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Abstract

Cold Atoms Trapped near Surfaces

Daniel Sahagún Sánchez

I report on experimental research towards the quantum control of cold atoms and

Bose-Einstein condensates on atom chips, where atoms are trapped near dielectric or

conducting surfaces.

We investigated in detail two decoherence mechanisms related to the interaction

between the atoms and the surface of a conducting wire. Firstly, the coupling between

the spin of atoms and the magnetic noise field of the wire induces spin flips. Such

transitions contribute to undesirable atom loss from the trap, resulting in a lifetime

less than 10 s when the atoms are held closer than 30 µm from the surface of the wire.

We measured the lifetime of our trap as a function of the distance from the surface for

two different spin-flip transition frequencies and eventually theory did achieve agree-

ment with our results. This was the first observation of thermally driven spin flips

near a surface, as opposed to technical noise. Secondly, we studied the atom cloud

fragmentation in our trap which is caused by an anomalous component of the mag-

netic field parallel to the wire. We demonstrated that the field causing fragmentation

decays with the distance y from the surface as a modified Bessel function of the second

kind K1(2πy/λ), where λ is its spatial periodicity. This behavior is expected from a

meandering current flowing inside the wire, which we surmise was due to defects in its

internal structure.

After understanding the limitations on the control of atoms with atom chips, we

continued to pursue the final goal of this project: atom interferometry on an atom

chip. The last part of this thesis describes our first steps in this direction. I describe

the inclusion of a new atom chip in the apparatus and the first experiments in which

atoms were trapped on it.
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Chapter 1

Introduction

1.1 History of Atom Optics

The birth of quantum mechanics in the beginning of the last century led to the growth

of diverse streams in modern physics. One of them is the study of matter waves.

This research field was pioneered by W. Gerlach and O. Stern, who in 1921 deflected

for first time a beam of neutral atoms with an inhomogeneous magnetic field [1].

This can be considered as the construction of the first spin polarizer beam splitter for

neutral atoms. For more than five decades, the research in this field was constrained to

highly-energetic wave packets using beams of atoms or molecules with a broad velocity

distribution produced by ovens.

Atom optics, the study of thermal de Broglie waves, had a big step forward when

lasers were invented in 1960 [2]. The availability of coherent optical fields opened

the possibility to cool atoms efficiently with the radiation pressure of light. Amongst

other implications, cooling atoms to low temperatures would bring the possibility of

producing long matter waves, to create de Broglie waves whose wavelength

λT =

√
2π~2

mkBT
, (1.1)

is in the micrometer scale. This length scale is comparable to the size of trapping po-

tentials that could be created in research laboratories. In Equation (1.1), ~ is Planck’s

constant, m is the atom mass, kB is the Boltzmann constant and T the thermal tem-

perature of the atoms.

On the other hand, cooling atoms with laser light also would enable their con-

finement through weak couplings such as their interaction with magnetic fields. Both

creating long de Broglie waves and enabling their confinement, would allow researchers

to develop Atom Optics. However, these two pursued goals had to wait for further im-
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Chapter 1. Introduction 1.1. History of Atom Optics

provement of the laser technology and a better understating of the interaction between

coherent light and atoms.

Laser cooling was first demonstrated with magnesium ions inside a Penning trap

in 1978 by Wineland et al. [3]. Because they are charged, ions are strongly coupled to

electric fields. Thus they can be first trapped and subsequently laser cooled. Neutral

atoms have to be cooled before their interaction with magnetic fields is strong enough

to trap them. Stopping neutral atoms so they could be trapped was attractive because

they are weakly coupled to their surroundings and hence, it is relatively simple to

create isolated systems with them.

The alkali group of elements were good candidates to be laser cooled because their

D-lines are optically excitable with available laser technology. Sodium was the first

species to be laser cooled; a beam of Na atoms was cooled down to 40 % of its initial

thermal energy in 1982 [4, 5]. Thereafter laser cooling of Na was reported down to

the Doppler limit (240 µK) by S. Chu et al. [6] . In this experiment, atoms were

cooled along the three spatial dimensions with six counter propagating laser beams, a

technique that the authors called ‘optical molasses’. Cooling below the Doppler limit

was achieved in 1988 by Phillips et al. [7] with the use of polarization-gradient forces

in the optical molasses [8, 9]. By 1989 researchers were able to routinely laser cool

atoms down to a few tens of microkelvin. At such temperatures, a large fraction of the

atoms have small enough kinetic energy to be trapped by magnetic or optical forces.

In parallel with the development of laser cooling, techniques to confine atoms

with magnetic [10] and optical [11] forces were proposed and demonstrated. In order

to confine atoms in these two types of trap, atoms were laser cooled with optical

molasses. The combination of sub-Doppler cooling in optical molasses and magnetic

trapping, led to a big boost in the research on matter waves in 1995. This was the

independent achievement of Bose-Einstein condensation (BEC) in dilute gases of three

different alkali species: Rubidium [12], Lithium [13] and Sodium [14]. BEC in dilute-

alkali gases was first achieved using evaporation techniques [15] in magnetic traps.

A Bose-Einstein Condensate (or just ‘condensate’ in this thesis) is formed when

the spacing between atoms is equal to λT . When BEC occurs, a significant fraction

of particles in an ensemble occupy the ground state of the system. Then all atoms

belonging to the condensed fraction behave together as a single matter wave. The

achievement of BEC signified both the availability of big matter waves and a source of

coherent atoms. It was in the mid-90s, greatly supported by the achievement of BEC,

when the research field on matter waves of neutral atoms finally acquired its current

name – Atom Optics.

13



Chapter 1. Introduction 1.2. Guiding atoms near wires

1.2 Guiding atoms near wires

By the mid 90s, a wide range of experiments practically enabled researchers to prepare

atom clouds with any desired temperature between five hundred kelvin and a few

hundreds of nanokelvin. Techniques to create de Broglie waves and to manipulate

them with magnetic fields became standard. The next step was to build devices that

prepare and control atoms in fully defined quantum states of both internal and external

degrees of freedom.

One of the answers found by researchers for the manipulation of matter waves are

the guides for neutral atoms. These are potentials in which the motion of atoms is

constrained to a line or a plane. With atom guides, it is possible to store atoms for

relatively long times and atoms can be transported for example by simply tilting the

potential. Many guides for neutral atoms have been proposed using the potential of

optical [16, 17, 18, 19], electric [20] or magnetic [21, 22] fields. Magnetic potentials

have been of great use to guide atoms since the first achievements of BEC. Specifically,

guiding atoms with the field created by current carrying wires has been one important

stop towards quantum control of neutral atoms.

As well as in three dimensional magnetic traps, neutral atoms are magnetically

guided by the Stern-Gerlach force. The potential energy that is associated to this force,

is the projection of their magnetic dipole moment µ onto the local magnetic field B,

U = −µ ·B. (1.2)

The orientation of µ with respect to B depends on the internal energy state of the

atoms. Atoms whose dipole moment is antiparallel to the local magnetic field have a

positive potential energy given by Equation (1.2). Therefore they find their minimum

energy state in magnetic field minima. These are called low-field seeking atoms. Con-

versely, if the internal quantum state of the atoms is such that their dipole moment is

aligned with the local magnetic field (in which case U of Equation (1.2) is negative),

they find low energy states in regions of high magnetic field. Atoms whose quantum

state satisfies this condition are called high field seeking atoms.

Both high and low field seeking atoms can be guided with fields generated by

current carrying wires [22, 23]. It is not possible to create local magnetic field maxima.

Which means that high-field seeking atoms cannot be guided by DC magnetic fields

alone. On the other hand, low field seeking atoms can be either trapped or guided

with field minima, such as in the centre of a quadrupole magnetic field. These fields

can be produced with current flowing through coils, wires or a combination of them.

The simplest configuration of fields in which low field seeking atoms are guided

14
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Figure 1.1: A simple way to create an atom waveguide with a current carrying wire. A wire
carrying current flowing into the page plus a bias field Bx (a), creates a magnetic quadrupole
with cylindrical symmetry whose axis lays parallel to the wire. The contour lines of the
resulting magnetic field magnitude are shown in (b), where red and blue indicate regions of
low and high field correspondingly. The centre of this waveguide (0,y0) can be shifted in the
vertical direction by changing the current I through the wire or the bias field Bx.

with a current carrying (‘guide’) wire is illustrated by Figure 1.1. The solid circle in

Figure 1.1 (a) is the cross section of a wire, carrying a current that is flowing into the

page – antiparallel to z. The straight arrows in Figure 1.1 (a) represent a bias field Bx

in the -x direction that cancels the circular field at a distance

y0 =
µ0I

2πBx

(1.3)

from the centre of the wire as shown in Figure 1.1 (b). In a vicinity of this point, the

created field can be considered as a quadrupole with cylindrical symmetry. Its centre

follows a zero-field-line, parallel to the axis of the wire.

Figure 1.1 (b) is a cross section of constant magnetic field magnitude produced

by the current through the wire and the bias field Bx on the xy-plane. The point

(0, y0) in which the field is zero, is the centre of a long guide for low field seeking

atoms [23]. The restoring force of the trap is proportional to µBx/y0 as we discuss in

Chapter 2. This is enhanced at small y0 which is readily exploitable if one uses wires

with microscopic cross sections. Near the surface of micron-scaled wires with moderate

currents (on the order of one Ampere), this can provide us with traps whose ground

state separation from the first excited is greater than the kinetic energy of the atoms

achieved by standard cooling techniques [24, 25, 26]. This opened the possibility to

guide single mode matter waves with magnetic fields.
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The atoms’ motion can be suppressed in a selected direction if the guiding po-

tential constrains them to a shorter distance than their thermal de Broglie wavelength

λT . λT is typically under one micrometer for atomic Rubidium in dilute gases at mi-

crokelvin temperatures. Due to the large field gradients achievable near microscopic

wires, one can create guides whose ground state size is of the order of λT in the plane

perpendicular to the wires [26]. Restricting the motion of atoms in these two dimen-

sions would enable us to investigate the physics of ultra cold atoms in one dimension.

Near micro-fabricated wires, we can create potentials by which single mode matter

waves are stored and transported in a chosen direction of motion. An atom guiding po-

tential with these characteristics has been named ‘waveguide’ in analogy to microwave

and optical waveguides.

1.3 Matter waves on atom chips

Atom chips have the potential to become a complete tool box of atom optical instru-

ments, and have been in development since the first proposal of traps near micro-

fabricated field sources – ‘microtraps’ – in 1995 [24]. The atom chip idea is to create

small and strong potentials based on microscopic structures – to combine the avail-

ability of ultra cold atoms with micro or even nano-technology capable to build wires,

magnets and optics components. Creating potentials with microscopic field sources

enables us to form systems whose characteristic energy is greater than the kinetic en-

ergy of cooled atoms and whose ground state is comparable to the atom’s de Broglie

wavelength. All this is achievable with small power dissipation in the field sources.

The goal with atom chips, similarly with microelectronics chips where electrons

are stored and transported to realise elaborated tasks, is to build circuits of cold atoms.

Such circuits are built with magnetic, electric and optical potentials created with wires,

permanent magnets and photons forming complex patterns. An atom chip is an Atom

Optics device in which all these types of fields are integrated.

A fair amount of the technology required to build atom chips was already available

in the late 90s. This allowed researchers to show the feasibility of the atom-chip

proposals [25, 27, 20]. Trapping and guiding potentials near micro-fabricated structures

were designed and successfully employed to manipulate atoms previously cooled by

magneto-optical trapping techniques [28, 29]. Such potentials were long waveguides

and three dimensional traps that nowadays are the building blocks of more complicated

circuits in which neutral atoms are transported and stored. The microtraps complexity

grew rapidly. Cold atoms were first magnetically guided along straight lines with

diverse configurations of wires [30]. Waveguides with more complicated shapes, such
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as curves were also demonstrated with current carrying wires [31]; a beam splitter

with Y-shape was built by combining current carrying wires and a bias field [32].

Transport of atom clouds confined in three dimensions was also demonstrated with

the construction of a conveyor belt based on current carrying wires [33].

A major breakthrough in the Atom Optics research with atom chips was the

achievement of BEC in 2001 by two independent groups [34, 35]. This signified the

availability of coherent matter waves combined with the power and flexibility in the

manipulation of cold atoms already demonstrated with microtraps. Storage and trans-

port of single mode matter waves then became possible with atom chips.

Our research group was amongst the first to achieve BEC on atom chips [36, 37].

This gave us the capacity to position clouds of ultra cold atoms or condensates above

a guide wire with an accuracy of the order of micrometers. We used atoms that were

previously evaporatively cooled to probe the field near the surface of our guide wire.

The interaction of atoms with the DC and AC field near surfaces lead to decoherence

effects in microtraps. Probing surfaces to build atom chips is the main topic of this

thesis. It is first extended in Section 1.4, and our work is explained in detail by

chapters 3 and 4. Several other groups also realized these studies with different types

of materials that can be used to build atom chips. These investigations led to optimize

the materials and building methods used in the construction of subsequent atom chips.

The preparation of Bose-Einstein condensates on atom chips is now a standard

process. The possibility to carry out powerful applications such as single mode atom

interferometry is open. Interference between condensates on a chip was first observed

with optical potentials [38]. Tailored micron-size potentials near conducting wires have

already produced BEC interference [39]. Integrating RF fields to the atom-chip tool

box has enabled researchers to create deterministic BEC interference, and controlled-

quantum tunnelling is likely to be observed in these systems [40]. Quantum matter,

subject to microscopic potentials displayed diffraction of matter waves up to the fifth

order in recent beautiful experiments [41]. Which in turn is a fundamental step on a

different path towards atom interferometry [42].

So far, a significant portion of the new physics with atom chips has been realized

with magnetic potentials created by current carrying wires. However a promising

alternative for magnetic confinement is to use permanent magnets. This possibility on

atom chips emerged from the realization of magnetic mirrors for neutral atoms [43].

The mirrors were made of surfaces patterned with permanently magnetized structures,

such as audio or videotapes. For example, there is an ongoing project in our group in

which cold atoms have been loaded into a microtrap on a videotape [44] and successfully

evaporated to BEC [45]. This project is currently working towards the realization of
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the first conveyor belt for ultra cold atoms based on a permanently magnetized surface.

Simultaneously the technology to improve this type of microtrap is being developed.

Now our group is able to write permanently magnetized patterns on silicon surfaces

that can create micron-sized magnetic traps [46].

Several groups have plans to integrate microscopic optical components to couple

atoms with small-waist laser beams. Microscopic fabrication of optics elements can lead

to accuracy capable to detect single atoms [47]. Our group has also made experimental

progress in this direction. An (absorption) imaging system accurate enough to detect

tens of atoms is being developed with tapered fibres, as well as microscopic optical

cavities in which it will be possible to detect a single atom [48].

There is much activity and effort being invested in order to complete the tool

box of atom chips for the research on atom optics systems such as one dimensional

quantum gases [49, 50], cavity quantum electrodynamics with atoms [51, 52], and

atom interferometry [40, 39, 42]. These applications could lead to quantum gates for

information processing with neutral atoms [53, 54].

1.4 Decoherence in microtraps

Atom chips potentially can provide full quantum control of cold atoms and condensates

however, there is a fly in the ointment. There are decoherence effects in microtraps

that become accentuated when atoms are located near the surface of atom chips.

Amongst other research groups, we studied the interaction of ultra cold atoms with

the surfaces of atoms chips. These investigations provided us on one hand, with a

way to understand the limitations of the systems, as well as to improve the design for

future atom chips. On the other hand, understanding this coupling opened a branch

of interesting experiments and applications in which the field near surfaces can be

characterized in an systematic manner.

Once BEC was achieved in microtraps, researchers immediately probed the (room

temperature) surface of atom chips with atoms cooled at microkelvin temperatures

and found three decoherence effects. Two of these effects, both consequences of the

coupling of atoms with the AC field near surfaces, were already expected [55]. A third

one, corrugations in the trapping potential due to the DC field near surfaces, was first

found and then explained.

Firstly, theoretical studies predicted that the coupling between the near field at

(audio) frequencies resonant to the trapped systems would lead to excitation of atoms,

heating up the cloud. The principal source of this signal is technical noise, mechanical

oscillations of the experimental equipment. The heating rates generated by audio
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frequency (AF) noise can normally be controlled and do not represent an obstacle for

coherent control of atoms.

A second problem, whose origin is related to more fundamental physics, is derived

from the spin coupling of atoms with radio frequency RF fields – thermal field fluctu-

ations with frequencies from 100 kHz to 10 MHz. This is the typical frequency range

of electron spin transitions in trapped atoms. Without appropriate care, spin-flips can

become a major loss mechanism of atoms in magnetic traps. Spin flips induced by the

thermal fluctuations of free space cause spontaneous decay at a very small rate that is

not measurable during experimental time scales. Near surfaces however, the thermal

oscillations of the vacuum field are enlarged by additional modes due to the presence

of materials such as conductors or dielectrics. The rates of spontaneous relaxation in

the trapped states are dramatically increased at tens of micrometers from the surfaces.

This is an atom loss mechanism in microtraps that depends on the materials used to

build atom chips. Spin flips are the same type of transitions that are employed in

evaporative cooling techniques, leading to BEC in some of the alkalis.

The third effect of decoherence in microtraps was only found when condensed

atoms were lowered closer to the surface of the atoms chips. The DC field near the

current carrying wires showed deviations (about 1 part in 104) from the circular field

induced by a straight current. These field deviations formed corrugations in the trap-

ping potential that were greater than the typical BEC chemical potential, which is of

a few hundreds of nanokelvin. At distances shorter than one hundred micrometers,

this anomalous field is enough to break condensates or clouds of ultra cold atoms into

lumps (see Figure 4.4), signifying a possible limiting effect on the spatial control of

matter waves in microtraps.

We observed and studied in detail the three decoherence effects in a microtrap

created near a single guide wire. Our results, combined with those of other research

groups, led to a good understanding of the decoherence phenomena in cold atoms near

the surfaces of atoms chips. This work enabled the atom chip community to find more

suitable materials and techniques to build atom chips.

1.5 Overview of this thesis

This thesis is, in a manner of speaking, backwards. I started with a working apparatus

and used it to study spin flips and atom cloud fragmentation. Only towards the end

did I design and build an apparatus, which is now being used by the next PhD student.

The work being reported is part of a research project that has the ultimate goal to

realise coherent control of matter waves on an atom chip. Reaching this goal requires
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the understanding of decoherence effects in atoms trapped near the surfaces of atom

chips. Our studies on this subject were done with an atom chip that has a single guide

wire (see Figure 2.10) on which we can create long microtraps based on the waveguide

scheme illustrated by Figure 1.1. The experimental setup in which we carried out

these investigations is the subject of Chapter 2. That chapter describes the cooling

and trapping sequence that we used to routinely cool atoms down to BEC.

A theoretical description of thermally induced spin flips causing atom loss near

the surface of atoms chips is presented in Chapter 3, followed by a description of the

experiments we carried out to investigate this phenomenon. Next, I present the first

measurements of thermally induced spin-flip rates near surfaces to be free of technical

noise [56]. The last section of this chapter also presents a comparison of our results

with the theoretical predictions by Henkel et al. [55] and by Rekdal et al. [57]

Our investigations of atom cloud fragmentation are described in Chapter 4. To

understand this phenomenon, we investigated how the unwanted field causing fragmen-

tation decays as a function of distance from the wire [58]. Our results on atom cloud

fragmentation are presented there, together with a comparison with a model in which

the anomalous potential is generated by a meandering current. Excellent agreement

was found with this model.

Chapter 5 describes our initial work on a lithographically patterned atom chip.

The changes carried out in order to incorporate the new chip into the experimental

setup are described as well as the first experiments in which we trapped atoms on this

atom chip. The conclusions and a summary of this thesis are presented in Chapter 6.
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Chapter 2

Cooling and trapping rubidium

atoms

The main body of this thesis is our research on the surface effects inducing decoherence

in microtraps. These investigations were realized in an atom-chip setup that enabled us

routinely to prepare condensates in dilute gases of 87Rb. The present chapter describes

the layout of our BEC apparatus, and the sequence of cooling and trapping techniques

that led our group to be one of the first to make BEC on an atom chip [37, 36].

2.1 Overview

In every BEC setup, a series of cooling and trapping techniques aims to increase the

phase-space density ρPS of an ensemble of atoms. The phase-space density is defined as

the number of atoms contained in a cube with side equal to their de Broglie wavelength

λT [Equation (1.1)]:

ρPS ≡ n

(
2π~2

mkBT

)3/2

, (2.1)

where n is the atom number density and T is the temperature of the atoms.

Every cooling and trapping technique applied in an experimental sequence to reach

BEC aims either to increase the atom density or to decrease the temperature. BEC

happens when the interatomic distance becomes comparable to λT , the thermal de

Broglie wavelength of the atoms in the dilute gas. Then a large fraction of the atoms

are in the ground state of the system. For atoms confined in a three dimensional

harmonic potential, the phase transition occurs when ρPS = 2.612, see for example

[59].

In our experiments, the process of reaching BEC is started with atomic rubidium
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dispensed at temperatures of about 500 K inside the vacuum chamber with a typical

base pressure of 10−10 torr and a number density of about 1.9 × 106 cm−3. Thus at

this initial stage ρPS = 1.1 × 10−21 in our experiments. The space-phase density of

the dispensed dilute gas is to be increased by 21 orders of magnitude in order to reach

BEC. The first cooling stage in our experiment is a magneto-optical trap (MOT) in

which 1 ×108 atoms of 87Rb are cooled down to T = 50 µK and confined in a roughly

spherical volume of about 4 mm diameter. In the magneto-optical trapping stage, ρPS

is increased to 5.5 × 10−7. The MOT is then compressed to an elongated shape for

a further increment of ρPS in the atom cloud. Once the MOT is compressed, atoms

typically have a temperature of 85 µK and the phase space density is increased to 1.4 ×
10−6. After the compressed MOT stage, the trapping light is turned off and the atoms

are optically pumped to the 5S1/2,| F = 2,mF = 2〉 sub-level of 87Rb which is a low

field seeking state. Another reason to compress the the MOT is to match the size and

shape of the magnetic trap which has the form of a cigar. The microtrap is immediately

switched on after optical pumping, capturing about 1.5 × 107 atoms. The next step is

evaporative cooling, which works well when atoms have a fast collision rate with each

other. To achieve this, we compress the atom cloud by increasing the magnetic field

gradient in the two transverse directions of confinement, increasing the aspect ratio

of the cigar-shaped cloud. The hottest atoms in the compressed magnetic trap were

evaporated by forced RF evaporation. With evaporative cooling we are able to reach

any chosen temperature down to 100 nK 1, well below the BEC critical temperature

of our system which is around 390 nK.

2.2 The laser system

The optical arrangement of this BEC apparatus prepares laser light to excite transitions

in the D2 line of 87Rb, which is resonant at λ = 780 nm. Three lasers supply the light

interacting with atoms in our experiment. The source of trapping light is a Ti:Saphire

laser, pumped with green light from a Verdi laser. Light for other diverse purposes is

supplied by two diode lasers that were built by our group at Sussex University with a

home made design based on a extended cavity scheme [60].

2.2.1 The D2 line of 87Rb

Alkali atoms are commonly used for cooling and trapping experiments because they

are accessible, relatively easy to manipulate and their D lines have transitions that are

excitable with accessible laser technology. Specifically the D2 line of 87Rb – shown in

1Trying to cool atoms to lower temperatures with this routine of evaporation is likely to empty the magnetic
trap.
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Figure 2.1: Transitions in the 87Rb atomic structure employed in our experiment. These
transitions are in the D2 line of 87Rb which is resonant to 780 nm light. We exploit three
transitions of this line: f23 to laser cool, trap and image atoms; f22 to optically pump atoms
to the 5S1/2,| F = 2,mF = 2〉 sub-level which is a low-field seeking state; and f12 to re-pump
atoms to the trapping scheme. The hyperfine splitting values of the ground state 5S1/2 and
excited state 5P3/2 were extracted from [61] and [62] respectively.

Figure 2.1 – connects the ground state 5S1/2 and excited 5P3/2 state of the isotope.

This line has two optical transitions that are useful for laser cooling and trapping,

resonant to f23 and f12 in Figure 2.1. The D2 line of 87Rb also has a transition that is

used to prepare atoms for magnetic trapping, whose resonant transition is f22 in Figure

2.1. The laser technology to produce light at these frequencies has been available for a

couple of decades and has become relatively cheap with diode lasers. Thus atomic 87Rb

is now a workhorse to prepare condensates in Atom-Optics laboratories worldwide and

also is the isotope used in our experiment.

The hyperfine structure of 87Rb has been resolved since the late 50s. In particular

the hyperfine splitting of its ground state 5S1/2 and excited state 5P3/2 were measured

for first time in [63] 1956 and 1958 [64] respectively. 87Rb became of great interest

for the atomic and molecular physics community due to its use for laser cooling and

magnetic trapping experiments. During the last decade, the interest in this isotope

increased because its collisional properties are suitable for evaporative cooling [65],

leading to a relatively simple realisation of BEC. The resolution in the transitions of
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interest has become higher with improved spectroscopic techniques such as absorption

spectroscopy, which was used to provide the most recent and accurate measurement

of the 5P3/2 excited state of 87Rb [62]. Spectroscopy of laser cooled atoms has also

provided the most precise measurement of the ground state 5P1/2 splitting 87Rb [61].

These are the values of splitting shown in Figure 2.1.

The radiation pressure needed to laser cool 87Rb atoms is given by light tuned near

the 5S1/2, F = 2 → 5P3/2, F = 3 hyperfine transition, labelled as f23 in Figure 2.1.

