

Next generation space and airborne laser technology

Gabrielle M Thomas¹, Ara Minassian², Achaya Teppitaksak¹, William Kerridge-Johns¹ and Michael J Damzen¹

¹Photonics Group, Physics Department, Imperial College London

²Unilase Ltd, London

SpaceLab, Imperial College, 29th September 2015

Outline

- Some background: who are we?
- Motivation
- Space-borne remote sensing
- Our laser technology
- Scope for future developments

Who are we?

Expertise in laser development and photonics

Who are we?

- Developing lasers for space-borne remote sensing since 2009 – supported by ESA
- Currently building two breadboard lasers for ESA:

Altimetry/Vegetation LIDAR

Atmospheric LIDAR

Motivation

Altimetry/Vegetation LIDAR **Primary** Laser specification: ~0.1mJ, 10kHz, <5ns

Remote sensing

Cloud / aerosol or wind-speed LIDAR

Space-borne remote sensing

Active laser-based LIDAR: seeing the world in 3D

Pulsed laser technology provides:

- Vertical profiling (altimetry)
- Day / night operation
- Spectral selection
- High spatial resolution

Space-borne remote sensing

e.g. Atmospheric LIDAR

Earth

Atmosphere

Extinction = I_R/I_T

Images: ESA

EarthCARE (ATLID)

Pulsed laser technology used to acquire global observations:

- Cloud vertical profile
- Aerosol vertical profile
- Line-of-sight profiling wind vectors

Space-borne remote sensing

e.g. Vegetation LIDAR

Imaging Notes Magazine: Lifting the Canopy Veil (2011)

Oregon University: Andrews Experimental Forest

Lasers for space-borne remote sensing

Demanding space & high energy laser requirements:

- Nd:YAG lasers one of few lasers qualified for space missions, BUT...
 - No wavelength tunability
 - Low wall-plug efficiency

New laser technology: Alexandrite

Alexandrite offers new solution as a LIDAR source

- Flexible wavelength
- Better spectral match to application

Higher efficiency

New laser technology: Alexandrite

New laser technology: Alexandrite

We've demonstrated:

- Record powers
- Efficient operation
- Short pulses at high pulse rates
- Efficient conversion to UV

Alexandrite for vegetation LIDAR

Vegetation has unique spectral reflectivity:

- Low reflectivity (high absorption) in visible
- High reflectivity in near-IR
- Steep reflectivity transition at 'red-edge' (~690 – 750nm)

Alexandrite: new opportunities

Our laser technology uniquely operates across red-edge

- Multi-spectral probing across red-edge
- Short pulse duration (3ns)
- High pulse rate (10kHz)
- Compact, micropulse laser
 → small satellite & airborne
 UAV

High resolution mapping of canopy or crop height (yield)

Red-edge vegetation LIDAR: unique & compelling opportunity

Commercial large business sector (crops & forestry)

Drivers:

- Maximising and predicting crop yield (food security)
- Cost-saving by minimising resource use (fertiliser, pesticide, water...)
- Farming in areas of low resources (limited water...)
- Reducing adverse environmental impact
- Monitor Governmental environmental regulations

Areas for development & collaboration

Conclusions

- Alexandrite Lidar technology offers new potentials
 - Vertical profiling & hyperspectral capability
 - ESA & more commercial opportunities
- Next steps to raise TRL & find new applications
 - Productive opportunities for collaboration between Imperial and space / commercial / broader users!

Acknowledgements

Errico Armandillo and Michael Jost (ESA ESTEC)

Gabrielle Thomas: gabrielle.thomas@imperial.ac.uk

