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Course outline

 Lectures 1 & 2: What is a stochastic processes? Types 
of stochastic process. Analysis of discrete state 
stochastic processes.

 Lectures 3 & 4: Analysis of continuous state stochastic 
processes. Detailed balance in biological systems.

 Lectures 5 & 6: Out-of equilibrium biological systems.

 Lectures 7 & 8: Networks in biology.



19/11/2018 Modelling in Biology II: Lecture 1 3

Course outline

Online notes cover all the material expected (and some more).

Key Concept

Key Definition

Key Technique

Key TechniqueKey Algorithm

Underlying  ideas that you should be able to understand and explain.

Terminology that will  get used repeatedly without being explained each time. 

Mathematical approaches that you’ll be expected to deploy under exam conditions. 

Computational recipe that you need to be able to outline. 

Key TechniqueApplication Example of  a technique/algorithm applied to understand a biological  problem. 
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Lecture outline

 What is a stochastic process?
 The Markov property
 Types of stochastic process

 Analysing a discrete-time, discrete-state Markov chain
 Continuous-time, discrete-state Markov processes 
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Randomness all around us

Behaviour in biological systems is often hard to predict.
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What is a stochastic process?

Stochastic is just another word for random.

Position at time 𝑡1
described by 
random variable 𝑋1

Position at time 𝑡2
described by 
random variable 𝑋2

Jean Baptiste Perrin, Les Atomes, three tracings of the motion of 
colloidal particles of radius 0.53 µm.

Interrelated

Describe the whole 
sequence of related 
random variables as a 
stochastic process 𝑋 𝑡 .

Key Concept

Central quantity is 𝑝 𝑥, 𝑡 .

 Can we predict it?
 How does it evolve over time?
 Can we use it?

https://en.wikipedia.org/wiki/Jean_Baptiste_Perrin
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What is a stochastic process?

We can talk about 𝑋 𝑡1 and 𝑋 𝑡2 just like any other pair of random variables.

 Joint probability 𝑝 𝑥1, 𝑡1; 𝑥2, 𝑡2 .

 Marginal probability 𝑝 𝑥1, 𝑡1 = σ𝑥2 𝑝 𝑥1, 𝑡1; 𝑥2, 𝑡2 .

 Conditional probability 𝑝 𝑥1, 𝑡1|𝑥2, 𝑡2 .

 Autocorrelation is an important quantity:

𝑅𝑋(𝑡1, 𝑡2) =
Cov(𝑋 𝑡1 ,𝑋 𝑡2 )

Var 𝑋 𝑡1 Var(𝑋 𝑡2 )

Key Concept

𝑝 𝑥1, 𝑡1 has all the 
properties we expect 
of a distribution.
• Normalisation
• Mean
• Variance … 
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There are two fundamentally distinct ways to follow a stochastic process

Key Concept
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Markov processes are the simplest stochastic processes

A Markov process has no memory, except through the value of the variable(s) at a given time.

𝑝 𝑥1, 𝑡1|𝑥2, 𝑡2; 𝑥3, 𝑡3; 𝑥4, 𝑡4… = 𝑝 𝑥1, 𝑡1|𝑥2, 𝑡2 .

We’re going to (largely) focus on Markov processes which are:
Key Concept

Type of process Following the probability 
distribution

Following a sample 
trajectory

Discrete state, discrete time

Discrete state, continuous 
time

Continuous state, continuous 
time
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Discrete-time, discrete-state Markov chains

We have discrete points at which we observe the system. 

Label with an index 𝑛: 𝑋𝑛 and 𝑝 𝑥, 𝑛 .

Even if the possible values of 𝑋𝑛 are non-numeric, we can still order them into a numbered list or vector.

Thus 𝑝 𝑥, 𝑛 =
𝑝1(𝑛)
𝑝2(𝑛)
…

.

The evolution of the system is entirely specified by the transition matrix.

Useful tip: 
 Columns of T sum to one.

Key Definition
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Evolution under the transition matrix

The probability distribution at step 𝑛 + 1 is simply the transition matrix applied to the 
probability distribution at step 𝑛.

𝑝 𝑥, 𝑛 + 1 = 𝐓𝑝(𝑥, 𝑛)

𝑝𝑖 𝑛 + 1 = ෍

𝑗

𝑇𝑖𝑗𝑝𝑗(𝑛)

𝑝 𝑥, 𝑛 + 𝑚 = 𝐓𝑚𝑝(𝑥, 𝑛)

𝑝𝑖 𝑛 +𝑚 = ෍

𝑗

𝑇𝑚𝑖𝑗𝑝𝑗(𝑛)

Key Technique
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Evolution under the transition matrix
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Stationary distributions

A stationary distribution 𝜋(𝑥) is such that

𝜋(𝑥) = 𝐓𝜋(𝑥)

𝜋𝑖 = ෍

𝑗

𝑇𝑖𝑗𝜋𝑗

Once in a stationary distribution, the probability distribution will not evolve. Individual 
trajectories will still move, though!

𝜋𝑖 is an eigenvector of 𝑇𝑖𝑗 with eigenvalue 1.

 At least one must exist to conserve probability.
 Other eigenvalues have a magnitude less than 1.
 Systems tend to “relax” to a stationary distribution over time.
 In general, relatively easy to check;  a bit harder to find.  

Key Concept

Key Technique
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Half time conundrum

Which of these is a stationary distribution for the process below?

1

2 3

4
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0.5

1

1

(a)

(b)

(c)

(d)

Go to www.menti.com and 
use code 41 99 69

http://www.menti.com/
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Lecture outline

 What is a stochastic process?
 The Markov property
 Types of stochastic process

 Analysing a discrete-time, discrete-state Markov chain
 Continuous-time, discrete-state Markov processes 
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Absorption and first passage times

Some systems have absorbing states.

It is helpful to re-write such transition matrices as in the form:

𝐓 =
𝐔 0
𝐑 𝐈

We can immediately see that

𝐓𝑚 =
𝐔𝑚 0

𝐑 + 𝐑𝐔 + 𝐑𝐔2 + …𝐑𝐔𝑚−1 𝐈
=

𝐔𝑚 0
𝐑𝐖(𝑚 − 1) 𝐈

With 𝐖 𝑚 = 𝐈 + 𝐔 + 𝐔𝟐 + …𝐔𝑚.

