
LS coupling

1 The big picture

We start from the Hamiltonian of an atomic system:
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Here n runs pver the electrons, Hs−o is the spin-orbit hamiltonian, Hh−f is the hamiltonian of
the hyperfine interaction, and HB is the effect of any external magnetic field. An important
point here is that we have neglected many contributions, some of which are not actually that
small! For example:

• Finite nuclear mass.

• Finite nuclear volume.

• Relativistic velocity correction.

• Interaction of nuclear spin with external field.

• The fact that the nucleus has a range of internal states.

Some of these ignored terms genuinely are small - for instance, the interaction of the nucleus
with an external field is always relatively unimportant. By contrast, the internal states of the
nuclei are separated by enormous energies - so much so, in fact, that at the sort of energies we are
concerned with in atomic physics we can just assume that nuclei are always in their groundstate.

Others, such as the finite nuclear mass and volume, and the relativistic velocity correction,
are not small compared to the other perturbations. However, as I will explain at the end, they
are not involved in splitting otherwise degenerate levels and hence are not important for the
picture we build up here.
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2 Central field approximation

The biggest terms in Equation 1 are the first three, which I have explicitly written out. These
are not only impossible to solve analytically, they also include interactions between many bodies.
So, in order to make any progress, we take as our first approximation Hcf , where:∑
n
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(2)
The idea is to incorporate as much of the electronic interaction as possible into the central field
U(rn), leaving only a relatively small multi-body term. If we neglect this multi-body term to
first order, then the Schrödinger equation can be separated and solved for individual electrons.
Assuming we have some numerical way of finding U(rn) and solving for the single-electron eigen-
functions, we will be able to construct product eigenstates of the form:

|Ψ〉 = |ψa(r1, χ1)〉|ψb(r2, χ2)〉|ψc(r3, χ3)〉... (3)

where the individual states are solutions to the separated equations:[
−~2∇2

2me

+ U(r)

]
|ψi(r, χ)〉 = Ei|ψi(r, χ)〉. (4)

Here χ represents spin degees of freedom, which at this stage do not influence the energy. The
total energy of |Ψ〉 is simply a sum of all the individual energies. Although this is a perfectly
good eigenstate of Hcf , it doesn’t obey exchange symmetry, which states that for fermions such
as electrons any state must be antysymmetric under exchange any pair of particles. We can
antisymmetrize |Ψ〉 using a Slater determinant:

|Ψ〉 =
1√
N !

∣∣∣∣∣∣
|ψa(r1, χ1)〉 |ψb(r1, χ1)〉 ...
|ψa(r2, χ2)〉 |ψb(r2, χ2)〉 ...

...

∣∣∣∣∣∣ (5)

This antisymmetrization process means that for n electrons, n distinct eigenstates must be used –
this is a restatement of the Pauli exclusion principle. Often we can get lazy, and say one electron
is in state a, and another in state b, but we should always remember that in truth there is no
distinction between electrons, and in our representation of quantum mechanics this manifests
itself as antisymmetrized rather than product wavefunctions.

So, we can say which state the system is in (at this level of approximation) simply by wrtiting
down the quantum numbers which label each single-electron state that is occupied. But what are
these quantum numbers? From what we know about Hydrogen and central fields, these will be
the principle quantum number n, orbital angular momentum l, z-component of orbital angular
momentum ml and the z-component of electron spin ms. However, as ml and ms have no effect
on the energy, these are suppressed and so:

1s22s22p3 (6)
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Figure 1: Effect of turning on the Hamiltonian Hcf . With H = 0, all states are eigenstates with zero energy,
and I have grouped them together in the top left. Turning on Hcf chooses certain states as eigenstates and splits
these previously degenerate states into groups of states which are labelled by their configuration. But remember,
there is still degeneracy with respect to ml and ms for a given configuration.

means 2 electrons in n = 1, l = 0 (remember l states are labelled by letters; s for l = 0), 2
electrons in n = 2, l = 0 and 3 in n = 2, l = 1. This is known as the configuration level of
description. The effect of ‘turning on’ Hcf is shown diagramatically in Figure 1.

3 Residual Electrostatic

We now have a series of perturbations which we must consider in order of their importance.
In lighter atoms, the next most important term is the residual electrostatic interaction – the
assumption that this is greater than the spin-orbit interaction is really the starting-point of the
‘LS coupling’ scheme. For a discussion of this assumption, see Foot or a similar text.

