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ABSTRACT

The electron is predicted to have a small electric dipole moment (eEDM), although

so far no one has been able to measure this experimentally. The size of the eEDM

is strongly connected to how badly time-reversal (T) symmetry is broken by nature.

The Standard Model of particle physics, which has a small amount of T violation,

predicts an unmeasurably tiny eEDM: |de| � 10−38 ecm. However, it is suggested

that there should be additional T-violating processes to account for the matter-

antimatter asymmetry in the universe. These could lead to a detectable eEDM near

to the current limit |de| < 8.7× 10−29 e cm (90% confidence).

Ramsey spectroscopy on paramagnetic, polar molecules has proved a very effec-

tive method for measuring eEDMs. In this thesis I explain the progress that has been

made towards using ytterbium fluoride (YbF) for a new, improved measurement of

the eEDM. I discuss the current operation of the experiment, and the systematic

effects connected with the experiment. The statistical uncertainty of the experiment

in analysed, and shown to be dominated by photon counting statistics. Then, a list

of improvements to the machine are described, and simulated using rate equations

and the optical Bloch equations. Taken together, these improvements enhance the

sensitivity of the experiment by a factor of eleven, thus, it can be used in the near

future to make a world-leading measurement of the electron EDM.
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1. INTRODUCTION

This thesis discusses an experiment to measure the size of the electron’s electric

dipole moment (eEDM) using ytterbium fluoride (YbF) molecules. This chapter

starts by discussing why an electron could have an electric dipole moment, and why

it might be large enough to be detected experimentally. We then explore how eEDMs

can be measured with atoms and molecules, the current limits on the eEDM and the

experiments that are actively seeking to make a new measurement. Finally, we lay

out the structure of the remainder of the thesis.

1.1 Why particles could have permanent electric dipole moments

Purcell and Ramsey were the first to point out that elementary particles or nucleons

could have electric dipole moments (EDMs) [1] and, with their student J H Smith, the

first to perform a dedicated measurement of the neutron EDM [2]. Initially, not even

they were particularly surprised that the EDM they measured was consistent with

zero. This is because the existence of an EDM would contravene two symmetries

which seemed at the time to be well conserved, namely parity (P), which reflects

spatial co-ordinates r of a system through the origin (r → −r), and time-reversal

(T) which reverses the time coordinate, t → −t. To see why an EDM would not

respect these symmetries, consider the effect of T and P on an electron shown on the

top of Fig. 1.1. This electron has spin Ŝ and dipole moment d̂e, which according to

the Wigner-Eckart theorem [3, p. 184] must lie along the same axis. Thus, d̂e = deσ̂,

where σ̂ is a unit vector in the direction of Ŝ. Now the T transformation, shown in

the bottom left of Fig. 1.1, leaves the dipole moment unchanged, but reverses the
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Fig. 1.1: An electron with spin S and dipole moment de undergoing the parity (P) and

time reversal (T) symmetry transformations. Note that the value of de changes
sign and hence P and T are not symmetries of an electron with an EDM.

direction of the angular momentum vector. Hence the time-reversed version of the

electron is not the same as the original. Similarly, applying the P transformation,

as shown in the bottom right of Fig. 1.1, reverses the direction of the polar dipole

moment vector, while leaving the axial angular momentum vector unchanged.

The search for particle EDMs really began in earnest after the suggestion [4]

and then discovery [5] in 1957 that parity was violated by the weak force. This

proved that Purcell and Ramsey’s point was correct: there really was no reason why

fundamental physical laws should respect parity. For a while, it was considered that

while P was violated, the combined symmetry CP, i.e. both space inversion (P) and

charge-conjugation (C), would be obeyed. However, measurements of the neutral

K meson [6], B meson [7] [8] and D meson [9] decays show that CP is not a good
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symmetry of the weak force either.

The violation of CP symmetry led many to assume that T must also be violated.

This idea stems from the CPT theorem, which states that any local, Lorentz invari-

ant field theory must obey the combined symmetries of C, P and T [10]. Direct

evidence for T-violation was first reported by the CPLEAR experiment [11] where

the reaction K0 ↔ K̄0 was studied. Recently, there has also been direct evidence for

T violating processes in the decays of B mesons [12]. These discoveries suggest that

particles could—indeed should—have electric dipole moments. Although all EDMs

measured have so far been consistent with zero, nevertheless, there are good reasons

for believing that the electron does have EDM and that it might be measurable in

the laboratory. We explore these reasons in the following section.

1.2 Why particles should have permanent electric dipole moments

Since the weak interaction violates CP, the Standard Model (SM) of particle physics

(which obeys the CPT theorem) predicts that all particles should have T-violating

dipole moments. However, these are expected to be very small. Focussing on the

eEDM from now on, the SM prediction [13, p.16] is1

|d SM
e | � 10−38 e cm . (1.1)

In comparison, the current upper limit on the eEDM, set by a measurement on ThO

molecules [14] is

|dThO
e | < 8.7× 10−29 e cm (90% confidence). (1.2)

Clearly, we are vary far away from being able to test the SM prediction for the value

of the eEDM. Instead, probing the size of the eEDM is a test for new T-violating

physics, beyond the Standard Model. There are two particular indications that new

1 For historical reasons, EDMs are quoted in units of electron charge × length in centimetres.
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fundamental physics should exist. First, the Standard Model gives no indication of

what dark matter or dark energy are. Together these make up 95% of the energy

density of the universe [15]. New physics, which may be T-violating, is required

to explain what these are. Second, it cannot account for the present abundance of

baryonic matter over antimatter in the universe [16].

There are many proposals to go beyond the Standard Model (BSM) with theories

which can solve these (and other) difficulties. A generic feature of these BSM theories

is that they contain additional particles and additional sources of CP violation. The

latter is important because it is a necessary (but not sufficient) condition to account

for the baryon asymmetry we see today [17] [18]. These BSM theories are constrained

by measurements of the eEDM because they need to have enough CP violation to

produce the baryon asymmetry, but must not produce an eEDM that is too big.

It may be helpful to consider how eEDM searches constrain one popular extension

to the Standard Model, supersymmetry. This theory predicts additional superpart-

ners to the standard model fermions, with masses between 200 GeV and 1 TeV. The

interactions between electrons and the superpartners have no reason to respect CP

symmetry. The size of eEDM arising from a CP violating interaction with new par-

ticles of masses around Λ/c2 depends on the specifics of the theory, but an estimate

of the contribution from the simplest possible interaction [13, p. 29] is

dNP
e ∼ C

mec
2

Λ2

e�c

2
sinφCP . (1.3)

Here C is the coupling constant that characterises how strongly the new particle

interacts with the electron and φNP is a phase which characterises how much that

interaction violates CP symmetries. No one really knows what C, Λ or φCP should

be. Typically, it is assumed that C = α/2π where α is the fine structure constant2

2 Strictly speaking, this should be α evaluated at the energy scale Λ, because the value of α is
lower at higher energy.
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[19, Eq. 193], so that the supersymmetric eEDM arises in a similar way to the

Schwinger correction to the magnetic dipole moment in QED. Evaluating Eq. (1.3)

with the present experimental limit, Eq. (1.2), constrains Λ � 8.2TeV ×
√

sinφNP.

Alternative analyses lead to a slightly weaker limit Λ � 3TeV ×
√

sinφNP [14].

Assuming for the moment that CP-violating phase is of order 1, then current eEDM

searches are already putting strong lower bounds on the mass of any supersymmetric

particles, bounds which are more stringent than those placed by current generation

of high energy particle physics experiments at the Large Hadron Collider (LHC) [20].

Future eEDM experiments [21] will probe energies more than 100 times higher than

the LHC, and offer an opportunity to continue searching for possible signs of higher

mass supersymmetry if the present series of experiments at the LHC do not discover

new particles.

Of course, there is no reason why φCP ∼ O(1) [13, p. 30], but if φCP � 1,

this reduces the amount of CP violation available to explain the matter-antimatter

imbalance, one of the key motivations of supersymmetry. Even before the failure of

ATLAS and CMS to directly discover supersymmetric particles at CERN in 2013,

eEDM searches were effectively ruling out [16] [22] the simplest versions of that theory

(the so called minimal supersymmetric standard model, MSSM) by placing upper

limits on the value of φCP. Ever more precise upper limits on the value of the eEDM

simultaneously increase the mass scale and decrease the amount of CP violation in

any new physics, thus even null results constrain the form of fundamental physics.

1.3 Measuring the size of the electron EDM

In this section we discuss the variety of ways currently used to measure the eEDM.

Measuring the interaction energy −de · E of a free electron in an electric field is

not practical, because the electron is quickly accelerated by the electric field out of

the experiment. Instead the electrons used are always bound into atoms, molecules,
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molecular ions or solid-state samples. We start by examining how the EDM of an

electron bound in an atom or molecule can interact with an applied electric field.

We then discuss two molecules used to make recent eEDM measurements, and the

results of those measurements. Finally, we briefly survey the current experiments

which aim to measure the eEDM.

1.3.1 The eEDM interaction in atoms and molecules

We might expect an atom with an unpaired electron, placed in an electric field E, to

experience interaction energy −d̂e ·E. This would then lead to a linear Stark shift

of its energy levels, much like the Zeeman interaction −μ̂ · B between a magnetic

field and the magnetic dipole moment μ̂. However, if the electrons and nucleus are

treated as point particles interacting only through the Coulomb force, then there is no

linear Stark shift, a result known as Schiff’s theorem [23]. This can be qualitatively

argued [13] as follows: an electrically neutral atom, placed in a homogeneous electric

field, is not accelerated. Therefore, each of its constituent parts feels an average

acceleration of zero. Since only Coulomb forces act, this means that the average

electric field experienced by each charged electron and the nucleus must be zero. In

other words, the applied field is on average exactly cancelled at each charged particle

by rearrangement of the other charges. Hence, even if an electron did have an electric

dipole moment, applying a field to an atom does not seem to allow it to be detected.

Schiff himself pointed out that his theorem does not strictly apply to a real atom,

because the nucleus is not a point particle, and because there are relativistic forces

as well as Coulomb forces. Taking those into account, there can be a linear Stark

shift after all. The finite size of the nucleus can produce such a shift because the

charge and dipole moment may be distributed differently within the nucleus. This

then leads to the possibility of imperfect screening of the external electric field by the

nucleus [24]. The relativistic motion of the electron causes Schiff’s theorem to fail in

a different way. When the electron is moving relativistically, its dipole experiences
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length contraction close to the nucleus, when it is moving fastest. This means that

while the average electric field acting on the electron still vanishes, a non-vanishing

interaction energy between the electric field and the eEDM is possible [25]. Sandars

[26] realised that in heavy elements, the relativistic effect could be so strong that

the dipole moment of the entire atom could be more than two orders of magnitude

larger than the dipole moment of the unpaired electron. Between 1989 and 2011

experiments on heavy atoms set all the best limits on the size of the eEDM, first

with caesium [27] and then with atomic beams of thallium [28] [29] [30].

In an atomic eEDM experiment, both the finite size and relativistic effects are

dependent on the polarisation of the atom in the electric field. Eventually, it was

realised that if the atom has a polar bond to a second atom, then the polarising

effect of the electronegative atom was much larger than any polarisation that could

be applied using laboratory fields. As a result, the molecule becomes much more

sensitive to P&T violating phenomena. A modest electric field is still required to

align the internuclear axis (whose direction is specified by the unit vector n, pointing

by convention from the negative ion to the positive ion3) so that it has a non-zero

projection along the total angular momentum. In a diatomic molecule like this, the

interaction terms that violate P&T can be written [16] as

−(deEeff +WSCS)σ · n(E) . (1.4)

The first term is the interaction between the electron’s electric dipole moment and

the effective electric field Eeff, which is determined by the relativistic structure of the

molecule. The second term is due to a possible P&T violating weak interaction of

strength CSGF between the electron and the nucleus, where GF is the Fermi coupling

constant [31]. Here it is WS that is determined by the molecular structure. Both

effective interactions are proportional to σ · n(E), where σ is the direction of the

3 Chemists often use a different convention where n points from the heavier to the lighter element
in a bond.
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electron spin and n(E) is that of the internuclear axis in the presence of the external

field E. If we choose the electric field to be along the z axis, then we can define the

polarisation factor η = n · z which quantifies the projection of the internuclear axis

onto the electric field direction.

1.3.2 Choice of molecule

There are a few molecules which could be used to measure the electron EDM. Here

we focus on just two, ytterbium-174 fluoride (YbF) and thorium-232 oxide (ThO).

We will discuss other molecules in passing when we review the current status of

experiments to measure the eEDM.

Our group at Imperial College uses YbF to measure the eEDM. This has a num-

ber of attractive properties. First, it is a non-radioactive isotope whose spectroscopic

properties are well studied and whose laser transitions can be addressed with con-

venient lasers. Second, it can be made relatively easily and reliably by supersonic

ablation, using a source which requires remarkably little down-time or maintenance.

Third, it has a simple energy level structure: its ground electronic, vibrational and

rotational state, X 2Σ+ (shown in Fig. 1.2 (a)) is split into F = 1 and F = 0 by

the hyperfine interaction between the one unpaired electron spin and the fluorine

nuclear spin. The F = 1 level is sensitive to the eEDM, with a large enhancement

factor, Eeff = −26 GVcm−1 [32] and WS = −53 kHz [33]. It can also be fairly well

polarised in laboratory fields of several tens of kilovolts per centimetre, as shown

in Fig. 1.2 (b). For example, an applied field of 12.5 kVcm−1 produces a field of

ηEeff = −15.9 GVcm−1.

YbF also has some good properties which allow it to be used in future eEDM

experiments. First, the eEDM measurement state X 2Σ+ (F = 1) is stable. This

means that there is no fundamental limit on the duration of any measurement of

the eEDM splittings in YbF. Second, YbF can be buffer gas cooled, so slower, more

intense beams can be produced for future experiments. Finally, YbF can also be
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Fig. 1.2: (a) The energy level structure of the X 2Σ+ ground rotational and vibrational level
in a 12.5 kVcm−1 electric field applied along the quantisation axis. The Stark
interaction leads to a splitting between F=1, mF=0 and mF = ±1. The eEDM
splitting of the mF = ±1 levels is ±ΔE = ∓deηEeff. If de = 1× 10−28 e cm, then
at this field ΔE/h = 0.4 mHz. (b) ηEeff as a function of the applied field in the
YbF X 2Σ+ (F = 1) level.

laser slowed and cooled. This allows many of the techniques pioneered in the field

of atomic clocks to be applied to YbF molecules, in particular it suggests that we

could create a fountain of YbF. This is an idea that we will return to in the following

section.