A

B

C D
110.5

0.5

0.5
E

1

𝐖 𝑚 𝑖𝑗 is the expected 

number of times that non-
absorbing state 𝑖 is visited in 
the first 𝑚 steps having started 
at 𝑗.

0.5



19/11/2018 Modelling in Biology II: Lecture 2 4

Absorption and first passage times

Some systems have absorbing states.

It is helpful to re-write such transition matrices as in the form:

𝐓 =
𝐔 0
𝐑 𝐈

We can immediately see that

𝐓𝑚 =
𝐔𝑚 0

𝐑 + 𝐑𝐔 + 𝐑𝐔2 + …𝐑𝐔𝑚−1 𝐈
=

𝐔𝑚 0
𝐑𝐖(𝑚 − 1) 𝐈

With 𝐖 𝑚 = 𝐈 + 𝐔 + 𝐔𝟐 + …𝐔𝑚. 𝐔𝑚 → 0 as 𝑚 → ∞

𝐖 𝑚 tends to a constant as 𝑚 gets large: 𝐖 𝑚 = 𝐖 = (𝐈 − 𝐔) −𝟏

A

B

C D
110.5

0.5

0.5
E

1

W is known as the 
fundamental matrix.

0.5

Key Definition
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Absorption and first passage times

Armed with 𝐖 we can calculate expected “time” (number of 
steps) to absorption for a system that starts in j:

𝑡𝑗
abs =෍

𝑖

𝑊𝑖𝑗

We can also work out the probability of ending up in each 
potential absorbing state: by definition, (𝐑𝐖)𝑙𝑗 is probability of 

ending in absorbing state 𝑙 having started in state 𝑗.

𝐓𝑚 =
𝐔𝑚 0

𝐑 + 𝐑𝐔 + 𝐑𝐔2 + …𝐑𝐔𝑚−1 𝐈
=

𝐔𝑚 0
𝐑𝐖(𝑚 − 1) 𝐈

A

B

C D
110.5

0.5

0.5
E

1

Useful tip: 
We can find first passage times to 
non-absorbing states too; just 
adjust the transition matrix to 
make them absorbing!

0.5

Key Technique
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Simulating a discrete-time Markov chain

Method 1. Evaluate the full probability vector as 
a function of 𝑛.

 Conceptually simple; just keep applying 𝐓 to 
your probability vector (as we did before).

 No random numbers required! 

Method 2. Follow a single sample trajectory.

 At each time step we chose a new state using 
the probabilities encoded in 𝐓.

 Random number required! Must choose 
between a number of options, each with a 
different probability. 

 Generating many trajectories allows you to 
calculate averages. 

Why would you ever use method 2? 
 Some questions make more sense at the trajectory level.

 For large (or infinite) systems, manipulating the whole matrix is a pain. 

Key Algorithm

Key Algorithm
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Review of where we stand

Type of process Following the probability 
distribution

Following a sample 
trajectory

Discrete state, discrete time Transition matrix equation Single-step simulation

Discrete state, continuous 
time

Continuous state, continuous 
time
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Discrete-state, continuous-time Markov processes
Not much has changed in terms of the state 
space. But now the dynamics is specified by 
transition rates 𝐾𝑖𝑗. 

𝑑𝑝𝑖(𝑡)

𝑑𝑡
=෍

𝑗≠𝑖

𝐾𝑖𝑗𝑝𝑗 𝑡 − 𝐾𝑗𝑖 𝑝𝑖(𝑡)

This is the master equation.

We can define a rate matrix 𝐊.

 𝐾𝑖𝑖 defined by 𝐾𝑖𝑖 = −σ𝑗≠𝑖𝐾𝑗𝑖.

 With this definition, 
𝑑𝑝𝑖(𝑡)

𝑑𝑡
= σ𝑗𝐾𝑖𝑗𝑝𝑗 𝑡

Key Definition
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Discrete-state, continuous-time Markov processes
Not much has changed in terms of the state 
space. But now the dynamics is specified by 
transition rates 𝐾𝑖𝑗. 

𝑑𝑝𝑖(𝑡)

𝑑𝑡
=෍

𝑗≠𝑖

𝐾𝑖𝑗𝑝𝑗 𝑡 − 𝐾𝑗𝑖 𝑝𝑖(𝑡)

This is the master equation.

We can define a rate matrix 𝐊.

 𝐾𝑖𝑖 defined by 𝐾𝑖𝑖 = −σ𝑗≠𝑖𝐾𝑗𝑖.

 With this definition, 
𝑑𝑝𝑖(𝑡)

𝑑𝑡
= σ𝑗𝐾𝑖𝑗𝑝𝑗 𝑡

Note:
 Rate matrix has units of 1/time.
 Each column sums to zero.
 Not the same as the transition matrix 𝐓.
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Evolution of the probability distribution under the rate matrix

𝑑𝑝𝑖(𝑡)

𝑑𝑡
=෍

𝑗

𝐾𝑖𝑗𝑝𝑗 𝑡

𝑝𝑖 𝑡 = 𝑒𝑡𝐊
𝑖𝑗
𝑝𝑗 0 .

Stationary distribution is an eigenvector of 
the rate matrix with eigenvalue 0. 

For short times, 

𝑝𝑖 ∆𝑡 ≈ ∆𝑡𝐾𝑖𝑗𝑝𝑗 0 + 𝑝𝑗 0 .

𝑝𝑖 𝑡 + ∆𝑡 = 𝑇𝑖𝑗𝑝𝑗(𝑡)
Possible simulation method?

Key Technique
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Review of where we stand

Type of process Following the probability 
distribution

Following a sample 
trajectory

Discrete state, discrete time Transition matrix equation Step-by-step simulation

Discrete state, continuous 
time

Master equation Discretised step-by-step?

Continuous state, continuous 
time
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Summary of lectures 1 & 2
 We can use random variables to capture the unpredictability of natural and human-

constructed systems.

