuation in this case, the only drop in scattering amplitude occurs due to longer 

propagation distances and large receiver angles. The longer propagation distances will 

cause the wave amplitude to decrease due to beam spreading effects, and a loss in element 

sensitivity occurs at large angles as the array elements exhibit a directional sensitivity, 

which reduces as the incident wave moves away from the normal. The rhomboidal features 

manifest at larger angles are due to the linear array configuration where the propagation 

distance is not constant with total aperture angle (propagation distance increases non-

linearly with angle). Figure 6.3b confirms the absence of aberrations in the phase matrix, 

as is expected for the isotropic case.  

6.3.2 Point Spread Function  

The PSF for a TPS within an isotropic medium is shown in Figure 6.4a, where low-

intensity side lobes can also be identified. The PSF area (σ) is quantified as a function of 

the half aperture angle, denoted by θp and calculated by the halved sum of θi and θs (angle 

labelled in Figure 6.1a). As previously defined, the PSF calculates the area which encloses 

the PSF within -6dB from its peak.  
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(a) 

 
(b) 

 
(c) 

Figure 6.4: (a) Point Spread Function for an isotropic material (b) aberrated Point 
Spread Function for a polycrystalline material (c) noise baseline for a polycrystalline 
material. 
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(a) 

 

(b) 

Figure 6.5: Simulation results for a true point scatterer embedded within a single scattering 
medium at 25mm, 50mm, 75mm depth. (a) PSF area versus half aperture angle (b) relative SNR 
versus half aperture angle. 
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Figure 6.5a plots the resultant PSF area (σ) as a function of half aperture angle θp, for 

three TPS at various depths. As can be seen the PSF decreases monotonically, where 

focusing benefits progressively lessen at high aperture angle as is dictated by the 

asymptotical diffraction limit (Wilcox 2011). 

6.3.3  Predicted Signal-to-Noise Ratio 

The previously obtained PSF area now allows the prediction of a relative SNR in a 

single scattering environment, 𝑆𝑁𝑅̅̅ ̅̅ ̅̅ , as defined in Equation (6.2).  

Figure 6.5b shows 𝑆𝑁𝑅̅̅ ̅̅ ̅̅  versus half aperture angle θp and predicts a monotonically 

increasing SNR, independent of defect depth. These results agree with the experimental 

and model findings of Wilcox (Wilcox 2011), thereby validating our single scattering model. 

Now we investigate the effects of multiple scattering by repeating the same simulation but 

with the introduction of polycrystalline material properties. 

6.4 Results II: Simulation of Multiple Scattering 

Media 

The procedure outlined in Section 6.3 is now repeated for a polycrystalline medium 

which introduces intrinsic scattering and thus no longer relies on a single scattering 

assumption. Using the same layout depicted in Figure 6.1a, with a 2MHz 3-cycle tone-

burst, exciting longitudinal waves from a N=128 element array, images are acquired of 

targets buried at depths of 25mm, 50mm, and 75mm. The medium is non-textured cubic 

Inconel 600, defined by the single elastic stiffness constants taken from (Shahjahan, Rupin, 

et al. 2014). The grain morphology consists of equiaxed grains with their mean size set at 

500μm, which places the scattering behaviour at centre-wavelength, in between the 

Rayleigh and stochastic scattering regimes. Although the author is not aware of a formal 

definition for its onset, it is assumed that multiple scattering occurs within the stochastic 

regime which begins for kd values of unity, where k is the wavenumber and d is the mean 

grain size, and given the high anisotropy value of Inconel 600 (2.8). Eight independent 2D 

models are run, each with the same mean grain properties but different realisations of a 
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random polycrystalline morphology. This provides us with a basis, albeit with a modest 

number of samples, to consider statistical variations.  

In contrast to the earlier simulations where the PSF provided solutions for both the 

noise and signal model, separate simulations are required to obtain the noise data HN and 

Hs: the data from a TPS. 

6.4.1 Aberrated True Point Scatterer 

Similarly to Section 6.3.1, we establish the behaviour of a TPS, in this instance however 

by considering propagation within a polycrystalline medium. In comparison to the isotropic 

medium considered, which incorporated beam spreading and element directivity, our signal 

model, Hs, now includes additional physics such as the scattering induced attenuation, 

dispersion, and phase aberrations. 

The scattering amplitude and phase matrices (see Section 6.3.1 for methodology) for a 

TPS at 25mm depth, are shown in Figure 6.6 for one random realisation of a polycrystalline 

material. When compared to the isotropic case in Figure 6.3 it can be seen that the 

amplitude fluctuates, but in general depicts a similar picture to that of the isotropic case 

where the highest amplitudes occur at (0°,0°) angles. In terms of phase however, whereas 

Figure 6.3b showed no variations for the isotropic case, significant phase aberrations can 

be seen of up to 1π radians. This observation is further illustrated in the earlier Figure 

6.2b, where aberrations can be seen to occur along the circular wavefront. However, it is 

interesting to note that the aberrations also seem to exhibit an underlying regularity. This 

could be explained by the inherent dispersion within these materials, where at long 

propagation distances, small errors in the assumed wave velocity cause phase shifts. This 

is expected to significantly hinder focusing ability of the array, which is quantified next by 

observing the PSF.  

6.4.2 Aberrated Point Spread Function  

Figure 6.4b shows an aberrated PSF for a TPS within a polycrystalline material where 

perturbations have now arisen when comparing to Figure 6.4a. The PSF area is calculated  
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 (a)  

 

(b) 

Figure 6.6: Scattering matrices for a true point scatterer at 50mm depth in a single realisation of a 
polycrystalline material, indicating (a) instantaneous amplitude and (b) instantaneous phase 
against incident and scattered angle.
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(a) 

 

(b) 

Figure 6.7: (a) PSF against half aperture angle for a true point scatterer embedded 
within a polycrystalline material. Results from previous section 6.3.2 shown in black. 
(b) mean SNR against half aperture angle calculating under single scattering 
assumptions. Results obtained by averaging from eight realisations of material with the 
same grain statistics. Error bars indicate the standard deviation variation. 

 

similarly to the procedure adopted in Section 6.3.2, but repeated for eight realisations of a 

random polycrystalline material to consider statistical variation. The eight PSF areas are 

then averaged and their standard deviation is also recorded.  



 

152 

 

Figure 6.7a plots the mean PSF area (σ) and its standard deviation bars, versus half 

aperture angle, θp, for the three TPS cases. Comparison with Figure 6.5a reveals that the 

polycrystalline material has induced several changes. Firstly, it can be seen that the 

absolute focus has worsened, indicating a PSF which is approximately 50% relative to the 

previous case. This indicates that even before considering the effects of coherent noise, 

which probably presents further hindrance to image quality, the focus (which is related to 

SNR) has already been harmed. Furthermore, although PSF area remains a monotonic 

function with respect to aperture angle, it has become also a function of depth. Several 

physical effects can contribute to this effect, such as the scattering induced attenuation 

which removes more high frequency information for the longer propagation paths and 

thereby reduces focusing.  

6.4.3 Signal-to-Noise Ratio  

Following the procedure for a noise model outlined in Section 6.2.2, HN is calculated by 

using the same eight material realisations mentioned earlier, however removing the defect 

and sequentially exciting the array to obtain a baseline FMC. This produces an array 

image as shown in Figure 6.4c. From such an array image, similar to (Jie et al. 2013), we 

can calculate the Root-Mean-Square (RMS) of the pixel intensities at an image area of 

interest, to obtain a measure of the noise.  