ThO is the molecule chosen by the Advanced Cold Molecule eEDM (ACME)

collaboration between Harvard and Yale universities. In this molecule, it is not the

ground state but the metastable H 3Δ1 state which is used to measure the eEDM.

This state has an even larger effective electric field Eeff = −81.5± 5.7 GVcm−1 [34],

and it can be completely polarised (|η| = 1) by very small applied electric fields of

around 36 Vcm−1. WS is also larger at -260 kHz [33]. When a fixed static electric

field is applied to the H 3Δ1 state, both polarisations of the molecule, η = 1 and

η = −1 are available to be used in the experiment. The flexibility to swap between

η = ±1, without reversing the electric field direction, allows additional rejection of

some systematic effects - in particular, magnetic fields correlated with the applied

electric field. Also, 3Δ states generally have small magnetic moments due to the
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arrangement of the orbital and spin angular momentum. The ThO H 3Δ1 state is no

exception, with a tiny magnetic moment, |μ| = 0.0044× μB [35], so this molecule is

very insensitive to magnetic field noise. While magnetic field noise is not a problem

for the current generation of molecular eEDM experiments (including YbF), it may

become an issue in future measurements.

The disadvantage of ThO H 3Δ1 for future experiments is that it is a metastable

state, with a lifetime of around 2 ms. This puts a fundamental limit on the integration

time that can be achieved with this molecule.

1.3.3 Recent results

In 2011, the group at Imperial was the first to set a new limit on the electron EDM

with a polar molecule. This measurement was undertaken on a supersonic beam of

YbF, and the technique and apparatus used were very similar to those described

in this thesis. It is customary in reporting eEDM results to set CS = 0, which we

do for the time being. Doing so gives a value of de = (2.4 ± 5.7stat ± 1.5syst) ×
10−28 e cm, implying an upper limit on the eEDM of |de| < 10.5 × 10−28 e cm with

90% confidence [36]. Recently, the ACME collaboration set a new upper limit with

ThO, measuring de = (2.1± 3.7stat± 2.5syst)× 10−29 ecm, implying an upper limit on

the eEDM of |de| < 8.7× 10−29 ecm with 90% confidence.

If the experiments are taken to be simultaneous measurements of de and CS, then

the best separate limits on these quantities come from combing the YbF, ThO and Tl

eEDM, and an atomic EDM measurement with 199Hg [37], as illustrated in Fig. 1.3.

This gives |de| < 5.4 × 10−27 ecm and |CS| < 4.5 × 107 with 95% confidence [33].

This more conservative limit on de is worse because the ratio of Eeff to WS is almost

the same in YbF, ThO and Tl, and hence the boundaries of the parameter space

excluded by these experiments are almost parallel, as can be see by Fig. 1.3.

For the remainder of the thesis, when we discuss the electron electric dipole

moment, it should be taken as read that we are setting CS = 0.
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Fig. 1.3: Allowed regions for de and CS from the Tl, YbF and ThO results, reproduced with
permission from Ref. [33] (© APS). Also shown are 68% and 95% error ellipses
representing the best fit for the paramagnetic systems and including 199Hg, as
discussed in the text. The meaning of the symbols in the top and right axes of
the graph is discussed in Ref. [33].

1.3.4 Current experiments to measure the eEDM

There are a number of active experiments that seek to make new measurements of

the electron EDM. The status of the Imperial experiment and the progress towards

making a new measurement with YbF are discussed in detail later in this thesis, so

here we focus on the other experiments.

As mentioned above, the current limit is set by the ACME collaboration us-

ing a buffer gas cooled beam of ThO molecules. This experiment builds on the

techniques developed both in our YbF beam experiment, and also in a previous ex-
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periment to measure the eEDM in a metastable level of lead oxide [38]. The ThO

molecules are created by firing a YAG laser pulse into a solid ThO2 target, which is

located inside a cryogenically cooled cell, filled with neon buffer gas to a pressure of

10−3–10−2 Torr [39]. The hot ThO molecules cooled to 20 K by collisions are swept

out of a hole in the cell into a higher vacuum region, forming a 2–3 ms long pulse

travelling at around 200 m s−1. The molecular pulse flies between a pair of indium-tin

oxide (ITO) coated, transparent, conductive glass plates charged to around ±50 V.

Once inside the plates, the molecules traverse a laser beam which optically pumps

molecules from the ground electronic state into the H 3Δ1 state. Soon after this,

the molecules encounter a second, state preparation, laser. This performs optical

pumping on the H 3Δ1 state to spin polarise the molecules into a plane perpendicu-

lar to the electric field. As will be discussed in greater detail at the beginning of the

following chapter, the eEDM interaction causes the spin direction of the polarised

molecules to rotate slightly. After around 1.1 ms of flight time, the rotation of the

spin polarisation direction is measured using a second laser beam. The size of the

rotation angle is directly proportional to the eEDM. The ACME collaboration hope

to improve this experiment further [14] by using an thermochemical buffer gas source

to produce more molecules. They have also changed the state preparation scheme

from optical pumping to stimulated Raman adiabatic passage. As a result of these

changes, they expect to be able to reduce the statistical uncertainty on their next

measurement by around a factor of ten. At the conclusion to this thesis, we will

return to discuss how the Imperial experiment compares with the current and future

ACME experiment.

In a very different type of eEDM experiment, measurements have been made

on cryogenic (4.2K) ferroelectric gadolinium gallium garnet (GGG) [40] and

Eu0.5Ba0.5TiO3 [41] solid state samples. In these experiments, a large voltage is

applied across a paramagnetic insulator to align the electric dipole moments of the

unpaired electrons parallel to the applied electric fields. A sensitive SQUID mag-
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netometer then measures the resulting magnetisation in the sample. A non-zero

magnetisation indicates the presence of an eEDM. This method benefits from the

very large density of electron spins in the solid but at the moment, the precision is

around a factor of 100 worse than the best molecular experiments. This is because

the magnetic fields induced in the sample are on the order of a few atto-tesla, which

are tricky to measure, even with a SQUID. To maximise the sensitivity of the magne-

tometer, the electric fields are reversed relatively quickly (every second or so). This

can lead to systematic errors where charging currents continue to flow during the

measurement of the sample’s magnetisation, or errors arising from the magnetic hys-

teresis of the sample. Also, leakage currents can flow through the sample between

the high voltage plates leading to a magnetic field which mimics a magnetisation

caused by an eEDM.

We now turn to experiments that are in preparation. Tungsten carbide has been

proposed as a suitable molecule to conduct an eEDM experiment, because it has

a 3Δ1 ground state sensitive to the eEDM, with Eeff = 36 GVcm−1 [42]. Thus, it

combines the attractive 3Δ nature of the ThO molecule with the very long lifetime

of the YbF molecule. Some preliminary measurements have been carried out at the

University of Michigan. At present the number of tungsten carbide molecules is quite

low, with typical count rates of a few per second.

Several groups are also preparing experiments to measure the eEDM with op-

tically trapped paramagnetic atoms, including caesium [43] and francium [44]. Al-

though these experiments would benefit from the very long interaction times available

in a trap, they are quite challenging because the effective field is much smaller for

atoms than for molecules. This means that they have a very stringent requirement on

the magnetic field noise. Also, it is difficult to control the systematic error resulting

from a slight polarisation of the trapping light, as discussed by Romalis and Fort-

son [45].

Researchers at JILA are constructing an experiment to use HfF+ molecular ions
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in an rf Paul trap to measure the eEDM [46] [47]. This molecule has a number of

metastable 3Δ states that could be used in the measurement, and it has a reason-

ably large effective field in these states of around 37GVcm−1 [48]. The experiment

combines low sensitivity to magnetic field noise (because of its large effective field

and 3Δ state) with the long integration times available to trapped samples. How-

ever, measuring the interaction energy between an electric field and the electron

dipole moment at the same time as trapping the molecules in a rotating electric field

presents its own challenges. One of the most significant will be making sure that

the geometric phase in the molecular wavefunction due to the rotating field does not

mimic the eEDM signal.

Fig. 1.4: Diagram of the YbF fountain, taken from Ref. [21]

The final experiment we mention here is a molecular fountain also being developed

in our group at Imperial, in parallel with the work submitted in this thesis. This

fountain will use a helium buffer gas source of YbF to produce 170 m s−1 molecules.

These will be Zeeman slowed and guided into a region where they can be laser

cooled and trapped in a molecular magneto optical trap (MOT). Once a group of
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molecules have been accumulated in the trap, they will be launched between a pair

of electric field plates, and they will be prepared with lasers, rf or microwaves into

a state sensitive to the eEDM. The molecules will fly upwards, slow down and then

turn around and fall back down, whereupon a second field will detect the amount

of spin rotation the molecules have experienced. This machine should be capable of

measuring the eEDMwith an uncertainty of 6×10−31 e cm with 8 hours of integration.

This will be a complex and difficult experiment, requiring a reliable buffer gas source

of YbF molecules, the successful laser cooling of YbF, its trapping in a MOT and

then a way to get the molecules into the electric field plates and transfer them into a

state sensitive to the eEDM. However, the outcome will be a phenomenally sensitive

experiment capable of an exquisitely precise measurement of the electron EDM.

1.4 Thesis overview

The remainder of this thesis is divided into two halves. The first half discusses the

data that I collected between September 2011 and May 2014, with the aim of making

a new measurement of the eEDM. When I joined the group, the experiment had

been established for 10 years, and had recently been used to set a new upper limit on

the eEDM [36]. After this measurement, it had been upgraded by the previous PhD

student, Joe Smallman [49]. My first task was to learn how to operate the experiment

and analyse the data it produced—this is discussed in Chapter 3. Working with Joe

Smallman, I performed a number of tests for known systematic errors which are

summarised at the start of Chapter 2. I also discovered and characterised three new

systematic effects which are also discussed in this chapter. Finally, Chapter 4 presents

my analysis of the origin of the statistical uncertainty in the data we gathered.

The second half of the thesis describes and analyses a series of improvements to

the experiment which will allow a much more accurate measurement of the value

the eEDM. In collaboration with other members of the group, I was responsible for
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deciding which of the many possible ways of improving the experimental sensitivity

would be most effective and practical to carry out. The improvements, presented

in Chapter 5, use additional laser, rf and microwave fields to increase the number

of molecules that can participate in the experiment and detect the molecules more

effectively. Theses improvements are currently being incorporated into the experi-

ment. In this chapter, I also present a simple rate equation model to estimate how

YbF will respond to the additional fields.

In order to understand more fully how YbF interacts with the laser, microwave

and rf fields that will be used in the improved experiment, Chapters 6–7 derive

and solve the optical Bloch equations, first for some simple systems and then for

all possible transitions between X 2Σ+ (v = 0;N = 0, 1, 2), X 2Σ+ (v > 0), and

A 2Π1/2 (J
′ = 1/2) levels in YbF. At each stage the results are compared to the

simple rate model, to understand how the true behaviour of the molecule differs

from a classical picture. Chapter 8 is the conclusions of my thesis, where I sum-

marise the progress discussed in this thesis, and set out the next steps towards a new

measurement of the electron electric dipole moment.



2. OVERVIEW OF THE EXPERIMENT

2.1 The fundamental principle behind the experiment

Consider a classical electric dipole d placed in an electric field E. This experiences

a torque which acts to orientate the dipole parallel to the field. If the dipole is

spinning about an axis which lies along d, and E is applied perpendicular to d

then the torque causes d to rotate about E at a rate proportional to d × E. This

phenomenon is called the precession of the angular momentum. Similar behaviour

can be seen when a spinning gyroscope precesses in the earth’s gravitational field,

three drawings of which are shown in Fig. 2.1 (a). If the dipole is initially prepared

along some particular direction, allowed to precess in a known field for a given time,

and its final direction is observed, then the magnitude of d can be calculated from

the change in orientation of the dipole.

The classical picture of spin precession discussed in the previous chapter captures

the essence of how the YbF eEDM experiment measures the size of the electron

electric dipole moment. We choose a stable state of the ytterbium fluoride (YbF)

where the outermost electron’s spin and electric dipole moment are orientated with

respect to the laboratory x axis with laser and radio-frequency fields. The molecule’s

internal electric field along the internuclear axis n between the Yb and F atoms

is aligned to the laboratory z axis by applying an external field to polarise the

molecule. The polarisation is not perfect, with η = 〈n · z〉 = 0.61, and the direction

of the internal electric field is anti-parallel to the applied field. If the eEDM is

non-zero, there will be a slight precession in the orientation of the initially prepared
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Fig. 2.1: (a) Three drawings of a spinning gyroscope precessing in the earth’s gravitational
field, courtesy of Sherena Corfield. (b) An electron with spin Ŝ (projection S⊥
into a plane perpendicular to E) and eEDM d (projection d⊥ into a plane per-
pendicular to E) precesses over time in an electric field E.

state, caused by the deηEeff interaction between the electron electric dipole and the

effective intermolecular field Eeff experienced by the electron, reduced by the fact

that the molecule is not completely polarised. An illustration of this precession is

shown in Fig. 2.1 (b). The change in orientation after some interaction time τ can

be detected with more laser and radio-frequency fields, from which the size of de can

be calculated.

The rest of this chapter explains how we make this spin precession measurement

in practice. We start by explaining the energy level structure of YbF in section 2.2.