 A stochastic process is a series of related random variables, 𝑋(𝑡). 

 Markov processes are simple and ubiquitous.

 We can deal with discrete-space, discrete-time processes, and have started to look at 
discrete-space, continuous time; we will go further next week. 

 We can look at processes from the trajectory-level or at the level of the whole 
distribution.

 We can  often make statements about the  long-term behaviour. 

 Simulation is an important tool for probing stochastic processes. 
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Lecture outline

 Finishing of continuous time, discrete state Markov processes

 Continuous time and continuous state Markov processes

 Different types of stationary distribution: in and out of 
detailed balance

 Examples of biological systems in equilibrium.
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Last lecture

 A stochastic process is a set of random variables connected to each other (over time).

Discrete state, discrete time Discrete state, continuous time

Evolution
𝑝𝑖 𝑛 + 1 = ෍

𝑗

𝑇𝑖𝑗𝑝𝑗(𝑛)
𝑑𝑝𝑖(𝑡)

𝑑𝑡
=෍

𝑗

𝐾𝑖𝑗𝑝𝑗 𝑡

Stationary distribution 𝜋𝑖 = σ𝑗 𝑇𝑖𝑗𝜋𝑗 – e/vector with e/value 1 0= σ𝑗𝐾𝑖𝑗𝜋𝑗 – e/vector with e/value 0

Follow the probability distribution Iterate the evolution equation Discretise ODE into units of ∆𝑡; analyse 
approximate discrete time evolution 

Follow a sample trajectory Use random number to pick state based 
on probabilities encoded in 𝐓

Discretise ODE into units of ∆𝑡; analyse 
approximate discrete time evolution?

First passage/time to absorption Fundamental matrix methods ?
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Discrete-state, continuous time processes from the trajectory perspective

Imagine we’ve just landed in state 1. What happens next?

Analyse the process of leaving state 1 only.

𝑑𝑝1
𝑑𝑡

= − 𝐾21 + 𝐾31 𝑝1.

𝑝1 = e−𝑘tot𝑡 , 𝑘tot= 𝐾21 + 𝐾31.

𝑝2 =
𝐾21

𝐾21 + 𝐾31
(1 − e−𝑘tot𝑡), 𝑝3=

𝐾31
𝐾21 + 𝐾31

(1 − e−𝑘tot𝑡).

𝑃 𝑡1 = 𝑘tote
−𝑘tot𝑡1

𝑡1 = 1/𝑘tot
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Discrete-state, continuous time processes from the trajectory perspective

Simulation is therefore easy:

Pick a new state with the appropriate probability.

𝑝1→2 =
𝐾21

𝐾21 + 𝐾31
, 𝑝1→3=

𝐾31
𝐾21 + 𝐾31

.

Sample a time from the exponential distribution. 

𝑃 𝑡1 = 𝑘tote
−𝑘tot𝑡1

Repeat for new state.

Key TechniqueKey Algorithm
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Discrete-state, continuous time processes from the trajectory perspective

If we ignore the time, the sequence of states visited is 
equivalent to a discrete time model.

- We can use the fundamental matrix method to analyse 
the sequence of states visited. 

- Actual times can be recovered since the time spent in 
one state prior to transition is 𝑃 𝑡 = 𝑘tote

−𝑘tot𝑡.

?
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Continuous-space, continuous-time Markov processes

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
= න𝑑𝑥′𝐾 𝑥 𝑥′ 𝑝 𝑥′, 𝑡 − 𝐾 𝑥′ 𝑥 𝑝 𝑥, 𝑡 .

The Master equation now involves an integral.

𝑑𝑝𝑖(𝑡)

𝑑𝑡
=෍

𝑗≠𝑖

𝐾𝑖𝑗𝑝𝑗 𝑡 − 𝐾𝑗𝑖 𝑝𝑖(𝑡)

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
= −

𝜕

𝜕𝑥
𝐴 𝑥 𝑝 𝑥, 𝑡 +

1

2

𝜕2

𝜕𝑥2
𝐵 𝑥 𝑝 𝑥, 𝑡 .

The Fokker-Planck equation:
Taylor expansion
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The meaning of the Fokker-Planck equation

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
= −

𝜕

𝜕𝑥
𝐴 𝑥 𝑝 𝑥, 𝑡 +

1

2

𝜕2

𝜕𝑥2
𝐵 𝑥 𝑝 𝑥, 𝑡 .

Drift term Diffusion term

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
= 𝐷

𝜕2

𝜕𝑥2
𝑝(𝑥, 𝑡)

0 = −
𝜕

𝜕𝑥
𝐴 𝑥 𝑝 𝑥, 𝑡 +

1

2

𝜕2

𝜕𝑥2
𝐵 𝑥 𝑝 𝑥, 𝑡 . Stationary distribution

Trial solutions: check 
by substitution

Key Technique

Key Concept
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Continuous-state, continuous time processes from the trajectory perspective

Key Concept

Specific 
realisations

𝑑𝑋(𝑡)

𝑑𝑡
= 𝐴 𝑋 + ζ(𝑡)

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
= −

𝜕

𝜕𝑥
𝐴 𝑥 𝑝 𝑥, 𝑡 + 𝐷

𝜕2

𝜕𝑥2
𝑝(𝑥, 𝑡).
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Continuous-state, continuous time processes from the trajectory perspective

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
= −

𝜕

𝜕𝑥
𝐴 𝑥 𝑝 𝑥, 𝑡 + 𝐷

𝜕2

𝜕𝑥2
𝑝(𝑥, 𝑡).

Net effect over ∆𝑡:

∆𝑥 = 𝐴 𝑥 ∆𝑡 + න

0

∆𝑡

𝑑𝑡 𝜂(𝑡)

Also Gaussian with 
mean 
0 and variance 
2𝐷∆𝑡. 

Key Concept

Key TechniqueKey Algorithm

𝐴 𝑋 is a deterministic force.

ζ(𝑡) is a Gaussian random force.
 ζ(𝑡) = 0.
 ζ(𝑡)ζ(𝑡′) = 2𝐷𝛿 𝑡 − 𝑡′ .