After cooling, the atoms have to be placed in a stable low-field seeking state so they can

be magnetically trapped. The Zeeman sub-levels |F = 1,mF = −1〉, |F = 2,mF = 1〉
and | F = 2,mF = 2〉 of the 5S1/2 ground state fit this description. Among them,

the 5S1/2,| F = 2,mF = 2〉 state has the strongest coupling with the local magnetic

field because it posses the biggest magnetic dipole moment. This hyperfine sub-level

is the one we use to prepare atoms for magnetic trapping. We populate the mF = 2

hyperfine state by optically pumping atoms with laser light tuned at the frequency

f22 (see Figure 2.1), which is -266 MHz2 from f23. Optical pumping from the ground

state 5S1/2, F = 2 to the magnetic trapped sub-level requires the laser light to be σ+

polarized with respect the atom’s quantization axis.

Laser light tuned to the frequency f23 has a small probability of inducing off-

resonance excitation of the 5P3/2, F = 2 and F = 1 hyperfine sub-levels, which can

decay to the 5S1/2, F = 1 quantum state. This is -6835 MHz away from the F = 1

ground state, as shown in Figure 2.1, and is dark to the trapping light. Atoms in

this state no longer feel the radiation pressure unless they are taken back to F = 2.

This re-pumping is carried out by optically exciting the 5S1/2,F = 1 →5P3/2, F = 2

transition. The ‘re-pump’ transition, resonant to f12, is also shown in Figure 2.1.

2.2.2 Preparation of the laser light

The light in our setup is supplied by a Ti:Saphire and two diode lasers. In this section

I give a layout of the optics needed to laser cool and trap the atoms, prepare them for

magnetic trapping, and take images of the trapped atom clouds.

The principal laser in our experiment is the Ti:Sapphire (model MBR-110), sup-

plied by Coherent, Inc.. Its crystal is pumped by 532 nm light from a diode-pumped

Verdi V8 laser from the same manufacturer. Both lasers appear in Figure 2.2. Dur-

ing most of the experimental time, the Ti:Sapphire is 106 MHz red-detuned from the

trapping frequency f23, giving a 300 mW output with 5 Watts of pumping power from

the Verdi. About 220 mW of this power is passed through an AOM. The spot of

2 In this thesis I use the convention in which the frequency of red detuned light is denoted as negative and
the frequency of blue detuned light is denoted as positive.
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first diffraction order from this AOM is up-shifted by 88 MHz respect to the original

frequency (f23−106) MHz of the Ti:Sapphire. This is the main beam of trapping light

as shown in Figure 2.2. We typically get 170 mW of trapping light once the beam has

passed through the AOM. The final detuning of the trapping beam is -18 MHz from

f23 as shown in Figure 2.2. The trapping light detuning is optimized against the atom

number in the MOT. The main trapping beam is then divided into two ‘MOT arms’
3 by a polarizing beam splitter. The re-pump light is incorporated to the MOT arms

by overlapping it with the trapping beams through the same polarizing beam splitter

as illustrated by Figure 2.2.

The source of re-pump light is one of the two diode lasers in the setup, shown

in Figure 2.2. This laser is locked to the re-pump frequency f12 with an accuracy of

one or two MHz by a polarization spectrometer [66, 67]. Both diode lasers are home

built. Their design is a modified version of the scheme published in [60, 37]. The

modification consists of the inclusion of a low-voltage piezoelectric stack element that

enables us to scan the extended cavity through a 3GHz band around 785 nm, which

is the nominal wavelength of the diodes (made by Sanyo, model DL7140-201). The

two diode lasers output a power of 30 mW with an injection of 61 mA and a working

temperature around 17 ◦C.

Our main laser, the Ti:Sapphire, is stabilized with its internal lock and tuned

with a beat-note offset system. The Ti:Sapphire has a ring cavity tuned with an

etalon and a birefringent filter. The ring frequency follows a reference cavity through

a servo-electronics loop system. The reference cavity is externally tunable. We use

it to change the laser frequency as appropriate for each stage of the experimental

sequences. The offset frequency from f23 (equal to -106 MHz during the MOT and

always around 100 MHz) is controlled by an implementation of the offset lock scheme

proposed by U. Schünemann et al. [68]. This locking scheme is designed to compare

the beat-note frequency from two lasers with the frequency of a voltage controlled

oscillator (VCO). In our case, the beat signal is obtained by overlapping 2 mW from

each of the Ti:Sapphire and the ‘reference’ diode lasers onto a fast photodiode located

close to the centre of the optics arrangement, shown in Figure 2.2. The reference

diode laser is locked to f23 by using a second polarization spectrometer on the optical

table, see Figure 2.2. The beat-note signal is sent to the frequency control electronics,

which in turn tunes the reference cavity of the Ti:Saphire. This locking system has the

advantage of enabling us to change the Ti:Sapphire offset frequency in times as short

as 5 ms [37].

3The names given in Figure 2.2 to the MOT arms, 45◦ and horizontal, correspond to the function of each
one of them when creating the MOT. These functions are explained in Section 2.3
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Figure 2.2: Layout of the optics arrangement used to prepare laser light for atom trapping
and imaging. The Ti:Sapphire laser (pumped by the Verdi) is stabilized by a locking system
in a beat-note scheme. The diode lasers are locked to the reference and re-pump frequencies
(f23 and f12 respectively) using polarization spectroscopy. The re-pump light is incorporated
to the MOT arms at the central polarizing beam splitter cube.
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The reference laser also provides us with light to carry out optical pumping. The

frequency f22 is 267 MHz tuned to the red of the reference (trapping) frequency f23,

as shown in Figure 2.1, but the optimum frequency is in fact 13 MHz to the red of f22.

This light is provided by splitting 5 mW from the reference laser and passing it twice

through an AOM that is set to shift the light by -140 MHz per pass, as in Figure 2.2.

One moment during experiments, in which we have to change the offset frequency

of the Ti:Sapphire, is when taking absorption images of atom clouds (see Section 2.2.3).

This technique requires light that can be easily absorbed by the atoms. We use light

with frequency near f23 so we can observe atoms in the trapped state. For absorption

images the Ti:Sapphire is detuned 98.5 (instead of 106) MHz to the red from f23. The

‘imaging beam’ is extracted from the output of the Ti:Sapphire and then shifted 100

MHz to the blue from f23 − 98.5 MHz by an AOM, see Figure 2.2.

2.2.3 Absorption imaging

Absorption images provided us with all the quantitative information about atoms

that is contained in this Thesis. The present section explains the absorption imaging

technique and its implementation in our setup.

In absorption imaging, the spatial density distribution of atoms is deduced from

their shadow in a near-resonance laser beam, the imaging beam in our case. Figure

2.3 is a schematic of our absorption imaging system. The imaging beam is +1.5 MHz

detuned from f23 in compensation for the Zeeman shift of atoms due to the imaging

field, which is a uniform field of 0.1 mT in the x-direction (Bxu in Figure 2.3). The

imaging beam is spatially filtered by a 40 µm pinhole and collimated with a spot size

of about 12mm FWHM and 2.5 mW total power before entering the vacuum chamber.

The polarization state of light is σ+ with respect to Bxu. It is set by a λ/4 wave plate

placed in front of the first imaging view port as shown by Figure 2.3.

In our BEC apparatus, images are captured by a Pentamax (5MHz) CCD camera.

The CCD chip is an array of 1317 × 1035 square pixels with 6.8 µm side and 400-1080

nm spectral range. The shutter of the camera has a minimum exposure time of 10 ms.

A minimum wait of 500 ms has to be left between images to allow total chip readout.

During an exposure, through a 12 bit digital-to-analog converter (DAC), each pixel

sums up to 4095 counts before saturation. Each 780 nm photon detected by a pixel

is equivalent to 0.0256 counts read from the CCD chip. The imaging lens is a Comar

aplanatic-doublet (model 03 TT 25) with 80.5 mm nominal focal length. It is located

about 150 mm from the place where atoms are trapped. Deduced from the image and

object distances, the magnification of this imaging system is 1.22(3).

The imaging beam is aligned straight across the vacuum chamber, passing through
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the centre of the imaging lens as shown in Figure 2.3. Its incidence angle to the normal

of the CCD chip is 27.4◦. Normal incidence of the imaging beam on the CCD chip

creates fringes on the beam profile that are not completely removed when processing

the images to eliminate the background signal. The origin of these fringes is a Fabry-

Perot effect on the coherent light due to multiple reflections on the two windows in

front of the chip. Their lack of reproducibility is likely to be due to vibrations on

the camera when triggering its optical shutter. The best incidence angle was found

empirically by making imaging tests [37]. Accounting for the incidence angle, together

with the magnification provided by the imaging lens, each pixel is equivalent to an

area A = 4.95 × 5.55 µm of the real image.

Figure 2.3: Schematic of the absorption-imaging system.

The profile of the beam is related to the atom density distribution as follows.

When photons in the imaging beam are absorbed by atoms, the intensity It(z, y) of

the laser light becomes

It(y, z) = I0(y, z)e
−D(y,z) (2.2)

according to Lambert Beer’s law. In Equation (2.2), I0(y, z) is the profile of the probe

beam. The optical density of the atoms is

D(y, z) = σπn(y, z), (2.3)

where the column density profile of atoms is the integral of the local density n0(x, y, z)

across the sample

n(y, z) =

∫ ∞

−∞
n0(x, y, z)dx. (2.4)

In Equation (2.3), σπ is the absorption cross section of the atoms

σπ =
3λ2

2π

1

1 + I/Isat + (2δ/Γ)2
, (2.5)

28



Chapter 2. Cooling and trapping rubidium atoms 2.2. The laser system

where λ is the incident light wavelength, I (2 mWcm−2 in our setup) is the intensity of

the imaging beam, δ = ω−ωr is the angular detuning from resonance of the scattered

light, Γ is the natural linewidth of the transition and

Isat =
π

3

hcΓ

λ3
(2.6)

is the saturation intensity of the system. During images, the probe beam is pulsed for

35 µs leading to 1700 counts per pixel in a typical picture without absorption.

The signal captured by the CCD chip during an imaging pulse is

Ia(y, z) = I0(y, z)e
−D(y,z) + Ib(y, z), (2.7)

where Ib(y, z) is the intensity of the optical background, non-imaging light reaching the

CCD chip. There is always a possibility for a small portion of imaging light (scattered

by the atoms) to be reflected on the viewport(s) of the vacuum chamber, and then to

be incident onto the CCD chip. We found no effect of this light on the data obtained

during the work being reported.

Now, by combining equations (2.7) and (2.3) we get for the column density

n(y, z) = − 1

σπ

ln

(
Ia(y, z)− Ib(y, z)

I0(y, z)

)
. (2.8)

Assuming low optical density
[

Ia(y,z)
I0(y,z)

>> Ib(y,z)
I0(y,z)

]
, which we found is valid for clouds

of atoms at a few microkelvin but not for condensates as they are much denser, the

density distribution of atoms is given by

n(y, z) = − 1

σπ

ln

(
Ia(y, z)

I0(y, z)

)
. (2.9)

The method we used to extract the density profile of atom clouds from the images

followed this principle. We took two pictures of the probe beam: one with the shadow

of atoms and another one without it. Next, we divided the image with a shadow by

the one without it, and took the logarithm of the resulting image. We obtained the

number of atoms by summing the counts in each the pixel over the region covered by

the atom cloud on the image and multiplying by the factor A/σπ(228 in our case),

giving

N =
∑
pixels

A

σπ

Ia(y, z)

Ib(y, z)
. (2.10)

where A is the effective pixel area in the images.
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2.3 Magneto-optical trapping

Magneto-optical trapping has become a standard technique to load cold atoms into

optical or magnetic traps. Our microtrap is supplied with cold atoms by a MOT

loaded directly from a thermal gas of Rb that is dispensed by pulses inside the vacuum

chamber. Thus atoms are cooled down to temperatures that are suitable for magnetic

trapping.

2.3.1 Laser cooling and trapping with a mirror MOT

The MOT enables us to cool hot atoms down to a few tens of microkelvin as can be

achieved with optical molasses [7]. But additionally, the MOT also confines atoms in

a small volume for seconds. It is for this reason that magneto-optical trapping has

become the laser cooling technique preferred by researchers to load dipole or magnetic

traps for a variety of experiments. There are a number of MOT versions used for

different purposes, see [69, 70, 71, 72] for example. In our experiment we have an

implementation of the mirror MOT [72]. This magneto-optical trapping technique is

a convenient way to locate cold atoms near surfaces, as needed for experiments with

atom chips.

The force that stops atoms in a MOT [73] is the same cooling force present in

optical molasses. It is the scattering force of near-resonance light on atoms in a two

energy-level scheme

F = ~k
Γ

2

I/Isat
1 + I/Isat + 4(δ/Γ)2

, (2.11)

where k = 2π/λ is the wavenumber of the scattered light.

In three dimensional optical molasses, atoms are slowed with three pairs of counter

propagating beams tuned to the red of the atomic transition. Temperatures of a few

tens of microkelvin can be reached in each one of the spatial directions as a result of

polarization-gradient cooling [8]. Similarly to an optical molasses arrangement, the

construction of a MOT also requires a pair of counter propagating beams per cooling

direction as illustrated in Figure 2.4 (a). The main difference is the addition of a

magnetic quadrupole whose centre coincides with the centre of the volume in which

the six laser beams overlap. A pair of coils with an anti-Helmholtz arrangement,

also shown in Figure 2.4 (a), provides us with a magnetic quadrupole with spherical

symmetry that is suitable for a MOT [73]. The arrows close to the centre of the MOT

in Figure 2.4 (a) show the direction of the magnetic field produced by the coils along

each axis.

A diagram of the cooling and trapping mechanism in one dimension, for the simple
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Figure 2.4: In a MOT, (a) atoms are cooled and trapped by a pair of counter propagating
beams with opposite σ polarization in each of the three spatial dimensions. The reference for
the polarization of light is the local magnetic field which is a spherical quadrupole provided
by two anti-Heltmholtz coils. (b) is a diagram of the MOT system in the x-direction which
has been arbitrarily chosen. All along x, atoms scatter preferably σ−-polarized light because
the mF = −1 sub-level is Zeeman shifted towards f23, the trapping frequency. This produces
an imbalance between the forces exerted by the lasers over the atoms, yielding an effective
force pointing towards the centre everywhere.
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case of a two level system of lower and upper levels with angular momentum J = 0 and

J ′ = 1 respectively, is shown in Figure 2.4 (b). This one-dimensional diagram follows

the x-direction of the MOT arrangement in Figure 2.4 (a), but the same mechanism also

applies in the two other spatial dimensions. The field generated by the coils Bcoils ∝
(x

2
,−y, z

2
) is zero at the centre of the arrangement, has opposite sign at each side of

the quadrupole centre and varies in strength linearly with x. To achieve magneto-

optical trapping, the counter propagating laser beams must have opposite circular

polarization with respect the local magnetic field (the atoms’ quantization axis) as

schematized in Figure 2.4 (b). The light’s polarization is σ+, drives transitions to the

mF = 1 sub-level, if it moves anti-clockwise as one faces the vector of magnetic field.

Conversely, the light is σ−-polarized and thus, populates the mF = −1 sub-level if

one sees the light’s polarization vector rotating clockwise whilst facing the magnetic

field vector. In both x and −x regions of Figure 2.4 (b) the magnetic field shifts the

|0, 0〉 → |1,−1〉 transition towards resonance with the laser frequency f23, and the

|0, 0〉 → |1, 1〉 transition is Zeeman-shifted away from it. Thus, all along the x-axis,

atoms scatter preferably σ− light which exerts a force towards the centre.

The atom-chip idea followed proposals of tight and strong magnetic traps for

neutral atoms near surfaces [24, 74]. There was a consequent need for a method to

provide cold atoms close to the surfaces so they could be loaded into the proposed traps.

Although the MOT was a well established method for creating cold atom clouds for

BEC experiments, the original design with six beams is not suitable near surfaces. In

1999, J. Reichel et al. [72] proposed and demonstrated the mirror MOT as a solution

to form a system equivalent to the original MOT in a vicinity of a reflective surface.

This requires just four laser beams to confine atoms in three dimensions, using the

reflections from the surface. A diagram of the mirror MOT is displayed in Figure 2.5.

The mirror MOT is built by making a few changes to the configuration of the

original MOT, shown in Figure 2.4 (a). We start by placing a mirror making a 45 ◦

angle with each one of two orthogonal laser beams forming the MOT, so their reflections

overlap each others path as illustrated in Figure 2.5. The goal is to realise magneto-

optical trapping in two dimensions with these two laser beams and their reflections.

Thus the laser beams that were opposite to the (now) reflected beams in the original

MOT are not longer required. Once the mirror has been located, the third trapping

dimension is completed by the third pair of counter propagating beams of the MOT,

parallel to the surface of the mirror and labelled as ‘horizontal’ beams in Figure 2.5.

In order to achieve magneto-optical trapping, the manner in which the mirror is

placed must satisfy two further conditions. Firstly, the centre of the mirror has to be

aligned with the centre of the ‘45◦’ beams. This is to maximize the volume in which

the 45 ◦ beams, their reflections and the horizontal beams overlap. Secondly, the centre
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Figure 2.5: In a mirror MOT magneto-optical trapping in three dimensions is achieved with
just two pairs of laser beams. Two beams of the original MOT are substituted by the
reflection from a mirror of two laser beams at an incident angle of 45◦ to the its normal n̂.

of the mirror must be placed at a few millimeters from the centre of the quadrupole

created by the MOT coils, so the centre of the overlapping volume coincides with the

centre of the MOT as illustrated in Figure 2.5.

Magneto-optical trapping is highly dependent on the orientation between the light

polarization and the local magnetic field. A system equivalent to the MOT described

in Figure 2.4 is achieved at a few millimeters above the mirror just if its reflecting

surface reverses the helicity of the light. The reflecting surface also needs to have a

high reflectance of light at the trapping frequency to prevent imbalance of the trapping

forces.

The mirror MOT is a proved, efficient and simple method to cool and trap atoms

from gases at high temperatures in a small volume near surfaces. Nowadays it is a

magneto-optical trapping technique commonly used to load cold atoms into microtraps.
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2.3.2 Our mirror MOT

A rubidium dispenser [75] located about 30 mm away from the centre of the magneto-

optical trap supplies the atoms. It is kept warm by a standby current of 2 A, which

is raised to 7 A for 12 s during each pulse of Rb dispensing. The base pressure of the

vacuum chamber is lower than 10−11 torr, but increased to a maximum of 5 × 10−10

torr during the pulse. We hold the cold atoms with the MOT for 10 s before going to

magnetic trapping which requires pressures of 10−10 torr (or below) to allow trapping

times on the order of a minute. During these 22 s, the Ti:Sapphire frequency is 106

MHz red-detuned from f23 by the beatnote locking system, giving in this manner a

detuning of -18 MHz to the MOT trapping light.

Magneto-optical trapping in three dimensions is achieved just in the region where

all beams overlap and are appropriately aligned with the local magnetic field. The

area in which the radiation force is acting on atoms is set by the cross-section of the

laser beam. For larger cross-sections, the trapping velocity range is wider and loading

of atoms into the MOT is more efficient. The maximum cross-sectional area of our

trapping beams is fixed by the size of the reflecting surface which is 25 × 20 mm

corresponding also to the size of the atom chip. To achieve this size on the cross

section of the MOT beams, the MOT arms are expanded with 2.54 cm optics as shown

in Figure 2.2. The total power of the trapping beam is 170 mW after the AOM setting

the trapping light detuning. This corresponds to a total intensity of 80 mWcm−2

which is evenly split in the four MOT beams delivered into the experiment. Suitable

circular polarization conditions for the mirror MOT geometry are set by a λ/4 wave-

plate placed on the path of each MOT beam just before it is delivered into the vacuum

chamber.

The MOT-coil formers have internal and external diameters of 22.3 and 30.3 mm

respectively and their width is 7.9 mm. This gives enough space for 81 turns of Kapton

insulated wire inside the vacuum. The two MOT coils are 5 cm apart from each other,

and are orientated at 45◦ with respect to the y-axis following an anti-Helmholtz fashion

as illustrated in Figure 2.5. During experiments, we run a current of 1.5 A through

the MOT coils. This current generates a field gradient of about 0.18 Tm−1 along the

axis of the MOT coils, paralleled to y in Figure 2.5. The centre of the quadrupole is

located 3.8 mm from the surface of the atom chip. This distance was adjusted for best

atom-collection efficiency using the field Bxu.

The picture displayed in Figure 2.6 is an image of the fluorescence from atoms

trapped in the MOT. Typical atom clouds have 108 atoms with a temperature of 50

µK. All the temperatures of magneto-optically trapped atoms reported in this Thesis

are measured with ballistic expansion. This method is explained in Appendix D. The
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Figure 2.6: Image of the florescence from Rb atoms in the mirror MOT.

phase-space density at the centre of the MOT, calculated by using the peak density

n0 =
N

(2π)3/2σxσyσz

(2.12)

of the Gaussian distribution in Equation (2.1), is ρPS = 1.5× 10−7. In Equation (2.12)

N is the total atom number, and σx,y,z is the radius of the Gaussian distribution in

each spatial direction. As shown in Figure 2.6, we image atom clouds in the yz-plane.

To obtain this number of ρPS, I assumed σx = σy (567 µm in the case of the MOT

shown in Figure 2.6, where σz = 759 µm).

2.3.3 Temperature in laser cooled atoms

In thermodynamics, the temperature is a quantity that characterizes the equilibrium

state of an ensemble of particles in contact with a thermal bath. Atoms in a MOT are

not in thermal equilibrium with a reservoir however, it still makes sense to define the

temperature of laser-cooled atoms as

T ≡ 〈εk〉
kB

, (2.13)

to label a typical state with average kinetic energy 〈εk〉 = 1
2
m〈v〉2, where 〈v〉 is the

average velocity of atoms in a chosen direction. This re-definition of temperature

makes sense because the steady solution of the Focker-Planck equation, describing a

system of laser cooled atoms has a Gaussian momentum distribution. The solution

of the equation has the form of a Maxwell-Boltzmann distribution with temperature

kBT = D/β. D is a diffusion coefficient which describes the random nature of light

scattering in the system and β is the damping coefficient on the velocity-dependent

force acting over atoms due to the pressure of light.

Due to this result, we can label distributions of laser cooled atoms with a temper-
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ature associated to their average kinetic energy. For magnetically trapped atoms this

definition of temperature is also valid with a different justification (see Section 4.2.1).

2.4 An on-chip Ioffe-Pritchard trap

The Ioffe-type magnetic trap was originally used for research on plasma physics. In

1983 it was proposed for magnetic trapping of neutral atoms by David E. Pritchard

[76]. Thereafter, in the atom-optics context, this trap is known as a Ioffe-Pritchard

trap. It is now widely employed in BEC experiments. The atom chip we used to

investigate decoherence-surface effects was designed to create a Ioffe-Pritchard trap

based on a single current carrying wire and a bias field.

2.4.1 Principles of the Ioffe-Pritchard trap

Magnetic trapping of neutral atoms is based on the interaction between their magnetic

dipole moment and the local magnetic field. The energy of this interaction is given

by Equation (1.2) which, for an atom with internal-energy state | I J F mF 〉, can be

written as

U = µBgFmFB, (2.14)

where µB is the Bohr magneton, gF is the g-factor of the total-angular momentum F ,

and B is the magnitude of the local magnetic field B. Atoms having positive gFmF

are trapped in minima of the magnetic field strength. Since a static magnetic field has

no maxima, [77] atoms with negative gFmF cannot be similarly trapped. The trapping

force is given by the gradient of Equation (2.14)

Ftrap = −µBgFmF ∇B. (2.15)

One configuration of the Ioffe-Pritchard trap is created by combining the fields

of four current carrying rods and two coils, see Figure 2.7 (a). The four rods are

equidistant and carry a current I in alternating order to make a long, transverse

quadrupole field with zero magnetic field on the centre line. This line of zero field is

suitable for guiding low field seeking atoms [78]. However, the atoms need to keep

their mF quantization if they are to remain trapped. A Majorana spin flip [79, 80] is

likely to happen near the axis of the quadrupole because the atomic spins have little

field to follow in this region. This would lead to relaxation of the trapped states and

hence, atom loss from the trap.

In the Ioffe-Pritchard trap design, this problem is solved by adding a field along

the axis [z in Figure 2.7 (a)] by means of the two coils. In Figure 2.7 (a) these have
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Figure 2.7: Schematic of a Ioffe-Pritchard trap (a). A long quadrupole is created by running
a current I through four equidistant rods. This creates a magnetic guide with cylindrical
symmetry whose axis (parallel to z) lays along the centre of the four rods. The pair of coils
running a current J provide a field in the z-direction that offsets the centre of the guiding
potential by B0 and ends the guide in the axial direction (b). Thus the atom clouds confined
with a Ioffe-Pritchard trap have an elongated shape, similar to a cigar.

the same radius R, their centers are separated by 2R along z and both coils conduct a

current J that is flowing in the same direction. The generic form of the field strength

given by these coils (with Helmholtz geometry) is shown by Figure 2.7 (b). Near z = 0,

the field B0 from the coils prevents Majorana spin flips. Additionally, the ends of the

potential shown in Figure 2.7 (b), constrain the confinement of atoms in the axial

direction of the elongated magnetic guide created by the current carrying rods. This

gives a cigar shape to atom clouds confined in Ioffe-Pritchard traps.

2.4.2 A micro-manufacturable Ioffe-Pritchard trap

There are several different configurations of current carrying wires and bias fields [25,

29] that can produce a Ioffe-Pritchard trap. Here I explain the version in which a long

magnetic guide is created by a single-guide wire plus a bias field. The waveguide is

closed at its ends by two transverse current carrying wires, completing in this manner

the geometry of the Ioffe-Pritchard trap. This is the microtrap design that we used

for measurements of surface effects.