We then set out a brief overview of the apparatus in section 2.3, before moving on to

discuss the sequence of data taking in section 2.4. Finally, in section 2.5 we discuss

how the gathered data is analysed to extract a value for the eEDM.
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2.2 The structure of YbF

This section describes the energy levels of a YbF molecule and the transitions that

can occur between them. Our interest in the structure of YbF is quite pragmatic:

we would like to know how to manipulate the molecules into a state sensitive to the

eEDM and then detect the evolution of that state. To understand the basic operation

of the eEDM experiment, we do not need to know very much about YbF’s structure

or the character of its energy levels, so the reader who would like to get straight to

the heart of the experiment can skip to section 2.2.5 on p. 43 and carry on from

there. However, a fuller understanding of the structure of YbF is crucial to find ways

to improve the experiment, described from Chapter 5 onwards, so we spend a few

pages here exploring the energy levels and possible transitions in more detail.

We measure the eEDM with 174YbF, a diatomic molecule consisting of a

ytterbium-174 atom bonded to a fluorine atom. Like an atom, its electrons can

occupy bound states of different energies and orbital angular momenta. In addition

to these electronic energy levels the molecule has two nuclei that can vibrate about

the centre of mass and rotate about the centre of inertia, adding additional rotational

and vibrational energy levels. 174YbF also has a number of electronic spins and one

nuclear spin 1/2 belonging to the fluorine nucleus.

We start the discussion of YbF’s structure by ignoring the rotational and vibra-

tional degrees of freedom and explain how the electronic structure of YbF can be

treated. We then return to the rotational and vibrational degrees of freedom in the

ground state, and give the basic form of the ground state eigenvectors. We then

repeat this for the excited state. We round off the section with a discussion of the

possible transitions between energy levels.



2. Overview of the experiment 35

2.2.1 Electronic structure

When Yb (configuration [Xe] 4f 14 6s2) bonds to F (configuration 1s2 2s2 2p5), one of

its 6s electrons is accepted by the fluorine. The bond thus formed is basically ionic,

leaving a positively charged Yb+ and negatively charged F−. All atomic orbitals

are filled apart from the single electron in a 6s orbital. It is these lone unpaired 6s

electrons whose spin precession will be measured in the experiment.

The electronic structure of this outer electron in YbF is very similar to that of

an alkali atom. In atoms, for every value of the principal quantum number that the

outermost electron can take, it is possible to define a set of terms, labelled by the

total spin S and orbital angular momenta1 L by a symbol of the form 2S+1L. Each

term will in general have a different energy. Since the electronic spin Ŝ couples to

the orbital angular momentum L̂ via the L̂ · Ŝ spin orbit interaction, each term will

be split into levels according to the possible values of Ĵ = L̂ + Ŝ. To distinguish

between levels, the term symbol is usually written in the form

2S+1LJ . (2.1)

It is also possible to label the terms and levels within a molecule with a molecular

term symbol. For a molecule each term symbol starts with a capital letter, which

labels whether the term is the ground electronic state or an electronically excited

state. The electronic ground state is labelled with an X, and the excited states

are labelled {A,B,C...} depending on whether they are the {first, second, third ...}
excited state.

If we work in the molecular fixed frame, defined so that the z axis lies along the

internuclear axis n, we see that the Hamiltonian does not have spherical symmetry.

The total angular momentum is therefore not conserved and quantum number L

cannot be used to label the term symbol. However, the cylindrical symmetry around

1 Following the usual convention the eigenvalues of the operator X̂ are labelled X. Vector quan-
tities are written in bold font.
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the bond implies that mL will be a good quantum number, so we can label the

molecular term symbols with its eigenvalues. To make the distinction between the

molecular fixed coordinates and the lab coordinates clear, the projection of L̂ along

the internuclear axis is renamed Λ̂.

Just like an alkali atom, terms with Λ > 0 will be split according to the spin orbit

interaction. The cylindrical symmetry of the problem ensures that the projection of

Ĵ along the internuclear axis, labelled Ω̂, commutes with the Hamiltonian, so its

eigenvalues Ω are good quantum numbers. Approximately speaking, the energy of

terms with Λ = ±|Λ|, which correspond to the orbital angular momentum being

clockwise or anti-clockwise about the internuclear axis, are equal. The same goes for

the energy of levels with Ω = ±|Ω|, so the molecular term symbol for a level can be

written as

letter 2S+1|Λ||Ω| . (2.2)

Similarly to the atomic case, the value of |Λ| is specified using a spectroscopic no-

tation, but rather than using S,P,D,... for |Λ| = 0, 1, 2, ... instead Σ,Π,Δ,... are

used.

In this experiment, we are only interested in the ground electronic state2

X 2Σ+ and the |Ω| = 1/2 component of the first electronically excited state A 2Π1/2 .

2.2.2 Vibrational, rotational and other structure of X 2Σ+

Now we move from looking at the electronic structure to considering the vibrational

and rotational structure of the X 2Σ+ ground electronic state. This additional struc-

ture is shown in the energy level diagram 2.2. For our purposes, the eigenfunctions

of the effective molecular Hamiltonian Ĥ0 for this electronic state can be considered

2 The + superscript is included by convention to indicate the symmetry of the Σ state’s electronic
wavefunction under reflection in any plane containing the internuclear axis. This is not the same
as the parity of the state.
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Fig. 2.2: The additional energy levels of the X 2Σ+ term caused by the vibrational, rota-

tional and spin degrees of freedom. The red bracketed levels marked (*) are used
to measure the eEDM, and they are shown separated into their mF components
in the simplified energy level diagram Fig. 2.5. The levels marked (**) are also
show in Fig. 2.5 as a grouped block in grey. Numbers are from Ref. [50].

as the following product of three state vectors

|ψGS〉 = |X,Λ = 0〉 |v〉 ∣∣N,F (+/−),mF

〉
, (2.3)

with energy

Ĥ0 |ψGS〉 = EX,v,N,F |ψGS〉 , (2.4)

where

EX,v,N,F = EX + Ev + EN,F (+/−) . (2.5)

The first of these factors, |X,Λ = 0〉, corresponds to the electron wavefunction for

the orbital motion, its energy is the term energy EX . The next term |v〉 is the state
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vector for the vibrational motion of the Yb and F nuclei in the molecular bond. Its

eigenvalues (to a first approximation) are those of a harmonic oscillator

Ev = hf(v + 1
2
), f = 15.1894± 0.0002THz [51] . (2.6)

The splitting of X 2Σ+ caused by this vibrational motion for v = 0 and v = 1 is

shown in Fig. 2.2.

The third factor accounts for both the rotational motion of the nuclei (operator

N̂ ) and the couplings of the electron spin Ŝ to the fluorine nuclear spin Î. The

energies of these state vectors are basically those of a rigid rotor

Erotation = hB0N(N + 1), B0 = 7233.8007± 0.0010MHz [50] , (2.7)

as can be seen by the large gigahertz-sized splitting between the N = 0, 1, 2 levels in

Fig. 2.2. There are also small additional contributions caused by the spin-rotation

and hyperfine interactions. The good quantum numbers for these states are N and

F , the quantum number associated with the total angular momentum operator F̂ =

N̂ + Ŝ + Î. The lowest energy rotation state, N = 0, has no rotational angular

momentum, so only the fluorine nuclear spin and electron spin contribute to the total

angular momentum. The hyperfine interaction between the nuclear and electron spin

causes the 170.254 MHz splitting between the F = 0 state where the two spins are

anti-parallel and the F = 1 state where the two spins are aligned. In states with

N > 0, the rotational angular momentum can combine with the two spins to give

four possible values of F , corresponding to F = N + 1, F = N − 1 and two states

with F = N . The two states with F = N have different energies and are labelled

with the superscript +/− depending on whether they are the higher/lower energy

state. The splitting of the levels into states labelled by N and F is shown in Fig. 2.2.

The magnetic sub-levels of the F = 1 and F = 0 levels of N = 0 will be frequently

referred to in this thesis, so when we talk about these states we will exclude all of
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the quantum numbers and refer to these levels by their F and mF values only

|F,mF 〉 ≡ |X,Λ = 0〉 |0〉 |0, F,mF 〉 . (2.8)

Finally, we note that as solutions of the molecular Hamiltonian, the ground states

|ψGS〉 must have definite parity, given by

P̂ |ψGS〉 = (−1)N |ψGS〉 . (2.9)

For the remainder of this thesis we are only interested in the full structure of the

states where v = 0 and N = 0, 1, 2.

2.2.3 A 2Π1/2 wavefunction

Now we move on to look at the structure of the A 2Π1/2 electronically excited level

in more detail. In this level we are only interested in the ground vibrational and

ground rotational state

|ψES〉 =
∣∣A, J ′ = 1

2
,P ′〉 |v′ = 0〉 |F ′,m′

F 〉 . (2.10)

This has energy

Ĥ0 |ψES〉 = EA,P ′,F ′ |ψES〉 , (2.11)

where

EA,P ′,F ′ = EA + Ev′ + EP ′ + EF ′ . (2.12)

By convention we label the eigenvalues of the excited state with a prime. We start

with the first term of Eq. (2.10), the spin orbit wavefunction
∣∣A, J ′ = 1

2
,P ′〉. This

has two possible parities, P ′ = ±1. These correspond to the symmetric and anti-

symmetric combinations of the Ω′ = ±1/2 wavefunctions for the electron spin and

orbital motion. These two parity components have different energies because they
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mix differently with neighbouring electronic levels, chiefly the N = 0 rotational level

of the B 2Σ+ second electronically excited level which is an isolated positive parity

state. This lifting of the degeneracy is called Ω-doubling [52]. In molecular spec-

troscopy the components of the Ω-doublet are also sometimes labelled with an ‘e’ or

‘f’: for A 2Π1/2 (J
′ = 1

2
), P ′ = 1 is the ‘e’ state and P ′ = −1 is the ‘f’ state. In YbF,

the separation between the positive and negative parity levels of A 2Π1/2 (J
′ = 1/2)

is 11.8 GHz [51], as illustrated in Fig. 2.3.

A 2P12 n'=0 P'=1

P'=-1

1
0

1
0

4 MHz

3 MHz

11.8 GHz11.8 GHz

F'

EA+En' EP' EF'

*

Fig. 2.3: Ω-doubling and hyperfine splitting in the A 2Π1/2 (J
′ = 1/2) term [52]. The red

bracketed levels marked (*) are used to detect the eEDM, and they are shown sep-
arated into their mF components in the simplified energy level diagram, Fig. 2.5.

An important point to note about the second factor in expression (2.10), the

vibrational wavefunction for the ground vibrational level in the A-state |v′ = 0〉, is
that it is not identical to the ground vibrational level in the X-state |v = 0〉. This is
because exciting the outermost electron into a higher orbit changes the potential in

which the nuclei oscillate. As we shall see, this allows the vibrational state to change

when the molecule scatters light.

Finally, as with the ground state the hyperfine interaction leads to a slight split-

ting of the excited state into an F ′ = 1 and F ′ = 0 component, represented by the

last vector |F ′,m′
F 〉. The small splittings are shown in Fig. 2.3. As we are only in-

terested in the ground vibrational and rotational levels of A 2Π1/2 , we will frequently

drop the reference to the vibrational and J quantum numbers of the excited state

and write A 2Π1/2 (v
′ = 0, J ′ = 1/2,P ′ = ±1) ≡ A 2Π1/2 (P ′ = ±1).
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2.2.4 Transitions

We are also interested in the optical, microwave and radio-frequency transitions

between the states of YbF. The mathematical theory to quantitatively model how the

molecule responds to this range of driving fields is developed more fully in Chapter 6,

but it is helpful at this stage to simply describe the possible transitions.

1
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0
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3
1
2+

2-

1-

1+

N=0

N=1

N=2

X 2S+ n>0

P'=1

P'=-1

X 2S+n=0

A 2P12n'=0 F'

F

Lasers Microwaves RF

Fig. 2.4: A few relevant transitions between YbF energy levels. Microwave transitions
between N = 1 and N = 2 are not shown.

Optical Transitions

States belonging to X 2Σ+ can be optically excited to A 2Π1/2 , and A 2Π1/2 states

decay by fluorescence into X 2Σ+ . The transitions are all in the green region of the
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visible spectrum; the wavelength for transitions from v = 0 to or from v′ = 0 is

around 552 nm. The selection rules that govern these optical transitions are simply

ΔP = ±1 , (2.13)

ΔF = 0,±1 , (2.14)

ΔmF = 0,±1 but not ΔmF = 0 if ΔF = 0 . (2.15)

Since optical transitions must change parity (rule (2.13)), transitions between

A 2Π1/2 and X 2Σ+ (N = 0, 1, 2) form two groups. The positive parity N = 0 and

N = 2 are both driven to the P ′ = −1 excited state, whereas N = 1, which has

negative parity, is driven to the positive parity P ′ = 1 excited state. These are shown

as two slightly separated groups of green lines on the left hand side of Fig. 2.4. Since

each rotational level of X 2Σ+ can only be driven to one parity component of the

excited state, we will frequently drop the P ′ label of the excited state and take it as

read that the allowed transition is being driven.

The decays of A 2Π1/2 states excited by laser light follow the selection rules

(2.13)–(2.15). As discussed above, the X and A state vibrational state vectors are

not the same, so the vibrational quantum number can change in an optical transi-

tion. However, the overlap is high: |〈v = 0|v′ = 0〉|2 = 0.928 [53], which means that

A 2Π1/2 (v
′ = 0) will decay into v > 0 only 7.2% of the time. Rule (2.13) continues

to apply, so molecules in A 2Π1/2 (P ′ = 1) can only decay to the N = 1 state, and

molecules excited to the negative parity state can only decay into N = 0 or N = 2.

Notice that the requirement that F only change by at most one unit of angular

momentum means that the X 2Σ+ (N = 2, F = 3) state cannot be optically excited

to A 2Π1/2 (J
′ = 1

2
), nor can decaying molecules from A 2Π1/2 (J

′ = 1
2
) fall into

X 2Σ+ (N = 2, F = 3). Consequently, if we are only interested in optical transitions,

we can safely ignore this state.
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Microwave transitions

Microwaves play no part in the current experiment but they will be used in the

improvements to the experiment discussed in the second half of the thesis. For the

microwave transitions between N = 0 and N = 1 levels of X 2Σ+ (v = 0), the electric

dipole selection rules are the same as for optical transitions (Eqs. (2.13)-(2.15)), but

the frequencies are around 14.5 GHz. The possible transitions are shown in blue in

Fig. 2.4.