This is the Langevin
equation

𝑑𝑋(𝑡)

𝑑𝑡
= 𝐴 𝑋 + ζ(𝑡)
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Summary

Type of process Following the probability 
distribution

Following a sample 
trajectory

Discrete state, discrete time Transition matrix equation Simulation: Step-by-step

Discrete state, continuous 
time

Master equation. Discretised 
step-by step integrator

Simulation: Gillespie 
algorithm

Continuous state, continuous 
time

Fokker-Planck equation Langevin equation
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Conundrum

Consider the Fokker-Planck Equation: 

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
= 3𝑝(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑝(𝑥, 𝑡).

By thinking qualitatively about how the two terms would cause a Gaussian 𝑝 𝑥, 𝑡 to evolve, 
Identify the subsequent behaviour:

• (a) 𝑝 𝑥, 𝑡 moves to the left (negative 𝑥) and gets broader.
• (b) 𝑝 𝑥, 𝑡 moves to the left (negative 𝑥) and gets narrower.
• (c) 𝑝 𝑥, 𝑡 moves to the right (positive 𝑥) and gets broader.
• (d) 𝑝 𝑥, 𝑡 moves to the right (positive 𝑥) and gets narrower

Go to www.menti.com and use code 79 31 70

http://www.menti.com/


Modelling in Biology II: Stochastic 
processes and networks

27/11/2018 Modelling in Biology II: Lecture 4 1

Thomas Ouldridge
t.ouldridge@imperial.ac.uk



27/11/2018 Modelling in Biology II: Lecture 3 2

Conundrum

Consider the Fokker-Planck Equation: 

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
= 3𝑝(𝑥, 𝑡) +

𝜕2

𝜕𝑥2
𝑝(𝑥, 𝑡).

By thinking qualitatively about how the two terms would cause a Gaussian 𝑝 𝑥, 𝑡 to evolve, 
Identify the subsequent behaviour:

• (a) 𝑝 𝑥, 𝑡 moves to the left (negative 𝑥) and gets broader.
• (b) 𝑝 𝑥, 𝑡 moves to the left (negative 𝑥) and gets narrower.
• (c) 𝑝 𝑥, 𝑡 moves to the right (positive 𝑥) and gets broader.
• (d) 𝑝 𝑥, 𝑡 moves to the right (positive 𝑥) and gets narrower

Go to www.menti.com and use code 79 31 70

http://www.menti.com/
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Lecture outline

 Finishing of continuous time, discrete state Markov processes.

 Continuous time and continuous state Markov processes

 Different types of stationary distribution: in and out of 
detailed balance

 Examples of biological systems in equilibrium.
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Detailed balance – a type of stationary distribution

Define the flux 𝜑𝑗𝑖 = 𝐾𝑗𝑖𝑝𝑖 − 𝐾𝑖𝑗𝑝𝑗

Net flow from 𝑖 to 𝑗.

Not the same as 𝐾𝑗𝑖 − 𝐾𝑖𝑗; probabilities 

also count. 

For a stationary distribution in detailed 
balance, 𝜑𝑗𝑖 = 0 for all pairs.

Key Concept
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Detailed balance – a type of stationary distribution

Whether a system has detailed balance in the 
stationary distribution depends on 𝐾𝑖𝑗 and 𝜋𝑗.

𝜑𝑗𝑖 = 𝐾𝑗𝑖𝜋𝑖 − 𝐾𝑖𝑗𝜋𝑗

𝜋𝑖 is set by 𝐾𝑗𝑖.  So detailed balance is a 

property of the rate matrix (or equivalent).

A randomly generated 𝐾𝑗𝑖 will almost certainly 

not show detailed balance. But (bio)physical 
systems often do, and this helps a lot!
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Systems that can reach equilibrium show detailed balance

Systems will tend towards 
thermodynamic equilibrium if they’re 
not constantly driven by work or fuel.

Once a state has reached equilibrium, 
we can no longer extract useful work 
from it.

There are no net fluxes in equilibrium.

Systems that eventually reach 
equilibrium obey detailed balance.

Key Concept
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Consequences of detailed balance

Relative probabilities are easy to calculate.

𝜑𝑗𝑖 = 𝐾𝑗𝑖𝜋𝑖 − 𝐾𝑖𝑗𝜋𝑗 = 0

֜
𝜋𝑖
𝜋𝑗

=
𝐾𝑖𝑗

𝐾𝑗𝑖

Holds regardless of the rest of all other 𝐾𝑗𝑖.

Can even make progress if two states are not directly connected.

Key Technique
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The Boltzmann distribution

Not only do equilibrium systems obey detailed 
balance, the stationary distribution is given by:

𝜋𝑖 =
e−𝐹𝑖/𝑘𝐵𝑇

σ𝑖 e
−𝐹𝑖/𝑘𝐵𝑇

.

𝐹𝑖 is the free-energy of state 𝑖. It’s like an energy, 
but also includes a contribution from the number 
of microstates in the macrostate 𝑖 (the entropy of 
state 𝑖).

𝐹𝑖 = 𝐸𝑖 − 𝑇𝑆𝑖 .

Relative rates are determined by differences in 
free energy

Key Concept
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Example: Lattice polymer elasticity

Lattice freely-jointed chain:
 𝑁 units.
 Each length 𝑏.
 Each points in one of the six 

directions on a cubic lattice.
 No self-avoidance. 

Key TechniqueApplication
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Example: Lattice polymer elasticity

Lattice freely-jointed chain:
 𝑁 units.
 Each length 𝑏.
 Each points in one of the six 

directions on a cubic lattice.
 No self-avoidance. 

 Each monomer independent.
 All configurations have the same free energy.

Consider behaviour of:

𝑹 = ෍

𝑖=1

𝑁

𝑹𝑖

𝑹2 = ෍

𝑖=1

𝑁

𝑹𝑖

2
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Example: Lattice polymer elasticity

Lattice freely-jointed chain:
 𝑁 units.
 Each length 𝑏.
 Each points in one of the six 

directions on a cubic lattice.
 No self-avoidance. 

Now apply a tension 𝑓 along 𝑥:
 Each monomer independent.
 Free energy is orientation-dependent.