Radial confinement

Consider the system described in Figure 1.1 (a): a current-carrying wire whose axis

is parallel to z and a bias field Bx pointing towards −x. With this combination of

magnetic fields, a guide for atoms is created along the line in which Bx cancels out
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with the circular field of the wire, at x0=0, y0=
µoI

2πBbias
in Figure 1.1 (b).

The resulting field is a long quadrupole, equivalent to the field created by the four

equidistant rods mentioned in Section 2.4.1. In the frame of reference of Figure 1.1

(and 2.7), this field is given by

B(x, y, z) = b(xêx,−yêy, 0) (2.16)

near the line x0, y0; b = 2µ0I
πD2 , where D is the distance between rods 4. The field mag-

nitude, and hence the magnetic interaction potential U [in Equation (2.14)] associated

to B(x, y, z), is proportional to its gradient b,

U(r) ∝ |B(x, y, z)| = b
√
x2 + y2 = br. (2.17)

Atoms with quantum numbers gFmF > 0 feel a force towards the quadrupole axis

given by

F = −µBgFmF bêr. (2.18)

Thus this potential is indeed, a guide for atoms with cylindrical symmetry.

Equation (2.17) states that the magnetic interaction potential varies linearly along

both x and y axes within the vicinity of x0, y0. This is illustrated by the green curves

with sharp-V minima in Figure 2.8, plotting the radial potential through the centre

of a waveguide created by 7.94 A through the guide wire and 1 mT of bias field. The

green curves in (a) and (b) of Figure 2.8 correspond to the axial potential along x and

y respectively. This potential was calculated with parameters that we use to create

magnetic traps loaded from the mirror-MOT at about 1.3 mm from the surface of the

guide wire, see Section 2.4.3.

The potential depth is the energy that an atom requires in order to be expelled

from confinement. In units of magnetic field, the depth ur of the waveguide is equal

to the bias field Bx, 1 mT in our case. Referring to potential depths in units of

temperature is sometimes more illustrative. The conversion is done by equating the

potential energy gained by the atom due to the magnetic field to its equivalent in

thermal energy, µBgFmFB = kBT . For 87Rb in the state |F = 2,mF = 2〉 (gFmF =1),

1 mT= 670µK. Hence our guide is 670 µK deep in the radial direction.

Now let us offset the waveguide centre by a field B0êz, as is done in the Ioffe-

Pritchard configuration. Here B0 also has the effect of smoothing the potential across

the centre of the waveguide; the V-shape minima are changed to continuous curves.

The blue-dotted curves in figures 2.8 (a) and (b) show the potential along x and y

4In the quadrupole approximation b = 2µ0I
πR2 [26], where R is the radius of the circle containing the position

of each rod’s centre. Because the rods are equidistant we can make R = D.
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Figure 2.8: Magnetic interaction potential (times 1/µB) of a waveguide created by a guide
wire and a bias field. The green curves are the cross sections of the guiding potential along
x (a) and y (b) passing through the centre of the waveguide created by guiding current of
7.94 A and a bias field Bx = 1 mT. The blue-dotted curves represent the potential along x
(a) and y (b) with the inclusion of an offset field B0 = 0.22 mT along z.

including an offset field B0 = 0.22 mT which is a typical experimental value in our

setup, see Section 2.4.3.

With the offset field, the magnetic interaction potential is proportional to

|B(x, y, z)| =
√

(br)2 +B2
0 (2.19)

which, by taking the first two terms of its binomial expansion, can be written as

|B(x, y, z)| = (br)2

2B0

+B0. (2.20)

Thus, according with Equation (2.14), the guiding potential is

U(r) =
1

2
mω2

rr
2 + U0 (2.21)

close to its centre. This is the potential of a harmonic oscillator with angular frequency

ωr =

√
gFµBmF b2

mB0

, (2.22)

where m is the mass of atoms. In Equation (2.21), U0 = µBgFmFB0 is the potential

energy due to the field at the bottom of the trap. Equation (2.22) states that the

frequency of the transverse oscillations in the microtrap is proportional to the field

gradient, which is in turn proportional to the trapping strength given by Equation

(2.15).

The adiabatic condition ensures spin flips are suppressed. It requires the magnetic
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field in the frame of reference of the atoms to change slowly compared with the Larmor

frequency of spin precession around the magnetic field. For the transverse oscillations

of atoms inside the magnetic trap, this implies that

ωr << ωL (2.23)

is required. In Inequality (2.23), ωL = 1
~gFmFµBB0 is the Larmor frequency at the

bottom of the trap. By plugging Equation (2.22) into inequality (2.23) we see that

B0 >

(
~2b2

µBgFmFm

)1/3

(2.24)

is needed in order to satisfy the adiabatic condition. From Inequality (2.24) we can

estimate the minimum offset field required to preserve adiabaticity in our microtrap.

Typical magnetic traps loaded from the mirror MOT have a field gradient of 0.65 T

m−1. Hence B0 has to be greater than 152 nT when loading the magnetic trap.

Axial confinement

In this configuration of microtrap, axial confinement is achieved by running a current

through two transverse wires lying at a distance h underneath the guide wire as illus-

trated in Figure 2.9. The long waveguide created by the guide wire and bias field Bx

lays above the guide wire, with its axis parallel to z on Figure 2.9 (b). Both trans-

verse (or ‘end’) wires carry a current J in direction -x. The current J produces a field

that reaches its minimum at the midpoint between end wires and its maximum at the

plane of each end wire along z. This potential is plotted in Figure 2.9 (a) for 15 A

through the end wires (the current that we normally run through the end wires during

experiments) at 1.3 mm from the surface of the guide wire. The difference of magnetic

interaction potentials between the ends of the trap and its centre, is the axial trap

depth of the microtrap: ua = |Bmax
end −Bend(x0, y0, z0 = 0)|.

The potential that atoms feel at the centre of the trap is harmonic along the z-

direction without the need of adding any other extra field. In the axial direction, the

harmonic motion of the atoms has frequency

ωa =

√
gFµBmF

m

d2B

d2z
, (2.25)

where d2B
dz2 is the axial curvature of the potential at the centre of the trap x0, y0, z0.

The offset field B0 to prevent Majorana loss is determined by the z-component of

the trapping field, whose only contributor so far is the field of the end wires. If B0 is a

substantial fraction of Bx, it may cause the microtrap to be inconveniently shallow in
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Figure 2.9: In this configuration of Ioffe-Pritchard microtrap, a waveguide created by the
guide wire and bias field is closed with the field of two current carrying wires transversally
located underneath the guide wire (b). (a) shows the potential produced by 15 A through
the end wires at 1.3 mm from the surface of the guide wire. These parameters are chosen
according with real experimental conditions, see Section 2.4.3.

the radial direction. It is possible to increase the trap depth in both radial and axial

directions by partially cancelling the field of the end wires with an additional bias field

in the z-direction, the z-cancelling field Bz. With this additional field, the offset field

is B0 = |Bend(z = 0)−Bz|.

To summarize, cigar-shaped atom clouds are held in a Ioffe-Pritchard microtrap

formed by closing a long waveguide created by the guide wire and a bias field with the

field of two transverse wires. The offset field B0, the field of the end wires plus Bz,

prevents atom loss at the centre of the trap.

2.4.3 Our microtrap

A diagram of our atom chip with a single-guide wire is shown in Figure 2.10. The

guide wire of this atom chip has a diameter of 500 µm. This wire is large compared

with wires fabricated with lithography techniques, see for example [81, 82] or Chapter

5, in more recent atom chips. It was not fabricated specially for atom chips. Also, its

cylindrical shape contrasts with the planar geometry of wires commonly now used on
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other atom chips. In this atom chip, the guide wire is placed between two cover-slips,

coated with 60 nm of gold to reflect 780 nm light to create a mirror MOT, see Figure

2.10. The guide wire and the cover slips sit on a glass substrate containing the four

end wires that have a 800 µm diameter.

To load this Ioffe-Pritchard microtrap, we run 7.94 A through the guide wire

and apply a bias field of 1 mT with a pair of external coils. This creates a cylindric

waveguide for neutral atoms at a distance d = 1.3 mm above5 the surface of the guide

wire. As can be seen in Figure 2.10, our atom chip has four instead of two end wires.

The four are connected in series, so that the current J flows in opposite directions in

the inner and outer wires, as shown in Figure 2.10. The outer end wires were included

in this atom chip with the intention to further increase the axial trap depth as discussed

in [37]. Now we know however, that in fact running the current also through the outer

end wires (as shown in Figure 2.10) does not help to increase the trap depth. The inner

end wires alone, carrying 15 A, give an axial depth of 0.62 mT at d = 1.3 mm, see

Figure 2.9. We added -0.63 mT of z-uniform field with a pair of external coils which,

combined with the field of the end wires, gives a 0.22 mT offset field B0, increasing

the axial depth of the magnetic trap to 0.76 mT. With this B0, the radial depth of our

microtrap is |Bx −B0| = 0.78 mT.

Figure 2.10: Diagram of our atom chip with a single guide wire and four end wires.

2.5 Loading the microtrap

Once atoms are laser cooled and trapped by the mirror MOT, the next step is to

transfer them to the microtrap described in Section 2.4.2. To do this efficiently, the

magnetic trap potential should resemble that of the MOT in shape, size and position.

5This atom chip is mounted ‘upwards’– meaning that the atom-chip is orientated so gravity points towards
-y as indicated in Figure 2.10.
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2.5.1 The compressed MOT stage

With this in mind, we increase the aspect ratio of the mirror MOT before attempting

to load the atoms into the microtrap. This is done during the last 60 ms of magneto-

optical trapping by adding to the normal MOT quadrupole the long waveguide field

due to the guide wire plus the bias field Bx. As described in Section 2.3.2, the mirror

MOT is loaded in dispenser pulses of 12 s followed by a waiting time of 10 s for vacuum

recovery. After these 22 s, the long magnetic quadrupole of the waveguide is gradually

switched on, and the spherical quadrupole created by the MOT coils is weakened in a

sharp step.

Figure 2.11: Experimental parameters changed during the compression of the MOT, process
that lasts for 60 ms.

All the variations of the experimental parameters to compress the MOT are shown

in Figure 2.11. The waveguide quadrupole is produced by linearly ramping both the

current of the guide wire and the bias field over 50 ms. The guide-wire current is

ramped from 0 to 3.3 A; while the bias field is ramped from 0 to 0.6 mT. After these

50 ms, the current of the guide wire and Bx where kept constant for 10 ms more, see

Figure 2.11.

In parallel with switching on the waveguide quadrupole, during these 60 ms, sev-
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eral parameters of the MOT were also changed as illustrated in Figure 2.11. The field

of the MOT coils is reduced to 50 % by switching the current through its coils. This is

levelled from 1.5 A to 0.75 A in a sharp step after the first 30 ms of this MOT compres-

sion and then, held constant for the remaining 30 ms. The detuning of the trapping

light is increased and its power decreased in the last few milliseconds of this compres-

sion to diminish multiple scattering of the trapping light by atoms. This causes atom

heating as well as incompressibility of the atom cloud. The trapping-light detuning is

changed twice during the compressed MOT stage. It is first stepped from -18 MHz to

-40 MHz after 30 ms and to -49.5 MHz after 50 ms. The total power of the trapping

light had a single change from 170 mW to 20 mW during the last 2 ms of the 60 ms

of MOT, see Figure 2.11.

Once compressed the MOT is located 1.3 mm from the surface of the guide wire as

shown in Figure 2.12. Compressing the MOT has the effect of slightly heating atoms

up to 85 µK. There is no atom loss during this process, and the phase-space density

is increased to ρPS = 1.7 × 10−6. This is also the peak phase-space density given by

equations (2.1) and (2.12). The atom cloud shown in Figure 2.12 has σy = 302 µm

and σz = 878 µm.

Figure 2.12: Fluorescence image of the compressed MOT. During this stage, the centre of
the atom cloud is pulled to 1.3 mm from the surface of the guide wire.

2.5.2 Optical pumping and atom transfer

Once the MOT is compressed, the waveguide fields, MOT coils and the trapping light

are switched off. Re-pump light is left on as required for optical pumping. Then the

optical-pumping beam is pulsed on for 250 µs. This beam is directed along-z, parallel

to the guide wire and is circularly polarized along +z. The quantization field, also
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along +z, is a combination of the field generated by the end wires running 15 A and

the applied uniform field Bz.

Following optical pumping, the re-pump light is also switched off and all the fields

of the magnetic trap are switched on. Now the current of the guide wire is directly

stepped from 0 to 7.94 A, the bias field from 0 to 1 mT and 15 A are run through the

end wires, as described in Section 2.4.3. There are 2 ms left between switching off the

compressed MOT fields for optical pumping and turning on the magnetic trap. Figure

2.13 shows an absorption image of the atoms loaded in the magnetic trap. One order of

magnitude is lost in atom number while loading the magnetic trap from the compressed

MOT after optical pumping; typical magnetic traps confined 1.2 ×107 atoms on this

atom chip. The temperature inside the magnetic trap is close to the temperature in

the compressed MOT – typically 83 µK 6 – suggesting that the atom transfer is well

optimized. The atom loss is attributed to the shallowness of the magnetic trap. The

peak phase-space density of the loaded magnetic trap is typically ρPS = 1.7 × 10−8.

Even after optimizing the loading process, the atom-cloud oscillates in the trap. The

radial and axial trap frequencies were measured from this motion: ωr = 2π× 45 Hz

and ωa = 2π× 17 Hz.

A parameter that arises here due to its importance in the final evaporative cooling

stage, is the the elastic collision rate

kel ≡ nσel〈vR〉, (2.26)

where n is the atom density, 〈vR〉 is the mean relative velocity between atoms which

is well estimated by the rms velocity vrms =
√

6kBT
m

, and σel is the elastic-scattering

cross section assumed constant at σel = 8πa2 = 7.7× 10−16 m, as appropriate for Rb87

in the |2, 2〉 state at temperatures lower than 300 µK [65]. The scattering length is

a = (104.5± 2.5)a0, where a0 = 5.3× 10−11 m.

Because the atom distribution is not homogeneous but rather Gaussian, kel needs

to be averaged:

〈kel〉 = 〈n〉σel〈vR〉. (2.27)

In Equation (2.27), 〈n〉 = n0

2
√

2
is the atom density averaged over the Gaussian distri-

bution (n0 = 1.9× 1015 m−3 in typical magnetic traps). By plugging the peak density

n0 given by Equation (2.12) into Equation (2.27), we obtain

〈kel〉 =
N

2(2π)3/2

√
3kBT

m

σel

σxσyσz

=
3N

2(2π)3/2

mω2
rωaσel

kBT
, (2.28)

6The temperature of atoms trapped by magnetic traps is measured from a single absorption image. This
is possible because we have previous knowledge of the trap frequency, see Section 4.2.1 for the detailed
explanation of these measurements.
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where the indices y and z are changed to r and a regarding the radial and axial

directions of our trap.

Calculated with Equation (2.28), the elastic collision rate of the magnetic trap

shown in Figure 2.13 is 0.95 s−1. As explained in Section 2.7, evaporative cooling is

more efficient with higher collision rates. This parameter has to be increased so BEC

can be reached by evaporating the hottest atoms from the microtrap.

Figure 2.13: Absorption image and selected parameters of typical atom clouds loaded into
the microtrap.

2.6 Compressing the magnetic trap

One manner to boost the collision rate is by increasing the peak density n0 of the

atom cloud. This can be done by raising the trapping force [Equation (2.15)] which

is done with an increment of the field gradient across the centre of the magnetic

trap. Among the many advantages of microtraps, one is that high field gradients are

achievable without large power dissipation. In order to increase the collision rate in our

microtrap, we pulled atoms towards the guide-wire surface by decreasing the guiding

current and simultaneously increasing the bias field Bx.

The magnetic trap compression is carried out in 500 ms. A diagram of this process

is shown in Figure 2.14. Three trapping fields are linearly ramped: the guide-wire

current from 7.94 to 6.9 A, the bias field from 1.2 to 2.9 mT and z-cancelling field from

0.63 to 1.1 mT. The new guiding parameters, the guide-wire current and Bx, brought

the waveguide centre to d = 225 µm from the wire’s surface. Figure 2.15 shows an

absorption image of atoms inside the magnetic trap once compressed.

With the final parameters of the magnetic trap compression, the offset field B0 is
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Figure 2.14: Sequence of field changes when compressing the magnetic trap.

Figure 2.15: Absorbtion image and selected parameters compressed microtrap.

reduced to 0.05 mT. Consequently the trap depths were raised to 2.85 mT in the radial

direction and to about 0.77 mT in the axial direction. There is no atom loss during

the compression of the magnetic trap. From measurements of the residual sloshing

of the atom cloud we know them both the radial and axial-angular frequencies of the

compressed-magnetic trap: ωr = 2π × 838 and ωa = 2π × 26 Hz.

By compressing the trap, the phase-space density is increased to 1.1×10−7. There

is temperature rise in the atom cloud: T= 690 µK. More importantly, since there is no
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atom loss in this process, the peak density of atoms is increased to 3.1 ×1017 m−3 in the

compressed trap. These in turn yield a considerable increment of the elastic-collision

rate given by Equation (2.28): kel = 60 s−1. With this increment of the elastic collision

rate, we set the initial conditions to carry out efficient evaporative cooling, opening

the path to BEC.

2.7 Evaporative cooling

In evaporative cooling the average kinetic energy of the particles in an ensemble is

lowered by expelling the hottest particles from the system. After evaporation, the

temperature is lower, reached once the residual kinetic energy is re-distributed amongst

the remaining particles through elastic collisions.

Evaporative cooling of trapped atoms was first demonstrated by cooling magneti-

cally trapped Hydrogen [15], when it was proposed as a feasible method to reach BEC.

Evaporative cooling might be the oldest technique for lowering the average velocity

of an ensemble of molecules or atoms. Equipment to implement this cooling method

varies from a spoon when forcing the evaporation of the hottest molecules of a cup

of tea, to antennas and sophisticated wave generators when cooling alkali atoms for

example. Regardless of the method of confinement, in a bowl or a magnetic potential,

the principle of evaporation is the same. The most energetic atoms in the a distribution

are removed by lowering the escape energy of the system with a truncation parameter

η =
Et

kBT
, (2.29)

where Et is the new escape energy – the truncation energy. Atoms whose energy is

greater than Et are evaporated from the system with probability

P (E ≥ Et) =
Et

η
e−η. (2.30)

During evaporation, atoms remaining in confinement undergo elastic collisions, defining

a new temperature after a thermalization time τ . This temperature is lower as the

most energetic atoms leave. If the truncation energy Et is kept constant, the truncation

parameter η will grow, causing an exponential suppression of the probability P (E ≥
Et) to evaporate individual atoms.

2.7.1 Forced-evaporative cooling

In order to avoid the exponential turn off, we vary Et steadily decreasing it so the

evaporation is forced to continue. Methods following this principle are known as forced-
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evaporative cooling. This technique led researchers to the first BECs of alkali atoms

[12, 13, 14], remains today an essential step in the path to BEC.

The goal of forced-evaporative cooling is to increase the phase-space density in a

cloud of confined atoms. As atoms with high kinetic energy are expelled from the trap,

the atom cloud gets smaller and colder. Even though atoms are lost, the key point is

that the temperature falls rapidly enough to increase the phase space density, as I now

show.

Let us assume that the atoms are initially in thermal equilibrium inside a harmonic

magnetic trap. Their energy follows a Boltzmann distribution

P (ε) = Aρ(ε)e−ε (2.31)

where ε is the normalized energy E
kBT

; ρ(ε) is the density of states proportional to ε2

in the case of a harmonic oscillator and A is a normalization constant.

Following truncation, a fraction of atoms whose energy ε is greater than η has

been coupled out of the system. The relative change in atom number is given by

∆N

N
=

∫∞
η
P (ε)dε∫∞

0
P (ε)dε

=
Γ(3, η)

2!
, (2.32)

where Γ(a, z) =
∫∞

z
ta−1e−tdt is the incomplete Gamma function. Thermalization

occurs once the remaining kinetic energy inside the trap has been distributed amongst

atoms. This happens once (on average) every atom has had several elastic collisions.

In this argument I assume that four collisions are enough for thermalization to occur,

following the a theoretical result reported in [83]. Thus the thermalization time is

τth = 4/kel, where kel is the elastic collision rate, Equation (2.26). To predict the

change in time of the atom population inside the trap, it is necessary to also account

for the atom loss produced by real experimental conditions such as collisions with

the molecules in the background gas or leakage of undesired resonant light into the

experiment. In the following equations this loss will be described by the rate 1/τback

which is assumed constant in time, temperature and atom density. It is assumed to be

dependent only on the pressure inside the vacuum chamber.

From these, we see that the population dynamics of the system is given by

1

N

dN

dt
=
kel

4

Γ(3, η)

2!
+

1

τback

(2.33)

with solution

N(t) = N0e
−αN t/τback , (2.34)
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and decay rate

αN =
kelτback

4

Γ(3, η)

2!
+ 1. (2.35)

Equation (2.33) demonstrates the exponential nature of the evaporation process. In

fact during evaporation all the thermodynamic quantities have an exponential be-

haviour. Similarly to Equation (2.33), the dynamics of energy leaving the system as

atoms depart is given by

1

E

dE

dt
=
kel

4

∫∞
η
εP (ε)dε∫∞

0
εP (ε)dε

+
1

τback

=
kel

4

Γ(4, η)

3!
+

1

τback

. (2.36)

From equations (2.33) and (2.36) it can be shown [84] that the temperature behaves

as

T (t) = T0e
−αT t/τback , (2.37)

where

αT =
kelτback

4

(
Γ(4, η)

3!
− Γ(3, η)

2!

)
. (2.38)

during evaporation.

Solutions (2.34) and (2.37) allow us to track in time the behavior of the atom

number N(t) and temperature T (t). The volume occupied by the trapped atoms in a

three dimensional harmonic trap V ∝ T 3/2 [85]. Using this result we can relate the total

number of atoms and their temperature to n, ρPS and kel, making it also possible to

predict these quantities for every time t. It immediately follows that the atom density

is proportional to N/T 3/2. The phase space density is proportional to N/V v̄3
T ∝ N/T 3.

Finally the elastic collision rate is proportional to nv̄T ∝ N/T . Thus the corresponding

coefficients describing the exponential dependence of the elastic collision rate and the

phase-space density are:

αk = αN − αT

αρ = αN − 3αT . (2.39)

According to Equation (2.39) αN < αT is sufficient to make the elastic collision rate

grow exponentially during evaporation. This condition also makes αρ < 0, ensuring an

exponential increment of the phase-space density. Therefore αk < 0 is the condition for

a self-sustained evaporation, the so called ‘runaway’ evaporation. Combining equations

(2.35), (2.38) and (2.39), one can design an evaporation entering the runaway regime

by setting initial conditions in the trapped atom cloud such that

kelτback >
4!

3!Γ(3, η)− Γ(4, η)
. (2.40)
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With Equation (2.40) we can test RF-evaporation in our experiment to find out

whether it is in the runaway regime or not. Atom clouds inside the compressed mag-

netic trap have an elastic-collision rate kel = 60 s−1. We evaporate far from the surface

of the wire (d > 220 µm), where the atom loss of the trap is dominated by the interac-

tion between the trapped atoms and the experimental background. Thus, it is valid to

assume that at such distances τback is constant – approximately 100 s – and just depen-

dent on the pressure inside the vacuum chamber. Hence, for our compressed magnetic

trap, the term on the left in Inequality (2.40) is kelτback ≈ 6000. As explained later

in Section 2.7.3, the truncation parameter in our case is kept approximately constant

at η = 1. Plugging this truncation parameter into the term on the right of Inequality

(2.40) gives 4.7, which is much less than 6000. Therefore our evaporative cooling is

well inside the runaway regime of evaporation.

2.7.2 RF-evaporative cooling

An atom at the position r inside the trap feels a magnetic field B(r) which, in the

low field regime, shifts its sub-level energy by µBgFB(r). Therefore an oscillating field

with frequency

f =
1

h
µBgFB(r), (2.41)

causes a change of the spin projection mF in the atom which makes it to leave the

trap. For magnetically trapped Rb the frequency f is normally in the RF regime. This

is the reason why RF-evaporative cooling is a standard technique to cool Rb atoms

down to BEC [12].

When a RF field whose frequency satisfies Equation (2.41) is applied to a magnetic

trap, its depth is truncated to

Et = µgFmF [B(r)−B0]. (2.42)

Hence atoms at the position r are likely to leave the trap. The effect of this energy

truncation on a magnetic trap depends on its geometry. In a Ioffe-Pritchard trap like

ours, it creates a whole ellipsoidal surface in which atoms will not be trapped. Only

the atoms with energy E > Et will reach this surface and hence, be expelled from the

trap.

2.7.3 RF-evaporation on our atom chip

Evaporative cooling in our microtrap is forced with RF emitted by an antenna made of

copper wire that sits on the top view port of the vacuum chamber, at about 8 cm from

the place where the magnetic trap is formed. The signal is provided by a Standford
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Research Systems [(SRS) model DS345] wave-generator.

The truncation parameter η is determined by the trap depth and the initial atom

temperature as can be seen from equations (2.29) and (2.42). In our case η is limited

by the axial trap depth 0.77 mT and the atoms’ temperature 690 µK, which sets the

maximum value of η to 0.75, away from its ideal which is 8 [86]. We modulate the

frequency of the applied RF following a logarithmic ramp, aiming to keep η approxi-

mately constant. The truncation parameter is experimentally set (close to 1) with the

initial frequency of evaporation: 13 MHz. We prepare Bose-Einstein condensates with

5 × 104 atoms applying RF ramps that last for 12.5 s, whose final RF frequency is

around 600 kHz.