RF transitions

Magnetic dipole radio-frequency transitions between the hyperfine states are used to

manipulate the YbF spin, both in the completed experiments and in the new scheme

discussed in Chapter 5. The selection rules for these transitions are

ΔP = 0 , (2.16)

ΔF = 0,±1 , (2.17)

ΔmF = 0,±1 but not ΔmF = 0 if ΔF = 0 . (2.18)

These transitions are shown in red in Fig. 2.4, and have frequencies between 30 and

190 MHz.

2.2.5 Simplified energy level structure

Having gone into some detail about the structure of the energy levels of YbF, now

we concentrate on the levels relevant for the basic operation of the experiment,

shown in Fig. 2.5. The most important levels shown are the two hyperfine com-

ponents F = 0 and F = 1 of the ground electronic, rotational and vibrational

state X 2Σ+ (N = 0, v = 0). When we need to refer to the magnetic sub-levels in-

dividually, we use the notation: |F,mF 〉. We also show the lowest-energy elec-

tronically excited states into which these ground states can be excited, namely
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A 2Π1/2 (P ′ = −1, v′ = 0) F ′ = 0 and F ′ = 1. Finally, a grey box indicates all

the other states into which the electronically exited states can decay.

1

0

1,-1 1,0
1

1,1
00,0

X 2S+n=0, N=0F,mF

X 2S+N=2 or n>0

A 2P12n'=0, P'=-1 F'

3 MHz

170.254 MHz

> 45 GHz

542.8 THz

Fig. 2.5: A simplified energy level structure for YbF.

2.3 The experimental apparatus

Now that the structure of YbF has been discussed, we move on to present an overview

of the apparatus, before describing how we use it to measure the size of the eEDM.

This equipment is described in more detail in the thesis of Joe Smallman [49].
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2.3.1 YbF beam machine

The core of the experiment is a ∼2 m tall cylindrical vacuum chamber, shown in two

cross-sections in Fig. 2.6 and in the photograph of Fig. 2.7. In normal operation, the

vacuum chamber is surrounded by two layers of mu-metal magnetic shields which

can be seen in Fig. 2.7 (b), but are not shown in Fig. 2.6. To explain the parts of the

vacuum chamber it easiest to start at the bottom of the machine and work upwards.

The circled numbers refer to Fig. 2.6.

In the bottom of the chamber, section 1 , there is a supersonic source of YbF [54]

[55], which functions as follows. First a solenoid valve opens for 160 μs releasing a gas

mix of 98% argon and 2% SF6 into the vacuum. After 350 μs, a YAG laser ablates a

strip of ytterbium target in the presence of this gas mix, producing some YbF. The

gas and molecules supersonically expand in the vacuum, cooling to a translational

temperature between 3–15 K and a rotational temperature of 1–5 K. This produces

∼ 3×109 YbF molecules per steradian per pulse in the X2Σ+(v = 0, N = 0, F = 1, 0)

states, flying upwards at 590 m s−1. Any other products of the ablation or molecules

that occupy other states of YbF play no part in the experiment and are ignored. The

pulse passes up through a 2 mm diameter skimmer whose aperture is 94 mm above

the source. This produces a collimated beam travelling towards the ceiling (along

the y axis). The outline of this beam is shown in dotted blue in Fig. 2.6.

The next region of interest, 2 , is the pump laser region. Here the beam passes

through a pump laser and fluorescence scattered by the YbF molecules is imaged by

a lens and mirror arrangement onto a photomultiplier tube (PMT). Regions 3 – 5

are the core of the experiment, and are located within a 1mm thick mu-metal shield

(diameter 170 mm, height 985 mm with end caps). These contain a pair of 750

mm long, gold coated aluminium, high-voltage electric field plates, spaced by 12 mm

and shown in yellow. These electric field plates are charged to ±7.5kV, producing

a 12.5 kV cm−1 electric field between them. The field is either orientated along

+z or −z, depending on whether the plate labelled ‘N’ is positively charged and
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Fig. 2.7: Two pictures of the main eEDM vacuum chamber (a) without and (b) with the
two outer mu-metal shields

‘S’ is negatively charged, or vice versa. A pair of magnetic field coils, shown in red,

produce an adjustable magnetic field in the region of 10 nT, also along ±z, depending

on the direction in which current flows. Finally there is an rf, TEM, parallel plate

transmission line (long grey rectangles in the diagram), designed to support 170 MHz

rf waves. The rf enters the machine through a semi-rigid coax feed at the top, and

is coupled into the transmission line. At the other end it is coupled out again into

another length of semi-rigid coax. The rf can be fed in either direction and can

therefore travel up or down the machine. In either case the magnetic field of the

radiation, which drives rf transitions, lies along the machine x axis.

The last region of interest is 6 , the probe region. Here the molecules fly through

a probe laser beam and scatter probe light according to their internal state. Around
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6% of the photons emitted by the molecules are imaged onto a PMT, which has a

quantum efficiency of 0.1, so the total detection efficiency is 0.6%.

Having examined the beam machine, we now briefly discuss how the laser, high

voltage, magnetic and radio-frequency fields that are fed into the machine are pro-

duced.
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Fig. 2.8: The apparatus used to generate the high voltage, laser, rf and magnetic fields
used in the experiment.

2.3.2 Laser beam generation

The pump and probe lasers are both derived from the same frequency-doubled solid

state fibre laser, a Menlo Orange One with NTT doubler head. The laser is tuned

to the X 2Σ+ (v = 0, N = 0, F = 1) →A 2Π1/2 transition at 542, 811, 000 MHz by ad-

justing the Menlo’s internal piezo and is actively frequency stabilised to a frequency
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stable HeNe laser using a transfer cavity lock [56].

Some of the light is expanded to a 5mm-radius Gaussian beam and used to excite

X 2Σ+ (F = 1) →A 2Π1/2 in the pump region 2 . The total power into the machine

is approximately 5 mW. The remaining light is doubled-passed through an acousto-

optic modulator (AOM) which blue shifts the light by 170.25 MHz so that it can

excite X 2Σ+ (F = 0) →A 2Π1/2 in the probe region 6 . This beam is expanded to a

size of 10×5 mm and around 2 mW cm−2 (approximately half the saturation intensity

of 4.4 mW cm−2) drives the X 2Σ+ (v = 0, N = 0, F = 0) →A 2Π1/2 transition. Both

the pump and probe beams are linearly polarised before entering the machine with

orientation that we can adjust in the x-y plane. A schematic summary of the probe

laser system can be seen in Fig. 2.8.

2.3.3 High voltage generation

The equipment used to generate and control the high voltages applied to the electric

field plates is shown in the left hand side of Fig. 2.8. The high voltages are gen-

erated by positive and negative Applied Kilovolts supplies, set to produce ±7.5kV.

The connection between the supplies and the high voltage plates can be reversed

automatically using a high voltage relay system described in D M Kara’s thesis [57].

This means that either positive or negative voltages can be applied to the North or

South plates, labelled ‘N’ and ‘S’ in Fig. 2.6. There is also a “bleed box” that can

ground the plates between switches. The connections between the supplies and the

plates can also be reversed manually by changing the way the cables to the machine

are plugged into the relays. They can either be connected directly (vertical dashed

thick black lines in Fig. 2.8) or crossed over (diagonally crossed thick black dashed

lines in Fig. 2.8). We call these two manual configurations of the electric field ‘true’

and ‘false’ respectively. Each of the cables contains a nano-ammeter [58] which mea-

sures the leakage current flowing from the plates during eEDM data taking, and can

also be used to measured the charging currents. High voltage cables go from the rack
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to the high-voltage feedthroughs on the eEDM machine, running through three sets

of rf ferrites to isolate the high voltage system from any radio-frequency fields. The

feed to the South plate is shown on the right hand cross-section of Fig. 2.6.

2.3.4 Radio frequency generation

The radio-frequency equipment used in the experiment is shown in the top right

hand side of Fig. 2.8. The rf is generated by a HP 8657A synthesiser, which is

switched on throughout the experiment. Short pulses of rf can be made by opening

a pair of Minicircuits ZASWA-2-50DR switches on the output of the synthesiser.

The frequency of these pulses can be quickly tuned by adjusting the synthesiser’s

Direct Current Frequency Modulation (DCFM) input, and their amplitude can be

independently controlled with an external amplitude modulator. The relative phase

of two pulses can be adjusted by changing the DCFM voltage in between the pulses,

and also by means of a Minicircuits PAS-1 bi-phase modulator which can add an

optional 180° phase delay to the second rf pulse. The exact configuration of all these

rf components is described in much more detail in Ref. [49].

Once pulses of the correct amplitude, frequency, phase and duration are created,

they are amplified by a CPC MRI Plus amplifier and are sent into the vacuum

chamber. The cables into the machine can either be connected so that the rf is sent

into the top rf feed or the bottom rf feed. The two possible ways of connecting

the cables are shown at the top left of Fig. 2.8, where the horizontal, thick grey

dashed lines correspond to rf being sent into the bottom of the transmission line

(travelling up through the machine), and the diagonally crossed thick grey dashed

lines correspond to rf being sent into the top of the machine (travelling down through

the machine). We call these rf manual states ‘true’ and ‘false’ respectively. In either

case, the rf is coupled out of the machine and dumped into a 50 Ω load.
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2.3.5 Magnetic field generation

The magnetic fields are generated by a home build precision current source, described

in Ref. [49] and indicated on the right hand side of Fig. 2.8. It is capable of producing

currents up to a few milliamperes with a fractional stability of 5×10−3. The manual

state of the magnetic fields can also be swapped by reversing the cables on the output

of the magnetic field supply. The vertical dashed red lines correspond to manual state

“true” and the crossed red lines correspond to manual state “false”.

2.4 The experimental sequence

Having described the structure of the YbF molecule and given an overview of the

experimental set-up, we now describe the main practical steps when we make a

measurement of the size of the eEDM.

The experiment makes measurements on a pulsed supersonic beam of YbF. The

sequence from the creation of a YbF packet to its destruction as it flies into the top

of the machine is called a shot. The machine fires a shot approximately every 40 ms

at a rate which is phase locked to half the mains frequency. It takes 2.6 ms for the

shot to be completed. We start by following the sequence of events in one of these

shots.

In between shots, some of the settings of the experiment can be changed. These

could be the size or the direction of the applied magnetic fieldB, and/or the direction

of the applied electric field E, for instance. Below, we describe how a measurement

of the the eEDM involves taking several shots where the size and direction of B and

E are varied.

We then go on to discuss the normal operation of the eEDM machine, where 9

parameters can be varied between two values each, giving 29 = 512 distinct states

of the machine. A collection of 4096 shots where each state of the machine is vis-

ited 8 times is called a block. This is the smallest amount of data that gives an
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eEDM measurement; each block contains a value of the eEDM alongside many other

measurements.

2.4.1 A shot

We now follow the sequence of actions during a single shot of the interferometer.

To recap, the sequence of events is as follows: we first prepare the YbF spin and

internuclear electric field along orthogonal axes, then allow the spin to precess in the

presence of the internuclear field, before measuring the change in orientation caused

by the electric field.

The numbers in this section indicate roughly where the events described take

place in the machine, as shown in Fig. 2.6.

1 Make some YbF

The source valve opens and the YAG laser fires, creating a pulse of YbF travelling

upwards at 590 m s−1. Only the molecules which thermalise to the ground vibrational

and rotational state of X 2Σ+ are used in the experiment.

2 Clear out the F=1 level with a pump beam

The YbF molecules fly through the pump laser tuned to the

X 2Σ+ (v = 0, N = 0, F = 1) → A 2Π1/2 transition. The nearly degenerate spacing

of the F ′ = 0 and F ′ = 1 levels in the excited state means that a single laser can

drive transitions from F=1 to both levels. The intensity of the laser beam and

flight time of the molecules through the beam are sufficient to pump molecules

out of the F=1 state. Because of the allowed decays from the excited electronic

state to the X2Σ+(v = 0, N = 2) and X2Σ+(v > 0) levels, only 1/3 of molecules

excited to A 2Π1/2 will end up decaying into the F = 0 ground state, roughly

doubling its population. The optical pumping scheme is shown in Fig. 2.9 (a). The

fluorescence caused by these decays is detected by a photomultiplier tube (PMT).
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Fig. 2.9: (a) A pump laser beam addresses the three magnetic sub-levels of F = 1, remov-
ing any molecules which happen to be in this level. (b) The fluorescence signal
detected by the pump PMT (red dots), with an accompanying interpolation func-
tion (red line). The dashed lines at t′1 and t′2 indicate the usual region over which
the pump PMT signal is integrated (giving the shaded red region), as described
on page 67.

The time-dependent fluorescence signal is recorded as the molecular pulse flies

through the beam; since the source produces a spread of velocities, the signal lasts

for around 150 μs while molecules with different velocities pass through the pump

beam. The signal recorded by the pump PMT for a shot is shown in Fig. 2.9 (b).

3 Prepare the YbF into a superposition of |1,−1〉 and |1, 1〉

In between regions 2 and 3 the molecules enter the space between the rf and dc

field plates. The 12.5 kV cm−1 field polarises the YbF molecules, aligning their axis

n with the axis of the applied electric field z. For our choice of field, the polarisation

factor η = 〈n · ez〉 is 0.61, where ez is a unit vector along z. This causes a Stark

shift of the mF components of the F = 1 energy levels, shown in Fig. 2.10 (a).

When the molecules are approximately in section 3 , a first pulse of rf radia-

tion (ωrf = 2π × 173.6 MHz, pulse length 9 μs) is sent down the rf transmission
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Fig. 2.10: (a) The Stark shifting of the X 2Σ+ (v = 0, N = 0) levels in a 12.5 kV cm−1

electric field. (b) The excitation of |0, 0〉 into a superposition i√
2
(|1, 1〉 − |1,−1〉)

using an rf pulse.

line. The rf magnetic field Brf field is linearly polarised along x: Brf = Brfex.