This noise data becomes useful when combined with the previously obtained Hs, as it 

enables a calculation of the 𝑆𝑁𝑅̅̅ ̅̅ ̅̅ , in this case performed as a function of aperture θp. The 

signal intensity is calculated from the peak pixel intensity (pk) within the array image Is 

(the PSF in this case shown in Figure 6.4b). The noise area considered forms a box around 

the hypothetical defect which extends 10mm beyond the defect in the negative and positive, 

lateral and axial directions of the noise image IN (see Figure 6.4c). SNR is subsequently 

calculated as shown in Equation (6.3) where < >xy denotes the mean across both x and y. 

To distinguish from the previous SNR, we shall label this the 𝑆𝑁𝑅2
̅̅ ̅̅ ̅̅ ̅.  

 

𝑆𝑁𝑅2
̅̅ ̅̅ ̅̅ ̅ (𝜃𝑝) =

|𝐼𝑠(𝑥, 𝑦, 𝜃𝑝)|𝑝𝑘

√〈𝐼𝑁(𝑥, 𝑦, 𝜃𝑝)2〉𝑥𝑦

 (6.3) 
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Aperture 

Figure 6.8 plots the mean image 𝑆𝑁𝑅2
̅̅ ̅̅ ̅̅ ̅ and the standard deviation bars for 8 different 

random realisations of materials, for the three TPS cases as a function of half aperture 

angle. As was previously predicted by the aberrated PSF results, SNR becomes a function 

of depth. Moreover, it can be seen that SNR no longer behaves monotonically with respect 

to aperture angle; beyond an initial increase with aperture, it decreases for the widest 

aperture angles. Unlike the findings from Section 6.3 this suggests, for the strong scattering 

regime considered here, that the largest array aperture does not always optimise image 

SNR.  

SNR Matrix 

Taking the analysis one step further, and similar to the previously mentioned scattering 

matrix calculations (see Section 6.3.1), equivalent noise and SNR matrices are calculated. 

The noise matrix is calculated using the amplitude matrix procedure but instead of 

calculating the instantaneous amplitude at t0, an average noise level is calculated, defined 

by the RMS value of a 1μs time-window surrounding t0. The SNR matrix is then calculated 

by the division of the signal and noise scattering matrices, similar to Equation(6.3.  

Figure 6.9 plots the (a) mean noise and (b) mean 𝑆𝑁𝑅2
̅̅ ̅̅ ̅̅ ̅, this time as a function of 

receiver and transmitted array element, i  and j, instead of the equivalent angle as it bears 

less significance when considering noise. The results are averaged for eight realisations of 

the 25mm depth TPS. Several observations can be made. Firstly, high intensity noise and 

low SNR can be found along the leading diagonal of Figure 6.9a and Figure 6.9b 

respectively, which corresponds to the pulse-echo elements exhibiting the worst SNR. This 

is a coherent multiple scattering effect (see e.g. (Ishimaru 1978)) previously known to 

manifest also in FE simulations of elastic wave scattering (Shahjahan, Rupin, et al. 2014).  
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Figure 6.8: The mean SNR versus half aperture angle for 8 different realisations of a 
pollycrystalline material and for three true point scatterers at 25,50, and 75mm depth. 
Error bars indicate the standard deviation variation. 
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(a) 

 

(b) 

Figure 6.9: The mean (a) noise and (b) SNR averaged from eight realisations of a 
polycrystalline material, and calculated as a function of receiver and transmitter array 
element index (1 to 128). Both figures are normalised to the peak value in the image. 
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Due to reciprocity, a multiple scattering source-receiver path illuminates in both the 

direct and reciprocal directions, hence doubling the intensity of (only) the multiple 

scattering received noise. This explains why in practise twin-crystal probes have been 

observed to perform better than pulse-echo inspections relying on single probes to inspect 

highly scattering materials. 

Another interesting feature is the presence of a (yellow) noisy region which comprises 

a band adjacent and roughly parallel to the leading diagonal in Figure 6.9a. Within the 

band we can make several observations. Firstly by assessing the change in noise along the 

leading diagonal and those adjacent but also parallel to it, we can see that the measured 

noise amplitude decays very slowly if at all, which shows that backscatter is a weak 

function of depth in this case. Contrarily, the noise seems to decay much quicker in the 

direction which is perpendicular to the leading diagonal (i.e. the anti-diagonal) which 

suggests a much stronger dependence on angle. Eventually, at large distances between 

receiver and transmitter element, there is a low-noise region (blue). However, towards the 

edge of the high noise region there is a significant rise in backscatter which shown by the 

quarter-circle bands (labelled R in Figure 6.9a) and corresponds to the Rayleigh wave (i.e. 

the Rayleigh wave in these cases arrived at previously defined t0). Thus the high noise 

region contained within this band, hereby termed the backscatter envelope, can be broadly 

defined by the time-window corresponding to the arrival from transmitter to receiver of 

the Rayleigh wave. 

The implication of the backscatter envelope is that it presents an opportunity to 

operate outside it. Namely, using large pitch-catch angles allows a longitudinal wave to 

arrive at the receiver before the majority of backscatter has arrived. This implies that 

pitch-catch configurations, using for example two arrays to separate the emitter and 

receiver, can be advantageous. At large aperture angles, it is possible that electrical noise 

sources become more significant as the received signal amplitudes, depending on the defect, 

can be significantly reduced. Such incoherent noise problems are much easier to overcome 

than coherent ones however, and hence in certain scenarios, it is possible that operating 

outside the backscatter envelope may provide benefits.  
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The next results section will undertake an experimental demonstration in order to 

illustrate this effect. First however, the next sub-section seizes the opportunity of having 

calculated a true SNR matrix, which offers a unique opportunity to optimise an image for 

the different transmitting and receiving combinations of the array.  

Image Optimisation  

In the previous section we have already measured the imaging SNR as the aperture is 

varied. Having obtained an SNR matrix however, which holds the SNR for the individual 

send-receive combinations of the array, we can also optimise our TFM image by calculating 

which individual combinations are accepted into the image to maximise SNR. Whereas 

this is practically impossible, as it requires a priori knowledge, it can be useful here to 

indicate which combinations of the array hold the best information, which should be 

proportional to SNR.  

The optimisation routine adopted here is relatively simple. It starts by compiling a 

TFM image using a small aperture of 16 array elements, as the SNR should be relatively 

good for the elements closest to the array, and subsequently increases the aperture by 

compiling individual time-traces into the image one at a time, but only accepting each new 

candidate if they increase the image SNR. Once the full 128x128 send-receive combinations 

are considered, and by repeating this procedure eight times for the different realisations, 

we can plot an acceptance matrix which indicates how many times a particular send-receive 

combination of the array was accepted into the TFM image.  

The resulting acceptance matrix is shown in Figure 6.10a, and one of the eight TFM 

images is shown in Figure 6.10b. As can be seen, the preferred combinations for maximising 

image SNR, are related to the SNR matrix, as expected. The comparison of the two TFM 

images, in in Figure 6.10b and Figure 6.10c, shows the improvement in SNR, albeit 

unachievable in practise.  