We wish to apply perturbation theory to find out how the reisdual electrostaic interaction
affects our energies. We know, however, that if we apply perturbation theory to degenerate
eigenstates, we must chose a basis for our degenerate subspace that diagonalizes the perturbing
Hamiltonian. This prevents the second-order terms from diverging (see Gasiorowicz or Binney).

Our subspace is degenerate with respect to the ml and ms of the states in the partially-filled
n,l shells. Unfortunately these states do not diagonalize the perturbing Hamiltonian within the
degenerate subspace, as the lz do not commute with the residual electrostatic perturbation.

However, the perturbing Hamiltonian necessarily commutes with L =
∑

i l
i and Lz, as the

total orbital angular momentum of electrons is not coupled to any other torque. Similarly,
S =

∑
i s

i and Sz commute with the perturbation. So if we choose the basis of our degenerate
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Figure 2: Effect of turning on the Hamiltonian Hres. Configurations are split into terms depending on L
and S - note the small configurations to the terms from other configurations, shown in red. I have only shown
contributions from adjacent configurations for convenience – don’t read any physics into this. These terms are
still degenerate with respect to Ml and Ms.

subspace to be states with well defined quantum numbers L, S, Ml and Ms, we should be fine.
So the net effect of the perturbation is to split the configurations into terms of well defined

L and S. These terms are still degenerate with respect to Ml and Ms, as there is no preferred
direction for the atom. Note also that, if we were to consider higher orders of perturbation theory,
the effect of Hres would be to mix configurations a small amount. What I mean here is that
Hres not only changes the energies of the eigenvalues, but the eigenstates themselves – you can
see the second order correction to wavefunctions in Gasiorowicz or Binney. Referring to Figure
2, the result is that the (L, S)b term from the {n, l}4 configuration has small components from
states with the same L and S but other configurational wavefunctions – these small contributions
are shown by the dashed red lines in Figure 2. Whilst these contributions are small, it is still
meaningful to talk about the configuration of a given term, even though truthfully a term will
contain small contributions from a number of configurations. These contributions remain small
as long as the energy splitting of the unperturbed states is large compared to the perturbative
interaction.

4 Spin-orbit interaction

I’m not going to go into details about the form of the interaction here, refer to the standard
textbooks for that. The point is that we have finally coupled orbital angular momentum and
spin operators. The end result is that Ml and Ms are obviously not good quantum numbers of
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Figure 3: Effect of turning on the Hamiltonian Hs−o. Terms are split into terms levels of different J - note the
small contributions to the levels from other terms, shown in red. I have only drawn two other terms contributing
for convenience, but all other terms will contribute in principle, even from other configurations. These levels are
still degenerate with respect to MJ .

the perturbation, so we use eigenstates of the total angular momentum J2 and its z-component
if we are to diagonalize within the degenerate subspace (as we must). Again, there is no special
direction for the atom, so eigenstates must be degenerate with respect to MJ , and split the terms
into levels according to J .

Note that again, although we have diagonalized within the degenerate subspace, the pertur-
bation will still connect states to other states within terms of different L and S (and, to a lesser
extent, different configurations). Whilst the spin-orbit interaction is small, the consequences are
small and so it is still reasonable to use L and S as good quantum numbers (as you do when
you calculate ∆E according to the method presented in lectures). As the spin-orbit interaction
becomes comparable to the residual electrostatic, however, this ceases to be the case. This is
shown diagrammatically in Figure 3.

5 Hyperfine interaction

Now we start to notice that the nucleus has a spin, I! Should we go back and do everything
again? Of course, there is no need – nuclear spin operators commuted with all previous pertru-
bations. Therefore we just need to say that at each previous stage the nuclear spin and electron
wavefunctions appeared as a product, with the nuclear spin states in any orthogonal basis.