This can be rewritten as a sum of left and right circularly polarised magnetic fields:

ex = (ε−1 − ε1)/
√
2, where ε±1 are the unit vectors for radiation that drives σ±

transitions respectively, taking the quantisation axis to be along the z axis. The rf

therefore drives the state |0, 0〉 up to a superposition of |1,−1〉 and |1, 1〉. We set

the amplitude of Brf such all the population is coherently transferred up to F = 1,

(a π-pulse) then the system ends up in the superposition3 of the excited states

|0, 0〉 → i√
2
(|1, 1〉 − |1,−1〉) . (2.19)

The process is shown graphically in Fig. 2.10 (b).

4 Let the YbF spin evolve in electric and magnetic fields

Now we allow the molecules to evolve in the electric and magnetic fields while they

fly upwards through the machine for a time τ = 980 μs. The Zeeman and eEDM

interaction Hamiltonians Ĥ = −μ̂·B−ηdeEeff cause a perturbation to the |1,−1〉 and
3 To remove some global phase factors that multiply the states that follow, we define the energy

scale so that the Stark shifted |1,±1〉 levels have zero energy.
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Fig. 2.11: The splitting of the states |1, 1〉 and |1,−1〉 due to the Zeeman and electric
dipole interactions. The splittings are given by ΔB = μBB and ΔE = −ηdeEeff.
Typical values are |ΔB/�| = 2π × 125 Hz, |ΔE/�| < 2π × 1.2 mHz

|1, 1〉 levels, shifting their energy by ∓(ΔB +ΔE) = ∓(BμB − ηEeffde) respectively.
4

If the electric and magnetic fields are both applied in the positive z direction, and the

electron electric dipole has the same sign as the magnetic dipole (de = −|de|), then
the Zeeman interaction will cause the mF = −1 level to shift down in energy, whereas

the eEDM interaction shifts the level up slightly in energy. This is a consequence

of the fact that the internuclear electric field always opposes the applied field, so in

this case ηEeff = −0.61× 26 GV cm−1.

It follows from the Schroedinger equation that an eigenstate |E〉 of the system’s

Hamiltonian with energy E evolves after a time τ into the state e−iEτ/h |E〉. Thus,

the molecules evolve from the state on the right of Eq. (2.19) according to

i√
2
(|1, 1〉 − |1,−1〉) → i√

2

(
e−i(φB+φE) |1, 1〉 − ei(φB+φE) |1,−1〉) , (2.20)

where φB = ΔBτ/� and φE = ΔEτ/�. This evolution has a simple interpretation as

a precession of system’s angular momentum about the z axis. In this picture, the

4 We adopt the convention used in the 2010 CODATA [59] that dipole of a system is positive if
aligned with the angular momentum, and negative if antialigned. Thus μ̂ = −μBF̂ for the F = 1
level with gF = −1.
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initial vector is acted on by the operator

R̂(φ) = e−iφ |1, 1〉 〈1, 1|+ |1, 0〉 〈1, 0|+ eiφ |1,−1〉 〈1,−1| , (2.21)

which rotates a quantum state anticlockwise by an angle φ about the z axis. This

operator can be derived using the results in Appendix A. Applying the operator to

the state prepared by the rf gives

R̂(φ) i√
2
(|1, 1〉 − |1,−1〉) = i√

2

(
e−iφ |1, 1〉 − eiφ |1,−1〉) (2.22)

In other words, the electric and magnetic fields apply a torque to the YbF molecule,

causing it to rotate with a constant angular frequency φ̇ = (ΔB +ΔE) /� clockwise

about the z axis.

5 Drive population in |1, 1〉 − |1,−1〉 back to |0, 0〉 with a second rf pulse

1,-1 1,1

00,0

1,0
X 2S+n=0, N=0F,mF

F

1

rf p- pulse

Fig. 2.12: A second RF pulse maps the state −i√
2
(|1, 1〉 − |1,−1〉) down to |0, 0〉. Because

the phase of the superposition has evolved, some population is left in F = 1 and
some is transferred to F = 0.

At 5 , when the evolution time reaches τ = 980 μs, a second rf pulse is sent

through the transmission line. The polarisation of the rf is still along x, but now all

the population is in the F = 1 state. The overlap of the final state in Eq. (2.20) with

the state (|1, 1〉 − |1,−1〉) /√2 is transferred coherently down to the state ieiφrf |0, 0〉
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with another π-pulse. Here φrf = ωrf × 9 μs. Since the excited state has precessed

from the originally prepared state (2.19) to the state (2.20), the overlap is not perfect,

and so the amplitude to be in the state |0, 0〉 after the second rf pulse is

−1
2
eiφrf
( 〈1, 1| − 〈1,−1| ) (e−i(φB+φE) |1, 1〉 − ei(φB+φE) |1,−1〉) = −eiφrf cos (φB + φE) .

(2.23)

6 Count the number of molecules in |0, 0〉 with laser induced fluorescence
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Fig. 2.13: (a) The population in |0, 0〉 is measured using a probe laser. There is still
population remaining in X 2Σ+ F=1 and N=2, which is not shown. (b) The
fluorescence signal detected at the probe PMT as a function of time through the
shot. The dip at 1800 μs is caused by electrical pickup from the second rf pulse
on the PMT electronics. By analysing the eEDM signal at different molecular
arrival times, we conclude that the rf pickup does not influence our measurement
of the eEDM.

The population of the |0, 0〉 state is read out by a probe laser tuned to the

X2Σ+(v = 0, N = 0, F = 0) → A2Π1/2 transition, as shown in Fig. 2.13 (a). The

fluorescence photons emitted when the molecules decay are measured using a PMT.

The photoelectrons produced by the PMT generate a voltage pulse across a sense

resistor, which is amplified to produce a time dependent voltage, STOP(t). A typical
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pulse is shown in Fig. 2.13 (b). This signal is a measure of the rate at which photons

land on the detector, and hence its integral gives the total number of photons counted.

Laser light is also scattered from surfaces and off-resonantly from other molecules,

making a background G(t), so we write the top PMT signal as

STOP(E,B; t) = A(t) cos2 (φB + φE) + G(t) . (2.24)

The spread in molecular velocities leads to a range of arrival times, with the most

intense part of the beam crossing the probe laser shortly before 2200 μs. This time

dependence in the intensity of the molecules is captured by the pre-factor A(t).

The term of interest is the cos2 coming from the right hand side of Eq. (2.23). By

considering how STOP(E,B; t) varies when E and B are changed from shot to shot,

we can extract the value of the eEDM as described next.

2.4.2 Simplified eEDM experiment
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Fig. 2.14: Integrated signal in the top detector as a function of applied magnetic field.

If we take several shots with different values of B for a fixed electric field E

pointing along z, we can scan out the cos2 interference curve
∫ ta+Δt/2

ta−Δt/2
STOP(E,B; t)dt

shown in Fig. 2.14 for molecules that are detected in a narrow window of length Δt
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around the time ta. Now suppose we reverse the direction of the electric field, then

we can scan out a second interference curve
∫ ta+Δt/2

ta−Δt/2
STOP(−E,B; t)dt where

STOP(−E,B; ta) = A(ta) cos
2 (φB − φE) + G(ta) . (2.25)

The phase difference between these curves, shown greatly exaggerated in Fig. 2.15,

is directly proportional to the EDM: 2φE = 2ΔEτ/� = 2
�
ηEeffdeτ .
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Fig. 2.15: A graph illustrating the phase shift in the interferometer when the direction of
E relative to B is reversed. The phase is greatly exaggerated. Also shown are
the 8 points on the two interference curves which we use during normal eEDM
data-taking to measure the eEDM

We could scan and fit interference curves for both directions of E to determine this

phase shift. However, it is a more efficient5 use of the measurement time to sample

each curve at four different points, using four different values of the magnetic field for

each value of the electric field. The signal measured at these four points is labelled

5 In this context, efficient means that this method gives a lower statistical uncertainty on the
eEDM for a given number of shots.
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{A,B,C,D} for STOP(+E,B; ta) and {A′,B′,C′,D′} for STOP(−E,B; ta), as shown

in Fig. 2.15. These values of the magnetic field are chosen to apply phase shifts of

{−9π⁄32,−7π⁄32,7π⁄32,9π⁄32}, so that we work in the linear regions of the interference curves,

around the ±π⁄4 points. In these regions, the experiment is maximally sensitive to

phase shifts caused by the eEDM interaction. The value of the eEDM is given by

the combination of these eight points in Eq. (2.26) [60]

de =
π/32

ηEeffτ

(
A+ B− C−D− A′ − B′ + C′ +D′

−A+ B + C−D− A′ + B′ + C′ −D′

)
. (2.26)

This combination of points may look a little opaque, but we can straightforwardly

check that it gives the correct result by inserting Eqs. (2.24) and (2.25) into (2.26)

to find that the term in brackets in Eq.(2.26) is equal to φE/(π/32), and then use the

previous definition of φE to write the result in terms of de. Notice that the amplitude

of the interference curve, A(ta), and the signal background G(ta) do not have to be

separately measured if we use this combination of points.

To increase our signal, rather than just use molecules that arrive at a single arrival

time ta, we can repeat this measurement for all the arrival times between t1 = 2110μs

and t2 = 2270μs. The integration gates and region of interest are shown in Fig. 2.13.

2.4.3 A more comprehensive eEDM experiment: A block

We have seen how to make a simple measurement of the eEDM by taking groups

of 8 shots with suitable values of electric and magnetic fields. We can think of this

as the modulation between beam shots of 3 parameters, each having two discrete

values; namely the direction of the applied E field (labelled E), the direction of a

large applied magnetic field (labelled B), chosen such that φB = π/4 and a smaller

magnetic field (labelled δB) chosen such that φδB = π/32. During normal data taking

we switch these three parameters and six more, to give 9 modulated parameters, each

of which is stepped between two distinct values. This gives rise to 29 distinct states of
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the machine, specified by the signs of all 9 parameters. We define a block of data as

a set of 8× 29 = 4096 measurements, in which each of these machine states is visited

8 times. At the start of each block certain settings are fixed. Some of these fixed

settings are listed in Table 2.1. The 9 modulated parameters are listed in Table 2.2.

Parameter name Description Typical value

νrf1 Centre frequency of the first rf pulse 173.6 kHz

νrf2 Centre frequency of the second rf pulse 173.6 kHz

νLF1 Centre frequency of the probe AOM 170.25 kHz

arf1 Centre amplitude of the first rf pulse* 0 dBm

arf2 Centre amplitude of the second rf pulse* −1.5 dBm

B0 Bias z field to cancel any stray fields in machine <2 nT

θprobe Probe polarisation angle 0–360°

θpump Pump polarisation angle 0–360°

Φ0 Relative phase between rf pulses 0–10π rad

Tab. 2.1: Parameters held constant during a block. * indicates that this is measured before
the rf amplifier.

Each parameter named X is modulated according to a waveform WX , which is

nothing more than a vector with 4096 entries, each either 1 or −1. There are equal

numbers of 1 and −1. If the nth entry in the waveform code (WX)n is 1, then in

the nth shot the step in parameter X is positive, and if the nth entry is −1, the step

is negative. The waveforms are also orthogonal:
∑

i(WX)i(WY )i = 0. They are

randomly generated using the methods described in Ref. [61], and chosen to reject

low frequency noise and systematic drifts of experimental parameters over the course

of the block.

The block begins with the generation of a new set of random waveforms. Once this

is complete the machine randomly sets and records θpump and θprobe, the polarisation
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Parameter name Description Stepped between

E Electric field along z ±12.5 kVcm−1

B

Large step in the magnetic field.
Equivalent to stepping between
(A+B)/2 and (C+D)/2 on Fig. 2.15.
Causes the molecules to precess by
an angle φB = ±π/4 as defined by
Eq.(2.22).

B0 ± 8.8 nT

δB

Small step in the magnetic field.
Equivalent to stepping between A and
B. Causes the molecules to precess by
an angle φB = ±π/32 as defined by
Eq.(2.22)

±1.1 nT

RF1F Frequency of the first rf pulse νrf1 ± 2 kHz

RF2F Frequency of the second rf pulse νrf2 ± 2 kHz

RF1A Amplitude of the first rf pulse arf1 ± 5%

RF2A Amplitude of the second rf pulse arf2 ± 5%

LF1 Frequency of the probe laser AOM νLF1 ± 300 kHz

PI Fixed phase shift between rf pulses Φ0 ± π/2 rad

Tab. 2.2: Parameters switched during a block. The total magnetic field is the sum of the
B and δB parameters.

direction of pump and probe laser beams, and Φ0, the phase difference between the

two rf pulses. The machine then runs through each of the 9 stepped parameters

listed in Table 2.2, applying first the positive step and then the negative step and

recording the value of the parameter in each state as follows: the electric field is

measured by measuring the voltage across a sense resistor in the switching apparatus.

The magnetic field steps B and δB and the bias field B0 are measured by recording

the current applied to the magnetic field coils. The size of the rf frequency steps

RF1F and RF2F and central frequencies νrf1 and νrf2 are measured with a frequency
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counter, as is the size of the laser frequency step LF1 and the centre frequency νLF1.

The amplitude of the rf pulses is measured with an rf power meter. This process

takes around 40 s to complete.

Once these preliminary measurements are complete, the machine begins to fire

the 4096 shots, switching the parameters in between shots according to the waveform

codes so that the machine is in the correct state for each shot. The shots are taken

at a rate of 25 Hz, which gives a total time of 40 ms for each shot. The molecules are

only flying through the machine for 2.6 ms, and the remaining time is sufficient to

switch all of the parameters apart from the electric field. The E switch is deliberately

slow, taking 16 s to switch the electric field direction. This is done to ensure that

the charging currents are limited to a few μA, low enough to avoid magnetising the

magnetic shields. The details of these charging currents are discussed in more detail

in section 3.5.2.

After all shots have been taken the data from the block is automatically analysed

using the techniques discussed in the following section 2.5 and the parameters in

Table 2.1 can be adjusted based on the results. These adjustments ensure that the

rf and laser frequencies are kept on resonance and any stray magnetic fields along z

are trimmed away by the bias field B0. The machine is now ready to take another

block.

2.4.4 Clusters

A collection of blocks is taken autonomously by the eEDM machine without human

intervention over the course of a single day in what we call a cluster. In between

clusters we check the alignment of the laser beams, de-magnetise the shields if nec-

essary and every 10 or so clusters we have to break vacuum in the source chamber to

clean the YbF target wheel. Otherwise, the experiment can run continuously even

over the weekend without intervention.