The series of absorption images displayed in Figure 2.16 (a) illustrates RF evap-

oration in our experiments. These images have been taken from atom clouds cooled

down to final RF frequencies progressively lower from top to bottom. Directly from the

images, it can be appreciated that atom clouds become smaller and therefore colder

as the final frequency is lowered. The labelling temperatures have been measured, as

explained in Section 4.2.1, by fitting a Gaussian to the axial profile of each cloud.

The fitted curves along with the measured number density of atoms are shown in

Figure 2.16 (b). The top graph plots the axial profile, well fitted by a Gaussian, of

a compressed trap that has not been evaporated. Atom clouds in subsequent images

have been RF evaporated to final frequencies between 610 and 585 kHz. In these

images, the centre of the profile is sharper than Gaussian because a condensed fraction

is present. The magnetic trap in the 440 nK picture contains 2.3 ×104 atoms which

gives a critical temperature of 320 nK. In the last picture, with a final frequency of

555 kHz, the atom cloud is a nearly pure Bose-Einstein condensate.
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Figure 2.16: Data sequence from atom clouds at several stages of RF-evaporative cooling.
From top to bottom: (a) absorption images from higher to lower final RF during evaporation
(the top picture is from a cloud that has not been evaporated) and (b) atom number density
along z (black dots) and Gaussian fits to these data (blue curves). The BEC transition
temperature is reached at final RF frequency between 600 and 585 kHz.
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Chapter 3

Thermally induced spin flips

Transitions of spin projection in the magnetic trapped states of 87Rb atoms are reso-

nant at RF frequencies, for which the wavelength λ is a few hundred meters. These

transitions change the shape of the potential felt by the atoms and lead to atom loss

from magnetic traps. Atom loss due to spin flips is a consequence of the relaxation

of the trapped states. In an unconfined space, vacuum fluctuations yield a very small

atom loss, which is not measurable on any practical time scale. Such atom loss is

increased if non-zero temperature effects are considered, but remains small enough to

be negligible in experiments. Near the surface of a dielectric or conductor however,

the spontaneous decay rate of the trapped states is enhanced by thermal fields that

originate inside the material.

This is the case in microtraps which suffer from large relaxation rates and there-

fore, from large atom loss as the atoms approach the surface of atom chips. The

coupling of the atoms with the thermal field of these surfaces causes a dramatic in-

crease in the spontaneous decay rate from the trapped states. This in turn leads to

high atom loss rates from microtraps. Henkel et al. [55] predicted spin state lifetimes

of trapped atoms as short as a few milliseconds for atoms trapped one micrometer

from a planar slab of a conductor or a dielectric.

The work reported in this chapter was the first observation of this phenomenon,

by which I mean surface thermal fields as opposed to technical noise [56]. Section 3.1

explains spontaneous spin relaxation at finite temperature. Section 3.2 describes the

system of cold atoms near the surface of materials. Section 3.3 offers an overview of

the theories developed by Henkel et al. [55] and by Rekdal et.al [57] to describe the

spontaneous relaxation of trapped states in the vicinity of a dielectric or conductor.

The following sections, 3.4 and 3.5, discuss the experiments we carried out to measure

rates of atom loss from our microtrap.
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3.1 Atom loss due to spontaneous decay

Atoms are trapped near magnetic field minima by exploiting the interaction between

their magnetic dipole moment

µ = gSŜ + gLL̂− gI
me

mp

Î, (3.1)

and the local magnetic field, Equation (1.2). In Equation (3.1), gS ≈ 2, gL and gI

are the g-factors of the operators of spin Ŝ, angular momentum L̂ and nuclear spin Î

respectively. For the ground state of alkali atoms L = 0. The nuclear spin term in

Equation (3.1) is negligible because the electron mass me is much smaller than the

proton mass mp. Thus Equation (1.2) reduces to

HZ = −µBgSŜ · B̂(r), (3.2)

where Ŝ is the spin operator and B̂(r) is local magnetic field operator. Equation (3.2)

states that the spin of atoms is coupled to the local magnetic field. A transition of

the spin projection in the atoms will modify the confining potential, making it weaker,

null or repulsive, depending on the quantum numbers of the final atomic state.

A cold atom cloud is localized near the bottom of the trap where the magnetic

field is B0, where spin flip frequency is given by

ω0 ≡
1

~
µBgFB0. (3.3)

The transition rate between the initial state |i〉 and possible final states |j〉 is given

by Fermi’s Golden Rule

Ri =
2π

~2

∑
j

| 〈j | µBgSŜ · B̂ | i〉 |2 D(ωij), (3.4)

where

B̂ =
∑

k

Akk× εk
[
âke

−iωkt+ik·r + â†ke
iωkt−ik·r] (3.5)

is the operator of the interacting magnetic field. Here

D(ωij) =
V ω2

ij

π2c3
, (3.6)

is the density per unit angular frequency of modes at frequency ωij ≡ ωi−ωj in a large

volume V . In Equation (3.5) the field is expanded on a basis of plane waves, each one

labelled by the wave vector k; r is the position of the active electron; Ak = i
√

~
2ε0V ωk

is the field normalization, where ωk is the angular frequency of the mode k; and εk is
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its vector polarization. Fermi’s Golden Rule calculates the decay rate of the state |i〉
as a function of the amount of modes resonant to all the possible decaying transitions

in the space were the atom is localized.

I will calculate the spontaneous decay rate to the specific state |j〉 = |f〉 with

resonant transition ωij = ω0. I will first deduce the rate due to the q-polarized fields

Rif,q ≡ Rq, and then add up the contribution of each spatial direction to finally obtain

the complete spontaneous decay rate Rif from the initial state |i〉 to the final state |f〉.

Because the wavelength of the field is very long compared with the size of the

atom, the dipole approximation is a good one, so the qth component of B̂(ω0) is given

by [87]

B̂(ω0) = i

√
~

2ε0V ω0

ω0

c
(â0 − â†0), (3.7)

where â†0 and â0 are the creation and annihilation operators of photons with angular

frequency ω0.

By combining Equation (3.7) with Equation (3.4), we find that the spontaneous

decay rate due to q-polarized light is given by

Rq =
µ0ω0π

V ~
Dq(ω0) | 〈f | µBgSŜq | i〉 |2 . (3.8)

The mode-density Dq(ω0) in each of the three q-directions is one third of the total

density given by Equation (3.6). Hence the total spontaneous decay rate Rif is

Rif =
µ0(µBgS)2ω3

0

3π~c3
S2

if , (3.9)

where the angular factor is defined as

S2
if ≡

∑
q

| 〈f | Ŝq | i〉 |2 . (3.10)

We now focus on atoms in our microtrap and deduce the loss due to spontaneous

decay in free space. Atoms are optically pumped to the 5S1/2, |F = 2;mF = 2〉 ≡ |2〉
sub-level before being loaded into the magnetic trap. Thus the confining potential is

given by the corresponding trapping energy U(r), Equation (2.14) with the quantum

numbers of the trapped state: gF =1/2 and mF = 2,

U(r) = µBgFmFB(r) = µBB(r), (3.11)

where B(r) is once again the magnitude of the magnetic field of the trap at position r

of the atom.
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The trapped state |2〉 can decay spontaneously to the 5S1/2, |F = 2,mF = 1〉 ≡ |1〉
sub-level with decay rate R12, obtained by introducing the angular factor S2

21=1/8 1

into Equation (3.9). The quantum state |1〉 is also low field seeking, but it feels a

weaker attractive potential

U(r) =
1

2
µBB(r). (3.12)

Atoms that were previously trapped in state |2〉 will escape from this potential if

they are energetic enough. From the |1〉 sub-level, atoms can spontaneously decay to

the 5S1/2, |F = 2,mF = 0〉 ≡ |0〉 lower sub-level. The angular factor that weights this

transition is S2
10= 3/16; the relative decay rate is R10/R21=3/2. Atoms in the quantum

state |0〉 are almost insensitive to magnetic fields and are all lost. Figure 3.1 illustrates

the chain of decays leading to atom loss from the magnetic trap: |2〉 → |1〉 → |0〉. It

shows the potential (in one dimension) felt by the atoms in the states involved during

the loss process.

Figure 3.1: One dimensional
schematic of the spontaneous
decay sequence leading to atom
loss from a magnetic trap. The
green curves and line are the
potentials felt by atoms in the
different quantum states.

The loss rate Γsp ≡ R21 is given by Equation (3.9). For f0= 1 MHz, which

is a typical experimental value, the lifetime of atoms trapped in free space at zero

temperature is τsp = 1/Γsp = 2 × 1024 s. This is far too long to be detectable. To

include effects of non-zero temperature, it is necessary to weight the decay rate by the

factor (n̄th + 1), where n̄th is the mean number of photons per mode at frequency ω0

in the blackbody field at temperature T [88]

n̄th =
1

e~ω0/kBT − 1
. (3.13)

Hence the lifetime τ of the trapped state at finite temperature is

τ =
1

Γsp(n̄th + 1)
. (3.14)

1Details on the derivation of angular factors S2
ij are in Appendix A
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For example, at 300 K the lifetime corresponding to R21 with f0 = 1 MHz is reduced

to τbb = 2 × 1017 s. This time is still very long, being comparable to the age of the

universe!

In our experiment there are two additional causes of atom loss from the magnetic

trap. It is for this reason that we are able to observe atom loss from traps in the

experimental time scale. We typically do experiments under pressures in the low

10−11 torr scale, where the density of particles is of the order of 105 cm−3. Collisions

between the cold atoms and these particles are the dominant source of atom loss from

magnetic traps. In addition to these collisions, resonant photons may leak into the

vacuum chamber. This is another source of atom loss as resonant photons induce

transitions in the trapped quantum states. Collisions with the background gas and

undesired resonant light yield an atom loss rate 1/τback = 10−2 s−1, which we determine

experimentally with atoms trapped more than 200 µm away from the guide wire. This

situation changes dramatically when we pull the microtrap to a few tens of micrometers

from the surface of the atom chip.

3.2 Atom loss near surfaces

Section 3.1 explains how one can calculate the atom loss induced by the thermal

fluctuations of the blackbody in free space. This section outline the spontaneous decay

of the trapped state near surfaces, where a much larger field noise induces a greater

rate of atom loss.

Close to the surface of materials, the mode density relevant for Fermi’s Golden

Rule is considerably increased due to the surface modes of the material. Figure 3.2 is a

schematic of the system that we are considering here. An atom cooled down to about

one microkelvin is confined at a distance of tens of micrometers from the surface of a

dielectric or conductor at room temperature.

The charge distribution inside of the material is given by the polarization which

is related in turn to the electric field E(r, t) by

P(r, t) = ε0

∫ ∞

0

χ(r, τ)E(r, t− τ)dτ + PN(r, t), (3.15)

where χ(r, τ) is the linear susceptibility characteristic of individual materials and

PN(r, t) is the polarization noise, a Langevin-type of term that accounts for the fluc-

tuations induced by the dissipation in the material. The first term in Equation (3.15)

means that the charge distribution at time t depends upon the present and past val-

ues of the applied electric field. How fast the polarization reacts to the changes of
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Figure 3.2: Schematic of the system in our experiment. A 1 µK atom cloud in a microtrap is
coupled to the thermal field produced by a block of material (the wire) at room temperature.
The fluctuations of the vacuum inside the material are enhanced with an additional set of
modes in the space occupied by matter. These are transmitted through the surface and
coupled to the spin of the atoms, inducing high loss rates in microtraps. Forming part of the
internal modes of the material, there are oscillating charges giving rise to random fluctuations
of the voltage across the block (in the case of conductors). This is the so called Johnson noise
[89]

electric field depends on the properties of the material which are contained in χ(r, t).

In addition, the second term of Equation (3.15) states that the polarization fluctuates

because there is power being dissipated in the system due to the resistivity of the

material which opposes to the motion of the charges.

The oscillating charges of the modes inside the material induce a random voltage

across the block, effect known as Johnson noise [89] (see Figure 3.2). The near field

of a conductor is formed by the fields emitted by the oscillating charges of the vac-

uum modes. These fluctuating fields travel through the material and are transmitted

through its surface, giving rise to a white noise within the vicinity of the media in-

terface. Following transmission, the power of the field fluctuations is not attenuated

significantly until they travel a distance λ, their wavelength. Thus the fluctuations

whose frequencies are in the RF regime are not completely attenuated until a few hun-

dreds of meters from the surface. Near the surface, the power of these thermal RF

fields is stronger than the blackbody radiation, inducing in consequence higher decay

rates of the trapped states of the atoms. At a few tens of micrometers from the surface

of atom chips the RF spectrum of the thermal fluctuations drive spin flips at higher

rates than 1/τback, being the dominant loss mechanism in many microtrap experiments.

In addition to spin flips, the coupling of the electric and magnetic dipole moments

of atoms to the thermal field of surfaces also gives rise to another phenomenon: the

Casimir Polder Force. This also leads to an increment of atom-loss rates in microtraps
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as a function of the atom-surface distance d. However it is dominant in a different

range as explained in Section 3.5.2.

3.2.1 Spin flips near surfaces

Section 3.1 shows how the fluctuations of the vacuum induce atom loss from magnetic

traps through the |2〉 → |1〉 transition due to their coupling with the spin of atoms.

This coupling is much stronger when the fluctuations of the vacuum have been amplified

by the presence of matter, leading to greater atom loss from magnetic traps. The

calculation of the rate of spin flips driven by the thermal field of surfaces requires a

more general mathematical treatment than the spontaneous decay rate in free space.

This is because the interacting field is dependent on the geometry of the material and

its conducting properties.

Equation (3.15) is the simplest relation between the electric component of the field

fluctuations through a dielectric or conductor with its internal charge distribution. For

spin-flip rate calculations, the magnetic component is the relevant one. It is connected

to the distribution of charges through Equation (3.15) and Maxwell’s equation

∇× Ê(r, t) = −∂B̂(r, t)

∂t
. (3.16)

The calculation of the magnetic spin-flip rate due to the thermal field of a material

already been done [55, 57], motivated by our experiment among others and, more

generally by the relevance of this process in atom chips. The next section gives an

overview of the mathematical methods used to approach and solve the problem.

3.3 Thermal spin flips: two theoretical approaches

The first prediction of thermal spin flips in microtraps was made by Henkel et al. [55]

for the case of a planar slab of dielectric or conductor as the thermal surface. Published

a few years later, reference [57] presents a theoretical treatment which permits us to

calculate the thermal field of a dielectric or conductor with an arbitrary shape. The

authors of this paper took the case of the geometry of our guide wire to show their

theory and test it against our data. A more recent theoretical publication concerning

the prediction of this rate is by S. Scheel et al. [90]. This paper presents scaling

laws that apply to thin films of conductors and super conductors based on the model

presented in [57].

Both theoretical approaches [55] and [57] use formulations of the fluctuation-

dissipation theorem [91, 88] to account for the fluctuations of the modified vacuum
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interacting with atoms. This theorem shows that in a system with dissipation, the

quantity that is damped must also fluctuate by more than the ordinary vacuum or

thermal fluctuation. Reference [55] uses this theorem to calculate the magnetic field

fluctuations near a planar slab of conductor or dielectric and hence to determine the

spin flip rate of trapped atoms. The formulation used in that article achieves the fluc-

tuations through a suitable random force. Reference [57] applies the theorem directly

to a material with arbitrary geometry. In this case the authors calculate first the ther-

mal fluctuations of the magnetic field near the material and then introduce them into

the Zeeman Hamiltonian of the atom. Both approaches result in an enhancement of

the thermal electromagnetic field, whose interaction with the atom increases the decay

rate to the lower state.

3.3.1 Atoms near a planar slab

Atoms in our experiments are held close to a cylindrical wire. Henkel et al. [55] worked

out the spin flip rate of atoms near a planar slab of conductor or dielectric. However

their calculation qualitatively reproduces effects of atom loss due to spin flips in our

microtrap.

The authors deduce a master equation in which the magnetic interaction force due

to the local magnetic field is taken as a random operator. This equation is obtained by

applying the time dependent Schrödinger equation to the atom’s density matrix with

the hamiltonian of the random force. In the Markov limit, the master equation yields

a relaxation dynamics with the form of Liouville’s equation

ρ̇ = − i

~
[HZ , ρ]−

1

2
{Γ, ρ}, (3.17)

where the term 1
2
{Γ, ρ} = 1

2
[Γρ + ρΓ] is added to include relaxation mechanisms

amongst the different quantum states.

The decay rate Γi→f appears when computing the matrix elements of the operator

ρ̇ for initial and final states i and f , Equation (9) in [55]:

Γi→f =
∑
qp

〈i|µp|f〉〈i|µq|f〉
~2

Sqp
B (d;−ωfi). (3.18)

In Equation (3.18), 〈i|µq,p|f〉 are matrix elements of the atom’s magnetic dipole oper-

ator, as calculated for the spontaneous decay rate in Equation (3.8). Which in turn is

reduced to the matrix elements Ŝif of the spin operator calculated in Appendix A.

The term Sqp
B (d;−ωfi) is the key mathematical tool used in [55]. It is called the
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spectral density and is defined as

Sqp
B (d;−ωfi) =

∫ ∞

∞
dτ〈Bq(r, t+ τ)Bp(r, t)〉eiωτ , (3.19)

where Bq are the spatial components of the magnetic field. The spectral density,

Equation (3.19), is the Fourier transform of the correlation function of the magnetic

field at time t and t + τ . Equation (3.18) is Fermi’s Golden Rule for atoms close to a

surface with the spectral density being evaluated at frequency ωfi to conserve energy.

By applying the fluctuation-dissipation theorem to obtain the magnetic field in

terms of the Green tensor hqp, where q and p again denote spatial components, the

spectral density is written as [55]

Sqp
B (r;−ωfi) =

(n̄th + 1)Γsp

c2
hqp(kz), (3.20)

The tensor hqp is diagonal with components hxx = hzz ≡ h‖ and hyy ≡ h⊥ in the frame

of reference of our atom chip. Here the guide wire defines the z-direction and y is

the vertical spatial component, see Figure 3.2. The elements h‖ and h⊥ are given by

(Equation 22 in [55])

h‖ =
3

4
Re

∫ ∞

0

udu

v
e2ikvd(rπ(u) + (u2 − 1)rσ(u))

h⊥ =
3

4
Re

∫ ∞

0

u3du

v
e2ikvdrσ(u), (3.21)

where

v =

{ √
1− u2, 0 ≤ u ≤ 1,

i
√
u2 − 1, u ≥ 1;

(3.22)

and rπ and rσ are the Fresnel coefficients for π and σ-polarized fields

rπ =
εv −

√
ε− u2

εv +
√
ε− u2

, (3.23)

rσ =
v −

√
ε− u2

v +
√
ε− u2

. (3.24)

The evanescent field at a distance d from the surface is related to the properties of the

material by the relative dielectric function ε. In the low frequency limit, which is the

case for the RF frequency ωfi of the spin flip transition, ε has the form [92]

ε ' i

ε0ρω
. (3.25)

The relative dielectric function determines the attenuation of the electric field whilst

propagating inside a block of material. This can be seen through the definition of skin
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depth

δ ≡ 1

k

√
2εoρω, (3.26)

which is the distance that it takes to attenuate the amplitude of an electromagnetic

wave (with angular frequency ω) by a factor of e−1 when propagating through a ma-

terial with resistivity ρ [93].

By plugging Equation (3.20) into Equation (3.18), Henkel et al. calculated the

spin-flip rate for the particular case of a transition between projections of angular

momentum -1/2 and 1/2, Equation (35) in the paper. One can obtain an expression

to calculate the rate of decay between state |i〉 and |f〉 by re-scaling this expression

with the corresponding angular factor S2
if

Γi→f =
µ2

Bg
2
Sω

2
0T

6πε0~2c5
{
(h‖(kd)+1)(1+cos2 θ)+(h⊥(kd)+1) sin2 θ

}∑
q

|〈i|Ŝq|f〉|2, (3.27)

where θ is the angle between the offset field and the normal to the atom chip surface,

π/2 in our apparatus.

In order to calculate the decay rate Γ2→1 near a planar slab, we integrated nu-

merically Equation (3.21)2 and re-weighted Equation (3.27) with the angular factors

corresponding to the states |2〉 and |1〉. These are the theoretical curves that are plot-

ted later on in this chapter in figures 3.10 and 3.11, where we compare our experimental

results with theory.

Finally, I highlight two useful limits of the lifetime τ = 1/Γi→f , corresponding to

large and small atom-surface distance d in comparison with the skin depth δ of the

material [55]

τ ∝

ω3
0δ

2d d << δ

ω3
0d4

δ
d >> δ

(3.28)

The dependence on d gives a clear signature for atom loss due to thermal spin flips as

opposed to other mechanisms. The frequency dependence is also quite specific. Note

though that it is not simply ω3
0 since δ ∝ ω−1/2.

3.3.2 Atoms near materials with arbitrary geometry

This section is an overview of the theory proposed by P. K. Rekdal et al.. [57] to

predict thermal spin-flip rates of atoms trapped near the surface of a conductor or

dielectric with arbitrary geometry.

The electric field and the polarization of the material are related through Equa-

2We are indebt to P.K. Rekdal for calculating these integrals.
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tion (3.15). The polarization noise PN(r, ω) is defined according to the fluctuation-

dissipation theorem which states that the macroscopic changes in polarization are given

by the imaginary part of the dielectric function ε(r, ω),

PN(r, ω) = i

√
~ε0
π
εI(r, ω)f̂(r, ω); (3.29)

where the bosonic field operator f̂(r, ω) has been introduced to account for excitations

of the system induced by the interaction between the field and the absorbing material.

Now, the displacement field

D(r, t) = ε0E(r, t) + P(r, t) (3.30)

can be transformed into the Fourier space by integrating Equation (3.15). Once D(r, ω)

has been found, Maxwell’s equations show that the electric field E(r, ω) satisfies the

Helmholtz equation

∇×∇× E(r, ω)− ω2

c2
ε(r, ω)E(r, ω) = ω2µoPN(r, ω), (3.31)

The solution for Equation (3.31) is

E(r, ω) = ω2µ0

∫
d3r′G(r, r′, ω) ·PN(r′, ω) (3.32)

where G(r, r′, ω) is the same Green tensor as Equation (3.20) of Henkel’s theory. It is

defined by

∇×∇×G(r, r′, ω)− ω2

c2
ε(r, ω)G(r, r′, ω) = δ(r− r′)U, (3.33)

U being the unit dyad. A dyad is a matrix defined by the product of two matrices of

the same rank.

The magnetic component is then obtained by the relevant Maxwell equation in

Fourier space

B(r, ω) =
1

iω
∇× E(r, ω). (3.34)

The magnetic field operator in the Schrödinger picture

B̂(r) = B̂(+)(r) + B̂(−)(r); B̂(+)(r) = [B̂(−)(r)]† (3.35)

is obtained by integrating B(r, ω) with respect to frequency

B̂(+)(r) =

∫ ∞

0

B(r, ω)dω. (3.36)
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Then the magnetic field of Equation (3.36), in combination with Equation (3.2), yields

a Heisenberg equation of motion with the form of Equation (3.17) for the density

matrix of atomic states |i〉 and |f〉. The decay rate Γi→f appears when calculating the

corresponding matrix element with a magnetic field of frequency ω0

Γi→f = µ0µBgS〈f |Ŝp|i〉〈f |Ŝq|i〉 × Im[∇×∇×G(rA, rA, ω0)]pq, (3.37)

where rA is the position of the atom. Equation (3.37) is the analog of Equation (3.18)

by Henkel et al.: both are generalizations of Fermi’s Golden Rule. In equation (3.37),

all the information about the field and the geometry of its source is contained in the

factor Im[∇ × ∇ ×G(rA, rA, ω0)] and it is straightforward to identify the rest of the

factors as the spin part of the Zeeman Hamiltonian of the interaction.

In order to discuss the spin-flip rate when atoms are near the wire of our experi-

ment, the authors separated it into the contribution made by the free space field fluctu-

ations Γfree
i→f and the correction to this due to the presence of the wire Γwire

i→f . This is pos-

sible because the Helmholtz equation and hence, the Green tensor in Equation (3.33) of

the field can be separated into two parts G(r, r′, ω0) = Gvac(r, r′, ω0) + Gwire(r, r′, ω0).

The vacuum part is diagonal

Im[∇×∇×G(rA, rA, ω0)]pq =
k3

6π
δpq, (3.38)

and together with Equation (3.37), it yields the result we know from Section (3.1):

Γvac
2→1 = Γsp.

The rate Γwire
1→2 is derived by combining the result for Gwire(r, r′, ω0), Equation (29)

in [57], and Equation (3.37)

Γwire
2→1 =

3

8
Γsp

∞∑
n=0

(2− δ0n)Re[(I lim
n )yy + (I lim

n )yy]). (3.39)

Here the (I lim
n )qq are integrals defined in [57] containing information about the field

close to the surface. The theoretical curves for the lifetime near a cylindrical wire

shown in figures 3.10 and 3.11 were calculated with Equation (3.39).

Finally the authors extended the theory to the case of thin films of conductors and

superconductors [90]. They found general scaling rules for the lifetime of the trapped

state τ not just in terms of d and δ but also in terms of the thickness h of the films

τ ∝


ω3

0δ
2d d << δ, h

ω3
0d4

δ
d, h >> δ

ω3δ2d2

h
δ >> d >> h

. (3.40)
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Figure 3.3: Typical sample of cold atoms prepared for lifetime measurements. (a) absorption
image of atoms cooled down to 5.6 µK with a RF ramp from 13 to 1 MHz. The temperature
was measured by fitting a Gaussian to its axial profile (b) as explained in Section 4.2.1.