Now we move to the next results section which aims to illustrate the backscatter 

envelope, experimentally.  
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(a) 

 
(b) 

 
(c) 

Figure 6.10. (a) Acceptance matrix (b) conventional TFM image for a 128 element aperture, and 
(c) optimised TFM image for a 128 element aperture.
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6.5 Results III: Experimental Illustration of the 

Backscatter Envelope 

The basis of this experiment is to acquire an ultrasonic array image with a single array, 

which operates well within the backscatter envelope, and compare it to the equivalent 

image acquired with a dual array setup (see Figure 6.11a). The dual array physically 

separates the arrays (in this case by 25mm) such that an opportunity exists to receive 

backwall signals before the majority of backscatter has arrived. The inspected material 

consists of a copper block and the array setup (LECOUER, France) uses two identical 

arrays with 64 elements and a 5MHz centre frequency (IMASONIC, France). The copper 

block contains no known defects, the target for the image is simply the backwall. In order 

to ensure electrical noise is suppressed, sufficient temporal averaging is applied to each 

FMC acquisition such that the noise floor is defined by coherent noise only. 

Figure 6.11b plots the resultant TFM image for a single array and reveals that the 

backwall is detected with SNR of 50dB. The TFM image of a dual array (Figure 6.11c) 

conversely shows that the SNR has improved by 8dB due to a reduction in the received 

backscatter. This result is as was expected from the previous simulations and demonstrates 

that separating source and emitter can create an advantage to outrun the backscatter 

envelope with a longitudinal wave which corresponds to a feature of interest. The author 

would like to emphasize that such an opportunity will not exist for all practical scenarios, 

the aim is to illustrate and explain this effect which was previously only observed 

empirically. This demonstrates the utility of the FE modelling methodology to study such 

phenomena.   
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(a) 

 

(b) 

 

(c) 

Figure 6.11. (a) Experimental setup of two arrays separated by 25mm in contact 
with copper. TFM images of the backwall for the (b) single array and (c) dual array 
setup.  
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6.6 Discussion: Spatial Averaging Theory 

Combining the findings from Section 6.3 and 6.4, we can compare the prediction of 

SNR using the aberrated PSF (Section 6.4.2, Equation (6.2) to that obtained from the full 

signal and noise calculations (Section 6.4.3). In addition, a simplifying argument is 

proposed here, namely one which assumes that within highly scattering environments, the 

noise - albeit temporally coherent - is entirely uncorrelated between the different array 

elements (i.e. spatially incoherent). This would enable modelling of the noise by an 

averaging law which is simply the reciprocal of square-root n, where n represents the 

number of spatially independent time-traces used. Although the FMC holds N2 time-traces, 

n=N(1+N)/2 due to reciprocity. Namely, in the absence of temporally random noise (e.g. 

electrical) only the half of the FMC (known as Half Matrix Capture (HMC)) holds unique 

information, as reciprocity dictates that a sender and receiver combination can be reversed 

and the received wave signal remains identical.  

As an initial verification, Figure 6.12 plots the RMS image noise amplitude 

(denominator of Equation (6.3) against the averaging law. It shows good overall matching; 

the closest match occurring for the noise which stems deepest within the material (i.e. 

75mm). Interestingly, this suggests that the grain noise is largely uncorrelated between 

array elements in the highly scattering regime simulated here. 

6.6.1 Results versus Single Scattering Theory  

The SNR comparisons are shown in Figure 6.13 a-c for the three TPS. The SNR2 is 

shown with standard deviation bars, and both theoretical predictions, using the PSF and 

the averaging law are drawn on top. The correlations for both theories are for good at the 

50mm and 75mm depths. As can be seen, the limitation of the single scattering theory, as 

outlined in Section 6.1.1, is that it only predicts monotonic SNR functions. Within the 

materials simulated, this is shown not to be the case, and hence the degradation of signal 

information through attenuation and phase aberration, and possibly dispersion effects is 

detrimental to the performance of the array.  
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Figure 6.12: Comparison of the RMS noise calculated for a polycrystalline material as a 
function of the number of array elements N for three TPS cases at 25mm, 50mm, and 
75mm versus the averaging law calculated from n independent time traces.  
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(a) 
(b) 

 

(c) 

 

Figure 6.13: Comparison of the measured SNR, and two predicted SNRs. One uses the 
single scattering theory, and the second models the noise by an averaging law. The 
results are shown for a true point scatterer embedded at (a) 25mm (b) 50mm and (c) 
75mm depth within a polycrystalline medium. Error bars indicate the standard deviation 
variation.  
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When using a single array, this notion suggests that for a given array element budget, 

it is preferable to spend it on a 2D configuration, i.e. rather than arrange the elements 

along a line, to extend them into a grid. A similar amount of spatial averaging will occur 

but more importantly, the signal information captured by the array will maintain a higher 

quality (amplitude).  

6.7 Conclusions 

This chapter has described a FE modelling framework to simulate ultrasonic arrays 

imaging within highly scattering, polycrystalline materials. Its utility is demonstrated by 

investigating the performance of array imaging, which is fundamentally limited by the 

onset of scattering noise. By comparison of multiple scattering simulations results to those 

of well-established single scattering models, it is found that FE modelling can provide 

interesting and new insights to find improved array configurations to inspect these 

materials.  

Within highly scattering environments, the numerical simulations found that the 

maximum aperture does not necessarily maximise the SNR, which suggests that 2D arrays 

should offer improved performance over linear arrays. Furthermore, by demonstrating the 

existence of a backscatter envelope, it is also shown that in certain inspection scenarios, 

significant advantages can be derived from separating the emitting and receiving 

transducer. Lastly, it was found that treating the noise as spatially incoherent between the 

different array elements makes a good approximation in this strong scattering case.  
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Chapter VII 

7 PSUEDO COLOURING 

 

Ultrasonic imaging for NDE is limited by the challenge of detection, which relies on 

discriminating between objects based on their intensity. Whilst this works well in 

ultrasonically transparent media, in polycrystalline materials however, a host where 

scatterers are abundant, this is no longer the case. In such media, intensity information, 

as a means of interpreting an image, is compromised by the background of coherent 

microstructural noise. In a bid to improve this, it is suggested here to use pseudo-colouring 

to consider frequency information and distinguish objects based on their emitted frequency 

spectra. This approach exploits the frequency diversity; namely the difference in frequency 

dependence of the noise stemming from the material’s microstructure, or backscatter, and 

that exhibited by the targets of interest: defects. Whereas established frequency diversity 

techniques exploit this additional information to reconvert it into amplitude data, colour 

enables the encoding of frequency and intensity information independently, yet still 

displayed in the same image. This chapter serves as an initial exploration of pseudo-

colouring ultrasonic images for ultrasonic NDE of polycrystalline materials. 

This work is published in QNDE proceedings 2014 [P4]. 
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7.1 Introduction 

Despite all the inspection difficulties which arise from a coarse grained microstructure, 

it also presents a unique opportunity. Namely, the microstructural noise typically exhibits 

a differing frequency dependence from that of the signals of interest: the defects. This 

phenomenon is termed frequency diversity and enables, instead of solely relying on 

intensity to discern between objects, to also consider differences in frequency spectra. 

Certain established signal processing techniques, such as SSP (Newhouse et al. 1982) (see 

Chapter 2) exploit this additional information but combine with the conventional intensity 

metric, to increase the ratio of signal to that of noise (SNR).  

An alternative approach is proposed here, adding a new dimension to ultrasonic images 

and conjunctly displaying both types of information, by employing pseudo colouring. The 

objective is merely to facilitate interpretation of ultrasonic images and avoid parameter 

fine-tuning such as filter optimisation which would otherwise reveal the same defects. The 

latter, optimising filter settings, can present difficulties for practical scenarios where (1) 

there is no a priori knowledge of the defects, (2) there is insufficient knowledge of the grain 

morphology and (3) in extreme cases, the centre-frequency of defects changes with 

propagation distance, due to a highly frequency dependent attenuation, and hence also the 

optimal filter settings. 