In between clusters we can also change the ‘manual state’ of the machine by
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reversing the cable connections between the electric field rack and the vacuum cham-

ber as described in section 2.3.3 (changing the E manual state), or by swapping the

cables on the output of the rf generation apparatus and the machine as described

in 2.3.4 (changing the rf manual state) or swapping the connections between the

machine and the current supply which drives current around the magnetic field coils

(changing the B manual state). Each of these three manual states is either ‘true’ or

‘false’ depending on which way round the cables are connected, so for each cluster

we associate a three letter code such as {T,T,T} which indicates the manual state

of the machine during that cluster. The convention is that the manual states are in

the order {E,B,rf}. By understanding how the signals in our detectors change with

manual reversals we can learn much about the source of any signals we see in the

detectors, including systematic errors that might masquerade as an eEDM.

2.5 Data acquisition and analysis

2.5.1 Detectors

The detectors that gather data during each shot can be grouped into two types.

Single point detectors produce one value for every shot of the block, whereas time

dependent (TD) detectors produce several values as a function of time during a shot.

We have already come across two TD detectors in section 2.3.1, namely the pump

and probe PMTs. Here we list the remaining detectors in Tables 2.3 and 2.4. We

will encounter many of these detectors again in the sections and chapters to come,

but two that deserve a special mention are the ‘short’ and ‘9V battery’. These are

plugged straight into the analogue-to-digital converter (ADC) card which samples

the TD detectors and are useful for checking that the data acquisition electronics

and signal processing algorithms give the right results when provided with these

well-defined inputs.
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Detector Short name Measures

Pump photodiode NPD Power of the pump laser beam

Probe photodiode TPD Power of the probe laser beam

MiniFlux 1 magnetometer M1
Magnetic field along z axis close to the
high voltage supplies

MiniFlux 2 magnetometer M2
Magnetic field along z over the optical
table, half way between MiniFlux1 and
MiniFlux3

MiniFlux 3 magnetometer M3
Magnetic field along z axis on top of
the computer control rack

North leakage monitor NL
Leakage current on the cable connected
to the North plate (see Fig. 2.8 for lo-
cation)

South leakage monitor SL
Leakage current on the cable connected
to the South plate (see Fig. 2.8 for lo-
cation)

rf1 reflected power R1
Power of the rf reflected out of the ma-
chine during first rf pulse (see Fig. 2.8
for location)

rf2 reflected power R2
Power of the rf reflected out of the
machine during second rf pulse (see
Fig. 2.8 for location)

Pi flip monitor PF
Phase of second rf pulse with respect to
the first

Tab. 2.3: Single point detectors that record a single value each shot.
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Detector
Short
name

Measures
Records be-
tween (μs)

Resolution
(μs)

Typical
gates (μs)

Pump
PMT

NORM
Laser induced
fluorescence from
pump beam

1800–2590 10 549–591

Probe
PMT

TOP
Laser induced
fluorescence from
probe beam

400–780 10 2110–2270

Inner mag-
netometer

MAG

Magnetic field
along z next to
vacuum chamber
(see Fig. 2.6 for
location)

400–2400 200 400–2400

Short GND
Voltage across a 50
Ω resistor; dummy
input

400–2400 200 400–2400

9V battery BAT
Voltage of a 9V
battery; dummy
input

1800–2590 10 1800–2590

RF Amme-
ter

RFC
DC current flowing
onto rf plates (see
Fig. 2.8)

400–2400 100 400–2400

Tab. 2.4: Time dependent detectors that record several values over a shot.
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2.5.2 Extracting channels from a block

Once the block is completed, we have a set of detected quantities from the detectors

listed in Tables 2.4 and 2.3 for each of the 4096 shots within the block. Let SD
i (t)

label the (possibly time-dependent) quantity with short name D on the ith shot of the

interferometer. During each of these shots the machine was in one of the 512 possible

states corresponding to each of the possible switched parameters either being in the

‘plus’ switch state or the ‘minus’ switch state.

We would like to analyse the data not only to extract the eEDM signal, but

also to investigate the effect on all the detected quantities of stepping parameters or

combinations of parameters. This allows us to check that the experiment is running

correctly, and in particular to search for systematic errors in the determination of

the eEDM. To that end, for a waveform WX , we define a signal channel for detector

D as

{X}D(t) = 1
N

N∑
i=1

(WX)iS
D
i (t) , (2.27)

where N=4096. We most frequently want to consider channels in the top (probe)

PMT detector, divided (normalised) by the integrated signal on that shot from the

pump PMT. We call this composite detector the ‘Top Normed’. This normalisa-

tion reduces the effect of shot-to-shot variations in the number of molecules, since

these variations scale both STOP and SNORM by the same factor. These frequently-

used channels are denoted by dropping the subscript D that identifies the detected

quantity

{X}(t) = 1
N

N∑
i=1

(WX)i
Ñ
Ni

STOP
i (t) , (2.28)

where the constant Ni is the integrated signal in the pump PMT detector

Ni =

∫ t′2

t′1

SNORM
i (τ)dτ . (2.29)
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The integration bounds t′1 and t′2 give the range over which the pump PMT is nor-

malised, as shown in Fig. 2.13 (b). They determine the fastest and slowest molecules

whose signals will play a part in the experiment. Finally Ñ is the mean of all the

integrated pump signals in the entire block

Ñ = 1
N

N∑
j=1

∫ t′2

t′1

SNORM
j (τ ′)dτ ′ . (2.30)

The set of analysis waveforms WX can include the modulation waveforms for a given

block but is not restricted to those. For instance, the waveform that consists of the

number ‘+1’ 4096 times, called WSIG, gives the average signal at time t for that

detector and block, {SIG}D(t). Other frequently-used analysis waveforms are the

product of two or more modulation waveforms. These are signified by a slightly

confusing dot product notation WX·Y . In this waveform the ith element is

(WX·Y )i = (WX)i × (WY )i . (2.31)

The method we use to generate the modulation waveforms ensures that they are

orthogonal to each other and to any product of waveforms, so it is possible to ex-

tract the linear responses of the system to arbitrary combinations of the switched

parameters.

To give the reader a feel for the signal channels, Table 2.5 presents a selection

of a few channels and combinations of channels that we encounter frequently in the

analysis of eEDM data, together with their interpretation.
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Channel Interpretation

{δB} Proportional to the amplitude of the interference curve

{SIG} Average signal detected by the probe PMT.

{SIG}NORM Average signal detected by the pump PMT.

{δB}
{SIG} Proportional to the contrast of the interference curve.

{B}
{δB}

The signal change when the direction of the magnetic field is re-
versed normalised to the amplitude of the interference curve. A
non-zero value indicates that there is an ambient magnetic field in
the machine along z.

{E · δB} A correlation between the direction of the applied electric field and
the amplitude of the interference fringe.

{E}MAG
Magnetic field detected by the inner magnetometer which is corre-
lated with the reversal of the electric field direction.

{E}NL

Leakage current correlated with the direction of the applied electric
field. A non-zero value may indicate currents flowing in machine
which could mimic an eEDM.

{E·B}
{δB}

The leading contribution to the eEDM signal, proportional to the
eEDM phase and the size of de. For a set of shots all in an identical
machine state apart from the switch states of E, B and δB this
combination of points is the term in brackets in Eq.(2.26).

{RF1F}
The change in molecular signal when the frequency of the first rf
pulse is stepped, if it is non-zero then the first rf pulse may be
detuned.

{E ·RF1F}
The part of {RF1F} that correlates with the reversal of the electric
field; if non-zero it may indicate that the electric field is changing
size upon reversal and causing the rf pulses to become detuned via
a change in the Stark shift of the |1,±1〉 levels.

Tab. 2.5: A few interesting channels.

When considering simple algebraic combinations of different channels, we will

usually write them out in full, as in Table 2.5. However for more complicated combi-

nations of channels we will write the name of the combination of channels in square
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brackets. The most often used combination of channels is [EDM], the combination

gives the value of the eEDM in the presence of an uncancelled bias field and an

electric field which changes size on reversal [60]

[EDM] =
gFμBBδBτ

ηEeffτ

({E · B}
{δB} − {B}{E · δB}

{δB}{δB} +

{SIG}
{δB}

({B · δB}{E · δB}
{δB}{δB} − {E · B · δB}

{δB}
))

, (2.32)

where BδB is the difference in magnetic fields between the two switch states of the

small magnetic field step δB, chosen such that gFμBBδBτ/� = π/32.

Often we want to integrate the detector signals between a start time t1 and end

time t2. We denote these signals using a pair of angle brackets

〈{X}D〉 =
∫ t2

t1

{X}Ddt . (2.33)

Note that here the angle brackets denote the integral, not an average. If the channel

being integrated is the Top Normed, then we normally relate the integration bounds

on the pump and probe detectors according to t1 = κt′1 and t2 = κt′2, where κ is the

ratio of the source to pump detector distance to the source to probe detector. This

means that we analyse the molecules with the same velocities in both the pump and

probe detectors.

2.5.3 Blind

To prevent our analysis from being influenced by any preconceived ideas about the

value of the eEDM, a hidden artificial blind is added to the eEDM signal, 〈[EDM]〉 by
the computer during the data analysis. The value of this blind was chosen randomly

by the computer after the last published measurement from a normal distribution

with zero mean and 5× 10−27 e cm standard deviation.
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2.5.4 Statistical analysis of channel values

The channel values from several blocks can be combined to give an average value and

associated confidence intervals for that channel. To perform the analysis we would

like to choose statistical measures of the centre of the distribution of channel values

which are:

1. Robust : they are not affected by spurious outlying points

2. Efficient : they place as narrow as possible a bound on the centre of the under-

lying distribution from which the channel values are drawn.

As a compromise between these two conflicting requirements, we use the 5% trimmed

mean as the estimator for the centre of our distributions. This is the mean of the

channel values with the largest 5% and smallest 5% of the data dropped.

To estimate the error on the value of the mean, we adopt the bootstrap method

[62][63]. This has the great advantage of not assuming anything about the underlying

distribution from which the channel values are a sample. This is necessary because

our underlying distributions are complicated and certainly not Gaussian. An illus-

tration of this can be seen in Fig. 2.16 (a) where the distribution of the 〈[EDM]〉
channel values for a collection of 2740 blocks is shown and compared to a Gaussian

distribution of the same variance with a Q-Q plot in Fig. 2.16 (b). The deviation of

the distribution from the Gaussian is noticeable; there are more points in the centre

of the distribution, slightly fewer in the region between ±(1− 7)× 10−26 e cm and

a great many outliers from about ±10× 10−26 e cm.
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Fig. 2.16: (a) a histogram of 〈[EDM]〉 from 2740 blocks taken in July 2013. The mean
of the distribution has been subtracted. The blue solid line is the probability
density function for a normal distribution with the same standard deviation as
〈[EDM]〉. (b) A quantile-quantile plot of the normal distribution shown in (a)
(x-axis) versus the 〈[EDM]〉 data (y-axis).
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To calculate the error by the bootstrap, we first make a large number of replicates

of the set of channel values. Each replicate is made by drawing a list of points

randomly (with replacement) from the original (untrimmed) data set. The list is the

same length as the original data set. The replicates form a collection of new data

sets, which sample the underlying distribution as well as the the original data set did.

We now calculate the 5% trimmed mean for each of the replicates, and histogram

the results. The n% confidence intervals on the mean can be found by calculating

the upper and lower bounds of the region of the histogram which contains n% of the

trimmed means. An example of this process is shown in Fig. 2.17.
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Fig. 2.17: A histogram of the 5% trimmed mean of 5000 replicate data sets made from
the 〈[EDM]〉 block data shown in Fig. 2.16. The mean is the eEDM plus an
unknown blind. The lines show the confidence interval that contains 68.3% of
the trimmed means. The solid black line is a normal distribution with standard
deviation equal to half the 68.3% confidence interval.

The distribution of bootstrap means, 2.17, is closer to a Gaussian, and its stan-

dard deviation is well approximated by s/
√
N where N is the total number of blocks

and s is the average sensitivity of the machine in one block. When the machine is

running well s � 2.5 × 10−26 e cm. In Chapter 4, I will discuss how this sensitivity

is dominated by photon shot noise. The datasets which are discussed in this thesis

are listed in Table 2.6.

This concludes the explanation of how we use the experiment to make a measure-

ment of the eEDM. However, strictly speaking all we have shown so far is how to
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Date
Cluster
num-
ber(s)

Number
of blocks

Notes

4/3/13–1/4/13 125, 127 3129
March 2013 dataset containing rf

rotation systematic.

19/7/13–7/8/13
137, 140,

142
2740

July 2013 dataset where high
voltage supplies systematic was

discovered.

3/6/13–6/6/13 133 523
Shorter spin precession time (first rf
pulse at 1260 μs), old high voltage

cabling.

9/7/13–12/7/13 &
11/10/13–13/10/13

136,154 768
Shorter spin precession time (first rf
pulse at 1260 μs) with ferrites and
improved high voltage cabling.

16/8/13–23/10/13
146, 156,

158
877

Applied Kilovolt supplies at
±2.44 kV, no overshoot

1/11/13–5/11/13 162 611
Bertan supplies at ±12 kV, no

overshoot.

5/11/13–12/11/13 164 657
Bertan supplies at ±7.5 kV, no

overshoot.

13/11/13–19/11/13 165 991
Applied Kilovolt supplies at
±7.5 kV, no overshoot.

21/11/13–27/11/13 166 1575
Bertan supplies at ±7.5 kV with

overshoot.

16/11/14 173 80
Bertan supplies at ±7.5 kV with
three times overshoot factor.

Tab. 2.6: Summary of datasets discussed in this thesis. Cluster numbers refers to the
numbering of our datasets in the “Database control” Mathematica notebook.
The first two dataset were measurements of the eEDM, but were subsequently
discovered to contain systematic errors discussed in Chapter 3. The middle two
datasets were taken to characterise the rf rotation systematic error, and the last
six datasets were taken to investigate the high voltages supplies systematic error.
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measure an interferometer phase correlated with the relative direction of the applied

electric and magnetic fields. To be sure that this phase shift is being caused by an

eEDM, and not something more mundane like a magnetic field correlated with the

direction of the electric field, we need to investigate the systematic errors associated

with our measurement. This will be the subject of the next chapter.