The two first scaling rules in Equation (3.40), recover the limits obtained by Henkel

et al. for the infinite slab. The third one is a new and very useful result. It shows

that the spin flip lifetime can be made long close to an atom chip by making the film

thickness small enough.

3.4 Experiments

3.4.1 Our system: cold atoms near a cylindrical wire

Although we were able to prepare Bose-Einstein condensates they were not required

for our experiments, which were carried out using clouds of atoms at a few microkelvin

near the surface of our guide wire, see Figure 3.3. This made the experiment easier.

One of the problems with BEC experiments using atom chips is running high

density currents inside the vacuum chamber. The dissipation of power through the

wires in UHV can heat the chip and degrade the vacuum if the current is running

for a long enough time. The wires of our atom chip are no exception: they outgas

enormously if the magnetic trap is switched-on for longer than around 15 s. After this

time, the pressure inside the vacuum chamber is typically increased to around 1×10−9

torr. Decreasing in consequence, the background limited lifetime of our magnetic trap

from more than one hundred to about twenty seconds.

The RF-evaporation routine that we normally use to prepare Bose-Einstein con-

densates is 12.5 s long. This evaporation time leaves just 5 s for us to observe atom

loss from our magnetic trap. Because of this, we shorten the RF-evaporative cooling

stage from 12.5 s to 6 s. With this change in the evaporation time, we do not make a

BEC but we are able to observe atom loss from the microtrap for 9 s.

The initial RF frequency for evaporation is 13 MHz, the same as in the typical

preparation of condensates. The final frequency however, was normally between 2 and
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0.7 MHz in this case, yielding temperatures of a few microkelvin. Figure 3.3 (a) shows

an absorption image of a typical cloud of cold atoms prepared for spin-flip experiments.

This atom cloud was cooled with a RF sweep from 13 to 1 MHz giving a 5.6 µK axial

temperature. It was left in the evaporation position, corresponding to 6.9 A through

the guide wire and 2.9 mT of bias field.

The cross section of our guide wire is shown in Figure 3.4. This wire has a 500

µm diameter (much larger than micro-fabricated wires now used in atom chips) and

has three layers. The core is made of copper, with 190 µm radius. It is surrounded

by a 50 µm thick layer of aluminium which in turn is insulated by 10 µm of ceramic

(Al2O2).

Figure 3.4: Cross section of our
cylindrical guide wire. It has
two conducting layers, copper
and aluminium and an insulat-
ing layer of ceramic.

A crucial parameter for the experiments on spin flips is the distance d from the

atoms to the conducting surface of the wire, the aluminium layer. In order to be

accurate with this parameter, we need to find a reference in the images from which

d can be measured. For this, we find the current that brings the atom cloud to the

position of the ceramic surface of the wire. In these experiments, we first count the

atoms in an atom cloud far from the surface, with 6.9 A through the wire and 2.9 mT

bias field, as the atom cloud shown in Figure 3.3. Then we pull the atoms towards the

surface by linearly ramping the current through the guide wire to a smaller value while

leaving the bias field constant. This was done over the last second of evaporation as

shown in Figure 3.5. The atoms were left at this position for 100 ms, brought far from

the wire again by ramping current back to 6.9 A and then counted as illustrated by

the red dashed lines in Figure 3.5. We repeated this procedure until we had images

with no atoms left in the trap. The blue circles in Figure 3.6 plot the atom number

counted far from the surface versus the current I(y) holding atoms near the surface.

With these experiments we associate the position of the ceramic surface to 4.05 A, the

current for which approximately half of the atoms are lost (see Figure 3.6).
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Figure 3.5: Variation of the microtrap fields during evaporative cooling, before counting
atoms for a lifetime measurement. The distance from the wire d is set by linearly ramping
the current through the guide wire during the last second of RF evaporation while both
uniform fields, Bx and Bz, are kept constant.

Figure 3.6: Number of atoms versus current through the wire. The blue circles are the
number of atoms left inside the magnetic trap after it was pulled towards the wire and then
returned to its original position by running 6.9 A again through the guide wire.
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Figure 3.7: The black circles are the vertical position in the images of atom clouds trapped
whilst running several currents (lower than 6.9 A) through the wire.

Once a current I(y) is associated to the position of the surface, we look for a

reference in the images. To do this, we study the dependence of the position of the

atoms with the current through the wire. For these experiments the current was left

at I(y) until the atom clouds were imaged, as illustrated in Figure 3.5. In each case,

the position of the atom cloud in the image is determined by fitting a Gaussian to the

radial (vertical) profile of the atom cloud. Then we can link each current to a position

in pixels of the images, finding the linear dependency shown in Figure 3.7, where the

position of atoms is plotted against the current through the wire. The pixel along y

in which the center of atom clouds for 4.05 A was found is taken as the position of

the ceramic surface on the pictures. Measuring the distance from the insulating layer

of the wire to the atoms in this manner, gives us an uncertainty of ± 1.4 µm. The

distance d from the atoms to the aluminium layer, which is the relevant parameter

for our experiments in this chapter and Chapter 4, is this distance plus 10µm, the

thickness of the ceramic layer. For example, the atom cloud displayed on Figure 3.3

(a), for which I = 6.9 A and Bx = 2.9 mT, was trapped at (225 ± 1.4) µm from the

conducting surface of the guide wire.

3.4.2 Measuring the spin-flip frequency

Investigating the atom loss rate due to spin flips requires an accurate knowledge and

control of the spin-flip frequency. Here I present the method we used to measure this
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Figure 3.8: One example of the method that we used to measure the spin-flip frequency
f0 of our magnetic trap. The blue circles are temperatures measured for different final RF
frequencies on the evaporative cooling ramp and the line is a least squares fit to these data.
The red circle is the final frequency extrapolated from the fit, corresponding to f0= 548 kHz
(or B0=0.077 mT).

frequency.

During RF evaporation, the truncation energy is related to the field B0 at the

centre of the magnetic trap by

Et = µBgFmF (B −B0). (3.41)

By substituting the RF-resonant condition given by Equation (2.41) into Equation

(3.41), we find that the final RF frequency is related to Et through

Et = hmF (f − f0), (3.42)

where the final RF frequency is f = 1
h
µBgFB and f0 = 1

h
µBgFB0 is the frequency

resonant to spin flip transitions for atoms close to the centre of the magnetic trap.

Matching the final RF frequency f with f0 means zero truncation energy, leading to

the expulsion of all atoms from the microtrap. Also, because at low temperatures the

field that atoms feel is B0, we call f0 the ‘spin-flip’ frequency.

We measure the spin-flip frequency of magnetic traps by observing experimentally

the temperature dependence on the final RF frequency f of evaporative cooling. Final
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RF frequency equal to f0 corresponds to zero energy inside the trap or equivalently, zero

temperature. At temperatures around 30 µK and lower, we find that this dependency

is linear, as can be seing from the example shown in Figure 3.8. For this measurement,

the atoms are confined 225 µm away from the guide wire. The blue circles in Figure

3.8 are the temperatures of atom clouds cooled down to different final RF frequencies.

These data are well fitted by least squares fit, the line shown in Figure 3.8. An

extrapolation of this fit for the final frequency corresponding to T = 0 gives a spin-flip

frequency of 548 kHz. In some cases we found that the temperature measured with

the lowest possible number of atoms already gives a good estimation of f0.

3.4.3 Measuring lifetime

To measure the lifetime of the magnetic trap, the atom cloud was transported to the

desired distance d from the wire during the last second of evaporation by ramping

I(y) and leaving constant the bias field Bx as illustrated by the red line in Figure 3.5.

Once cooled at a suitable temperature and desired position, the atom cloud was held

for a time between 0 and 9 s as shown in Figure 3.5. This waiting time was limited

by the heat dissipation through the wires in the vacuum chamber. To ensure that we

measured the mechanism of interest and not collisional loss, we normally waited no

longer than 9 s before counting atoms with our absorption imaging system. For each

run we took a picture of the atom cloud, followed by an image 500 ms later under

exactly the same conditions but without the atoms.

Here we count the atoms as described in Section 2.2.3. We first divide the image

of the atoms by the background picture. This division is expected to be one on pixels

belonging to regions of the picture with no atoms. It is however, normally ± 5 % off

presumably due to variations on the intensity of the imaging beam from picture to

picture. To fix this, we re-normalize the image by the average number over pixels in

a region with no atoms but close to the magnetic trap. Next, we take the natural

logarithm for each pixel in the image to obtain a map of the column density of the

atoms in the clouds. Finally, we integrate over the region where the atom cloud appears

in the image to determine the total number of atoms.

A measurement of lifetime was completed by counting atoms in identical magnetic

traps for several different waiting times. The decay shown by Figure 3.9 is an example

of these measurements. For this measurement, the atom clouds were held 29 µm from

the guide wire and evaporated by a RF ramp from 13 to 1.7 MHz. The line on the

Figure 3.9 is a least squares fit to decay of atom number; the loss rate is given by its

slope and the lifetime is τ= 5.1 ± 0.4 s. The uncertainty of our lifetime measurements

is given by the error of the slope in the least squares fit.
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Figure 3.9: Atom number in the microtrap at 29 µm counted after diverse times. Atoms
were initially cooled down to 1 µm.

3.4.4 Lifetime dependence on d

We measured the lifetime of the magnetic trap in this way at a variety of atom-surface

distances d. We measured lifetimes for two different spin-flip frequencies: 1.8 MHz

and 560 kHz. Table 3.1 is a summary of these data, and Appendix B shows in more

detail the experimental results. Note that, as predicted by the theoretical limits given

by equations (3.28) and (3.40), the lifetimes we measured for 1.8 MHz are longer that

those measured for 560 kHz within the same range of d.

f0 (MHz) d (µm) τ (s) στ (s) f0 (MHz) d (µm) τ (s) στ (s)
1.8 27 2.2 0.2 0.56 27 2.5 0.2

29.4 5.1 0.4 27 2.4 0.1
35 10.5 0.2 35 5.3 0.2
54 38.7 2 54 8.6 0.6
77 73.6 21 54 8.2 0.4

71 15.1 2
88 29.4 7

Table 3.1: Measured lifetimes of the magnetic trap for various distances d from the wire and
two different spin-flip frequencies. The uncertainty στ is determined by the least squares fit
in each case.

Our experimental data for f0 = 1.8 MHz are the green circles in Figure 3.10. For
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comparison, the black curve plots the lifetime τ(d) predicted by Equation (3.27) for

atoms with spin flip frequency of 1.8 MHz near a planar slab of aluminium at 297 K.

It is not expected to fit to our data because our wire is a cylinder, not a slab. The

experimental lifetimes could be reasonably expected to be longer than those for a slab

because there is more material in a infinite slab than in our guide wire. With our

data however, this effect is not evident because the discrepancy between experiment

and Henkel’s theory is smaller that two error bars in the whole range of d that was

investigated. Another comparison between experiment and theory is possible with the

full calculation for a cylindrical wire [57]. The blue curve in Figure 3.10 displays this

calculation for a 297 K temperature. It is immediate to note that longer lifetimes

are predicted for a wire than for an infinite slab of aluminium. This is a sign of the

difference in the amount of material included in the two geometries. From Figure 3.10

one can note that our experimental data are closer to the theory for a slab at short

distances (d < 30 µm), and closer to the wire’s theory for distances longer than about

55 µm. These are not significant differences because the discrepancy between our

data and either theory is smaller than three error bars in the full range of d that was

investigated. From this comparison between our data for f0 = 1.8 MHz and theory, we

can conclude that indeed, the atom loss investigated as a function of d is dominated

by thermal spin flips. However, these data do not evidently distinguish between the

two different theories.

Let us now focus on Figure 3.11, showing our data (red circles) for f0 = 560 kHz

as well as the curves corresponding to various theoretical predictions for this spin-flip

frequency. The blue dashed curve is the lifetime calculated for a cylinder with the

dimensions of our guide wire at 297 K. It predicts lifetimes consistently long compared

with our data in the full range of explored distances d. This systematic discrepancy

suggests that the wire was heated up by dissipating power whilst running experiments,

as we subsequently showed. Section 3.5.5 explains a few measurements that we carried

out to find the temperature of the wire during experiments which indicate a rise of 64

K above room temperature. The blue solid curve shown in Figure 3.11 is the calculated

lifetime of atoms trapped near a cylindrical wire at 361 K, and the black curve is the

calculation for a planar slab at the same temperature. By comparison between our

data and the two curves for the two different theories at T = 361 K in Figure 3.11

for f0 = 560 kHz, we recover the conclusion made for f0 = 1.8 MHz: our experiments

were not sensitive enough to distinguish between a planar and a cylindrical geometry

of the thermal body.

Our data lay consistently underneath the curve for the wire at 361 K, suggesting

that the wire temperature rose by more than our estimation of 64 K from the tem-

perature response tests. Also, the experimental lifetimes are consistently longer than
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Figure 3.10: Lifetime of the magnetic trap as a function of d. Green circles: lifetimes
measured with spin-flip frequency f0= 1.8 MHz. Black curve: theory by Henkel et al. [55]
predicting the lifetime of cold atoms coupled to a planar slab of aluminium at 297 K. The
blue curve is the by Rekdal et al. [57] for a cylindrical wire at 297 K.

those calculated close to a planar slab for the same temperature. However again, given

the size of the error bars of our data, we conclude that the experimental data is not

accurate enough to reproduce the temperature dependence predicted for the thermal

spin flips.

Our experimental data were the first demonstration of the coupling between the

spin of cold atoms and the thermal field of a surface as opposed to technical noise. In

Section 3.5.4 it is described how we took care of technical noise in both the AF and

RF regimes. The AF noise that remained in our magnetic trap produced some residual

heating, but did not affect the number of atoms and hence was not a problem for these

measurements. RF noise in the currents of the wire would create an atom loss rate

proportional to 1/d2 and therefore, lifetime proportional to d2 [94]. The dotted curve

in Figure 3.11 shows the expected behavior of the lifetime of atoms as if it was limited

by this mechanism. This curve is chosen to pass through an arbitrary experimental

point to show the clear discrepancy between what is predicted from spin-flips driven

by RF technical noise and what has been observed.
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Figure 3.11: Comparison of our results for f0= 560 kHz with two theoretical models. The
red dots are the measured lifetimes of atom clouds at various distances from the surface
of the wire. The solid and dashed (blue) curves are lifetimes calculated for atoms near a
doubly-layered wire at 297 and 361 K calculated using the theory of reference [57] by P. K.
Rekdal et al.. The black curve corresponds to the lifetime of the trapped quantum state near
a planar slab of aluminium at 361 K. The dotted curve is the lifetime behavior ∝ d2 expected
from RF technical noise.

3.5 A few experimental considerations

3.5.1 Region of interest

At the time of our experiment, the theory by Henkel et al. [55] was already available.

This theory provided two useful scaling laws [Equation (3.28)] for atom loss near a

planar slab of material in terms of the spin-flip frequency ω0, the skin depth of the

material δ and the distance to its surface d. These scaling laws gave us guidance for

our experiments. We expected to observe a change in the dependence of the lifetime

by scanning d in a range including the skin depth of the conducting layers of the wire,

copper and aluminium, at the measured spin-flip frequencies 1.8 MHz and 560 kHz.

These lengths, shown in Table 3.2, fixed the range of d over which we focused our

investigations: 27 - 100 µm.
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f0 (MHz) B0 (mT) Material δ (µm)
1.8 0.26 Cu 49

Al 61
0.56 0.08 Cu 88

Al 110

Table 3.2: Skin-depth of copper and aluminium at 300 K for the chosen spin-flip frequencies.

3.5.2 The Casimir-Polder potential in our microtrap

The Van der Waals force attracts atoms to the surface and can be a cause of atom

loss by pulling atoms out of their trap. This happens at distances of a few hundreds

of nanometers, which is much closer than the distances studied in this thesis.

A neutral atom interacts with the thermal field of surfaces according to the electric

dipole Hamiltonian

He = −D̂ · Ê(ωκ), (3.43)

where D̂ is its electric dipole moment and Ê(ωκ) is the electric field. When the atom is

close to the surface compared with λ0/4π, where λ0 is the wavelength of its strongest

dipole transitions, this interaction is just the Van der Waals force [95]. For Rb this

length scale is of nanometers. Further away, the interaction is retarded and follows a

different power law from the Van der Waals force. It is called the Casimir-Polder force

following the two authors who first calculated it [96]. The first experimental evidence

of this potential was obtained by C.I. Sukenik et al. [97], who measured the force

acting on atoms while travelling across a cavity built with two parallel plates.

For an atom at distance d from a plane surface, the Casimir Polder potential takes

the simple approximate form

VCP = −C4

d4
, (3.44)

where

C4 = ψ(ε)
3~cα

32π2ε0
. (3.45)

In Equation (3.45) α is the static electric polarizability of the atoms and c is the

velocity of light. ψ(ε) is a numerical factor that is dependent on the dielectric constant

ε of the material, equal to one for a metallic surface.

The nearest conductive material to atoms in our microtrap is the the aluminium

layer of the guide wire. The Casimir-Polder potential of this surface modifies the radial

potential of the trap. Figure 3.12 is the potential that the atoms feel in a trap at 27

µm from the aluminium surface, the nearest distance where we measured atom loss

rates for this Thesis. Magnetic traps at this distance are formed by running 3.9 A

though the guide wire and bias field Bx = 2.9 mT. The Casimir Polder potential is the
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Figure 3.12: Cross section of our microtrap in the radial direction plus the Casimir-Polder
potential of a conducting surface. The potential of the microtrap was calculated with a
current of 3.9 A through the guide wire and a bias field of 2.9 mT. These parameters bring
the microtrap to 27 µm from the aluminium layer of the wire – the shortest distance in which
we measured rates of atom loss.

dominant interaction when it cancels with the radial potential of the trap that acts in

the same direction but with opposite sign. As can be seen in Figure 3.12, this happens

at about 0.1 µm from the conducting surface. The Casimir Polder potential causes

atom loss when making the radial trap depth shallower than the temperature the

trapped atoms. In the case of the microtrap considered in Figure 3.12, the radial trap

depth is reduced from 1273 µK to 220 µK. Because the atoms for these experiments

were typically cooled to 6 µK, we can rule out the Casimir Polder potential as an atom

loss mechanism in the measurements reported in this thesis.

3.5.3 Adjusting f0

In Chapter 2 it was mentioned that the offset field B0 at the center of the trap has

two contributions: the uniform field Bz and the field of the end wires at z = 0. The

latter field is a function of the trap height:

Bend(d) =
µ0I

2π

(
d− yi

A2
i + (d− yi)2

− d− yo

A2
o + (d− yo)2

)
, (3.46)

where yi(o) is the position of the inner (outer) end wires along y and Ai(o) is half of

the distance between the end wires with corresponding subindex, see schematic of the

atom chip in Figure 2.10.
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Figure 3.13: Variation of the offset field B0 as a function of d. The filled circles are values of
this field measured for various distances d from the surface of the wire, and the green line is
the curve predicted by Equation (3.46).

Now, B0(d) = |Bend(d) +Bz|, this dependency is shown in Figure 3.13. The black

circles in Figure 3.13 are the experimental values of B0(d), measured as explained in

Section 3.4.2, with 15 A through the end wires and Bz= 0.344 mT. For these points

the distance d was varied by changing just the current through the guide wire, whose

field has no component along z. The curve is B0(d) calculated with Equation (3.46).

In order to measure the spin-flip rates versus trap height d with fixed frequency

f0, we compensate for the variation of Bend by adjusting the current through the z-coils

guided with the theoretical behaviour of B0(d). Finally f0 is determined experimentally

as described in Section 3.4.2.

3.5.4 Technical noise

Before measuring the spin-flip rates we detected and controlled the technical noise that

our experimental was producing. We found sources of atom-decoherence in both the

audio frequency (AF) and RF ranges that were generated by mechanical and electronic

oscillations in different parts of the experiment.

Magnetic fields tuned to multiples of the trap frequency generate trap shaking
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that excites atoms from one trap mode to a higher one, finally causing a heating rate

of the whole cloud [98, 99]. This heating rate can give atoms energy greater than the

trap depth, inducing atom loss in consequence. Our compressed magnetic trap has

radial and axial frequencies of 838 Hz and 30 Hz respectively, both in the AF range.

We originally found the magnetic trap had a heating rate of about 2 µKs−1, which was

traced to two sources of AF noise in our experiment. One of them, the biggest source,

was mechanical oscillations which in turn were originated in two different ways. Firstly,

we found that by attaching the RF antenna to the top of the vacuum chamber through

small pieces of the sorbathane (a foam rubber used for mechanical damping), helped

to decrease the heating rate. Which means that this antenna had been oscillating.

Secondly, the wire of the ion gauge was oscillating in an obvious manner and part of

it was sitting on the optical table. We also solved this problem with sorbathane, by

making a damping base that supports this wire at the part in contact with the optical

table. With these precautions, the heating rate was reduced to 1 - 0.5 µKs−1.

The second source of AF noise, causing the residual heating rate in the microtrap,

are oscillating magnetic fields produced by AC noise in the field sources. Our current

driving circuits have an inherent rms noise of 0.01 mV or lower, equivalent to less

than one part in 105 of their output signal. However, this is amplified by the quality

of the input signal. The poorest case is the guide wire, whose source is a Thurlby

Thandar Intruments (TGA 1230) waveform generator that produces a slow drift (in

the bandwidth 20 Hz - 300 kHz) with 0.53 mV rms, one part in 103 of its DC signal.

After passing through the corresponding current driving circuit, this noise is injected

into the experiment as an oscillation with 20 µA rms, one part per 106 of the current

through the guide wire. Our magnetic trap is typically switched on for no longer than

15 s and hence, this heating rate can heat up atoms up to about 11.3 µK during

one run. This means no atom-loss contribution due to the heating rate since in the

(shallowest) radial direction our compressed trap is typically 516 µK deep.

In order to check for technical noise in the RF range, we scanned the spin-flip

frequency measuring it as explained in Section 3.4.2. Close to 1 MHz, we found a

dramatic drop in the lifetime of atom clouds even at large distances from the wire

(d ≥ 200 µm). In order to search for the source of this noise, we used the RF antenna

connected to a spectrum analyzer as a detector and found a parasitic oscillation with

a 1-1.5 MHz, varying frequency in one of the circuits of the optical shutters. We

removed these circuits from their rack, which was shared with other electronics of the

experiment. Additionally, we filtered the noise by adding a capacitor to the problematic

circuit. After these changes, the parasitic signal was too small to be detected with the

antenna. Nevertheless, the atoms seemed to be a better detector. The decay rate was

still surprisingly big when f0 was in the noise frequency range. Therefore we decided
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to measure the lifetime of traps with spin-flip frequency far from resonance with these

oscillations: 560 kHz and 1.8 MHz.

3.5.5 Temperature of the guide wire

A complete comparison between our results and the theory presented in references

[55, 57, 90] would demand knowledge of the temperature of the guide wire during

experiments, so we can calculate the correct scaling factor (nth+1) required to account

the blackbody radiation into the decoherence rates.

The temperature of the guide wire was not monitored during the measurements

of lifetime. However, after that we attached a thermocouple type K (Chromel/Alumel

junction) to the surface of the guide wire once we broke vacuum for the inclusion of a

new chip into the vacuum chamber. The head of the thermocouple was weighted down

with a block of Poly Tetra Fluoro Ethylene (PTFE) with a piece of Macor resting on

it. Its wires were glued with vacuum compatible epoxy (Bylapox 7285) to a Macor

block sitting on one side of the atom chip as shown in Figure 3.14 (a).

Under vacuum, we monitored the temperature response of the guide wire while

applying continuous currents with typical experimental values. Figure 3.14 (b) shows

curves of the temperature change ∆T as a function of time for 4, 5, 6 and 8 A. The

base temperature at zero current was 297 K, the room temperature. The guide wire

was burned before we could take more precise measurements, such as reproducing the

ramp sequences run during spin-flip experiments. Fortunately the curves displayed in

Figure 3.14 (b) produce an adequate estimate of the temperature reached by the guide

wire during experiments. Figures 2.14 and 3.5 show the typical sequence followed by

the current through the guide wire. When the magnetic trap was switched on, the

guide-wire current was stepped from 0 to 8 A. Then the current was linearly ramped

down to 6.9 A during 500 ms for the compressed trap stage. Evaporation typically

lasted for 6 s; during the last second the current was ramped to I ' 2πBd
µ0

. This current

was maintained for a waiting time of between 0 and 9 s until data acquisition.

A good estimation of the current versus time is therefore given the 7 A points

displayed in Figure 3.14 (b), interpolated from the response curves as detailed in

Appendix C. The red circle in Figure 3.14 (b) is the temperature rise after 15 s of

running at 7 A: ∆T = 64 K. This represents the highest temperature to be read when

considering the factor (nth+1) to include the blackbody radiation into the theoretical

rates.
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Figure 3.14: Temperature response of the guide wire to several currents. The figure shows
(a) the method in which the thermocouple was attached to the guide wire, and (b) the wire
temperature as a function of time. Colored curves are experimental measurements; solid
circles are interpolations from these data.
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3.6 Conclusion and outlook

The data presented in this chapter were the first evidence of the atom loss mechanism

through thermally driven spin flips near the surfaces of atom chips [56]. We provided

an experimental test for the calculations made by Rekdal et al. [57] for thermal spin

flips near a cylindrical wire.

This theory was extended to include spin flips near thin films of conducting and

superconducting surfaces [90], leading to important theoretical results to guide us

towards a better design of future atom chips. The theory has recently extended to

atoms trapped near thick superconductors [100], predicting lifetimes several orders of

magnitude longer than the lifetime of the trapped states near thin wires of conductors.
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A real wire has imperfections of shape and composition. Both of these cause the current

density to depart from the ideal of uniform flow along the length of the current carrying

wire. Consequently, in addition to the circular field created by the ideal current, the

real current also generates field components parallel to the direction of the wire. The

spectrum of these components is governed by the order and size of the imperfections

in the wire. These anomalous, axial fields create corrugations at the bottom of the

guiding potential whose amplitude is typically between one part in 103 and 104 of the

wire’s circular field.