Although previously adopted by the medical community to indicate the direction of 

blood flow using the Doppler effect (Afruz et al. 2010; Jinxiu et al. 2007), this chapter 

serves as an initial exploration of pseudo-colouring  for ultrasonic NDE. The concept is 

illustrated, first on simulation data which synthesizes frequency diversity, subsequently on 

Finite Element (FE) data of an array inspecting a polycrystalline material, and finally for 

experimental B-scans. 

7.2 Concept 

The concept of pseudo-colouring is illustrated here using simulated data which creates 

an idealized scenario. The model inspection layout consists of a 32 element array set in a 
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contact configuration to image three defects (see filled circles Figure 7.1a) within a 

polycrystalline material. The grain noise is modelled using the same model outlined in 

Chapter 4 (see Section 4.4.2) which generates coherent noise by superposing the separate 

ultrasonic responses of a random distribution of omnidirectional point scatterers (shown as 

small dots in Figure 7.1a). Frequency diversity, which may otherwise occur intrinsically 

between defect and grain, is synthesized by insonifing each with three-cycle tonebursts of 

different centre-frequencies, i.e. 2MHz and 5MHz respectively. In order to simulate a 

challenging inspection, the target point-scatterers (which are severely outnumbered) are 

assigned to exhibit only twice the scattering potential of a noise point-scatterer.  

The ensuing computations involve calculating all the time-traces using Green’s 

functions according to the procedure described in (Jie et al. 2013) to populate the Full 

Matrix Capture (FMC) array dataset. The FMC data are then used to process an image. 

In this example, the Total Focusing Method (Holmes et al. 2005) (TFM) is used as it 

provides a useful benchmark array imaging algorithm (Wilcox 2013).  

The results convey a scenario where, when viewing the TFM image in Figure 7.1b, the 

three imaging targets cannot be detected when solely relying on the intensity of their 

reflection, as it fails to emerge from the background speckle. Merging frequency information 

(methodology described later) into the image however, through colouring as shown in 

Figure 7.1c, can reveal the three defects (exhibiting red and yellow colour values) which 

contrast in terms of their frequency content against the background noise (exhibiting blue 

and green colour values). Considering that the defects simulated here are relatively weak 

scatterers, the results indicate that differences in frequency content are a potentially 

sensitive metric to distinguish defects from grains.  

7.3 Signal Processing Methodologies 

Two methodologies were implemented as examples to explore pseudo-colouring, here 

named RGB and HSV for the colour models they rely on. Both methodologies are 

compatible with existing NDE imaging techniques including B-scans and array images such 

as TFM.  
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(a) 

 
(b) 

 
(c) 

Figure 7.1: Concept of psuedo-coloring. (a) Representation of the model layout to synthesise 
frequency diversity for 3 imaging targets within a coherently noisy medium. (b) and (c) show 
the images obtained where (b) is the conventional TFM image (dynamic range of -20dB) and 
its TFM color equivalent (c) according to the RGB scheme. 
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7.3.1 RGB Colouring 

The RGB colouring scheme is a simple approach to pseudo-colouring which aims to 

divide ultrasonic time-amplitude data into three separate bins of a low (LF), medium 

(MF), and high frequency (HF). Digital filtering is used to obtain a desired spectrum of 

the original data. The filters are implemented using Gaussian windows with -40dB at the 

cut-off frequencies.  

When applying the RGB colouring scheme to an image, the LF, MF, and HF data are 

each used to process a separate image. The three resulting sub-images are subsequently 

combined according to the 3D colouring matrix (shown in Figure 7.2a). For example, every 

pixel in the image now has three values, representing an intensity at LF, MF, and HF, 

which corresponds to red, green, and blue respectively.  

Although RGB colouring is useful to reveal differences in frequency content, it is not 

practical as it requires parameter fine-tuning, similar to its substitute, filter optimisation. 

Another algorithm, HSV, is explored to avoid this step and automatically find the 

appropriate colour settings.   

7.3.2 HSV Colouring 

HSV colouring starts by converting a conventional ultrasonic time-domain signals (A-

scan) into a new signal which quantifies a centre-frequency for each time sample (t) of the 

input signal. This involves first transforming the time-domain trace into a 2D time-

frequency domain signal. Although Short-time Fourier transforms are typically used for 

this purpose, they require fine tuning of the window time length to balance frequency 

resolution and time step sensitivity, and hence to circumvent this, wavelets were employed 

which produce a comparable end-result. Equation(7.1 shows the general wavelet transform 

where 𝜓 is the wavelet shape function, n is scale parameter, 𝑏 is position, 𝑓(𝑡) is the 

original function being transformed, and 𝑊 is the resulting wavelet coefficient.  

𝑊(𝑛, 𝑏) = ∫ 𝑓(𝑡)
1

√𝑛

∞

−∞

𝜓∗ (
𝑡 − 𝑏

𝑛
) 𝑑𝑡 

 
(7.1) 
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The resulting 2D signal 𝑊(𝑛, 𝑏) is then converted back into a 1D time-domain signal 

by calculating the spectral centroid, which represents a median of the perceived spectrum, 

for each time sample (t) according to Equation(7.2 where 𝐹𝑐 is the centre-frequency, s(n) 

is the scale number. Intensity and frequency are then mapped onto a 2D colouring matrix 

as shown in Figure 7.2b.  

𝐹𝑐(𝑏) =
∑ 𝑊(𝑛, 𝑏)𝑠(𝑛)𝑁−1

𝑛=0

∑ 𝑠(𝑛)𝑁−1
𝑛=0

 (7.2) 

7.4 Simulation Results  

In contrast to the previously simulated data in Section 7.2, now a FE model is used to 

investigate frequency diversity and its potential merits for pseudo-colouring. As shown in 

Chapter 5 and Chapter 6, FE modelling benefits from a high fidelity and incorporates the 

frequency dependent increases in scattering activity, such that it is well suited to 

investigate the merits of frequency diversity. The complete account of the modelling 

procedure is given in Chapter 5. 

 

Similarly to Chapter 6, a 2D FE model (shown in Figure 7.3a) is used to simulate a 

5MHz array with a 32 element aperture and 0.6mm element pitch. A rigid point scatterer 

is introduced (not a TPS) as an imaging target by constraining displacement of six nodes 

in a hexagonal configuration with a diameter one twentieth of the wavelength, located 

centrally below the array at a depth of 25mm. The material is Inconel 600 with an average 

grain diameter of 500µm.  

A conventional TFM image (see Figure 7.3b, -20dB dynamic range) shows that the 

defect is difficult to detect based solely on intensity. The pseudo-colour version of the TFM 

image (see Figure 7.3c) is compiled employing the RGB scheme with values of 3, 5, and 

8MHz for the LF, MF, and HF centre-frequencies, each with a bandwidth of 4MHz. Figure 

7.3c indicates that the defect maintains its high intensity alongside the speckle, but has 

now become more apparent as the other high intensity pixels which were previously 

obscuring the defect are coloured differently due to the differences in their reflected 

frequency spectra.  
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(a) 

  
(b)  

 

Figure 7.2: Schematics of the RGB (a) and HSV (b) colouring scheme. 
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(a) 

(b) (c) 

 Figure 7.3: (a) Representation of the Finite Element model layout for a 32 element array inspecting a 
polycrystalline material with an average grain diameter of 500µm (grains not drawn to scale) and 
containing a point defect centrally below the array. (b) and (c) are the resulting array images, where (b) is 
the conventional TFM image and (c) is the RGB psuedo coloured version according to the RGB scheme.  
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Figure 7.4a aligns the resulting time-traces to form a B-scan, where a time-span which 

is in between the front and backwall of the sample is shown. It can be observed that the 

SDH, which is located at 12.5mm, is difficult to detect due to the backscatter. An RGB 

pseudo-colour version is compiled through setting the LF, MF, HF centre-frequencies at 5, 

11, and 17MHz respectively with a bandwidth of 6MHz. Figure 7.4b shows that pseudo-

colouring facilitates detection by considering frequency changes within the received signals. 