Consider behaviour of:

𝑋 = ෍

𝑖=1

𝑁

𝑋𝑖 = 𝑁𝑏
sinh

𝑏𝑓
𝑘𝐵𝑇

2 + cosh
𝑏𝑓
𝑘𝐵𝑇
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Model as a continuous-time, continuous-state 
Markov process.

Forces on the particle:
 Drag force −𝛾𝑣.

 Force due to potential energy −
𝑑𝑉 𝑋

𝑑𝑋
.

 Random force.

In the overdamped limit, these must be equal 
(no ballistic  motion).

𝑑𝑋

𝑑𝑡
= −

1

𝛾

𝑑𝑉 𝑋

𝑑𝑥
+ ζ(𝑡) ζ(𝑡)ζ(𝑡′) = 2𝐷𝛿 𝑡 − 𝑡′ , 𝐷 = 𝑘𝐵𝑇/𝛾

Example: Overdamped particles

Key TechniqueApplication
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13

𝑑𝑥

𝑑𝑡
= −

1

𝛾

𝑑𝑉 𝑋

𝑑𝑥
+ ζ(𝑡)

ζ(𝑡)ζ(𝑡′) = 2𝐷𝛿 𝑡 − 𝑡′ , 𝐷 = 𝑘𝐵𝑇/𝛾

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
= −

𝜕

𝜕𝑥
−
1

𝛾

𝑑𝑉 𝑥

𝑑𝑥
𝑝 𝑥, 𝑡 +

𝑘𝐵𝑇

𝛾

𝜕2

𝜕𝑥2
𝑝(𝑥, 𝑡).

Example: Overdamped particles
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𝑉 𝑥 =
1

2
𝑘trap𝑥

2

Note:
 Matches what we expect from Boltzmann.
 Solution is Gaussian; width depends on trap stiffness
 No dependence on 𝛾.

Example: Overdamped particles

0 =
1

𝛾

𝜕

𝜕𝑥
𝑘trap𝑥𝜋 𝑥 +

𝑘𝐵𝑇

𝛾

𝜕2

𝜕𝑥2
𝜋(𝑥).

Trial solution:

𝜋 𝑥 ∝ e
− ൘

𝑘trap
2𝑘𝐵𝑇

𝑥2
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Summary

 There are two types of stationary distribution: those with and without detailed balance.

 Equilibrium systems – sometimes a good model in biologically relevant contexts – obey 
detailed balance and the Boltzmann distribution. Equilibrium modelling is often a first port-of-
call for biological molecules with heterogeneous states.

 It is easy to work out the relative probability of two states in a detailed-balanced system in the 
stationary distribution. 

 This is particularly true if we know the free energy. Don’t even need to bother with the rates!
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Lecture outline

 Non-equilibrium stationary states

 Time-dependence of stochastic processes
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Recap

Type of process Following the probability 
distribution

Following a sample 
trajectory

Discrete state, discrete time Transition matrix equation Simulation: Step-by-step

Discrete state, continuous 
time

Master equation. Discretised 
step-by step integrator

Simulation: Gillespie 
algorithm

Continuous state, continuous 
time

Fokker-Planck equation Langevin equation
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Recap

𝜋𝑖 =
e−𝐹𝑖/𝑘𝐵𝑇

σ𝑖 e
−𝐹𝑖/𝑘𝐵𝑇

.

 Detailed Balance

 Boltzmann Distribution for equilibrium 
systems
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Non-equilibrium stationary distributions: population processes

Key Concept

Population 𝑋 𝑡 :
 Increase by one at a rate λ 𝑥 .
 Decrease by one at a rate μ 𝑥 .
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The immigration-death model

𝑑𝑝𝑥
𝑑𝑡

= − λ1 + μ0𝑥 𝑝𝑥 + λ1𝑝𝑥−1 + μ0 𝑥 + 1 𝑝𝑥+1.

Neat trick: multiply by 𝑥 and sum over 𝑥.

𝑑 𝑋

𝑑𝑡
= λ1 − μ0 𝑋 λ1 = μ0 𝑋 in stationary state.

In fact, we can find the whole distribution using detailed 
balance (!!):

λ1𝜋𝑥 = μ0 𝑥 + 1 𝜋𝑥+1 𝜋𝑥 =

λ1
μ0

𝑥

𝑥!
𝜋0
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Biasing stationary distributions through driving

X is a protein that can be phosphorylated (X*) or 
unphosphorylated. 

In equilibrium, the proportion of X and X* is determined by the free energy of phosphate binding:

𝑝(𝑋∗)

𝑝(𝑋)
=
𝑘on[𝑃]

𝑘off
= 𝑒−∆𝐹phos/𝑘𝐵𝑇 .Key TechniqueApplication
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Biasing stationary distributions through driving

We can change the bias by driving the system through an 
input of chemical fuel

Allow phosphorylation to occur by exchange of phosphate with a 
nucleotide, facilitated by an enzyme.

From the perspective of X/X*, fuel is 
constantly fed in.

No need to obey detailed balance.
X X*

X-Y
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Biasing stationary distributions through driving

X X*

X-Y𝑘3 𝐴𝑇𝑃 [𝑌] 𝑘3 𝐴𝐷𝑃 [𝑌]

𝑘off

𝑘4 𝑘4

𝑘on[P]

A very simple model:

In general, violates detailed balance.

Allows stationary distribution to deviate from 
𝑝(𝑋∗)

𝑝(𝑋)
=

𝑘on[𝑃]

𝑘off
= 𝑒−∆𝐹phos/𝑘𝐵𝑇.

Yield is sensitive to amount of Y – good for passing on a signal. 
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Conundrum

0,0 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

…

…

foxes

rabbits

Rabbit population 𝑅, fox population 𝐹

Model 1 (vegetarian foxes):
• 𝑅 → 𝑅 + 1 at rate λ𝑅𝑅.
• 𝑅 → 𝑅 − 1 at rate μ𝑅𝑅.
• 𝐹 → 𝐹 + 1 at rate λ𝐹𝐹.
• 𝐹 → 𝐹 − 1 at rate μ𝐹𝐹.