In microtraps, atoms are trapped at tens of micrometers from current carrying

wires. Depending on the structural purity of the wire, at these distances the cor-

rugations of the guiding potential can be sufficient to break clouds of cold atoms or

condensates into lumps as shown in Figure 4.1. This makes it difficult to achieve well

defined condensates near the surface of an atom chip and can compromise a number

of desirable applications. The series of images displayed in Figure 4.1 is taken of atom

clouds cooled to the same temperature but localized at different distances d from the

aluminium surface of the guide wire. It illustrates the fragmentation of atom clouds

in our microtrap. From Figure 4.1, it is clear how at the long distances (around 100

µm) corresponding to the higher images, the magnetic trap holds a single atom cloud.

This is changed as the microtrap is pulled towards the wire, to finally break the cloud

into three smaller lumps in the image for 16 µm, the lowest in Figure 4.1.

The atom-chip community has recently put a considerable effort into understand-

ing and solving this problem for future experiments. The atom chip group of Tübingen

[99, 101], the MIT-Harvard group [102] and our group [58] initiated the study of the

fragmentation in microtraps near wires. The first publication with evidence of atom

cloud fragmentation was published by Leanhard et al. [102], although it was not clearly

reported until [99, 58]. The origin of the anomalous potential was tracked down using
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Figure 4.1: Absorption images illustrating the fragmentation of atom clouds when pulled
towards the surface of our guide wire. Here d is the distance from the aluminium surface of
the wire.
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different tests. One was conducted by probing the surface of the same wire with atoms

confined by magnetic traps and dipole traps; atom clouds inside the magnetic traps

were fragmented while atom clouds inside dipole traps were not fragmented in the

same location [103]. Another test was to reverse the direction of the bias field, which

had the effect of turning the minima of the corrugations into maxima and viceversa.

This proved that the field causing the potential corrugations has alternating sign [101].

Our work, which is subject of this chapter, showed that the anomalous field that is

responsible for fragmentation decays with the distance from our guide wire as a mod-

ified Bessel function of the second kind K1(2πy/λ) [58]. This decay is expected from

the field created by a meandering current flowing along the axis of the wire. Although

we do not have enough evidence to make a definitive statement, we think that the

origin of these deviations of the current are imperfections in the internal structure of

the guide wire.

Further experimental and theoretical investigations carried out in Orsay, France

[104] showed that the current deviations can be caused by the imperfections in the

surface and edges of the wire. Their work demonstrated that the corrugations in

the trapping potential are diminished by improving the quality of the wires, which

is directly related to the techniques used to manufacture them [81]. The atom chip

group of Heidelberg, Germany probed the D.C. magnetic field near a wire fabricated

with lithography [82]. They verified that, as previously shown by the Orsay group, the

method of construction of the wires is of fundamental relevance to the quality of the

resulting field. In a more recent publication [105], this group combined the techniques

used for detection of the anomalous field together with the micron-scale manipulation

of cold atoms on atom chips to design a magnetic field detector whose compromise

between spatial and field resolution overtakes any previous technological accuracy.

4.1 Fragmentation in our microtrap

To study the fragmentation of our magnetic trap, we observed atom clouds held at

several distances d from the wire, in the range 16 - 100 µm which is suitable for a

number of applications.

The atom clouds displayed shown in Figure 4.1 were prepared similarly to the

samples of atoms cooled for the spin-flip experiments. This is by using the same

cooling and trapping sequence described in Chapter 2 but with a modification in the

RF-evaporative stage. Here, I summarize from the start of magnetic trapping. About

107 atoms in the 5S1/2, |F = 2,mF = 2〉 state of 87 Rb are loaded to a Ioffe-Pritchard

microtrap. The magnetic trap is initially created at 1.3 mm from the guide wire by

running 8 A through the guide wire, applying 1.0 mT of bias field in the x-direction and
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driving 15 A through the four end wires. The field due to the end wires at the center of

the trap is partially cancelled by a uniform field of 0.6 mT along z. Next, the magnetic

trap is compressed by linearly ramping the current down to 6.9 A and increasing Bx

and Bz to 2.9 mT and 1.1 mT respectively over 500 ms. This brings atoms down to 225

µm from the surface of the guide wire with radial and axial frequencies 840 and 26 Hz.

The collision rate at this point is 55 s−1, appropriate for efficient evaporative cooling.

Evaporation is then carried out over 6 s, from 13 MHz to around 2.8 MHz. This

sequence cools atoms down close to 7 µK, a suitable temperature for our experiments

because the anomalous potential of our wire is between 0.5 and 12 µK within the

studied range of d.

The atom density profiles plotted in Figure 4.2 have been extracted from the

atom clouds trapped at eight different distances from the wire whose images appear in

Figure 4.1. Each profile was normalized by the total count number along the integrated

region. The top (green) curve shown in Figure 4.2 is the axial profile of an atom cloud

trapped at 101 µm from the surface of the wire, this distribution is well approximated

by a Gaussian. Additional structure appears progressively in curves corresponding

to the profiles of atom clouds trapped at shorter distances from the wire. The lower

(black) curve in Figure 4.2 is the axial atom density distribution of an atom cloud 16

µm away from the wire. In this curve, the Gaussian distribution is almost completely

screened by three peaks corresponding to three minima in the potential induced by the

anomalous field ∆Bz. These peaks remained at the same position throughout several

months of measurements.
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Figure 4.2: Axial profiles of atom clouds trapped in the range d = 16− 101 µm. An offset of
0.01 was included between subsequent curves for clearness of the graph.
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4.2 Extracting potentials from absorption images

Originally the fragmentation of atom clouds near wires was thought to be caused by

stray magnetic fields parallel to the axis of the wire [99]. To investigate the origin

of these fields, we extracted the potential holding the atom clouds directly from their

images.

4.2.1 Cold atoms trapped in a harmonic potential

It is still useful to define a temperature for magnetically trapped ensembles of atoms

because they reach a steady state through oscillations and elastic collisions. Equilib-

rium is reached after the thermalization time. Once thermalization is reached, one can

assume that the probability of finding an atom with energy ε is given by the Gibbs

distribution [88]

w = Ae−ε/kBT = Ae−k/kBT e−u(z)/kBT (4.1)

where A is a normalization constant, k = 1
2
kBT is the average kinetic energy per

atom and T is the temperature of the atoms, appropriately defined in the next few

paragraphs. Here, u(z) is the potential that is confining the atoms along z, the axial

direction of our Ioffe-Pritchard trap.

Because the kinetic energy k is constant, the atom density is proportional to the

Boltzmann factor,

ρ(z) ∝ e−u(z)/kBT . (4.2)

If the trapping potential u(z) is a harmonic oscillator, ρ(z) follows the Gaussian dis-

tribution

ρ(z) =
1

σ
√

2π
e
− u(z)

kBT =
1

σ
√

2π
e−

z2

2σ2 , (4.3)

with variance

σ2 = 〈z2〉 =
1

ω2

kBT

m
. (4.4)

Our absorption imaging system enables us to measure the atom density in the

Ioffe-Pritchard trap, integrated along the x-direction as function of y and z, the column

density ρx(y, z) with the frame of reference shown in Figure 4.3 (a). Together with

Equations (4.3) and (4.4), the imaging system provides us with a method to measure

the temperature of atoms on the imaging plane from a single picture of the magnetic

trap in situ. This requires just one absorption image of the atom cloud while the

magnetic trap is switched on, together with a previous knowledge of the trap frequency,

which we have.

Because we are in search of small magnetic fields along the axis of the trap, we
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Figure 4.3: Extraction of the relative potential u(z)/kBT from an absorption image of atoms
in the magnetic trap. (a) is an absorption image of an atom cloud cooled down to 5.8 µK
and placed at 101 µm from the surface of the wire. (b) shows its axial profile (solid circles)
and a Gaussian fit (blue curve) which enabled us to determine the temperature of atoms. (c)
shows the logarithm of the profile in (b) after being normalized (open circles) and a quadratic
function (green curve) fitted to these data points. We take this curve as the axial potential
u(z)/kBT.
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focus on the column density at fixed height: ρx(d, z) ≡ ρ(z), where d is chosen to

coincide with the center of the cloud. With the image processing described in Section

2.2.3, we obtain ρ(z) per pixel, where the pixel size along z is 4.95 µm, see Figure 4.3

(b). For each z, ρ(z) is related to the trapping potential through Equation (4.3). Thus

the trapping potential is inferred by applying the logarithm to both sides of Equation

(4.3),
u(z)

kBT
= −log

[
ρN(z)

]
, (4.5)

where ρN(z) is the atom density normalized to the total number of atoms counted along

z. Therefore, in order to extract the trapping potential u(z)
kBT

, we need to normalize the

density extracted in each pixel of the absorption image and then apply the logarithm

function to it.

Figure 4.3 illustrates the extraction of the trapping potential u(z)
kBT

with an example.

The image in Figure 4.3 (a) shows an atom cloud trapped at 101 µm from the surface

of the wire. This distance is set by keeping the bias field constant at 2.9 mT and

linearly decreasing the current of the guide wire from 6.9 to 5 A during the last second

of evaporation (from 13 to 2 MHz) as illustrated in Figure 3.5. The black dots shown

in Figure 4.3 (b) are the density of atoms in the cloud along its axis, taken directly

from the absorption image. By fitting a Gaussian [blue curve in Figure 4.3(b)] to ρ(z)

and inserting the axial trap frequency fa = 26 Hz into Equation (4.4), the temperature

of atoms in this cloud is measured to be 5.8 µK.

The trapping potential u(z)
kBT

is obtained by applying the logarithm function to each

density plotted in Figure 4.3(b), after being normalized to the total number of atoms

counted along the whole profile. These are the open circles shown in Figure 4.3 (c).

The green curve is a parabola fitted to these data. One can see that this harmonic

oscillator potential is appropriate to describe the trapping potential u(z)
kBT

because the

temperature of atoms should be confirmed by using the relation

u(z) =
mωz2

2kBT
, (4.6)

that must hold for every position z along the wire. We see that this is indeed the case

as the temperature of this atom cloud obtained with Equation (4.6) is 5.8 µK, the

same as the temperature measured with the Gaussian.

Note that, in order to determine the temperature of atoms with a single absorption

image, the magnetic trap is required to be switched on during the imaging exposure

time. Our absorption imaging system is designed to picture atoms whose quantization

axis is aligned with a uniform magnetic field in direction −x as explained in Section

2.2.3. If atoms are imaged whilst confined by the magnetic trap, their quantization
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Figure 4.4: Data analysis to extract uA(z) from the absorption images. (a) absorption image
of an atom cloud in a microtrap at 16 µm from the wire’s surface. The open circles in (b)
are the potential u(z), measured in each pixel along the main axis of the trap and the green
curve is the best fitted, harmonic oscillator potential. (c) shows uA(z) = u(z)− 1

2mω2z2 once
subtracted from the trapping potential in (b).

axis has components in the three spatial directions. This makes it hard to interpret

absorption images to obtain the absolute atom density because the transition matrix

elements depend on the field direction. In order to calibrate the atom number read in

images with the magnetic trap switched on, we took several images of atom clouds 15

ms after being released from the magnetic trap. These images were alternated with
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pictures of atom clouds inside the magnetic trap. The ratio of atom number counted

with the magnetic trap on and off remained approximately constant in all cases at 0.56.

Besides the information for temperature measurements is fully contained in relative

changes of the probability density of atoms. Thus there was no need to correct the

atom number for the data analysis.

4.2.2 Corrugations in the harmonic potential

We detected the anomalous potential uA(z) when atom clouds were at distances shorter

than 101 µm from the surface of the wire. Figure 4.4 (a) shows an absorption image of

an atom cloud at d = 16 µm. This is the shortest distance from the aluminium layer for

which we could image atoms without crashing the cloud onto the wire. The presence

of the anomalous potential is evident in this picture because, instead of displaying a

single atom cloud as expected if u(z) was harmonic, the atom cloud on Figure 4.4 (a)

is distributed among three lumps along the axis of the magnetic trap.

The trapping potential holding this atom cloud is given by the open circles in

Figure 4.4 (b). In addition to the harmonic trap, we see a large oscillatory potential,

which is due to ∆Bz, an unexpected magnetic field added to the axial component of

the trap. Most of the anomalous potential is observed in the range z = 200-800 µm

along the wire. The apparent structure at the edges in Figure 4.4 (b) results from

applying the logarithm to the background signal of the absorption image. The green

curve shown in Figure 4.4 (b) is the parabola that best fits the experimental data.

This curve was chosen to pass through center of the potential oscillations. The fitted

parabola gives a temperature of 7.8 µK. The anomalous potential uA(z) created by

∆Bz was inferred by subtracting this parabola from the potential u(z),

uA(z) = u(z)− 1

2
mω2z2. (4.7)

The anomalous potential we measured at 16 µm from the wire is displayed in Figure

4.4(c). From this graph, we were able to directly measure the distance between the

two main lumps λ = 230 ± 10 µm, the characteristic length of the corrugations in the

potential. We also were able to measure the peak-to-peak amplitude UA= 13 µK from

Figure 4.4 (c) as indicated by the arrows on the graph. This amplitude is equivalent

to an alternating axial magnetic field of 97 × 10−7 T. The measured anomalous field

is about 5× 103 smaller than the radial magnetic field of the wire at this distance.
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4.3 Dependency of ∆Bz on the distance from the wire

We repeated the measurement of the amplitude UA(d) for atom clouds trapped at the

eight distances from the wire shown in figures 4.1 and 4.2 to investigate the dependency

of the anomalous field ∆Bz with d. The experimental results are summarized in Table

4.1.

Height (µm) Temperature (µK) UA(d) (µK) UA(d) (×10−7 T) U3.7(d) (×10−7 T)

16 7.8 13 97 97
24 7.8 10 75 72
39 7.8 7.5 56 51
50 7.8 4.1 41 36
66 7.0 3.3 25 21
79 6.4 2 15 12
93 6.1 1.5 11 9
101 5.8 0.5 4 3

Table 4.1: Summary of experimental results probing the D.C. field near our guide wire. The
temperatures were measured by fitting a parabola to the harmonic part of the potentials and
using Equation (4.6). The uncertainty in the distance to the wire is ± 1.4 µm, the same as
in spin flip experiments. For the peak-to-peak amplitude UA(d), we chose the error to be
equal to ± 1.5 µK, the amplitude of the potential at d = 93 µm.

To obtain the data shown in Table 4.1, we deduce the anomalous potential uA(z)

from the absorption images as described in Section 4.2.2 for each one of the eight

investigated distances. The curves resulting from this analysis are displayed in Figure

4.5. These potentials are regularly spaced. We were able to observe two full oscillations

along the major axis of the trap in all cases. The spacing λ = 230 ± 10 µm, showed no

significant variation with d. The peak-to-peak amplitude UA(d) of these oscillations

decreased with increasing d as can be noted from values tabulated on Table 4.1. Its

uncertainty was taken as ± 1.5 µK, the amplitude measured for d = 93 µm.

In order to see how uA(z) varies with distance d from the wire alone, we arbitrarily

chose a current of 3.7 A, corresponding to atom-wire distance d3.7 =16 µm and scaled

all the uA(z) to it. This was carried out by multiplying each uA(z) by the factor 3.7/I.

Figure 4.6 shows how uA(z) depends on the position of the atoms along the wire and

their distance to its surface. This plot used Mathematica to interpolate uA(z) between

the eight heights where we measured it.

To investigate the origin of ∆Bz, we now focus on the decay of the peak-to-peak

amplitude UA(d) and search for a model to explain its behaviour.
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Figure 4.5: The anomalous potential uA(z) extracted from the images for the eight studied
distances d. The arrows in the d = 93 µm graph indicate the peak-to-peak amplitude chosen
as the error bar in our measurements of UA(d).

4.3.1 Fitting to a power-law model

The data labelled as U3.7(d) in Table 4.1, UA(d) for the eight heights fixed to 3.7 A,

are represented by the blue circles in Figure 4.7. It is obvious that a power law, which

would be a straight line in this graph, could not describe this data.

The red curve in Figure 4.7 shows a power-law function UA(d) = Cd−q fitted by
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Figure 4.6: Map of the anomalous field for a constant current of 3.7 A through the guide
wire.

least squares to our data for in the range d = 66-101 µm, leaving the constants C and

q as fitting parameters. For this fit, the optimum values are C = 2 T and q = 3.3,

with a χ2 = 4.2 and 2 degrees of freedom. The story becomes different if we fit a

power-law to our data obtained for the entire range of d in which we did experiments.

This is shown by black curve in Figure 4.7, which has C = 0.2 mT and A = 1.07, with

χ2 = 54.3 and 6 degrees of freedom. We found that adding an offset δ to d, so the

fitted function has the form UA(d) = C(d+ δ)−q, as an additional fitting parameter of

the power law helped to minimize χ2. In which case C = 20 mT and q = 2.08 for an

offset δ = 30 µm, giving χ2 = 15.12 with 5 degrees of freedom. This fitting corresponds

to the dotted curve in Figure 4.7.

Note that the same decay was studied by Kraft et al. [101], whose data were

reasonably fitted by a power law for the range restricted to d=80-109 µm. Our data,

over a more extended range of d, makes it clear that a power law does not describe

very well the decay of the anomalous field. Moreover, the curve that best fits our data,

represented by the dotted curve in Figure 4.7, suggests that the amplitude UA(d) and

hence ∆Bz, is governed by the distance from a point inside the wire and not from its

surface.
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Figure 4.7: Our experimental data U3.7(d) (blue circles) in comparison with a power law.
The red curve is a least squares fit to the experimental data within the range d= 66-101 µm
with a power law function. The black curve is the same fit but in the full experimental range,
d= 16-101 µm. The dotted line is a fit including an offset δ = 30 µm in the power-law fit.

4.3.2 Exponential decay

At first thought, one might expect the anomalous field to decay exponentially with

the distance to the wire. Consider a magnetostatic potential oscillating along the wire

(along z) with amplitude a and wave number k0,

ϕ = a cos k0z. (4.8)

Let us consider a planar wire as illustrated in Figure 4.8, forgetting for a moment that

our guide wire is a cylinder. Outside the wire, the potential ϕ is required to satisfy

Laplace’s equation ∇2ϕ(x, y, z) = 0 with the boundary condition (4.8) at the surface

(y = 0). Both are satisfied if ϕ = a cos k0ze
−k0y meaning that, outside the wire, the

field ϕ decays exponentially with y. This potential produces the anomalous magnetic

field,

∆Bz = −∂ϕ
∂z

= ak0 sin k0e
−k0y. (4.9)

With this simple analysis in mind, we fitted to our experimental data the expo-

nential function UA(d) = Ce−kd, where C and k = 2π
λ

are constants. In Figure 4.9,
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Figure 4.8: Hypothetic system
that would yield exponential
decay of the anomalous field
∆Bz of the Ioffe-Pritchard trap.

the blue circles are the eight measured UA(d) (scaled to 3.7 A) and the line is an ex-

ponential function, fitted to these data using C and λ as fitting parameters. The best

fit gives C = 177 nT and a decay distance of λ = 190 µm. The χ2 parameter of this

fitting is 3.2 with 6 degrees of freedom, which is close to the characteristic distance

observed between lumps. However, a better theory should take into account the cylin-

drical structure of the wire, which we do in the next section. Then, we find that the

decay of ∆Bz is not quite exponential, but rather behaves as a Bessel function.

4.3.3 A meandering current

In this section I show that a sinusoidal current with period λ produces a field propor-

tional to K1(2πy/λ), a modified Bessel function of the second kind. I also show that

this model accurately reproduces the behavior of the anomalous potential we measured

with cold atoms.

Consider a steady current I flowing along the axis of the wire and following a path

given by the vector

s(x′, y′, z′) = (a cos kz′, 0, z′), (4.10)

where a is a constant and k = 2π/λ. According to the Biot-Savart law, the differential

field element created by this current is

dB(x, y, z) =
µ0

4π

Ids×R

R3
, (4.11)

where I is the current through the wire, ds is the differential path element and R =
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Figure 4.9: The anomalous field for fixed 3.7 A current (blue circles) in semilog scale are well
fitted by a straight (black) line, suggesting an exponential decay.

r− s(x′, y′, z′) with r = (x, y, z) being the position of the atoms. Figure 4.10 displays

a schematic of the model. The z-component of this field at the position (x0, d, z0) is

Figure 4.10: Model in which a current with a sinusoidal path gives origin to the anomalous
field ∆Bz
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Figure 4.11: Amplitude of the anomalous field along the range d=16-101 µm. The filled
circles are experimental points and the curve is a Bessel function fitted to these data.

given by

Bz =
µ0Iyak

4π

∫ ∞

−∞

sin kz′dz′

[(a cos kz′ − x0)2 + d2 + (z′ − z0)2]3/2
. (4.12)

Let us place the atoms directly above the wire, where x0 = 0 and let a << d. Then

Equation (4.12) becomes

Bz =
µ0Idak

4π

∫ ∞

−∞

sin kz′dz′

[d2 + (z′ − z0)2]3/2
. (4.13)

By making the change of variable η = z′ − z0 in Equation (4.13), the z-component of

the field created by the meandering current can be written as 1

Bz =
µ0Idak

4π

∫ ∞

−∞

(sin kη cos kz0 + sin kz0 cos kη)dη

[d2 + η2]3/2
. (4.14)

The integral in Equation (4.14) can be done analytically, yielding [106](formula 9.6.25)

Bz =
µ0Iak

2

2π
sinz0K1(kd), (4.15)

where K1(kd) is a modified Bessel function of the second kind.

The filled circles in Figure 4.11, are again the amplitudes U3.7(d) plotted versus

1Using the trigonometric identity: sin(s + t) = sin s cos t + cos s sin t.
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distance to the surface of the wire. The blue curve is a fitted function with the form

AK1(2π(d+ δ)/λ). (4.16)

Here, the fitting parameters are the constant A, the periodicity λ and δ. An offset δ

has been inserted in the fitting, giving the freedom for the modelled current to flow

at any vertical position in the wire. The best fit to our data gives an amplitude

A = 45 ± 2.8 mT, meaning that the amplitude a of the modelled current is 45 ± 3

µm. The characteristic length of the fitting is λ = 217± 10 µm, close to 230± 10 µm,

the observed spacing between the potential wells. The offset δ given by the fit is 251

± 12 µm, equal to the radius of the wire: 250 µm. The χ2 parameter here is 4.8 with

4 degrees of freedom.

Our data are evidence of small transverse currents inside the wire in addition to

the ideal current. In our search for possible causes for the charges to flow in this

manner, we inspected the microscopic structure of the wire by polishing and edging

a longitudinal section of the wire. This revealed to us that the grains of the copper

core in our wire have a typical length of 10 µm and the defects of the aluminium layer

are typically spaced by 5 µm. These imperfections have characteristic lengths of at

least one order of magnitude shorter than the spacing between the lumps of atoms

in the magnetic trap and the periodicity λ of the Bessel function that fits our data

and hence, do not provide an explanation for the current of our proposed model. We

remain unable to state the exact origin of the current meanders in our guide wire. We

think however, that the cause is a long range defect like a big grain in the copper core

underneath the place were the magnetic trap is formed, for example.

4.4 Conclusion and outlook

Our result demonstrates that the field causing corrugations on the long axis of our

microtrap decays with the distance from the center of the wire as a Bessel function of

the second kind. This potential is equivalent to the potential created by a sinusoidal

current flowing through the axis of the guide wire. We rule out surface defects as a

possible cause for this effect because the typical spacing between the defects on the

aluminium layer is too short compared with the spacing between the observed potential

wells. Also, our model tells us that the current oscillates with an amplitude of 45 µm

around the wires’s axis, inside of its copper core.

Although we cannot provide sufficient evidence supporting the internal defects of

the wire as cause of the current meanders, we were the first group to discuss in the

literature the wire’s morphology as a possible origin of the anomalous potential trap-
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Figure 4.12: Geometry of the wire format used in recently-designed atom chips.

ping atoms [58]. A theoretical approach to this was discussed later on, assuming the

fabrication defects of the wire as white noise [107]. The problem was also discussed by

the BEC group of Orsay, France with extensive experimental and theoretical research

[104, 81]. They tested and compared the DC field near wires fabricated by i) electro-

plating and ii) electron beam lithography and evaporation. Both were gold, planar

wires as shown in Figure 4.12, a geometry adopted for wires in new atom chips. In

the two cases, the authors recovered to a good approximation the spectral density of

the potential probed with cold atoms by using a model similar to the one proposed in

[107]. The computed potentials were based on measurements of the correlation lengths

between the defects in the top and side surfaces of the wires, variations around their

average height h0 and width w0 (see Figure 4.12). Their results demonstrate that the

edges of wires patterned by electron-beam lithography are more suitable for building

atom chips as they are smoother than the edges of electroplated wires.
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Chapter 5

Towards an atom-chip

interferometer

This thesis is the first part of a larger research project to perform matter-wave in-

terferometry on an atom chip. The idea is to prepare cold atoms in a Ioffe-Pritchard

microtrap that can be dynamically split into a double well. After being split, each part

of the condensate would take the role of an interferometer arm [108]. The design and

construction of this atom-chip were carried out in collaboration with the Nanoscale

Systems Integration group in the School of Electronics and Computer Science, Univer-

sity of Southampton [109]. The atom chip described in this chapter belongs to the first

generation of atom chips with this design. This chapter provides an introduction to

one of the schemes which can be used to realise atom interferometry. The chapter also

describes the modifications done to the BEC setup – which is described in Chapter 2

– to introduce the new atom chip and our first steps using this atom-chip design.