The experiment demonstrates that the grain noise has a relatively high centre-frequency 

when compared to the SDH’s signal which has a lower centre-frequency as seen from the 

difference in colour (blue versus green).  

The HSV pseudo-coloured version is shown in Figure 7.4c. Similarly to the RGB 

version, it manages to find the differences in frequency between the noise and signals, albeit 

less convincingly. Unlike RGB colouring however, the HSV is a more promising colouring 

scheme for future adaptations as it does not rely extensively on parameter fine-tuning and 

therefore does not require prior knowledge of the defect.  
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(a) 

 
(b) 

 
(c) 

Figure 7.4: Experimentally obtained images comparing a conventional B-scan (a) to the RGB (b) and 
HSV (c) psuedo-colored version, all stemming from the same input data. A slight shadow can be seen 
in (c) which could be an artefact or a creeping wave from the SDH.  
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7.5 Discussion and Conclusions 

Two example methodologies to produce pseudo-colour images for NDE were explored. 

Evidence of frequency diversity between grains and idealised defects was found by 

experimental results and FE simulations. 

The results suggest that frequency diversity, incorporated alongside intensity through 

pseudo-colouring, shows promise to aid detection of defects in ultrasonic images of 

polycrystalline materials. It is however not necessarily impossible to detect these defects 

using conventional intensity based images. In fact, with the right filter settings 

conventional images would reveal similar imaging targets. When inspecting polycrystalline 

materials however, where information about the defects and materials parameters such as 

grain size are often unknown, it becomes difficult to know what these optimal parameters 

are. Therefore pseudo-colouring offers a potentially useful tool for improving interpretation 

of ultrasonic images. 

 



 

176 

  



 

177 

  

 

 

 

Chapter VIII 

8 SPATIAL FILTERING  

 

Spatial filtering is briefly introduced as a possible approach to reduce backscatter. A 

numerical methodology is developed, and demonstrated on some illustrative cases. 

Preliminary FE tests confirm the contribution of shear waves within the scattered wave 

field, but when considering practical inspection scenarios, its potential benefit seems to be 

limited.     
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8.1 Introduction 

Having recognised the presence of shear waves within the scattered wave field, it seems 

opportune to exploit this contrast with the coherent wave signal, which comprises solely a 

longitudinal wave. Decreasing the influence of shear waves could thus potentially reduce 

the contribution of backscatter, and thereby improve SNR. Achieving this in practise is 

not straight-forward, as both shear and longitudinal waves appear identical when viewed 

in the time-domain, whereto we are usually confined when observing ultrasonic waves. 

However, both modes exhibit a distinctive difference in wavelength, and thus as an initial 

investigation, we can take advantage of a simulation environment, such as the 

aforementioned FE, where spatial observations are possible.  

This chapter proposes a methodology to filter a particular wave mode, shear or 

longitudinal, in attempt to provide insights into the potential gains of such an approach 

for ultrasonic NDE. The technique is initially demonstrated on simple yet illustrative cases, 

before considering scattering scenarios. The ultimate objective is to quantify the potential 

improvement to SNR by filtering longitudinal waves, which is demonstrated for the 

inspection scenario of an ultrasonic array. This preliminary investigation explores whether 

in principle a benefit exists, a means to achieve this practically has not been investigated 

and would have to be pursued in future work. 

8.2 Spatial Filtering  

Spatial filtering, in the sense of separating shear and longitudinal waves, can be 

numerically achieved in multiple ways. Perhaps the most obvious method is to rely on 

spatial Fourier Transforms. For the FE models considered here, this would be extremely 

computationally expensive, and perhaps excessive as we merely require - albeit spatially 

filtered - time-domain information (e.g. A-scans). Instead, the methodology proposed here 

relies on the previously mentioned True Point Scatterer (TPS) concept (see Chapter 6).  
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Figure 8.1: Concept of Longitudinal (red) and Shear (blue) wave Spatial Filter showing the unit 
vectors for each node. 

 

 

Figure 8.2: Schematic of an longitudinal plane wave incident onto a longitudinal spatial filter, 
indicating the x-displacement components (red arrows) from their original vector (gray). The 
radius, r, is labelled.  
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Whereas the TPS procedure was initially proposed to excite a pure omnidirectional 

longitudinal wave; the principle of reciprocity suggests the same calculation can be applied 

in reception, to purely receive longitudinal waves. This concept is termed a Longitudinal 

wave Spatial Filter (LSF), and can also be extended to a Shear wave Spatial Filter (SSF) 

as illustrated in Figure 8.1.  

The following section provides the analytical background of the proposed spatial filter.  

8.2.1 Analytical Validation  

Before undertaking any FE simulations, let us consider an analytical case to undertake 

the spatial filtering calculation in known circumstances. For example, assume a 

longitudinal plane wave propagating in the positive x-direction (as shown in Figure 8.2). 

As the propagation and polarisation direction is known in this case, the x-displacement is 

equal to the longitudinal wave displacement, 𝑈𝐿0. The time dependent x-displacement, 𝑈𝑥0 , 

at a location, 𝑥0, is given by Equation(8.1. As stated earlier, by relying on our a priori 

knowledge of the wave, 𝑈𝑥0  is equivalent to 𝑈𝐿0 in this case. 

𝑈𝐿0(𝑡) = 𝑈𝑥0
(𝑡) = 𝐴0𝑒𝑖(𝑘𝑥0−𝜔𝑡) (8.1) 

The purpose of the spatial filter is to obtain 𝑈𝐿0 or 𝑈𝑆0, without relying on a priori 

knowledge as this will not be available once we consider a scattered wave field, where a 

multitude of waves propagate in random directions with unknown polarisations. The 

proposed spatial filter probes the two dimensional wave field, in this case at six locations 

surrounding 𝑥0 in a hexagonal arrangement (an artefact of using a structured triangular 

FE mesh). The ensuing calculation involves projecting the displacement of each node, 1 to 

6, in both the x and y direction, according to the respective unit vector shown in Figure 

8.2. The resulting displacement is denoted by 𝑈𝐿. 

In the case of the aforementioned longitudinal wave, displacement is restricted to the 

x-axis, and thus the vectorial calculation reduces to the summation of the nodal 

displacements, 𝑈𝑥,1 to 𝑈𝑥,6, with the appropriate weighting function. For our purposes at 

this stage, it is sufficient and equally illustrative to perform the calculation for 𝑈𝐿 (shown 
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in Equation(8.2) by simply considering the wave equations at locations x1 and x4, neglecting 

the node pairs 2, 3 and 5, 6. 