Model 2 (non-vegetarian foxes)
• 𝑅 → 𝑅 + 1 at rate λ𝑅𝑅.
• 𝑅 → 𝑅 − 1 at rate μ𝑅𝐹𝑅.
• 𝐹 → 𝐹 + 1 at rate λ𝐹𝑅𝐹.
• 𝐹 → 𝐹 − 1 at rate μ𝐹𝐹.

Which of the models obeys 
detailed balance?
(a) 1 and 2.
(b) 1 only.
(c) 2 only.
(d) Neither.

Go to www.menti.com and 
input code 59 46 45 to 
suggest an answer. 

http://www.menti.com/
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Conundrum

0,0 1,0 2,0

0,1 1,1 2,1

0,2 1,2 2,2

…

…

foxes

rabbits

Rabbit population 𝑅, fox population 𝐹

Model 1 (vegetarian foxes):
• 𝑅 → 𝑅 + 1 at rate λ𝑅𝑅.
• 𝑅 → 𝑅 − 1 at rate μ𝑅𝑅.
• 𝐹 → 𝐹 + 1 at rate λ𝐹𝐹.
• 𝐹 → 𝐹 − 1 at rate μ𝐹𝐹.

Model 2 (non-vegetarian foxes)
• 𝑅 → 𝑅 + 1 at rate λ𝑅𝑅.
• 𝑅 → 𝑅 − 1 at rate μ𝑅𝐹𝑅.
• 𝐹 → 𝐹 + 1 at rate λ𝐹𝑅𝐹.
• 𝐹 → 𝐹 − 1 at rate μ𝐹𝐹.

Which of the models obeys 
detailed balance?
(a) 1 and 2.
(b) 1 only.
(c) 2 only.
(d) Neither.

Go to www.menti.com and 
input code 59 46 45 to 
suggest an answer. 

http://www.menti.com/
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Lecture outline

 Non-equilibrium stationary states

 Time dependence of stochastic processes
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Two contexts for time-dependence

 Relaxation of a probability distribution over time towards 
the stationary distribution.  

 The properties of individual trajectories, regardless of 
whether the distribution as a whole is stationary. 
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Example: DNA dissociation

Key TechniqueApplication
𝑘on
𝑘off

= 𝜎 ≪ 1
𝑘zip

𝑘unzip
= 𝑡 > 1
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Example: DNA dissociation

𝑘on
𝑘off

= 𝜎 ≪ 1
𝑘zip

𝑘unzip
= 𝑡 > 1Assumption: system reaches stationary state 

within the bound states prior to escape.

Overall dissociation rate ~𝑘off𝜋 𝑋 = 1 𝑋 > 0

[This is called transition state theory].
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Example: DNA dissociation

𝑘on
𝑘off

= 𝜎 ≪ 1
𝑘zip

𝑘unzip
= 𝑡 > 1System obeys detailed balance.

𝜋eq 𝑥 = 𝜋eq 𝑥 − 1
𝑘zip

𝑘unzip
= 𝑡𝜋eq 𝑥 − 1

for 𝑥 > 1.
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Example: DNA dissociation

𝑘on
𝑘off

= 𝜎 ≪ 1
𝑘zip

𝑘unzip
= 𝑡 > 1

So, for a duplex of length 𝑁,

𝜋eq 𝑋 = 1|𝑋 > 0 =
1

σ𝑛=1
𝑁 𝑡𝑛−1

.

Dissociation rate ~
𝑘off

σ𝑛=1
𝑁 𝑡𝑛−1
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Example: DNA dissociation

𝑘dis(𝑁1)

𝑘dis(𝑁2)
≈ 𝑡𝑁2−𝑁1 =

𝑘zip

𝑘unzip

𝑁2−𝑁1



03/12/2018 Modelling in Biology II: Lecture 6 10

Competing outcomes of molecular reactions

When we look a the details of a molecular reaction, we might want to know:

 Given that reactants are bound, does the reaction proceed to completion?

 Given multiple substrates, what is the probability of acting on the intended one?

 Given multiple reaction outcomes, which ones are more likely?
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Competing outcomes of molecular reactions

Systems tend naturally to be describable using a discrete-state, 
continuous time Markov process.

Often helpful to construct a discrete-time process by thinking only 
about the sequence of states visited (ignoring time).
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Example: protein translation

Key TechniqueApplication

Key Technique
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Example: protein translation

𝑊 = (I − 𝑈)−1=
1

1 −
𝑘off
𝑠

2 𝑘off
𝑠 + 𝑘cat

−
𝑘off
𝑖

2(𝑘off
𝑖 + 𝑘cat)

1
𝑘off
𝑠

𝑘off
𝑠 + 𝑘cat

𝑘off
𝑖

𝑘off
𝑖 + 𝑘cat

1/2 1 −
𝑘off
𝑖

2 𝑘off
𝑖 + 𝑘cat

𝑘off
𝑖

2 𝑘off
𝑖 + 𝑘cat

1/2
𝑘off
𝑠

2 𝑘off
𝑠 + 𝑘cat

1 −
𝑘off
𝑠

2 𝑘off
𝑠 + 𝑘cat

𝑅 =

0
𝑘cat

𝑘off
𝑠 + 𝑘cat

0

0 0
𝑘cat

𝑘off
𝑖 + 𝑘cat

Ratio of correct/incorrect:

𝑝𝑆
𝑝𝐼

=
𝑘off
𝑖 + 𝑘cat

𝑘off
𝑠 + 𝑘cat
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Example: protein translation – kinetic proofreading

𝑝𝑆
𝑝𝐼

=
𝑃(𝑠 before 𝑖|E)𝑃(𝑆 before 𝐸|𝑠)

𝑃(𝑖 before 𝑠|E)𝑃(𝐼 before 𝐸|𝑖)

Thus:

𝑝𝑆
𝑝𝐼

=
𝑘off
𝑖 + 𝑘𝑝

𝑘off
𝑠 + 𝑘𝑝

𝑘off
𝑖 + 𝑘cat

𝑘off
𝑠 + 𝑘cat
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Time dependence in overdamped diffusion

Motion of an  overdamped particle obeys the equations:

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
= −

𝜕

𝜕𝑥
−
1

𝛾

𝑑𝑉 𝑥

𝑑𝑥
𝑝 𝑥, 𝑡 +

𝑘𝐵𝑇

𝛾

𝜕2

𝜕𝑥2
𝑝(𝑥, 𝑡).

