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Band Theory

Consider an electron in a 1-dimensional system with periodic potential V (x). Argue that the
potential can be written as:

V (x) =
∑
K

VK exp(iKx). (1)

Which values of K are summed over?

V (x) is a periodic function and hence can be represented as a Fourier series. The terms required
are those with the periodicity of the lattice: i.e., K vectors in the reciprocal lattice.

We will consider the effect of one component of the periodic potential. Assuming V (x) is real and
symmetric, show that VK = V−K = V ∗K .

∫ π/a

−π/a
V (x) exp(−iK ′x)dx =

∑
K

∫ π/a

−π/a
dxVK exp(iKx) exp(−iK ′x) =

2π
a

∑
K

VKδK,K′ (2)

=⇒ VK =
a

2π

∫
V (x) exp(−iKx)dx, (3)

where a is the lattice constant. Making the substitution y = −x, and remembering that we get a
minus sign from switching the limits,

=⇒ VK =
a

2π

∫
V (−y) exp(iKy)dy. (4)

Now use V (−y) = V (y), and change the dummy variable y back to x.

=⇒ VK =
a

2π

∫
V (x) exp(iKx)dx, (5)

=⇒ VK = V−K . (6)

By taking the conjugate of Eq. 3, we immediately obtain V−K = V ∗K .

Thus our perturbation becomes V (x) = VK(exp(iKx)+exp(−iKx)). We can write the Schrödinger
equation in matrix from as

〈Ψ|H0|Ψ〉+ 〈Ψ|V (x)|Ψ〉 = E (7)

Our unperturbed eigenstates are plane waves, |Ψk(x)〉. Argue that

〈Ψk|V (x)|Ψ′k〉 = VK
∑
K

VKδ(k − k′ −K). (8)

〈Ψk|V (x)|Ψ′k〉 =
∫

dx
exp(−ikx)

(2π)1/2
V (x)

exp(ik′x)
(2π)1/2

=
1

2π

∑
K

VK

∫
dx exp(−i(k − k′ −K)x) (9)

=⇒ 〈Ψk|V (x)|Ψ′k〉 =
∑
K

VKδ(k − k′ −K). (10)
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The Hamiltonian only acts to connect states with k − k′ = ±K. Unfortunately, this is still an
infinite number of states. Ideally, we would like to restrict ourselves to pairs of states with |k| ≈
|k′| ≈ |K|/2, as this makes the problem easy to solve. Why might this be a reasonable assumption?
Think about the second order term in perturbation theory: is it large if the unperturbed states have
very different energies?

Perturbation theory tends to couple states of similar energies: in particular the first order per-
turbation to the wavefunction and the second order perturbation to the energy vary as 1/∆E.

Hence show that a state given by |Ψ(x)〉 = a|Ψk(x)〉+b|Ψk−K(x)〉 obeys the Schrödinger equation:(
h̄2k2

2m VK

VK
h̄2(k−K)2

2m

)(
a
b

)
= E

(
a
b

)
(11)

H0 simply gives the unperturbed energies of the plane waves, and doesn’t connect different plane
wave states.

〈Ψk(x)|H0|Ψk(x)〉 =
h̄2k2

2m
, (12)

〈Ψk−K(x)|H0|Ψk−K(x)〉 =
h̄2(k −K)2

2m
, (13)

〈Ψk(x)|H0|Ψk−K(x)〉 = 0. (14)

We can simply use the relations derived in Eq. 10 to get the matrix elements for the perturbation
between the states involved. Ignoring any irrelevant constant term in the energy, we obtain:

〈Ψk(x)|V (x)|Ψk(x)〉 = 0, (15)

〈Ψk−K(x)|V (x)|Ψk−K(x)〉 = 0, (16)

〈Ψk(x)|V (x)|Ψk−K(x)〉 = 〈Ψk−K(x)|V (x)|Ψk(x)〉 = VK . (17)

Combining these with Eq. 7 we obtain the desired matrix equation.

Solve for the eigenvalues, expanding to quadratic order in δ = k−K/2. What are the eigenvectors
if k lies on the Brillouin zone boundary at K/2? What sort of waves are these?

Eigenvalues are given by:(
h̄2k2

2m
− E

)(
h̄2(k −K)2

2m
− E

)
− V 2

k = 0. (18)

=⇒ E =
1
2
h̄2

2m

k2 + (k −K)2 ±

((
k2 + (k −K)2

)2 + 4V 2
K

(
2m
h̄2

)2
)0.5

 (19)

Let δ = k −K/2:

=⇒ E =
h̄2

4m

(δ +K/2)2 + (δ −K)2 ±

(
4δ2k2 + V 2

K

(
2m
h̄2

)2
)0.5

 . (20)

Expanding to lowest order in δ:

=⇒ E =
h̄2

2m
(
δ2 + (K/2)2

)
± VK

(
1 +

h̄4K2δ2

8m2V 2
K

)
. (21)

We note that this is quadratic in δ.
For δ = 0, E = h̄2k2

2m ± Vk, which gives |Ψ(x)〉 = 1√
2

(|Ψk(x)〉 ± |Ψ−k(x)〉). These are standing waves.
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