Again, I am not that concerned with the details of the interaction, but we know that it
couples nuclear spin I and the total electronic angular momentum J. Our levels are degenerate
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Figure 4: Effect of turning on the Hamiltonian Hhf . Levels are split into states depending on F - note the small
contributions to the states from other levels, shown in red. I have only drawn two other levels contributing for
convenience, but all other levels will contribute in principle, even if they are in other terms and configurations.
These states are still degenerate with respect to MF .

with respect to MJ and MI , but Jz and Iz do not commute with the perturbation. There is no
external torque on the atom, however, so if we define F = J + I then we know F and MF will be
good quantum numbers, with the levels split according to F and degenerate with respect to MF .
Once more, different J-levels will actually be connected by the perturbation, but the connection
will be week and so it is meaningful to talk about the resultant states having well-defined L, S
and J – see Figure 4.

6 Magnetic interaction

External magnetic fields would like to couple to the orbital angular momenta and spin of electrons.
However, if the magnetic hamiltonian is smaller than the spin-orbit interaction, ml and ms are
not good quantum numbers of the eigenstates prior to perturbation application. The net effect
is that the magnetic field will couple to whichever angular momentum is well-defined, and split
the degenerate eigenstates according to ML and MS, MJ or MF , depending on how strong it is.
Figure 5 demonstrates the effect for a magnetic field that is weaker than the hyperfine structure,
so states of well-defined F are split according to MF . Once again, there is some connection with
states with different F values, but provided the magnetic field is small enough the consequences
are small.

An important point to note here is that when you apply the vector model, you get hamilto-
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Figure 5: Effect of turning on the Hamiltonian HB , for a magnetic interaction small compared to hyperfine
structure. Degenerate states are split into states depending on MF - note the small contributions to the states
from other values of F , shown in red. Again, in reality small contributions will be made from all other degenerate
groups of states – even those associated with different levels, terms and configurations – not just the immediate
neighbours. Assuming that at each stage of the process the new Hamiltonian has a significantly smaller effect
than the previous ones, then it is reasonable to associate the quantum numbers {n, l} = {n, l}4, L = Lb, S =
Sb, J = Jβ , F = Fλ,MF = (MF )χ with the middle state on the far right. However, it should be remembered that
this is only an approximation!

nians which look like:
Hs−o = βLSL.S (7)

and
Hhf = AJI.J (8)

These look like they commute with L2, S2 and I2, J2 respectively. If this was the case, there
would be strictly zero connection between different L, S terms when the spin-orbit perturbation
was applied, and similarly no connection between different J levels when hyperfine perturbations
are considered. However, the vector model is only approximate, and in essence assumes that there
is no connection in deriving the form of the perturbation. So the true perturbing hamiltonians
would lead to the kind of connections shown by the red dashed lines in my figures.

7 What about the neglected perturbations?

If you remember, I said that corrections such as the relativistic velocity perturbation and finite
nuclear size were unimportant in splitting otherwise degenerate states. Why is this? The impor-
tant thing to note is that they do not involve any coupling between different electrons, and do
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not act on the spin segrees of freedom. Hence they only care about the configuration part of the
wavefunction. They will therefore not split terms, levels or hyperfine levels, but contribute the
same shift to each. Furthermore, they will not prevent L, S, ML, MS, J , MJ , F ans MF being
good quantum numbers, and so all the arguments we have applied will still hold even if these
perturbations are taken into account.

8 Violation of selection rules

In the course we have considered selection rules for electric dipole radiation. Many of these
can be broken – what is the mechanism for this? Sometimes, transitions can proceed via other
mechanisms – eg. magnetic quadfrupole radiation. But in other cases, electric dipole radiation
does appear to violate its own selection rules – how is this possible?

As an example, consider the selection rule ∆S = 0. This essentially arises because electric
dipole radiation does not couple to spin degrees of freedom. You have seen in the first tutorial
that this rule is broken in Hg – does this mean that different spin states can be coupled by the
electric dipole interaction?

It does not. It signifies that our labelling of states with a certain value of S is not perfectly
accurate - a given state predominantly has one S value, but also contributions from others due
to the spin-orbit interaction (see Figure 3). The stronger the spin-orbit interaction relative to
the residual electrostatic, the worse our assumption that states have a well-defined S becomes.
Eventually, when Hs−o ∼ Hres, the approximation loses any validity. This is where LS coupling
itself loses its validity.

So in general, when a selection rule is ‘violated’, what we have really found is that the
quantum numbers we have applied to the state aren’t exactly true. Violations become stronger
as the description in terms of a given quantum number becomes less accurate.
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