𝑑𝑋

𝑑𝑡
= −

1

𝛾

𝑑𝑉 𝑋

𝑑𝑋
+ ζ 𝑡 ,

ζ (𝑡)ζ(𝑡′) = 2𝐷𝛿 𝑡 − 𝑡′ , 𝐷 =
𝑘𝐵𝑇

𝛾
.

Key TechniqueApplication
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Example: Freely diffusing particle

𝜕𝑝(𝑥, 𝑡)

𝜕𝑡
=
𝑘𝐵𝑇

𝛾

𝜕2

𝜕𝑥2
𝑝 𝑥, 𝑡 = 𝐷

𝜕2

𝜕𝑥2
𝑝 𝑥, 𝑡 .

𝜋 𝑥, 𝑡 =
1

4𝜋𝐷𝑡
e−

𝑥2

4𝐷𝑡 .

Using 𝐷 = 10−10m2s-1
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Example: time-dependent correlations in quadratic well

We can find the average behaviour of 𝑋, and the 
autocorrelation over time. 

𝑅𝑋(𝑡, 0) =
Cov(𝑋 𝑡 ,𝑋 0 )

Var 𝑋 𝑡 Var(𝑋 0 )

In steady state, 𝑋(𝑡) = 𝑋(0) = 0 and

Var 𝑋 𝑡 = 𝑋 𝑡 2 = 𝑋 0 2 = 𝑘𝐵𝑇/κ.

𝑋 𝑡 = 𝑋 0 e
−
κ
𝛾𝑡 + e

−
κ
𝛾𝑡න

0

𝑡

𝑑𝑡′ ζ 𝑡′ e
κ
𝛾𝑡

′

.

𝑑𝑋

𝑑𝑡
= −

1

𝛾

𝑑𝑉 𝑋

𝑑𝑥
+ ζ 𝑡 = −

κ

𝛾
𝑥 + ζ 𝑡 ,

ζ(𝑡)ζ(𝑡′) = 2𝐷𝛿 𝑡 − 𝑡′ , 𝐷 =
𝑘𝐵𝑇

𝛾
.
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Summary

 We introduced biological systems that show interesting stochastic dynamics.

 Sometimes we’re interested in a system out of the  stationary distribution.

 Sometimes we’re interested in the timescale over which individual trajectories move 
around the stationary distribution.
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Lecture outline

Point processes

Networks

 What is a network?

 Network properties

 A null model of a network

 Networks in biology
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Spike trains

Nerve impulses are an example of a point 
process.

Can represent them as a series of isolated points 
along a (time) axis.

Gaps between points form a stochastic process 
Θ(𝑛).

Simplest possible process: Poisson point process:

 Each gap is independent.

 Spikes arrive at a constant rate ν.

Modelling in Biology II: Lecture 7
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Spike trains: Point Poisson process

Let 𝑝 𝜃 be the probability density of an interval 
having length 𝜃.

𝑝 𝜃 δ𝜃 is the probability that nothing happens 
for a time 𝜃, and then a spike arrives in δ𝜃.

Define survival probability 𝑆 𝜃 :

𝑑𝑆(𝜃)

𝑑𝜃
= −ν𝑆 𝜃

𝑆 𝜃 = e−ν𝜃

𝑝 𝜃 = νe−ν𝜃

Modelling in Biology II: Lecture 7
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Spike trains: Point Poisson process

How many spikes do we expect during a time window 𝑡, 𝑝𝑛 𝑡, ν ?

 Probability of no events is 𝑝0 𝑡 = 𝑆 𝑡 = e−ν𝑡.

 Probability of having 𝑛 + 1 events is probability of having a first event at 𝜃 < 𝑡, 𝑝 𝜃 =

νe−ν𝜃 and then 𝑛 more events before t, integrated over all possible 𝜃.

 Guess solution of Poisson with mean ν𝑡:
 Average clearly makes sense.
 Matches 𝑝0 𝑡, ν .
 Matches 𝑝𝑛+1(𝑡, ν) if it matches 𝑝𝑛(𝑡, ν).

This is enough!
𝑝𝑛(𝑡, ν) =

ν𝑡 𝑛

𝑛!
e−ν𝑡

Modelling in Biology II: Lecture 7
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Graphs – a mathematical description

 Nodes/vertices

 Edges/arcs

Undirected, unweighted Directed, unweighted Directed, weighted

Key Concept Key Definition
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Graphs – a mathematical description
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What sort of properties are interesting?

Statistical properties of graphs can be 
very informative even if we don’t know 
all the details. 

 High/low connectivity on average?

 Clustered?

 Hubs?

 Path lengths between nodes?

Modelling in Biology II: Lecture 7 10

Network topology
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Basic properties of graphs

At the level of nodes/pairs of nodes

 Degree

 Adjacency of two nodes

 Shortest path length

 Local clustering coefficient:

𝐶𝑖 =
2𝑛𝑖

𝑘𝑖(𝑘𝑖 − 1)

Modelling in Biology II: Lecture 7 11

Nodes to which 𝑖 is connected

Edges between 
these nodes

Key Definition
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Basic properties of graphs

At the level of the whole graph

 Connectivity

 Average degree

 Adjacency matrix

 Network diameter

 Global clustering coefficient

Modelling in Biology II: Lecture 7 12

As well as averages, we’re often interested in distributions of node properties, eg.  𝑝(𝑘).

Key Definition
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Conundrum

Modelling in Biology II: Lecture 7 13

Which one of these graphs has the higher global clustering coefficient?

Go to www.menti.com and enter code 99 50 91 to submit your answer/

(a) (b)

http://www.menti.com/
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Conundrum
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Which one of these graphs has the higher global clustering coefficient?

Go to www.menti.com and enter code 99 50 91 to submit your answer/

(a) (b)
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Lecture outline

Point processes

Networks

 What is a network?