3. NEW SYSTEMATIC ERRORS

3.1 Introduction

Many effects can mimic the eEDM signal. Most of our time on the experiment is

spent tracking down and characterising these potential sources of systematic error.

In this chapter we describe the systematic errors associated with the measurement.

We are able to measure many of the systematic errors by deliberately exacerbating

an imperfection in the machine, and then looking to see the effect that this has on

on the value of the eEDM. Our ability to characterise the error is then limited by

how much we can exacerbate the imperfection, and the statistical sensitivity of the

experiment which, as we will discuss in Chapter 4, is limited by photon shot noise.

We begin by briefly describing the systematics which are presented in greater

depth in Refs. [60] and [49]. We then discuss three new systematic errors that I have

found. The first of these is associated with an rf-induced current in the machine that

could potentially lead to magnetic fields correlated with the direction of the electric

field. We call this the RF discharge systematic error. The second of these followed

the surprising discovery that the rf polarisation direction in the machine can depend

on the state of the high voltage switches, an effect we call the RF rotation systematic

error. The final systematic effect in this chapter has an origin as yet unknown, but

it seems to depend on which type of high voltage supplies we use. The effect is

unimaginatively called the High voltage supplies systematic error.



3. New systematic errors 77

Systematic Error
Upper limit
(10−28 e cm)

Reference

Un-corrected E-asymmetry∗ 0.5 [49]

Voltage offset 0.063 [49]

Residual rf1 detuning∗ 0.6 [49]

Leakage currents 0.2 [60]

dc shield magnetization† 0.25 [60]

Geometric phase 0.01 [60]

Motional magnetic field 0.0005 [60]

Stray magnetic field along y∗ 0.3 [60]

Stray magnetic field along x 0.2 [49]

Off-resonant F = 1 probing∗ 0.8 [49]

Probe beam ellipticity∗ 0.5 [49]

Pump beam ellipticity∗ 0.3 [49]

Pump detuning∗ 0.6 [49]

Sum of all terms in quadrature 1.48

Sum of first seven terms in quadrature 0.85

Tab. 3.1: Upper limits of various systematic errors described in detail in other work. The
tests from Ref. [49] were all performed with 2 μs pulses at 12.5 KVcm−1 electric
field. ∗Indicates an upper limit dictated by statistical sensitivity of the machine.
†Indicates an upper limit dictated by the integration time on an auxiliary mea-
surement.
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3.2 Previous systematic errors

Table 3.1 summarises the systematic errors in the last published measurement [60],

and from the tests described in the thesis of Joe Smallman [49]. Here we briefly

discuss the nature and size of these errors.

We start with the first seven entries in this table. These represent imperfections

in the experiment which are known to shift the value of the eEDM channel thus we

include them in our final systematic error.

The first term, the un-corrected E-asymmetry, is the systematic shift that may

arise if the electric field differs in magnitude by δE between the two electric field

switch states. An asymmetry δE will lead to a change in the Stark shift between

the F = 0 and (F = 1,mF = ±1) levels when the electric field is reversed, and

hence lead to an E-state dependent detuning of the rf pulses. This can be measured

during normal data taking using the 〈{RF1F · E}〉 and 〈{RF2F · E}〉 channels. By

reversing the manual connections between the high voltage generation equipment

and the machine, we render ourselves sensitive only to the part of the asymmetry

that is associated with the high voltages lines and plates. The typical size of this

asymmetry over the whole interaction region is 0.1 Vcm−1. To estimate the size

of the systematic error associated with this asymmetry, we deliberately reverse the

fields asymmetrically, increasing (or decreasing) the voltages on the plates by 10 V.

Within the experimental errors, this asymmetric reversal had no effect on the value of

the eEDM, with a slope of (2.1± 2.0)× 10−28 e cm(Vcm−1)−1 [49, p.137]. However,

this effect has led to shifts in the eEDM value in the past, and there are known

phenomena that can allow an asymmetry to cause a false eEDM, so we still associate

a systematic error with this imperfection. Combining the worst case gradient with

the estimated size of the electric field asymmetry gives the upper limit shown in

Table 3.1.

Ideally, the voltages applied to the plates should both be equal and opposite, so
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that the sum of the voltages is zero. However, it is possible that there is an additional

voltage V̄ which is inadvertently applied to both plates, so that the average plate

voltage with respect to earth is not zero. This leads to the second error in the table,

the voltage offset error. To measure the size of the systematic effect arising from this

worst case voltage offset, we deliberately bias both plates to between V̄ = +500 V

and V̄ = −500 V . This test does lead to a measurable linear shift in the eEDM value,

with a gradient of (6.3 ± 2.0) × 10−30 e cmV−1 [49]. Multiplying this by the upper

limit of |V̄ | < 1 V, measured with a high voltage probe, provides the systematic

error.

In the 2011 measurement, it was found that when |V̄ | � 1 V, the eEDM value

depended on the detuning of the first rf pulse from resonance. When |V̄ | < 1 V,

there was no measurable correlation between the eEDM and the detuning of the

first rf pulse, the slope of the correlation being (2.3 ± 2.8) × 10−28e cm/kHz of rf1

detuning. However, to be conservative we multiply this null gradient with the average

rf1 detuning of 0.1 kHz to give the final worst case systematic error shown in the

third row of the table.

The next two systematic errors, the leakage currents and shield magnetisations,

are discussed in the context of the rf discharge and high voltage supplies systematic

errors in the following sections, so we postpone the discussion of these errors until

then.

The electric field between the plates, away from the edges, is supposed to always

lie along z. However, in reality the plates are slightly bowed, which causes the electric

field to rotate in the x-y plane. By mapping the electric field magnitude we limit

the rotation to be no larger than ±0.5 mrad. The motion of the molecules in a

polarising electric field like this leads to additional phases, the magnitude of which is

equal to the solid angle swept out by the molecules as they adiabatically follow those

fields [64]. By itself, the bowing of the plates is not sufficient to cause a systematic

error. However if combined with a patch potential which only covers one quarter of
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a single plate, this can lead to a systematic error. Assuming a 1 V patch potential

and making a calculation of the solid angle swept out by the molecules gives the

systematic error listed in the table.

The motional magnetic field is a tiny effect in a molecular eEDM experiment; it

is included here so that it can be compared to the atomic beam experiments, where

it poses the most challenging systematic difficulty.

The next six entries in Table 3.1 are upper limits which we do not include in

the total systematic error to the experiment. In the case of the stray magnetic field

along y, the pump and probe beam ellipticity and the pump detuning, these effects

have never been shown to shift the value of the EDM, and it is not clear how they

could do so. We do not discuss these errors any further here. The stray magnetic

field along x has been shown to shift the value of the eEDM channel, but in a way

which is expected to be quadratic in the applied magnetic field. The error here is

very conservative because it instead assumes a linear scaling. Probing on F = 1 was

shown in the thesis of D. Kara [57, p. 96] to lead to a systematic shift of the eEDM.

However, this may well have been attributable to the large voltage offset that was

present when the data was acquired. Probing on F = 1 without a voltage offset

[49, p. 141] and with the new rf structure now no longer leads to a systematic error,

and the error quoted here is a conservative upper limit, based on a small off resonant

probing of F = 1 by the probe laser, which is tuned to F = 0.

Adding the first seven systematic errors together in quadrature, we find that

the total systematic error arising from previously known systematic effects is

0.85× 10−28 e cm. Now we move on to discuss the new systematic errors that I

have discovered.
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3.3 RF discharge systematic error

After our group’s last published measurement of the eEDM [36], the apparatus was

upgraded with a new rf amplifier to allow the rf π-pulses to be driven with shorter,

higher powered rf. The goal was to broaden the rf linewidth, which is proportional

to the inverse of the π-pulse duration. The broader linewidth desensitises the ex-

periment to systematic errors arising from shifts in the rf line centre, such as the

E-asymmetry and RF1 detuning systematic errors.

When we started to take data with the new amplifier, we reduced the rf pulse

length from 18 μs to 2 μs. We then noticed some strange behaviour in the high

voltage ammeters, which now seemed to be able to pick up some of the rf signal.

To investigate this further, we attached a home built nano-ammeter to the bias tees

that connect the rf sources (Fig. 2.8(b)) to the the rf feeds on the eEDM vacuum

chamber, Fig. 2.6. This ammeter, marked A in Fig. 3.1 (a), reads the dc current

that flows from the RF plates to earth. The bandwidth of the ammeter is 210 Hz

and the calibration is 10 VμA−1.
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Fig. 3.1: (a) A circuit diagram showing the location of the rf ammeter on the rf cables,
see Fig. 2.8 for the location position in the rf system. (b) The signature of an rf
discharge is shown in blue, with a probe PMT trace underneath in red.

When the machine is operating abnormally, with rf pulses shorter than around
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9 μs, we see bursts of current flowing through the ammeter. These appear inter-

mittently: one such burst is shown in Fig. 3.1 (b). The trace in blue is the signal

from the nano ammeter, and the trace in red is the recording of the signal from the

probe PMT detector, scaled so that its features are visible on the same graph. The

two sharp dips in the probe signal are electrical pickup from the two rf pulses, the

third peak is due to molecules flying through the probe laser beam and fluorescing.

The current spike in the blue trace starts simultaneously with the first rf pulse, rises

to a maximum 0.5 ms later and then slowly decays. We interpret this graph as fol-

lows: a process that occurs during the first rf pulse deposits charge on the rf plates,

which then charges the pair of 375 nF capacitors, before these are slowly discharged

through the ammeter to ground.

These current spikes are not observed when: 1) the solenoid that opens the source

valve is unplugged, 2) the YAG laser is not fired, 3) the YbF molecular signal is poor

or 4) the RF power is low. They occur less often when the rf plates are biased to a

few tens of volts either positive or negative, or the the rf power is too high. If the

electric field plates are grounded, the spikes occur less frequently but they are larger

when they do take place.

This behaviour suggests that we have multipactor discharges taking place [65].

These are frequently seen in particle accelerators and high power rf equipment. The

process is as follows: a charged particle strikes a metal or dielectric surface within an

rf field, causing secondary electrons to be emitted. These electrons are accelerated

by the field into a second surface, where more secondary electrons are emitted. Since

the rf field is continually changing direction, this can repeat many times, causing

a sizeable current to flow in the process, as illustrated in Fig. 3.2 (a). When the

avalanche finishes, the negative charge is deposited on one of the plates. We can

estimate the size of gap that will support a multipactor discharge by assuming that

the secondary electrons are created at rest, and that the oscillating electric field is

the one we have (5 kVm−1) when the rf drives a π-pulse in 2 μs. This gives d = 3
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Fig. 3.2: (a) A sequential picture showing the growth of a multipactor discharge. (b)
The bottom of the rf and electric field plates, showing the available locations for
discharges to occur. (c) Worst case dc leakage paths used to estimate the leakage
systematic error

mm as the gap, which is exactly the type of gap that exists between the rf plate

structure and other ground planes in the apparatus.

The initial impact to start the discharge must come from charged particles created

either in the source or by rf ionisation of neutral particles within the beam. If the

rf powers are turned up much higher than is necessary in the experiment, it is also

possible to initiate a multipactor discharge without any molecular beam.

It is likely that the discharge is happening close to the start of the machine since

if the rf pulse is delayed so that most of the molecular packet is well within the

electric field plates when the pulse is fired, the rate of rf discharges decreases. One

possible location where the discharges could be taking place is shown in Fig. 3.2 (b).

This shows the bottom part of the rf plates (long aluminium plate in the centre of
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the picture). Two semi-rigid coaxial cables connect to the bottom of the plate. The

grounded outer shell of the cables is soldered to a copper strip that is also indicated

in the photo. The gap between this strip and the rf plates is the right size to support

the discharge. Having said this, it is perfectly possible that the discharge can be

taking place at some other location in the plate structure.

These multipactor discharges could result in a current flowing in the machine

whose magnitude depends on the direction of the applied electric field. The direction

of the electric field could influence the size of the current because fringe electric fields

in one switch state might reduce the discharge process while the other might enhance

it. Alternatively, we could imagine that one electric field switch state was better at

deflecting ions towards the rf plates, thus leading to larger discharges. A current

whose magnitude depends on the direction of the applied electric field can produce

a magnetic field, and hence a spin precession, correlated with the sign of the electric

field. That would be interpreted as an eEDM. In the next section we will discuss

how we solved the multipactor discharge problem and how we assign a systematic

uncertainty associated with any residual discharge.

3.3.1 Suppressing the discharges and assigning a systematic error

We tried a number of measures to reduce the multipactor discharges including:

1. Installing a pair of additional electric field plates in the source chamber to act

as an ion deflector.

2. Electrically isolating and charging up the skimmer to prevent any ions from

the source chamber from reaching the field plates.

3. Biasing the field plates by applying 30 V to the dc inputs of the bias tees.

4. Further shortening the rf pulses, so that their power was higher and thus the

discharge gap length was longer, thus taking the process out of resonance with

whatever part of the apparatus was sustaining the discharge.
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While these measures reduced the discharges, in the end most blocks would still

contain several shots with visible discharges in them. Increasing the rf pulse length

to 9 μs finally stopped the discharges altogether, and this is the solution we adopted

because it was the least disruptive at the time. However, we could have gone further

in our investigations by opening up the main interaction region and placing insulators

between the surfaces we suspected were discharging to determine where exactly the

discharge was taking place. We could then have solved the problem by coating the

rf structure or choosing different materials to reduce the probability of secondary

electron emission, or by placing insulating barriers between any locations where

discharges could take place. We will return to this topic in Chapter 5.

To guard against rf discharges in the future, the rf ammeter is now left in place

during normal eEDM data taking, and its signal is recorded alongside the others.

Each block is inspected for any obvious rf discharges and discarded if they are present.

This has so far not been necessary with 9 μs pulses. For the remaining blocks, the

average rf leakage current for each shot is recorded, and the part correlated with E

is calculated for each block.