𝑈𝐿(𝑡) = 𝑈𝑥,1(𝑡) − 𝑈𝑥,4(𝑡) = 𝐴0𝑒𝑖(𝑘𝑥1−𝜔𝑡) − 𝐴0𝑒𝑖(𝑘𝑥4−𝜔𝑡) 
(8.2) 

 

To compare how the spatially filtered result, 𝑈𝐿, relates the known longitudinal 

displacement, 𝑈𝐿0, we can redefine 𝑥1 = 𝑥0 + 𝑟 and 𝑥4 = 𝑥0 − 𝑟, where 𝑟 is defined in Figure 

8.2. After rearranging, this yields Equation(8.3:  

𝑈𝐿(𝑡) = 𝐴0𝑒𝑖(𝑘𝑥0−𝜔𝑡)[2𝑖 sin(𝑘𝑟)] = 𝑈𝐿0(𝑡)[2𝑖 sin(𝑘𝑟)] 
(8.3) 

This reveals that the spatial filtering procedure induces a change in amplitude, ∆|𝑈𝐿(𝑡)|, 

and a change in phase, ∆⦟𝑈𝐿(𝑡), in comparison to UL0, as described in Equation(8.4.  

∆|𝑈𝐿(𝑡)| = 2 sin 𝑘𝑟 ≈ 2𝑘𝑟 ,    ∆⦟𝑈𝐿(𝑡) = 𝜋/2  
(8.4) 

This provides several observations. Firstly, and perhaps intuitively, the calculated 

amplitude for 𝑈𝐿 decreases as 𝑟 becomes smaller, as the phase difference between 𝑈𝑥,1 and 

𝑈𝑥,4 reduces. The dependence on 𝑘 indicates that lower frequencies are amplified as they 

comprise larger wavenumbers. Lastly, the phase angle indicates that there is a constant 

phase shift which is independent of the variables. 

The same analysis can be undertaken to demonstrate the parametric dependence of the 

SSF, which produces the identical results, shown in Equation(8.5. 

∆|𝑈𝑆(𝑡)| ≈ 2𝑘𝑟 ,    ∆⦟𝑈𝑆(𝑡) = 𝜋/2  
(8.5) 

Now that the behaviour of the spatial filter is established, some simple numerical 

simulations are computed to demonstrate its spatial filtering capabilities. 
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(a) 

 
(b) 

 
(c) 

Figure 8.3: Results for longitudinal wave excitation (a) x-displacement field showing a plane wave 

(b) time-trace comparisons for Ux0 vs UL and Uy0 vs Us (c) Fourier analysis of previous time-

traces. 
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(a) 

 
(b) 

 
(c) 

Figure 8.4: Results for shear wave excitation (a) y-displacement field showing a plane wave (b) 
time-trace comparisons for Ux0 vs UL and Uy0 vs Us (c) Fourier analysis of previous time-traces. 
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8.3 Numerical Results   

The aforementioned analytical scenario is now simulated numerically; plane waves are 

generated within isotropic media using the FE procedure outlined in Chapter 5. A spatial 

filter is embedded centrally within the material (at x=30mm, and y=6mm) to calculate a 

resultant longitudinal and shear wave displacement, 𝑈𝐿 and 𝑈𝑆, using the respective LSF 

and SSF procedures. Similarly to the previous section, within this controlled environment, 

the spatially filtered result can be verified against the known result, 𝑈𝐿0 and 𝑈𝑆0. In this 

case, when either a longitudinal or shear wave propagates in the positive x-direction (see 

Figure 8.2), 𝑈𝐿0 and 𝑈𝑆0 are given by the x and y displacement respectively, 𝑈𝑥0 and 𝑈𝑦0, 

of the central node within the hexagonal configuration. 

8.3.1 Numerical Validation  

The medium is defined to represent a typical elastic material of interest, with 

E=216GPa, ν=0.3 and density ρ=8000kgm-3. The plane wave consists of either a 

longitudinal or shear wave, excited by a three cycle toneburst with a 2MHz centre 

frequency. For ease of implementing the hexagonal spatial filter within the FE model, a 

structured mesh with triangular elements is used.   

Figure 8.3a displays the x-displacement field for a longitudinal plane wave propagating 

within a slab of isotropic material. The time-domain spatial filtering results are plotted in 

Figure 8.3b and reveal that the LSF has correctly identified the longitudinal wave, whilst 

the SSF has filtered it out (a time-trace of nulls is produced) as intended.  

Figure 8.4 repeats the procedure in the previous figure but for the shear plane wave 

case, as seen in Figure 8.4a. This verifies that the LSF correctly filters out an incident 

shear wave, whilst the SSF identifies it, as shown in Figure 8.4b.  

The spatial filter also seems to behave as predicted by Equation(8.4.  The time-domain 

signals in both Figure 8.3b and Figure 8.4b reveal a reduction in amplitude, as predicted 

by the dependence on 𝑟. Furthermore, transformation into the frequency domain, shown 

in Figure 8.3c and Figure 8.4c for both cases, similarly confirm a slight shift in centre-
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frequency due to the dependence on 𝑘. Lastly, the unwrapped phase shows the phase shift 

to be constant with frequency, and thus independent of 𝑘 as expected. 

The results so far suggests the spatial filtering technique is operating as intended. A 

question remains however concerning the spatial sampling requirements. Until now, we 

have adopted what was believed to be a sensible value for r, which determines the spatial 

sampling frequency. Similarly to time-domain measurements, it seems clear that the spatial 

sampling must at the very least satisfy the Nyquist criterion. A convergence study is 

undertaken next to determine the value for 𝑟 which provides an accurate but also a 

computationally efficient solution. 

8.4 Convergence Study 

In contrast to the previous studies, scattering is now introduced to create a wave field 

containing both wave modes. The polycrystalline material considered here consists of 

Inconel 600 with an average grain size of 500µm. The resulting scattered wave field for a 

2MHz longitudinal plane wave is shown in Figure 8.5a. An LSF is embedded within the 

material at x=20mm and y=6mm, such that a UL time-trace is obtained as shown Figure 

8.5b.  

The metric to measure convergence is chosen in function of our eventual objective, 

namely to measure SNR. As shown in in Equation(8.6, SNR is defined as the ratio of the 

peak (pk) of the signal (shown in Figure 8.5b at 2.5µs) and the RMS value of the 

backscatter noise (time-window shown in Figure 8.5b). The error ESNR is the SNR 

normalised against a converged value, SNRc, which is obtained from the finest spatial 

sampling considered, which in this case was approximately r=λ/500. 

𝑆𝑁𝑅 =
𝑆𝑝𝑘

𝑁𝑟𝑚𝑠
, 𝐸𝑆𝑁𝑅 =

𝑆𝑁𝑅

𝑆𝑁𝑅𝑐  
  (8.6) 
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(a) 

 

(b) 

Figure 8.5: (a) longitudinal plane wave propagating in a slab of polycrystalline material. (b) The 
time trace obtained from the y-displacement and the filtered longitudinal displacement where 
shear waves are supressed.  

 

Figure 8.6: Convergence of error in SNR versus radius of point receiver quantified by portion of a 
wavelength. 
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Figure 8.6 shows the convergence of the normalised SNR error as the spatial filter 

radius is decreased. Convergence can be seen to be achieved to within 1% at a radius of 

approximately one twentieth of a longitudinal wavelength, or one tenth of a shear 

wavelength.  

8.4.1 Longitudinal Wave Ratio 

It is worthwhile noting that the potential improvement of the considered approach is 

fundamentally limited by the shear-to-longitudinal wave balance within the scattered field. 