 Network properties

 A null model of a network

 Networks in biology
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Erdős-Rényi graphs: the basic null model

What does a truly random graph look like, so that 
we can compare it to real data?

Two (almost equivalent) algorithms for building a 

random graph: both called Erdős-Rényi graphs.

 Start with 𝑁 nodes.

 Chose desired average degree ത𝑘.

 Consider each possible edge in turn, and 
include with a probability 𝑝 = ത𝑘/(𝑁 − 1).

Modelling in Biology II: Lecture 8 4

Key Concept

Key DefinitionKey TechniqueKey Algorithm
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Erdős-Rényi graphs: properties

 Average degree isഥ𝑘.

 Degree distribution is binomial (𝑁′ =
𝑁 − 1):

𝑝 𝑘 = 𝑝𝑘(1 − 𝑝)𝑁
′−𝑘

(𝑁′)!

𝑁′ − 𝑘 ! 𝑘!
.

𝐾 = ഥ𝑘 = (𝑁′)𝑝

Var 𝐾 = (𝑁′)𝑝(1 − 𝑝)

Modelling in Biology II: Lecture 8 5
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Erdős-Rényi graphs: properties

 In  the limit 𝑁′ → ∞, 𝑁′𝑝 finite:

𝐾 = 𝑁′𝑝

Var 𝐾 ≈ 𝑁′𝑝

Support now 0 to ∞.

Well approximated by Poisson!

Modelling in Biology II: Lecture 8 6

𝑝(𝑘) ≈
(𝑁′𝑝)𝑘e−𝑁

′𝑝

𝑘!
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Erdős-Rényi graphs: properties

 Clustering coefficient: 𝑝.
=> Low clustering in  the limit 𝑁′ → ∞, 𝑁′𝑝 finite.

Diameter 𝐷 ~ log𝑁. 
=> Easy to get from one node to another.

Modelling in Biology II: Lecture 8 7
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 Each connection included with a random 

probability 𝑝=
𝑘

𝑁−1
=

ഥ𝑘

𝑁−1
.

 Degree distribution is binomial with a well-
defined peak.

 Clustering is low for large 𝑁 and fixed ത𝑘
(sparse matrix).

 Diameter 𝐷 ~ log𝑁. 

Modelling in Biology II: Lecture 8 8

Real-world networks? Often end to be:

 Sparse

 𝐷 ~ log𝑁 (six degrees of separation)

 Much higher clustering.

 Degree distributions look very different.

Erdős-Rényi vs Real World

Key Concept
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Small-world networks

 Despite sparseness and high clustering, 
diameter of (eg. social) networks is surprisingly 
small. This is the small world phenomenon. 

 Also seen in eg. Regulatory networks. 

9Modelling in Biology II: Lecture 8
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Small-world networks

10

P. ErdosP. SalamonR. S. BerryJ. P. K. DoyeT. E. Ouldridge

T.E. Ouldridge, A.A. Louis and J.P.K. Doye, J. Chem. Phys. 134, 085101 (2011) 

J.P.K. Doye, D.J. Wales and R.S. Berry, J. Chem. Phys. 103, 4234-4249 (1995) 

B. Andresen, R. S. Berry, A. Nitzan, and P. Salamon, Phys. Rev. A, 15, 2086-2093 (1977) 

P. Salamon and P. Erdos, Can. Math. Bulletin, 31, 129-138 (1988) 
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Hubs and degree distributions

11

Contributing to the small world 
phenomenon: 𝑃(𝑘) much broader than 
predicted by ER. 

We often see more “hubs” with a higher 
degree of connectivity than expected.

Many networks show “scale free” behaviour.

𝑃(𝑘)~𝑘𝛼

Modelling in Biology II: Lecture 8

Key Definition
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Hubs and degree distributions

12Modelling in Biology II: Lecture 8
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Generating a scale free network with the Barbarási-Albert model

13

 Start with an initial network with at least 
one edge.

 Add new nodes one at a time; connect to 
𝑚 existing nodes. Chose nodes with a 
probability proportional to number of 
connections.

 Heavily-linked nodes get more 
connections; gives you 𝑃(𝑘)~𝑘−3.

Does this give a mechanistic explanation of 
why scale-free networks emerge?

Modelling in Biology II: Lecture 8

Key TechniqueKey Algorithm
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Generating a scale free network with the Barbarási-Albert model

14

 Start with an initial network with at least 
one edge.

 Add new nodes one at a time; connect to 
𝑚 existing nodes. Chose nodes with a 
probability proportional to number of 
connections.

 Heavily-linked nodes get more 
connections; gives you 𝑃(𝑘)~𝑘−3.

Does this give a mechanistic explanation of 
why scale-free networks emerge?

No clustering – we’ll be exploring the 
importance of clustering for a process on a 
network in the practical.

Modelling in Biology II: Lecture 8

Key TechniqueKey Algorithm
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Identifying over-represented motifs

15

Transcription network of E. coli.:

 Proteins that influence transcription of 
each other.

 Directed.

 Self links possible (bold dots).

The network is functional.  Are some 
subgraphs helpful in achieving function? 
We’d expect these motifs to be more 
numerous than in a random graph.

Modelling in Biology II: Lecture 8

Key TechniqueApplication
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Identifying over-represented motifs

16

There are 420 nodes and 520 
edges in this graph.

Would we expect to see 42 feed-
forward loops in an ER graph with 
the same size and  average 
degree?

We would expect ~ത𝑘out
3 ≈ 2.

Highly improbable that these have 
occurred by accident! Useful/easy to 
evolve?

Modelling in Biology II: Lecture 8

Key Technique
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Summary

17

 Networks arise when we have multiple entities interacting in a complex way.

 We see them on subcellular, cellular and organismal level.

 Even if we don’t know everything, statistical properties can tell us a lot about function and 
the underlying mechanism by which they were created.

 The Erdős-Rényi network is a null, random network to compare real-life networks to.

 Real life networks are often more clustered, with a very different degree distribution and an 
over-representation of “motifs”.

 Still often have small diameters: the small world phenomenon.

Modelling in Biology II: Lecture 8