5.1 The double well scheme

Figure 5.1 illustrates the double well scheme. In which the idea is to split a trapping

potential into two wells with accurate control of the height of the potential barrier u0

and the distance d between the two wells. The double well scheme, in combination

with the availability of standard methods for the creation of Bose-Einstein conden-

sates, offers a scenario for interesting applications: matter-wave interferometry, basic

research on BEC physics and the possibility to realise quantum information process-

ing. Dynamic splitting and recombining of a potential well already provides coherent

spatial manipulation of condensates with an accuracy in the nanometer length scale

[110]. The first demonstration of the Josephson junction and self-trapping phenomena

with Bose-Einstein condensates was achieved by preparing a BEC in an optical poten-
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Figure 5.1: Double well scheme for atom optics applications. A matterwave is trapped in a
harmonic potential which can be symmetrically split.

tial whose parameters u0 and d can access both the quantum tunnelling and isolated

regimes [111]. Researchers have prepared two condensates and combined them to in-

vestigate ultra-cold atom collisions [112]. The double well potential scheme has already

been useful to observe matter-wave interference between two condensates. This has

been achieved with optical potentials [113, 38], a combination of RF and DC magnetic

fields [40] and pure magnetic DC fields [39].

Atom chips are playing a mayor role in the pursuit of quantum control of matter-

waves. So far, two experiments with atom chips have produced interference patterns

between two Bose-Einstein condensates [40, 39]. Both were direct applications of the

double well scheme. In the Heidelberg experiment [40], a Ioffe-Pritchard microtrap

was split by dressing the trapped states with adiabatic RF fields. In this experiment,

researchers were able to reach both the quantum tunnelling and isolated regimes of

the double well scheme. The MIT-Harvard group was the first one that split a BEC

on an atom chip with pure DC magnetic fields. The trap design employed in this

experiment was based on the field created by two current carrying wires and a bias

field – an implementation of the double well scheme that was proposed by E. A. Hinds

et al. [108].

5.2 A double guide for matter waves

The design of magnetic fields for atom interferometry proposed in [108] consists of

two atom guides created with the field of two straight current-carrying wires and a

bias field. Figure 5.2 shows a schematic of the system. Two wires are separated by a

distance 2D on the x-axis. They are parallel to z, and the current I is flowing out of

the page. Figure 5.2 also shows a bias field Bx parallel to x. This system is suitable

for atom guiding if a bias field of a few hundreds of nT is added in the z-direction,

so that the guiding potential has an offset from zero to prevent Majorana loss. It is

natural to define D as the unit of length, B0 ≡ µ0I
2πD

as the unit of field and β ≡ Bx/B0
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as a dimensionless bias field.

Figure 5.2: Double atom guide proposed in [108] for atom interferometry. The field of two
wires carrying a static current I and a bias field can create one or two zero-field lines suitable
for guiding cold atoms or Bose-Einstein Condensates .

Figure 5.3: Contours of magnetic field magnitude of the field created by two wires and the
bias field for the three regimes of β.

When β < 1 the magnetic field has two minima, both of quadrupole symmetry

in the xy plane. Their centers are aligned along y as shown in Figure 5.3 (a). These

approach each other as β is increased until they coalesce at β = 1, as shown in Figure

5.3 (b). Here the magnetic field has hexapole symmetry centered on (x, y) = (0, D).

With a further increment to β > 1, the magnetic hexapole of the coalescence point

splits back into two quadrupoles that follow the unit circle x2+y2 = 1 (in units of D) as

β is increased. Reference [108] provides simple analytical formulae for the guide center

position on the xy-plane and the magnetic guide depths and gradients as a function of

the normalized bias field β. Then the formulae given in Table 5.1, apply to the trap

when Bz = 0.

The quadrupole traps (|B| ∝ r) become harmonic with frequency given by Equa-
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Units β < 1 β = 1 β > 1

(x0,y0) 1
β (0,1±

√
1− β2) (0,1) D 1

β (±
√

β2 − 1,1)

u0 µBB0 (β,1-β) 1 β-1

∂B/∂ρ B0/D
√

1− β2(1∓
√

1− β2) 0 β
√

β2 − 1

Table 5.1: Position of the center (x0,y0), magnetic potential depth u0 and gradient of the
magnetic guide(s) ∂B/∂ρ created by two wires and the bias field β. Table has been taken
from reference [108].

tion (2.22) when adding the axial bias field Bz. Using the formula in Table 5.1 for the

transverse field gradient ∂B/∂ρ with β > 1, the guide frequency becomes

ω =

√
µB

mBz

∂B

∂ρ
=

√
µB

mBz

β
√
β2 − 1

B0

D
. (5.1)

Thus, if β is increased from 1 to 1+ε, the trap starts to split along x into two traps,

each of frequency

ω =

√
µB2ε

mBz

B0

D
. (5.2)

Roughly speaking, the guide will split when the ground state energies 1
2
~ω become

smaller then the barrier height u0 = µBB0ε. From Equation (5.2) this gives

∆Bmin = εminB0 =
~2B0

2µBmBzD2
(5.3)

as the minimum bias field change that would split the ground state of the single well

into two. In order to avoid a small ∆Bmin, we should make Bz small but at the same

time it has to satisfy the adiabatic condition

ωL =
µBBz

~
≥ ω, (5.4)

where ωL is the Larmor frequency at the bottom of the trap. Equations (5.4) and (5.2)

together yield

B3
z ≥

2~2B2
0ε

µBmD2
. (5.5)

By using εmin from Equation (5.3), we obtain

Bz ≥
~
D

√
B0

µBm
. (5.6)
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As discussed later in sections 5.3 and 5.4, one of our atom chips has D = 41.5 µm

and the wires can carry currents of the order of 1 A, giving B0 = 4.8 mT. With these

numbers, Bz ≥ 152 nT is required. Thus we obtain a minimum ε required to split

the ground state of our trap of 1.6 × 10−4. Expressed as a field, this is ∆Bmin = 76

nT. Though challenging, such a level of field control is readily achieved with modest

shielding.

5.3 The atom chip with four Z-wires

Figure 5.4 (a) shows a photograph of the new interferometer atom chip based on an

extension of the Z-wire idea. The design of this atom chip includes four wires with a

Z-shape. Each one of these wires is suitable to create a Ioffe-Pritchard microtrap by

driving a current I through it [28]. The Z-shape of these wires, highlighted by the red

arrows in Figure 5.4 (a), causes the ends of the traps to be closed. This atom chip has

been also patterned with two end wires. These are the thickest wires on the atom-chip

as can be seing in Figure 5.4 (a). They were designed to give the option of running

the current in a U-shaped pattern, showed by the red arrows plus the green arrow in

Figure 5.4 (a). This is used for magneto-optical trapping [28]. Alternatively, the end

wires can be used to increase the axial depth of the Ioffe-Pritchard trap(s) created by

the Z-wires. All the wires have been wet-etched in gold on the surface of a silicon

wafer. The gold layer is 5.5 µm thick and covers the full atom-chip surface (26 × 22

mm) in order to reflect laser light for a mirror MOT.

Figure 5.4 (b) is an optical microscope image of the central part of the Z-wires.

The outer wires are 85 µm wide and the width of the inner wires is 33 µm. The

center-to-center distances are 83 µm between the inner wires and 300 µm between

the outer wires. The techniques employed to construct this atom chip are described

by Koukharenko et al. [109]. The chip is built on a 0.5 mm silicon wafer covered

by a 600 nm thick insulating layer of SiO2. A thin, adhesive layer of Cr is sputtered

on to the SiO2, followed by a 5.5 µm layer of gold. A schematic of all these layers

is shown in Figure 5.5 (a). The wires were patterned on the gold surface with a

photolithography technique using a mask made of standard photoresist and exposure

to UV light. The schematic in Figure 5.5 (b) illustrates the lithography process after

UV exposure. Figure 5.5 (c) shows the cross section of all layers after the wires were

wet etched. This completes the manufacturing process of the wires.

This atom chip was built before the implications of atom-surface interactions were

well understood. As a result of the research presented in Chapter 3, and in particular

Equation (3.40), we now know that the spin flip lifetime is longer by a factor of d/h0

near thin surfaces. Here d is the atom-surface distance and h0 is the height of the

106



Chapter 5. Towards an atom-chip interferometer 5.3. The atom chip with four Z-wires

Figure 5.4: Images of the new interferometer atom chip. (a) full-scale photograph of the atom
chip. The red arrows are parallel to the Z-shape of the wires and denote the direction of a
current flowing through them. The green arrow illustrates the option of running a current
with a U-geometry by driving current a current I through one of the end wires. (b) is an
optical microscope image of the central region. The inner and outer wires are 33 µm and 85
µm wide respectively. The arrows in (b) indicate the center-to-center distance between each
pair of wires.
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Figure 5.5: Schematic (not to scale) of the techniques employed to build the 4Z-wire atom
chip. (a) the surface of this atom chip has been built on silicon wafers. It has been constructed
by layers: SiO2, Cr and Au. (b) the photoresist mask is developed. (c) all layers after wet
etching the gold wires.

wire, see Figure 4.12. For this reason, the next generation of atom chips, will have a

significantly thinner gold layer.

The DC field of wires manufactured with a similar technique has already been

probed with cold atoms [104]. It was shown that the edges of wet-etched wires produce

transverse currents that contribute significantly to the corrugations of the trapping

potentials. It was also shown that ion beam milling is a better technique to manufacture

wires for microtraps [81]. The later technique is being used to build the next generation

of atom chips. Nevertheless, the atom chip described here is useful to learn about the

experiments that are possible with the 4Z-wire design.

5.4 The new flange and control interface

We carried out a number of modifications to the BEC apparatus to prepare it for the

4Z-wire atom chip. The atom chip with a single guide wire described in Chapter 2

was oriented with gravity acting towards the surface. This orientation limits ballistic

measurements to just a few milliseconds of expansion time. Longer expansion times

provide a more convenient diagnostic. For this reason, the entire vacuum chamber has

been inverted in preparation for the 4Z-wire atom chip so gravity points away from its

surface. Additionally, the computer-control interface has been updated.
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Figure 5.6: The 4Z-wire atom chip assembled on its mount, a stainless-steel heat sink. The
wires were connected to computer controlled supplies through three UHV feedthroughs lo-
cated in the flange. The dispenser is mounted 3 cm from the center of the atom chip. The
MOT coils have been designed to create a quadrupole magnetic field 4 mm above the center
of the atom chip.

5.4.1 Mounting the 4Z-wire atom chip

Figure 5.6 is a photograph of the 4Z-wire atom chip ready to be introduced to the

vacuum chamber. This shows the atom chip, its mount, the MOT coils, the rubidium

dispenser and the stainless-steel flange on which everything is assembled. The atom

chip is mounted on a stainless steel heat sink built in separate pieces: a 1 mm-thick

slab exactly matching the area of the atom chip (26 ×22 mm), a rectangular block

(5× 38× 32 mm) and three 23 mm long rods with a radius of 5 mm.

Figures 5.7 (a) and (b) are detailed diagrams of the atom chip and its mount. The

atom chip is directly mounted onto the slab matching its area. Which in turn sits on

the rectangular block of stainless steel. These are fixed in place by four corner-shaped

pieces of Macor grooved with 0.81 mm square channels, shown pink in Figure 5.7 (a).

The grooves are machined on the Macor pieces to locate thin strips of BeCu at their

bottom. The BeCu strips, are attached to the Macor with a drop of silver paint and

then mechanically held by 20-Gauge square copper wire pushed into the grooves, see

figures 5.7 (a) and (b). Atom chip, grooved Macor pieces, BeCu strips and square-

copper wire are held together by another set of corner-shaped Macor pieces bolted to

the block of stainless steel through the grooved Macor pieces as shown in Figure 5.7
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Figure 5.7: The new atom chip has been mounted directly onto a stainless-steel heat sink.
It is fixed on place by four corner-shaped pieces of Macor grooved with 0.81 mm square
channels. In each channel, a thin strip of BeCu and 20 gauge square copper wire are fixed
to allow electric contact from each wire to the control hardware of the experiment (a). The
connections were mechanically supported by another set of four corner-shaped pieces of Macor
that were bolted to the heat-sink block through the grooved pieces of Macor (b).

(b) which is a lateral view of the atom chip and its mount. The function of the BeCu

strips is to make electrical contact between the copper wires and the atom chip. This

contact is achieved by gluing them to the extremes of the wires first with silver paint

and then with Bylapox for mechanical strength. In this manner, the wires of the atom

chip are connected to the control hardware through the strips of BeCu, the square

copper wire and the feedthroughs mounted on the flange as shown in Figure 5.6.

The MOT coils, also shown in Figure 5.6, are orientated so they produce the field

for a mirror MOT as explained in Section 2.3.1. Their coil formers have a 25 mm

diameter and their center-to-center distance is 45 mm. The coils are wound with 47

turns of Kapton insulated copper wire with 0.62 mm diameter. The center of the

quadrupole field is placed about 4 mm above the center of the atom-chip surface, with

the axis of the coils making a 45◦ angle its normal. The dispenser is mounted 3 cm from

the center of the atom chip to allow MOT loading in a pulsed mode. The atom-chip

mount, dispenser and MOT coils were assembled on a rectangular stainless-steel plate

which in turn is attached to the conflat (CF) stainless steel flange, 203 mm (8 in) in

diameter.

All the currents inside the vacuum chamber – through atom-chip wires, MOT coils

and dispenser – are supplied through three feedthroughs in the CF flange, providing

24 connections to the control hardware. In Figure 5.6 one can see the square copper

wires and other wire connections grouped to access each of the three feedthroughs.

Figure 5.8 is a diagram to scale the whole vacuum system together. It shows the

top view of the vacuum system, in which the location of each feedthrough on the CF

110



Chapter 5. Towards an atom-chip interferometer 5.4. The new flange and control interface

flange can be seen. The central feedthrough has a 70 mm (2 3/4 in)-diameter and

eight-pin connectors. This feedthrough is supplied by MDC Vacuum Products, LLC

(part No.647051). The lateral feedthroughs have also eight pin connectors each, they

were supplied by Ceramaseal (part No.9340-05-CF) and their diameter is 34 mm (1

1/3 in).

Figure 5.8: Diagram to scale of (the top view) our vacuum system. A base pressure in
the mid 10−11 torr range is achieved with a non-evaporable getter (NEG) pump and an ion
pump. Vacuum recovery from rubidium dispensing during experiments is supported with a
liquid-nitrogen cold finger.

5.4.2 Computer control

In addition to the modifications that prepared the experiment to receive the new

atom chip, we also updated the computer control interface of the experiment. Both

the software and hardware of computer control were replaced. The base of the new
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hardware are two National Instruments (NI) cards that generate TTL and analog

signals. The control software is called Hermes, and was written in JAVA by C. D. J.

Sinclair [114]. This combination of software and hardware provides us with more TTL

lines, the possibility to drive two digital signals through a single TTL channel, and a

source of analog signal with good quality.

Hermes has a user friendly interface in which an experiment can be tailored with

a chosen number of processes. A screen shot of the Hermes’ interface is displayed in

Figure 5.9 to illustrate its functioning. Each row represents one process which can

have as many TTL and analog channels as provided by the NI cards. A process can be

as short as 10 µs. Hermes generates TTL signals in two manners. It can send either

one or two-bit TTL signals. On the screen, the one-bit signals have the natural on

and off options represented by the green or white filled squares in Figure 5.9. The

two-bit signals are generated by what we call a ‘level setter’, also shown in Figure

5.9. With these, we give to a single experimental parameter up to four states that can

be changed as fast as the TTL time resolution. The level setters are currently used

in our experiment due to historical reasons. The old interface was not provided with

analog channels, wave generators were used instead. The level setters were a solution

to control with a certain freedom a few parameters of the experiment requiring sharp

switching such as the current through the MOT coils or the Rubidium dispenser. One

of the goals of using the new interface, is to replace the level setters with analog

channels. That would remove the restriction for these parameters to have just four

options to input the experiment and free useful TTL channels. Each process in the

Hermes’s interface can also include the analog control of currents as shown in Figure

5.9. For this, one is required to input an initial and a final voltage in each process.

During experiments, the analog output signal is linearly ramped from the initial to the

final voltage over the duration of each process.

The digital signals are sent from the computer to the experiment by a PCI 6534

card with 32 TTL ports. This card has a 68-pin male output which is connected to a

signal distribution panel by a NI shielded cable (Part No. 183432-05). The distribution

panel directs the signals to the current driving electronics. Each TTL signal is first

amplified by a Multiplexer circuit, and then forwarded to the circuit which finally

delivers the current into the experiment. The later circuit has a field effect transistor

(FET) as switching component. In its ‘on’ mode, reached with a response time of

about 100 µs, the ‘FET’ circuit outputs a voltage proportional to the input signal.

The load of this circuit can be either resistive, such as wires and rubidium dispenser,

or inductive like the MOT or external coils in the experiment.

To generate the analog-controlled currents we use a NI PCI 6713 card with eight

analog channels. Each channel outputs a 0-10 V peak-to-peak signal. If a larger signal
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Figure 5.9: Screen shot of Hermes, the new software for computer control of our BEC setup.
Each TTL channel can be arranged to receive a 1-bit or 2-bit signal. The analog channels
ramp linearly the output voltage from the initial and final values given by the user.

is required, one needs to feed power into the card through one of its input channels.

The analog channels are updated by a 1 kHz TTL signal from the digital (PCI 6534)

card, fixing the time resolution of the analog signals to 1 ms. A convenient change,

to allow sharper changes of the analog driven currents, would be to update the analog

card with a faster TTL signal. The analog signals are also sent from the NI card to a

distribution panel through a NI shielded cable (Part No. 183432-05). This panel sends

each signal directly to its corresponding FET circuit, which in turn delivers a current

to its load inside the experiment.

5.5 The 4Z-wire atom chip in UHV

Our vacuum chamber is a 203 mm Multi-CF Spherical Octagon supplied by Kimball

Physics, Inc. It is cylindrical, with ten CF ports. The top and bottom ports have

203 mm diameter, while eight ports of 70 mm diameter are located in the sides of

the cylinder. Once the CF flange is assembled with the new chip and connections,
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Figure 5.10: This is a picture of our BEC apparatus in its current stage. The Low-Velocity
Intense Source (LVIS) of cold atoms is one of the changes made after this thesis; it is connected
to the vacuum chamber through the opening that used to host the liquid nitrogen cold finger.

it is bolted to the top of the vacuum chamber. The chip is mounted upside down to

increase the time available for the atoms to fall after being released from a MOT or a

magnetic trap. Figure 5.10 shows a picture of the vacuum chamber assembled.

BEC on atom chips is normally achieved with RF-evaporations that last for about

10 s. The magnetic trap lifetimes should be long enough to allow a successful evapora-

tion and leave time to realise experiments. In order to have magnetic trap lifetimes in

the order of a minute, ultra high vacuum (UHV) is required inside the vacuum cham-

ber. A base pressure in the mid 10−11 torr is maintained inside our vacuum chamber

with the assistance of an ion pump (Varian VacIon Plus 20 model 919-0235) and a

Non-Evaporable Getter (NEG) pump (SAES Sorb-AC GP50), both shown in Figure

5.8. During experiments we use a cold finger sticking a few centimeters into the vac-

uum chamber for a quick vacuum recovery after rubidium dispensing. The pressure is

monitored by a Varian UHV-24 ion gauge with a working pressure range from 10−3 to

2× 10−11 torr.

We achieved UHV by baking the whole vacuum system for 5 days at 120 ◦C inside

a home built oven. A long bakeout time is required because the baking temperature

is limited to 125◦ C by the Bylapox glue that is used to connect the the wires of the

atom-chip. During the bakeout, a turbo pump and a Residual Gas Analyzer (RGA)
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are connected to the vacuum chamber through the UHV valve shown on Figure 5.8.

This enables us to pump down from atmospheric pressure and monitor the internal

gas composition. The oven is heated slowly from room temperature to the baking

temperature over approximately ten hours to avoid thermal stresses.

We activated the NEG pump by running 2 A through it for one hour and then 4 A

for 45 minutes during the bakeout. At this point we ended the activation prematurely

because we realise that the atom chip is being heated up to more than 120 ◦C when

running current through the NEG. Next, we degased the MOT coils by running them

at 2.5 A for approximately one hour. The Rb dispenser is also degased by gradually

increasing its current from 0 to 5 A and keeping it constant for one hour. This is

followed by a second NEG activation and MOT coils degas. When the pressure reached

the 10−4 torr scale, the ion gauge is switched on and degased as well. The ion pump is

turned on and the turbo pump isolated with the UHV valve when the pressure falls to

about 10−8 torr. Finally, the turbo pump and the RGA are turned off and disconnected

from the system. This bakeout allows us to reach a base pressure in the mid 10−11 torr

scale.

Wires ρr (Ω) I (A) J (A m−2)

Inner 6.8 1.7 9.4 × 109

Outer 2.5 2.7 5.5 × 109

End 0.5 8 3 ×109

Table 5.2: Maximum current and current densities to safely run through the diverse wires
on the 4Z-wire atom chip.

Once UHV is achieved in the vacuum chamber, we measure the resistance of the

wires on the chip as recorded in Table 5.2. Next, we tested the current carrying

capability of each wire by applying a 1 s current pulse and monitoring the change of

resistance.

Theoretically, the temperature rise of thin wires patterned on a silicon substrate

behaves as [115]

∆T =
hρj2

k − h0j2αρ
(1− e−t/τfast), (5.7)

where k is the thermal conductance defined as the quantity of heat per unit time

transmitted through the contact surface between the wire and silicon substrate due to

their difference in temperature; h0 is the height of the wire (see Figure 4.12); ρ is the

resistivity of the gold wires with coefficient of linear dependency α, ∆ρ = αρ∆T and j

is the current density flowing through the wire. In Equation (5.7), the saturation time
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is

τfast =
Cwh

k − hj2αρ
, (5.8)

were Cw is the heat capacity per unit volume of the wire.

The height of our wires is h0 = 5.5 µm, the thermal conductance k = 2.6× 106 W

K−1m−2 for gold surface in contact with a 500 nm thick layer of SiO2, the resistivity

of gold ρ = 2.44 ×10−8 Ωm and α = 3.5 ×10−3 K−1 is its linear coefficient. When the

current density exceeds

Jmax =

√
k

h0αρ
, (5.9)

the factor at the left in Equation (5.7) reaches a singularity, leading to an almost imme-

diate destruction of the wire. Note that both, the time dependence of the temperature

change and the maximum current density, are independent of the width of the wire.

Thus, we can estimate a single maximum current density for all the wires on our chip:

Jmax = 7.44× 1010Am−2.

Our temperature response tests start with a 0.11 A current, equivalent to 6.1

× 106 A m−2 in the narrowest (inner) wires. The current through the wires is then

increased and stopped when the temperature rise shows big and random peaks due

to abrupt changes in the resistance of the glued connections. The current for which

this happens in each wire is defined as the maximum current to run the experiment

in a safe manner. These are the currents shown in Table 5.2, together with their

corresponding current density which are about an order of magnitude lower than the

maximum current density predicted by Equation (5.9). This suggests that indeed, the

maximum current densities that can safely be run through the wires are in practice

limited by the 120 ◦C maximum operating temperature of the Bylapox glue supporting

the silver-paint electrical connections.

5.6 The first experiments

We arranged the BEC apparatus so the magnetic trap is supplied with cold atom by

a pulsed mirror MOT, as previously done on the atom chip with a single-guide wire.

This section reports our first steps towards trapping atoms with this atom chip.

5.6.1 The mirror MOT

An absorption image of a mirror MOT created on this atom chip is shown in Figure

5.11. This MOT is created by initially running 2 A through the new MOT coils,

providing us with a field gradient of about 1.9 mT cm−1 in the axial direction of the
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anti-Helmholtz arrangement. The center of the MOT quadrupole is about 4 mm from

the atom chip surface. During most of the MOT stage the main beam has a 160 mW

total power evenly distributed among the four MOT beams and the detunning of the

trapping light is - 18 MHz from the F = 2 −→ F = 3 resonant frequency. In the

last 2 ms seconds, the MOT-quadrupole gradient is decreased to 75 % of its original

value and the trapping-light detuning is increased to -40 MHz. This mirror MOT cools

5×107 atoms down to 220 µK. The temperature of the atoms is measured with ballistic

expansion, as explained in Appendix D.

Figure 5.11: Absorption image of the mirror MOT on the 4Z-wire chip.

Both, atom number and temperature in the mirror MOT, are to be optimized.

Variation of parameters such as the trapping light power and detuning and distance

from the MOT to the atom chip surface should enable us to reach temperatures of the

order of tens of microkelvin and increase the atom number by about a factor of two.

5.6.2 The U-MOT

Figure 5.13 (a) is a schematic of the U-current in the atom chip. The thick strips

of gold at the top and bottom represent the end wires. A magnetic quadrupole is

produced with the field of a U-shape current plus a bias field, shown as Bx in Figure

5.13 (a). This field is parallel to the plane of the chip.

Figure 5.13 (b) shows the contour lines of the field produced with 4 A following a

U path (1 A through each Z-wire and 4 through the lower end wire) and a bias field of

0.76 mT. Bx is provided by the same pair of external coils source of bias field for the

old atom chip. The resulting magnetic field is shown in Figures 5.13 (c). The field has

a zero line at y = 1 mm, parallel to the central section of the U and shifted by about

200 µm towards -x, see figures 5.13 (b) and (c).