For example, if 50% of the scattered field consists of shear waves, in a best case scenario, 

the filtered signal would exhibit a 6dB improvement in SNR. Although this has not been 

discussed at length within existing literature, Papadakis (Papadakis 1981) suggests 80%  

of the scattered energy is carried off by shear waves within the Rayleigh regime.  

This section aims to investigate the shear-to-longitudinal wave balance, thereby 

verifying the premise of the proposed approach. The chosen metric measures the average 

intensity of the longitudinal waves within the scattered field, through spatial filtering, and 

compares it to the total average level of backscatter, comprising both wave modes. Due to 

a lack of absolute accuracy, the measurements are normalised by assuming the spatially 

coherent wave (i.e. the signal) comprises solely a longitudinal wave. The complete 

definition for measuring the ratio of shear waves (SR), is given in Equation(8.6.  

𝑆𝑅 = 1 −
𝑁𝑟𝑚𝑠,𝐿

𝑆𝑝𝑘,𝐿

𝑆𝑝𝑘,𝑥0

𝑁𝑟𝑚𝑠,𝑥0 
  (8.7) 

𝑁𝑟𝑚𝑠,𝐿 and 𝑁𝑟𝑚𝑠,𝑥0
 are the measure of backscatter (as shown in Figure 8.5b), of the 

longitudinal filtered UL and Ux0 signal respectively. As previously mentioned, the SR is 

directly related to the potential improvement in SNR, and thus using the same data, an 

equivalent, albeit theoretical, SNR improvement can be calculated.  

Both these metrics are investigated for three different grain sizes, 100, 200, and 500µm. 

The simulations are repeated for nine random realisations of a scattering medium (Inconel 

600), which enables the consideration of statistical variations. An example simulation is 

shown in Figure 8.5a, the LSF is located at x=20mm and y=6mm. Similarly to the previous 

simulations, a longitudinal plane wave with a 2MHz centre frequency is excited.  



 

188 

  

 d=100μm d=200μm d=500µm 

SR (%±σ)  

SNR  

54%±9% 
+6.8dB 

51%±11% 

+6.3dB 

38%±18% 
+4.5dB 

Table 8.1: Simulation results indicating the improvement in SNR when comparing a conventional 
time-trace to a longitudinal filtered equivalent.  

The results in Table 8.1 indicate that a substantial portion of the scattered field 

comprises shear waves, which could enable an SNR improvement of approximately 6dB. 

The decrease in SR with grain size seems to suggest that the balance of shear waves 

decreases as larger grains are considered.  

The above results have investigated the wave field using point measurements (single 

nodes). As established in Chapter 5, when considering receivers of finite size, such as 

ultrasonic transducers, spatial averaging plays an important role in determining the 

perceived level of noise. Since shear waves have a smaller spatial correlation length, it is 

expected that backscatter due to shear waves will spatially average quicker than the 

longitudinal counterpart. In order to investigate this, and to apply the LSF methodology 

to a more (relatively) practical scenario, a spatial filtering methodology is developed for an 

ultrasonic array.  

8.5 Array Simulation 

Implementing an LSF for an array requires some additional modelling devices. Firstly, 

instead of fully embedding the filter, the need arises to incorporate the LSF along a 

boundary. This is achieved here by using symmetry boundary conditions as shown in 

Figure 8.7a. The wave field animation resulting from an excitation with these boundary 

conditions in shown in Figure 8.7b. This indicates that the boundary conditions have 

succeeded in creating the desired semi-circular longitudinal wave front in emission. 
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(a) 
(b) 

 

 

Figure 8.7: (a) Boundary conditions for an LSF along a boundary. (b) Resulting wave field when 
the boundary conditions in (a) are used in emission. 

 

 

 

 

Figure 8.8: Implementation of multiple LSFs to model a line source, for clarity illustrated here for 
four nodes.  
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Again, by argument of reciprocity, this then can be applied in reception to implement 

a LSF along a boundary. As previously mentioned, a second change in comparison to the 

previous simulations is the requirement to model the footprint of the array (the array 

elements) which now consist of multiple nodes. Hence an LSF is placed at each node of the 

array element, such that a UL is computed for each node, and is subsequently averaged for 

all the nodes pertaining to the array element. This is graphically equivalent to superposing 

the LSF, as shown in Figure 8.8. 

8.5.1 Model 

The FE modelling procedure to implement an array follows that outlined in Chapter 

6. The layout (see Figure 8.9) comprises a 64 element linear array, each with a half centre-

wavelength element pitch and element width. The array is in contact configuration with a 

2D block (300mm x 100mm) (see Figure 8.9a) of Inconel 600 with an average grain size of 

500µm. The array elements are excited as a piston source thus generating a longitudinal 

wave (but also spurious shear waves) with a 2MHz centre frequency.  

A detection target is introduced into the material, centrally below the array, at a depth 

of 50mm as shown in Figure 8.9. The defect represents a 2mm radius SDH, which is 

implemented by constraining the displacement in both the x and y direction for all the 

nodes which reside within the circumference of the SDH (see Figure 8.9). 

Whilst the same excitation procedure is used, the simulation calculates two FMCs, one 

pertaining to Uy displacements, which produces the conventional, non-filtered array image. 

The second FMC relates to the filtered time-displacements, UL. The data are subsequently 

compiled into array images using the TFM algorithm (Holmes et al. 2005).  

8.5.2 Results and Discussion 

The conventional TFM image is shown in Figure 8.10a. The filtered TFM image, where 

the contribution of shear waves is filtered out, is shown in Figure 8.10b. The defect at 

around 50mm depth is on the verge of detection in both cases.  

As can be seen, comparison of the two images reveals there is little to no improvement 

in image SNR in this case. Although no further analysis is performed here, this is probably 
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(a) 
 

  
 

(b) 
 

 

Figure 8.9: (a) Array model layout with a partly revealed polycrystalline microstructure. Model 
size is 300mmx100mm and a SDH defect is placed at 50mm depth. A zoom in is provided (b) of 
defect model, indicating the constrained nodes which conform to an imperfect shape due to the 
use of a structured mesh.   
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(a) 

 

Figure 8.10: TFM array image compiled using (a) UY displacement and UL displacement FMC. 
Imaging target at 50mm can be seen in both cases.  Images are normalised to the maximum pixel 
intensity (signal in this case) and displayed on a dB scale. 
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due to the aforementioned spatial averaging effect, which inherently reduces the 

contribution of shear waves when considering receiving sources of finite dimensions. In 

addition, part of the - albeit limited - improvement of the filtered image is due to the 

elimination of a Rayleigh wave within the time-trace data, which is an additional noise 

factor for the conventional image.  

Even so, the chosen 500µm grain size, because it is computationally less demanding, 

represents a conservative case as suggested from the previous results. It would be 

interesting to further quantify and understand the balance of both wave modes in 

additional scattering regimes. Furthermore, given that these simulations are limited to 2D, 

it remains to be determined how the spatial averaging effect compares in full 3D 

simulations, and whether the shear wave balance is different.  

8.6 Conclusions 

This chapter has briefly introduced a numerical method for filtering longitudinal waves, 

in attempt to reduce the contribution of shear waves to improve SNR. The proposed 

method is demonstrated to successfully separate both wave modes. However, when 

considering the benefits to transducers with finite size, in this case array elements with a 

half wavelength width, the benefit to SNR was reduced, as could be seen from comparisons 

of two array images.  