The correct correspondence between the local field direction and the laser light

polarization is crucial for atom collection in a MOT. The magnetic field created with

this U-configuration [Figure 5.13 (c)] can be considered a magnetic quadrupole just
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Figure 5.12: Magnetic field produced with the U-configuration in this atom chip. This is
realized by (a) running 1 A through each one of the Z-wires and 4A through the lower end
wire plus 0.76 mT of bias field Bx. The field produced with the wires cancels with Bx at
x0 = −0.2, y0 = 1 (mm) as shown in (b). The vector field is shown in (c). It is a magnetic
quadrupole just near the cancellation point.

within a small region in the vicinity of its center. In order to capture a large number of

atoms with a U-MOT, one must either optimize the field design1, or concentrate a large

number of cold atoms in the region where the field is close to a magnetic quadrupole.

Our experiment is designed for the the second option; we transfer atoms cooled and

trapped by the mirror MOT to the U-MOT. Performing magneto-optical trapping with

the U-configuration has the aim to pull atoms towards the surface of the atom chip

and give the atom cloud a cigar shape. This is equivalent to the compressed MOT

stage used with the single-guide wire atom chip, in which atom clouds were prepared

to match in shape that of the Ioffe-Pritchard trap.

To transfer atoms from trap to trap, we superimpose the U-field on the MOT

quadrupole by linearly ramping the current through the Z wires and one the lower

end wire from 0 to 4 A over 50 ms. Simultaneously the bias field Bx is also linearly

ramped up, from 0 to 0.76 mT. This transformation of the trap pulled about 107 atoms

down to about 1 mm from the surface. Three parameters of the MOT are changed

over the last 2 ms of the U-MOT stage. The trapping light detuning is changed from

-18 to -40 MHz, its power is decreased from 160 to 20 mW and the MOT coils are

switched off. Thus magneto-optical trapping is achieved just with the U-quadrupole.

The absorption image shown in Figure 5.13 is taken 3 ms after releasing atoms from

the U-MOT. With ballistic expansion measurements, we find that the temperature of

atoms is 112 µK at this point (see Apendix C).

1The number of atoms that a U-MOT can capture without previous cooling and trapping can be optimized
by increasing the surface of the central part of the U or by adding bias fields that will make the total field
close to a magnetic quadrupole in a longer spatial region [116].
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Figure 5.13: Absorption image of the U-MOT.

5.6.3 The Z-Ioffe-Pritchard trap

The U-MOT prepares the atoms for loading into a Ioffe-Pritchard trap, created by

running 4 A through the Z wires with the same 0.76 mT of bias field.

Figure 5.14 (a) shows the layout of atom chip running a Z-current, producing a

Ioffe-Pritchard microtrap. Once the U-quadrupole is switched on, the Z-configuration

is activated by just turning off the current through the end wire. In the case described

here, we continue to use the final current and bias field of the U-MOT stage: 4 A and

0.76 mT. These create a magnetic quadrupole (atom guide) at 1 mm from the surface

of the wire, as illustrated in Figure 5.14 (b). The magnetic guide is closed to form a

Ioffe-Pritchard trap by the field created due to the end sections of the Z. These fields

combined form a cigar-shaped potential, whose axis makes an angle to the z-axis as

shown in Figure 5.14 (c).

The cross sections through the center of this trapping potential, along each spatial

direction are shown in Figure 5.14. In the xy-plane, the trapping potential is equivalent

to an atom guide produced by a single guide wire as shown in figures 5.14 (d) and (e).

Figure 5.14 (f) shows the z cross section of the trapping potential. The z-component

of the field is produced by the ends of the Z. It creates a Ioffe-Pritchard trap (apart

from the tilt of the guide axis), providing axial confinement and offsetting the field

at its center to prevent Majorana transitions. The insets in figures 5.14 (c) and (d)

show a zoom to the center of the trap in the x and y directions, where the trap is

well approximated by a harmonic potential. The depth of this trap in the x and y

directions is 469 µK, given by the difference between the bias field Bx and the field at

the center of the trap. The axial depth is 471 µK, the difference between the trapping

potential at the center of the trap and above the end parts of the Z.
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We can load 106 atoms into the Z-trap. A picture of an atom cloud 3 ms after

being released from the magnetic trap is shown in Figure 5.15. There is an atom loss

of one order of magnitude while transferring atoms from the U to the Z-quadrupole,

occurring for two reasons. Firstly, atoms held by the U-MOT are shifted 200 µm

from the center of the Ioffe-Pritchard microtrap. The shift exists because the lateral

parts of the U are not equidistant from its central section. This causes sloshing of

the atom cloud, which leads to heating and ultimately to atom loss. One possibility

for fixing this problem is to bring the center of the U-quadrupole near the center of

Figure 5.14: The Z-trap in our atom chip. It is achieved with 4 A running through the
Z-wires and 0.76 mT of bias field, by just switching off the lower end wire after the U-MOT
stage (a). (b) and (c) are the contour plots on the xy (top) and xz (bottom) planes of
the Ioffe-Pritchard trap. (d), (e) and (f) show the magnetic potential in the three spatial
directions. The insets in (d) and (e) are zooms into the center of the trapping potential,
showing that at this point it has a smooth change and therefore, is a harmonic potential in
the x and y directions.
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the Ioffe-Pritchard trap by adding a bias field in the y-direction. The second factor

causing an inefficient atom transfer between traps is that no optical pumping is done

before magnetic trapping. It is possible to increase the number of transferred atoms

by optically pumping the atoms to the 5S1/2, |F = 2,mF = 2〉 sub-level. This would

increase the atom population inside the trap by a factor up to 2.5 because it enables

us to trap the atoms that originally occupied the non-trapped sub-levels of the ground

state: mF = −2,−1, 0.

Figure 5.15: Absorption image of an atom cloud 3 ms after being released from the Ioffe-
Pritchard trap on the 4Z-wire atom chip.

Loading 106 atoms into a Ioffe-Pritchard trap is the last experiment reported in

thesis. The next generation of atom chips with the same design and improved surface

arrived. This gave our group the opportunity to update the BEC apparatus in view

of our experience with the atom chip of the first generation and ideas that we learned

from other research groups working on similar projects. All the modifications that

have been carried out on the experiment to receive the second generation of 4Z-wire

chips are beyond the scope of this thesis.

5.7 Outlook

The next generation of 4Z-wire atom chips is ready to be used by our group. The gold

layer of this chip is thinner (h0=3 µm) as dictated by the results on spin flips near

surfaces by us and other groups. It has been deposited by evaporation and patterned

with ion beam milling. These techniques have been chosen because they produce

smoother surfaces and edges than techniques such as electroplating and wet-etching

[117]. One of these atom chips has already been incorporated into the BEC apparatus

and atoms are being magnetically trapped following the routine explained in Section

5.6. The next steps with this atom chip are obvious: to reach BEC and to probe
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the surface with atoms. Once the the surface of this atom-chip is tested, it should be

possible to proceed with interferometry experiments.
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Chapter 6

Summary and conclusions

Detailed studies of two decoherence effects in microtraps have been presented in this

thesis. Thermally induced spin flips were observed and compared with theoretical

predictions resulting in good agreement. Atom cloud fragmentation due to corrugations

in the DC field of a magnetic trap was also investigated. Our results contributed to a

full understanding of both decoherence phenomena which in turn led to improvements

in the design of atom chips.

These results were followed by the description of our first steps toward the achieve-

ment of a full-quantum control of ultra-cold atoms and condensates on atom chips.

These steps are: the inclusion of a new atom chip (with more complex wire patterns

on its surface) to our BEC apparatus and the first experiments in which magnetic

trapping of atoms has been achieved with the new atom chip.

6.1 Thermal spin flips

The magnetic coupling between the surface’s thermal field and atomic spin results in

atom loss from microtraps. We measured the atom loss due to this interaction [56] in

a Ioffe-Pritchard microtrap.

The lifetime of the magnetically trapped atoms was vacuum limited to more than

one hundred seconds for atom clouds confined at further than two hundred microns

from the surface of our guide wire. At shorter distances from the surface, the spin

coupling to the RF-thermal radiation of the guide wire shortens the trapped state

lifetime down to a couple of seconds. We studied the dependence of the atom loss

rate on the distance to the wire for two different resonant frequencies: 0.56 and 1.8

MHz. The measured lifetimes were initially compared with theoretical values from an

infinite plane slab [55]. Subsequently, a more appropriate comparison became possible

when Rekdal et al. [57] generalized the theory to an arbitrary geometry of the thermal

123



Chapter 6. Summary and conclusions 6.2. Atom-cloud fragmentation

surface and did the calculations for the particular case of our cylindrical guide wire.

Close agreement with our experimental results was found.

Our results in combination with theory [57] can therefore, provide us with guidance

to optimize the atom-chip fabrication by predicting the best composition and thickness

for the surface layers.

6.2 Atom-cloud fragmentation

We probed the DC field of our guide wire with cold atoms and investigated the depen-

dence of the anomalous component (which causes fragmentation) on the distance to

the atom-chip surface. The field behaviour revealed by our data reproduces the decay

that one would expect from a meandering current inside the wire which decays as a

Bessel function of the second kind. We surmised that these current-density fluctuations

are caused by imperfections of the internal structure of our guide wire.

Theoretical and experimental research by other groups on atom-cloud fragmen-

tation near wires demonstrated that imperfections in their surface and edges can also

cause corrugations of the DC field induced when running a current, but that was not

the case for our wire.

Our work on atom cloud fragmentation has contributed to finding the best tech-

niques and materials to fabricate wires for atom chips. The most recent results indicate

that evaporation to deposit the gold layer and electron beam milling to pattern the

wires minimize trapping potential corrugations and are therefore, the most appropriate

techniques.

6.3 Next steps

Following the understanding of thermal spin flips and atom-cloud fragmentation near

surfaces, our group is now ready to pursue quantum control of atoms using atom chips.

As a result of the progress reported here, a micro-fabricated atom chip is now installed

in the BEC apparatus and our firsts steps have been made to load cold atoms into

microtraps created with this atom-chip design. The next step is to evaporate atoms

down to BEC and to probe the new atom chip with cold atoms to confirm the expected

improvements, in lifetime and field corrugation, have been achieved.

These atom chips were designed to perform matter-wave interferometry in the

double guide scheme [108] with pure DC magnetic fields. Splitting a BEC in this

scheme has been recently achieved [39]. However no deterministic interference between
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condensates was observed with just pure DC magnetic fields. To achieve BEC coherent

splitting, the static magnetic fields in that experiment were assisted by an optical

field. This was required because the double-guide wire scheme for BEC splitting has a

hexapole trap at the guide merging point. This gives low trap frequencies, making it

difficult to achieve adiabatic splitting of the cloud. These are technical difficulties to

be considered when choosing the method by which condensates will be split on the new

atom chip. An alternative method is to dynamically split a Ioffe-Pritchard microtrap

with RF magnetic fields as recently demonstrated [40]. In this experiment, the RF

fields were supplied by a wire lying next to the guide wire. This splitting scheme can

be realized with our atom chip and thus, it is worthwhile for our group to explore.
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Appendix A

Angular factor S2
if

I calculated the angular factors S2
if for the two transitions |2〉 → |1〉 and |1〉 → |0〉 by

a direct application of Equation (3.10).

Each |F mF 〉 sub-level is a linear combination of electron and nuclear spin eigen-

vectors in terms of their Clebsch-Gordon (C-G) coefficients,

|I S F mF 〉 =
∑

mI ,ms

〈I S mI ms| F mF 〉| I mI〉| S mS〉. (A.1)

The non-vanishing G-C coefficients give rise to the following expansions of the |F mF 〉
sub-levels:

|2〉 = |2 2〉 = | 3/2, 3/2 〉| 1/2, 1/2〉 (A.2)

|1〉 = |2 1〉 =

√
3

2
| 3/2, 1/2〉| 1/2, 1/2〉+

1

2
| 3/2, 3/2〉| 1/2, −1/2〉

|0〉 = |2 0〉 =
1√
2

{
| 3/2, 1/2〉| 1/2, −1/2〉+ | 3/2, −1/2 〉| 1/2, 1/2〉

}
.

The angular factor S2
if for each transition is calculated by adding up the matrix ele-

ments of the three q-spatial directions in Equation (3.10):

S2
if = |〈i|Ŝx|f〉|2 + |〈i|Ŝy|f〉|2 + |〈i|Ŝz|f〉|2 = 2|〈i|Ŝx|f〉|2. (A.3)

The operator Ŝz does not cause a spin flip in this frame of reference and thus, its

contribution to the angular factor is zero. Moreover, Equation A.3 uses the fact that

the two transverse matrix elements, in x and y, have the same absolute value.
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Ŝx can be expressed in terms of the Pauli matrix σ1,

Ŝx =
1

2

(
0 1

1 0

)
. (A.4)

Thus, using Equation A.2 the matrix element of Ŝx for the first transition is

〈1|Ŝx|2〉 =
1

2

(
0 1

)( 0 1/2

1/2 0

)(
1

0

)
=

1

4
, (A.5)

where

(
1

0

)
and

(
0

1

)
represent the eigenvectors with spin projection 1/2 and -1/2

respectively. Therefore the angular factor for this transition is

S2
21 = 2|〈1|Ŝx|2〉|2 =

1

8
. (A.6)

Similarly, for the transition |1〉 → |0〉 the matrix element of Ŝx is given in terms

of the expansions in Equation A.2 and σ1,

〈0|Ŝx|1〉 =

√
3

2
√

2

(
0 1

)( 0 1/2

1/2 0

)(
1

0

)
=

√
3

4
√

2
. (A.7)

Hence the angular factor for this transition is given by

S2
10 = 2|〈0|Ŝx|1〉|2 =

3

16
. (A.8)
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Atom loss data

Here I present in detail the experimental results from measuring the thermal spin-flip

rate in our magnetic trap as a function of the distance d to the wire.

Table B.1 shows the number N of atoms in microtraps with 1.8 MHz spin-flip

frequency for different times t of confinement. In these measurements, atoms were

counted from absorption images as explained in Section 3.4.3. Each set of the data

shown in Table B.1 is labelled with the distance d to the wire at which atoms where

counted, and is one out of five measurements of the trap’s lifetime τ(d) = 1/Γ(d). It

gives a decay curve of the atom population in the trap, a line if one plots the logarithm

of N against the time as shown in Figure B.1. A least squares fit to the data for each

distance d is shown red in Figure B.1. Its slope is the loss rate Γ(d), the spin-flip rate

R21 from which each lifetime τ(d) shown in Table 3.1 and Figure 3.10 was deduced;

the uncertainty of these measurements is given by the least squares fit.

The equivalent data, atom number N(t) and loss rate Γ(d), for the 560 kHz spin-

flip frequency is shown in Table B.2. We measured the lifetime τ(d) of the magnetic

trap at seven different distances d from the wire for this frequency. These data are

illustrated by the coloured symbols that, together with their correspondent fitted lines,

are plotted in Figure B.2. Here the atom-loss rate Γ(d) is also given by the slope of

the least squares fit for each distance d, yielding the lifetimes shown in Table 3.1 and

Figure 3.11.
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Figure B.1: The coloured symbols in both graphs are the natural logarithm of the number
N of atoms counted at different times in magnetic traps with 1.8 MHz spin-flip frequency.
An 1.5 to 3.5 offset has been included in ln(N) for clarity of the graphs. Each set of data
was taken for different atom-surface distance d as labelled by the insets. The red lines are
fitted by least squares, their slopes are the atom-loss rates Γ(d) at each distance d, equal to
the spin-flip rate R21.
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Figure B.2: Plot of ln(N) versus time for 560 kHz spin-flip frequency. Each set of data,
shown by the coloured symbols, was taken for different atom-surface distances d, labelled in
the insets. The red lines were fitted by least squares. Their slopes are the atom-loss rates
Γ(d) at each distance d from the wire, equal to the thermal spin-flip rate R21.
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Appendix C

Temperature of the guide wire

The interpolated temperatures represented by the circles in Figure 3.14 were deduced

with a linear model for the temperature of the wire as a function of the power dissipated

Twire = T0 + kRI2, (C.1)

where T0 =297 K, k is a constant that characterizes the details of the flow, R is

the resistance of the guide wire and I is the current. The resistance changes with

temperature as

R(T ) = R0[1 + α(Twire − T0)], (C.2)

where R0 is the resistance at T0 and α is the coefficient of the resistance. Thus from

Equation (C.1), the change in temperature ∆T = Twire−T0 is given, to a first approx-

imation by

∆T = kR0I
2 + k2R2

0αI
4. (C.3)

The interpolated points in Figure 3.14 were obtained by fitting a polynomial with the

form

T = a1I
2 + a2I

4 (C.4)

to the values of temperature measured at fixed time. The coefficients a1 and a2 were

the fitting parameters, meaning in effect that we measured the constant k of our atom

chip.
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Ballistic-expansion measurements

Ballistic expansion is a well known method to measure the temperature of cold atom

clouds in any of the three spatial directions. It is carried out by releasing an atom cloud

from confinement and observing the dependence of its size on time while expanding.

Here I explain our measurements of temperature along z, see Figure 5.12.

It is assumed that the velocity distribution of atoms is well described by the

Gaussian

ρ(v) =
1√
2πσ

e−v2/2σ2

, (D.1)

where the variance is

σ = 〈v2〉 =
kBT

m
. (D.2)

By replacing v → (z − z0)/t in Equation (D.1), where z0 is the initial position of an

atom in the cloud and z is its position at time t, we see that the density distribution

with explicit time dependence is

ρ(z − z0/t) =
1

σ(t)
√

2π
e
− (z−z0)2

2σ2(t) , (D.3)

where

σ2(t) = 〈(z − z0)
2/t2〉 =

kBTt
2

m
. (D.4)

Thus the distribution of atoms [from Equation (4.2)] is given by

dN =
1√
2πσ

∫ ∞

−∞
e
− (z−z0)2

2σ2(t)
1√

2πσ0

e
− z2

0
2σ2

0 dz, (D.5)

where σ0 = 1
ω

kBT
m

is the initial radius of the density distribution, ω the trap frequency

and m the mass of atoms.

When the trapping fields are turned off, the atoms expand and hence, the atom

distribution becomes time dependent given by Equation (D.5), which is the convolution
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Figure D.1: Temperature measurement by ballistic expansion of the mirror and U-MOT on
the 4Z-wire chip. The blue and green circles are the squared size of the mirror and U-MOT
at diverse expansion times. The solid and dashed lines are linear fits to the data of the mirror
and U-MOT respectively. These fits yield the temperatures of 200 and 112 µK reported by
Section 5.6.

of two Gaussian distributions. For this particular case it can be shown [87] that after

an expansion time τ , the thermal distribution given by Equation (D.5) is also well

described by a Gaussian whose variance is given by

σ2
c (τ) = σ2

0 +
kBTτ

2

m
. (D.6)

The temperature is measured by imaging atom clouds after several different ex-

pansion times, fitting a Gaussian to each probability distribution of atoms and plotting

σ2
c (t) against t2.

The temperature measurements of both the mirror-MOT and the U-MOT are

shown in Figure D.1. The blue circles are the squared radii of mirror-MOT atom

clouds. The solid line is a linear fit to these data which yields a measured temperature

of 200 µK, as discussed in Section 5.6.1. The green circles in Figure D.1 are the

experimental data taken to measure the U-MOT temperature. A linear fit (dashed

line) to this data allowed us to measure T=112 µK as discussed in Section 5.6.2.
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transporting and merging trapped atom clouds, Phys. Rev. Lett., 86 608 (2001).
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based on phase coherent splitting of Bose-Einstein condensates with an integrated

magnetic grating, arXiv:cond-mat/0603631 v1 23 Mar 2006 (1985).

[43] T. M. Roach, H. Abele, M. G. Boshier, H. L. Grossman, K. P. Zetie and E. A.

Hinds, Realization of a magnetic mirror for cold atoms, Phys. Rev. Lett., 75 629

(1995).

[44] C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson,

B. E. Sauer and E. A. Hinds, Cold atoms in videotape micro-traps, Eur. Phys. J.

D, 35 105 (2005).

[45] C. D. J. Sinclair, E. A. Curtis, I. L. Garcia, J. A. Retter, B. V. Hall, S. Eriksson,

B. E. Sauer and E. A. Hinds, Bose-Einstein condensation on a permanent-magnet

atom chip, Phys. Rev. A, 72 031603.

[46] S. Eriksson, F. Ramirez-Martinez, E. Curtis, B. Sauer, , P. Nutter, E. Hill and

E. Hinds, Micron-sized atom traps made from magneto-optical thin films, Appl.

Phys. B, 79 811 (2004).

[47] P. Horak, B. G. K. A. Haase, R. Folman, J. Schmiedmayer, P. Domokos and

E. A. Hinds, Possibility of single-atom detection on a chip, Appl. Phys. B, 79

811 (2003).

[48] S. Eriksson, M. Trupke, H. Powell, D. Sahagun, C. Sinclair, E. Curtis, B. Sauer,

E. Hinds, Z. Moktadir, C. Gollasch and M. Kraft, Integrated optical components

on atom chips, Eur. Phys. J. D, 35 135 (2005).

[49] A. Görlitz, J. M. Vogels, A. E. Leanhardt, C. Raman, T. L. Gustavson, J. R. Abo-

Shaeer, A. P. Chikkatur, S. Gupta, S. Inouye, T. Rosenband and W. Ketterle,

Realization of Bose-Einstein condensates in lower dimensions, Phys. Rev. Lett.,

87 130402 (2001).

[50] M. Olshanii, Atomic scattering in the presence of an external confinement and a

gas of impenetrable bosons, Phys. Rev. Lett., 81 938 (1998).

139



BIBLIOGRAPHY BIBLIOGRAPHY

[51] D. W. Vernooy, A. Furusawa, N. P. Georgiades, V. S. Ilchenko and H. J. Kimble,

Cavity QED with high-Q whispering gallery modes, Phys. Rev. A, 57 2293 (1998).

[52] P. W. H. Pinkse, T. Fischer, P. Maunz and G. Rempe, Trapping an atom with

single photons, Nature, 404 365 (2000).

[53] T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac and P. Zoller,

Quantum gates with neutral atoms: Controlling collisional interactions in time-

dependent traps, Phys. Rev. A, 61 022304 (2000).

[54] S. Scheel, J. Pachos, E. A. Hinds and P. L. Knight, Quantum Coherence, Lecture

notes in Physics 689 (Springer, Berlin, 2006).

[55] C. Henkel, S. Pötting and M. Wilkens, Loss and heating of particles in small and

noisy traps, Appl. Phys. B, 69 379 (1999).

[56] M. P. A. Jones, C. J. Vale, D. Sahagun, B. Hall and E. A. Hinds, Spin coupling

between cold atoms and the thermal fluctuations of a metal surface, Phys. Rev.

Lett., 91 080401 (2003).

[57] P. K. Rekdal, S. Scheel, P. L. Knight and E. A. Hinds, Thermal spin flips in

atom chips, Phys. Rev. A, 70 013811 (2004).

[58] M. P. A. Jones, C. J. Vale, D. Sahagun, B. V. Hall, C. C. Eberlein, B. E. Sauer,

K. Furusawa, D. Richardson and E. A. Hinds, Cold atoms probe the magnetic

field near a wire, J. Phys. B, 66 15 (2004).

[59] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Dilute Gases, first

edition (Cambridge University Press, 2004).

[60] A. S. Arnold, J. Wilson and M. Boshier, A simple extended cavity diode laser,

Rev. of Sci. Inst., 69 1236 (1998).

[61] S. Bize, Y. Sortais, M. S. Santos, C. Mandache, A. Clairon and C. Salomon,

High-accuracy measurement of the 87Rb ground-state hyperfine splitting in an

atomic fountain, Europhys. Letts., 45 558 (1999).

[62] J. Ye, S. Swartz, P. Jungner and J. L. Hall, Hyperfine structure and absolute

frequency of the 87Rb 5P3/2 state, Opts. Lett., 21 1280 (1996).

[63] P. Bender, E. Beaty and A. Chi, Optical detection of narrow Rb87 hyperfine

absorption lines, Phys. Rev. Lett., 1 311 (1958).

[64] B. Senitzky and I. Rabi, Hyperfine structure of Rb85,87 in the 5p state, Phys. Rev.

Lett., 103 315 (1956).

140



BIBLIOGRAPHY BIBLIOGRAPHY

[65] J. B. Jr., J. L. Bohn, B. D. Esry and C. H. Greene, Prospects for mixed-isotope

Bose-Einstein condensates in Rubidium, Phys. Rev. Lett., 80 2097 (1998).

[66] C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith and I. G.

Hughes, Polarization spectroscopy of a closed atomic transition: Applications to

laser frequency locking, J. Phys. B, 35 5141 (2002).

[67] W. Demtröder, Laser Spectroscopy: Basic Concepts and Instrumentation

(Springer, Berlin, London, 2003).

[68] U. Schünemann, H. Engler, R. Grimm, M. Weidemüller and M. Zielonkowski,

Simple scheme for tunable frequency offset locking of two lasers, Rev. of Sci. Inst.,

70 242 (1999).

[69] Z. T. Lu, K. L. Corwin, M. J. Renn, M. H. Anderson, E. A. Cornell and C. E.

Wieman, Low-velocity intense source of atoms from a magneto-optical trap, Phys.

Rev. Lett., 77 3331 (1996).

[70] K. Dieckmann, R. J. C. Spreew, M. Weidemüller and J. T. M. Walraven, Two-

dimensional magneto-optical trap as a source of slow atoms, Phys. Rev. A, 58

3891 (1998).

[71] J. Arlt, O. Marago, S. Webster, S. Hopkins and C. Foot, A pyramidal magneto-

optical trap as a source of slow atoms, Opt. Commun., 157 303 (1998).

[72] J. Reichel, W. Hänsel and T. W. Hänsch, Atomic micromanipulation with mag-
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