The author believes this to be an interesting exploit, and further demonstrates the 

flexibility of the numerical simulations considered. As this chapter represented only an 

initial exploration, spatial filtering remains an idea for future work. 
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Chapter IX  

9 CONCLUSIONS 

Summary of thesis 
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9.1 Review of Thesis 

Chapter II: reviewed the literature on grain scattering from a historical perspective and 

described the solutions considered at present to supress its adverse effect on ultrasonic 

NDE.  

Chapter III: familiarised grain scattering through three experimental investigations. 

This included the inspection of a representative industrial component, the demonstration 

of scattering through measuring frequency dependent attenuation, and an investigation of 

temporally and spatially incoherent noise. 

Chapter IV: outlined a benchmarking strategy for evaluating de-noising algorithms and 

applied it to three forerunning ultrasonic array imaging algorithms: TFM, PCI, and DORT 

MSF. When considering the statistics of detection, it was found that the candidate 

algorithms performed similarly for the assumed test case.  

Chapter V: established Finite Element modelling for simulating wave propagation and 

elastodynamic scattering within polycrystalline materials. Several methodologies were 

explored to find an efficient solution, which was subsequently validated in 2D and 3D 

against established theory. Modelling limitations were also found. 

Chapter VI: extended the Finite Element modelling approach to a framework which 

enables the investigation of ultrasonic array imaging within highly scattering materials. 

New insights were found: the results suggested 2D arrays can be advantageous and 

potential benefits can be derived from separating the emitter and receiver to significantly 

reduce backscatter. 

Chapter VII: proposed a pseudo-colouring signal processing scheme to exploit frequency 

diversity within polycrystalline materials, thereby adding frequency information alongside 

intensity, to aid interpretation of ultrasonic images. 

Chapter VIII: preliminarily explored spatial averaging as a means to filter-out 

backscatter. A numerical method was established, which showed the scattered waves to 

comprise shear waves, however when considering a practical scenario, the benefit to 

ultrasonic NDE was limited.  
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9.2 Key Contributions 

Scattering fundamentally limits ultrasonic inspection frequency as inescapably as 

aerodynamic drag limits airspeed, and ultimately restricts the achievable performance of 

ultrasonic NDE. Whilst there seems to be no direct solution, two main philosophies can be 

considered to enable improvements. The first is to optimise existing ultrasound 

technologies, be it software (e.g. imaging algorithms) or hardware (e.g. array aperture). 

The second is to try and obtain new information to distinguish the targets of interest from 

noise. Before discussing either of these approaches, their success starts with the 

development of a reliable platform for understanding the physics, including the availability 

of the necessary tools.  

Whereas current de-noising algorithms have already made significant strides, the 

increasing availability of computing power will continue to present future opportunities for 

improvements. Establishing such advances requires a rigorous tool to objectively compare 

competing algorithms. The approach described in Chapter IV is believed to be the first 

delivery of a comparison methodology for detection that provides a robust quantitative 

evaluation, enabling to establish future advances with objective measures of the progress 

that new methods achieve.  

Previous studies within this field often relied on single scattering assumptions, and thus 

limited to relatively ‘weak’ scattering regimes. It is now evident that in order to advance 

ultrasonic NDE we must also consider multiple scattering environments. Whilst FE 

modelling presented a promising candidate, it remained uncertain whether it could capture 

the complex scattering phenomena, and furthermore, ambiguity remained regarding the 

most appropriate modelling methodology. These questions were answered in Chapter V 

where FE is revealed to capture the different scattering regimes, by validation against the 

widely-established Unified Theory. The approach was extended to 3D, for the first time, 

revealing fundamental limitations for the Rayleigh scattering mechanism simulated in 

reduced dimensions. 
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Relying on these newfound tools, the optimisation of existing technologies was initially 

pursued. The was demonstrated experimentally in Chapter IV which suggested the 

potential benefits which can be derived from considering de-noising imaging algorithms to 

be limited.  

Given the random nature of polycrystalline materials, an experimental investigation 

would ideally require a statistically significant number of samples with well characterised 

microstructures, and even if this were practical, the fundamental difficulty of measuring 

signals in noisy environments still limits its efficacy. Alternatively, modelling such as the 

aforementioned FE technique, can randomly generate materials and offers a valuable 

investigative flexibility. This was realised in Chapter VI by outlining a framework to 

investigate ultrasonic array imaging, this time, considering the hardware aspect of the 

array. Significant performance enhancements were found to be possible by optimising the 

array configuration. Namely, 2D arrays are preferable, and the concept of a backscatter 

envelope was described, which provided an explanation for the improvements in SNR 

derived from separating emitter and receiver array. It is believed that this framework is of 

future value, where it can be adopted for analysing more practical and specific industrial 

inspection scenarios.  

Beyond optimisation, attempts were also made to find new premises of detection, 

finding and subsequently exploiting additional information to discern signals and noise. 

Two such approaches were explored, one in Chapter VII, which incorporates frequency 

information into ultrasonic images by utilising pseudo-colouring. The approach was shown 

to be successful, and could potentially aid interpretation of ultrasonic images in the future.  

Another such potential exploit was discovered through spatial observations which were 

made possible by the aforementioned numerical models. Unlike the spatially coherent wave, 

it was recognised that the scattered field comprises shear waves. As an initial exploration, 

a simulation study in Chapter 8 details a spatial filter to remove backscatter due to shear 

waves, and establish possible improvements. Although further work is required to fully 

establish the merit of this approach, initial results suggest inherent spatial averaging limits 

its benefit.  

Aside from those previously discussed, some additional opportunities remain, some that 

have arisen during the present developments, which may merit future work.
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9.3 Future Work 

An obvious candidate for future consideration is Super Resolution techniques, as 

discussed in Chapter II. Recent research (Fan et al. 2014) has shown that in comparison 

to conventional algorithms (e.g. TFM), a higher SNR is required to operate Super 

Resolution  algorithms, and hence it remains to be determined whether the required drop 

in operating frequency to improve SNR, can still outperform the currently established 

algorithms (which can operate at higher frequency) in terms of resolution.  

Similarly, non-linear array imaging recently emerged and presents a potentially 

applicable imaging approach. Potter et al. (2014) have realised the possibility to exploit 

the non-linear behaviour of cracks for imaging purposes. Assuming grains do not exhibit 

such behaviour, it may be possible to utilise this additional information and derive 

improvements over current imaging techniques.  

Although it was already briefly introduced, ultimately it seems promising to exploit the 

difference in spatial characteristics of the scattered field and the spatially coherent signal. 

A promising field for its practical implementation is that of meta-materials, where there 

has already been some success at for example (Shen et al. 2014) eliminating the 

contribution of an aberrating layer to better image an object behind it (e.g. ultrasonically 

accessing the brain and adding a layer in front of the skull to remove its distorting effects).  

The FE modelling capability developed here is a promising tool for future research. 

However, given its computational cost, it is unlikely that useful sizes of 3D models will be 

feasible in the short term. It may be possible and also rewarding to accelerate this process 

by furthering our understanding of the discrepancies between 2D and 3D, in order to 

develop pseudo-3D models in 2D where we don’t have the same limitations in computing 

power. 

Finally, a question remains regarding the optimal inspection frequency, particularly for 

arrays. Within a certain regime, focusing performance (and image SNR) increases with 

frequency (Wilcox 2011), but eventually multiple scattering overwhelms this effect. Finding 

this optimum would provide far-reaching implications, and it may emerge, analogous to 

remaining within the subsonic drag regime, that the maximum efficiency for ultrasonic 

NDE lies at the limit of single scattering, before the onset of multiple scattering. 
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