To see how large this residual discharge is, we can look at the set of 3129 blocks

taken in March 2013. In this data run the currents correlated with the electric field

directions were 1.9 nA, −0.3 nA and −1.1 nA for north plate, south plate and rf

plate leakage monitors respectively. A positive current indicates current flowing out

of the machine. All the leakage currents are of the same size as those during the

last published measurement [57], and interestingly the average rf leakage current

correlated with E flows into the machine, whereas the leakage spikes, when they take

place, flow out. This suggests that the currents we see are primarily caused by dc

leakage inside the machine, not multipactor discharges.

To turn these currents into magnetic fields seen by the molecules, we need a model

for how they might flow inside the machine. Following the approach in Ref. [57], we

imagine a worst case, in which the 0.3 nA current flows up one edge of the south plate
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from the south feedthrough up to the top of the plate, the 0.8 nA flows down the

opposite edge of the north plate and into the north feedthrough and 1.1 nA flows down

the edge of the rf plate and discharges into the north feedthrough. These currents

are shown in Fig. 3.2 (c). Summing their contributions to the field at centreline of

the YbF beam, we find an average field of 5fT over the molecular interaction region

correlated with the direction of the electric field. This would cause a fake eEDM no

larger than 2× 10−29 e cm.

3.4 RF rotation systematic

3.4.1 Diagnosing the problem

When we analysed the first data run taken in March 2013, shown in Fig. 3.3 (a),

we discovered a significant (1.1 ± 0.1) × 10−26 e cm difference in 〈[EDM]〉 between

rf manual state true, (rf propagates from the bottom of the machine to the top),

and rf manual state false (rf travels from top to bottom). We therefore decided to

investigate the properties of the rf system in more detail.
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Fig. 3.3: Values of 〈[EDM]〉 in the eight different manual states for (a) the March 2013
data set before the high voltage lines were fixed and (b) the July 2013 data set
after high voltage lines were fixed.

We started by monitoring the rf-power reflected back out of the machine by in-

stalling a directional coupler on the rf line, as shown in the top right hand side of
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Fig. 2.8. A crystal detector on the coupler output detected significant differences in

the back-reflected rf power between electric field switch states, with more rf being re-

flected when the machine was in rf manual state true. The values of these differences

for the various manual states are shown in Table 3.2.

{E,B,rf}
manual state

Reflected rf amplitude correlated with E-switch state (μVRMS)

Before improvements After improvements

{F, F, F} 1031 ± 10 10 ± 9

{F, F, T} 1787 ± 7 6 ± 5

{T, F, F} 57 ± 13 7 ± 9

{T, F, T} 388 ± 4 2 ± 4

Tab. 3.2: Measurements of the E-switch dependent amplitude of the reflected rf field taken
with a short interferometer before and after rf chokes were installed on the HV
feeds.

We hypothesised that some of the rf in the transmission line was being coupled

onto the RG213/U 50 Ω coaxial high voltage cables and travelling down to the high

voltage (HV) equipment. The rf was then being reflected and re-emitted back into

the machine. The HV feeds would now act as an rf antenna, and the re-emitted rf

would combine with the travelling wave in the transmission line to slightly rotate the

rf polarisation. A diagram showing the approximate polarisation of this unwanted rf

can be seen in Fig. 3.4.

The exact degree of rotation would vary depending on the position within the

transmission line, but it was likely to be largest closest to the HV feedthrough. If

this is the case, then when the first rf transition is driven, the state prepared is no

longer given by expression (2.19), but is rather

i√
2

(
e−iθ1 |1, 1〉 − eiθ1 |1,−1〉) , (3.1)

where θ1 is the azimuthal angle of the rf magnetic field, being defined by the static
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Fig. 3.4: Approximate polarisation of the rf magnetic field (indicated by purple arrows)
generated when rf couples into the side of the machine through the high voltage
feedthroughs.

E field. This is the relevant angle because we are exciting the state by ΔmF = ±1

transitions from |0, 0〉. Expression (3.1) is formally identical to the right hand side of

Eq. (2.22), so if θ1 depends on the direction of the electric field, the resulting phase

shift may be misinterpreted as an eEDM. The second rf pulse can also be rotated

by the unwanted radiation by an angle θ2, so the experiment is actually sensitive to

the difference θ21 = θ1 − θ2 between them. A fixed θ21 is indistinguishable during

normal operation from a small static background magnetic field and is cancelled by

our bias magnetic field B0 (see p. 61 for more details). But if θ21 changes when E is

reversed, this produces a false eEDM. For example a 10 μrad change is equivalent

to an eEDM of 4.2× 10−28 e cm. We therefore need to be certain that the unwanted

rf polarisation that changes with the electric field state is at least less than one part

in a 106 at the start and end of the rf transmission line where we drive our pulses.

One way in which the amount of emitted rf could change when the electric field

direction was reversed would be if the impedance of the electric field supplies was

different in the two switch states. To test for this, we monitored the rf power imme-

diately before the high voltage relays, at the location marked * in Fig. 2.8. In both

rf manual states we found that rf did indeed couple onto the HV feeds, and in one

particular rf manual state (true) the amount of rf in the lines depended significantly
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upon the state of the electric field relays. Changing the rf manual state changes rf

field distribution within the machine, so it is not surprising that there should be

some rf manual state dependence in the amount of rf coupled onto the high voltage

lines.

Having established that the amount of rf field coupled onto the HV cables de-

pended upon the E-field relay switch state, it remained to show that this variation

in power caused a rotation of the rf field in the machine. We achieved this by dis-

connecting one electric field plate from the HV supplies and deliberately coupling rf

onto the HV vacuum feedthrough. Remarkably we were able to drive rf transitions

along the whole length of the beamline using this side injected rf, indicating that

it worked quite well as an antenna. To map out how the amplitude of the rf field

produced by the side injected rf varied inside the eEDM machine, we scanned out

the power required to drive a π-pulse from F = 0 to F = 1 as the timing of the first

rf pulse was changed. Changing this timing changed the location of the molecules in

the machine when they experience the radiation, and so allows the local field to be

mapped. The results are shown in the top half of Fig. 3.5, where the rf amplitude

needed to drive a π-pulse is plotted as a function of position through the machine.

The power required to drive a π-pulse using this side injected rf varied quite consid-

erably over the length of the machine, indicating that the rf field arising from the

antenna coupling to the existing rf plate structure is predominantly concentrated in

the top half of the machine.

We were also able to map the polarization direction of the rf field produced via

side injection through the HV feed. We did this by recording interference curves

of the type shown in Fig. 2.15, driving the first rf pulse with side injected rf, and

the second pulse with rf fed in along the usual parallel plate transmission line. The

phase of these curves was compared to normal interference curves where both rf

pulses were sent down the normal transmission line. The phase shift between the

curves gives the angle between the rf emitted from the HV feedthroughs and the
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Fig. 3.5: Top: the amplitude needed to drive a π-pulse F = 0 to F = 1 at various points
along the machine using side-injected rf. Bottom: the angle of the rf field due
to side injected rf as a function of position along the machine, inferred from the
phase shift of the interferometer curves. The dashed lines show the location of
the centre of the molecular packet when the first rf pulse is fired in the long and
short machine data. The experiment was performed for both rf manual state false
(red triangles), and rf manual state true (blue circles).

regular rf radiation. By changing the timing of the first rf pulse, and so changing the

point in the machine where the molecules interact with the rf radiation, it is possible

to map out the local polarisation of the rf radiation in much the same way as the

amplitude of the rf was mapped out. This is shown in the bottom section of Fig. 3.5.

Towards either end of the electric field plates, the rf field polarization is largely along

x, but it becomes more and more aligned to y as the rf transitions are driven closer

to the feedthrough, 0.74 m downstream from the source. If the feedthrough to the

electric field plate (shown in Fig. 2.6) were behaving like a dipole antenna, then we

might expect the rf polarisation at the closest point to the feedthrough to be along y

(θ1 = π/2). However, the rf becomes y polarised slightly earlier, 0.7 m downstream

from the source. This may be because part of the rf is being carried on a grounded
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braid which connects the outer core of the rf cable to the machine at this point, and

so the feedthrough is not behaving as a simple antenna. Nevertheless, the point to

stress is that we have confirmed experimentally that any rf coupling between the rf

plates and the high voltage lines can rotate the polarisation inside the machine.

3.4.2 Amplifying the systematic

The results of section 3.4.1 suggest that potential systematic error due to relay-state-

dependent rf field rotations could be amplified by changing the timing of the first

rf pulse so that the molecules would be close to the HV feedthough when the rf

transition was driven. At this point, the polarisation of the unwanted rf is predomi-

nately orthogonal to the desired polarisation in the transmission line, and hence any

small changes in its amplitude will cause large rotations of the local rf polarisation.

This enhances the influence of unwanted rf compared to the normal operation of the

machine, when the first rf pulse is at 820 μs, and the polarisation is predominately

along x, and hence largely parallel to the x polarised rf in the transmission line. The

effect of any E correlation in unwanted rf will be predominately to increase the am-

plitude of the rf slightly in one E switch state, rather than to change its polarisation.

Timing the first pulse to occur at 1260 μs so that the centre of the molecular packet

is 0.74m from the source, as shown by the dashed line in Fig. 3.5 is called short

machine data.

Cycling through the four electric and rf manual states, we obtained four indepen-

dent measurements of the total E-switch dependent phase, which we denote β short.

Explicitly, this is the sum of the EDM phase, φ short
E and the polarization rotation

phase, θshort21 = θ1 − θ2, measured using a short length interferometer. We also ob-

tained long machine measurements of β long = φlong
E + θlong21 , with the first rf pulse

occuring at 820 μs, when the molecular packet is centred around 0.48m, the usual

position for our first rf pulse during normal data taking.

The aim of this exercise it to extract a value of θ short
1 . Assuming that θ short

1 is
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{E,B,rf} manual state θ short
1 without chokes (mrad) θ short

1 with chokes (mrad)

{false, false, false} -1.00 ± 0.03 0.08 ± 0.04

{false, false, true} -5.94 ± 0.07 0.05 ± 0.04

{true, false, false} -0.35 ± 0.05 -0.01 ± 0.04

{true, false, true} 0.47 ± 0.04 -0.16 ± 0.03

Tab. 3.3: Measurements of the E-switch dependent component of the polarization rota-
tion angle, θ1, taken with a short interferometer before and after rf chokes were
installed on the HV feeds.

much larger than any other fixed phases that switch with E, and that there are no

other large and uncontrolled systematic errors which vary between the taking of long

and short machine data, this can be written as θ short
1 = β short −Rβ long. Here R is

the ratio of the evolution time in the short machine compared to the long machine.

Our measured values of θ short
1 for each of the four manual states are given in the

central column in Table 3.3. Note that the values are all significantly non-zero, and

that in state {false, false, true}, the rotation is on the order of 1000 times larger

than we can tolerate.

To reduce the rf systematic effect we inserted rf-chokes into the high voltage ca-

bles. Six Ferroxcube - TN14/9/5-4C65 rf ferrites were spaced along the high voltage

cables. The total suppression on each line was measured to be > 35 dB. The ferrite

chokes ensured that as little rf as possible could travel down the HV cables and be-

come modulated by the relays. Fig. 3.6 shows a picture of two of pairs of rf ferrites

enclosed in a metal box. The connections between the rf ferrite boxes and the cables

were made with 10 kV SHV connectors (Kings 1065-1), and all the RG213/U coaxial

cable was replaced by RG58 75 Ω cable, which was compatible with these connec-

tors. We also improved the grounding of the electric field supplies so that electric

field manual reversals could not change the impedance proprieties of the supplies.

As a result we now no longer measure an E-state dependent variation in the reflected
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rf power, in any of the manual states. This is shown in Table 3.2.

Fig. 3.6: A photograph showing a box containing two pairs of rf ferrites installed onto to
each of the HV lines. In total there are 3 such boxes.

To quantify the reduction in the unwanted rf polarization rotation phase, we took

more data with the shortened interferometer. As shown in Table 3.3, after placing

chokes on the HV cables we find that the four values of θ short
1 are much reduced. The

two manual states {false, false, true} and {true, false, false} are now consistent with

zero, and {false, false, false} is nonzero only at the two σ level. It is concerning that

{true, false, true} does have a much more significant non-zero value of θ short
1 even

after the chokes have been installed. We have yet to understand whether this phase

is related to the rf field rotation or another systematic error whose effect is magnified

when transitions are driven close to the HV feedthrough. One indication that the

origin of the phase may not be an rf rotation is that the reflected rf amplitude has

been reduced by a factor of almost 200. It would be reasonable to assume that the

amplitude of the unwanted rf polarisation inside the machine has also been reduced

by a similar level, which would imply that θ short
1 should be reduced to a value smaller

than the experimental errorbar. Instead, we only see a threefold reduction in its size.

With the chokes installed, we now also find that the value of the 〈[EDM]〉 (with
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the first rf pulse back to its normal timing) is now consistent for all manual states,

as shown in Fig. 3.3 (b).

The measurements discussed in this section suggest that we have greatly reduced

the E-state dependent rf rotation. However, it is difficult to extract an upper limit

by appropriately scaling the short machine data because of the anomalous {true,
false, true} point. Instead, we plan to adopt a different approach to assign a final

systematic error, as discussed in the following section.

3.4.3 Final systematic error

The signs are promising that we have fixed the rf rotation problem, but to assign

a final systematic error we need to perform further tests on the experiment. The

first step will be a comprehensive map of the rf polarisation inside the machine now

that chokes have been installed. This can be achieved by driving rf transitions in the

presence of magnetic fields along x, y and z. The fields will be of a sufficient mag-

nitude that the mF sub-levels of F = 1 can be resolved and individually addressed

with different frequencies of rf radiation. By measuring the amplitude needed to

drive transitions from F = 0 to each of these components in each of the applied

magnetic fields, we can determine how much of each polarisation of rf is present.

In the regions where the rf pulses are driven, we know that the rf is predominantly

linearly polarised along x. Given that the rf and electric field plates are symmetric

in the z-y plane, we can make the simplifying assumption that any component of the

rf radiation along y is caused by reflections from the high voltage feedthroughs. As

the bottom graph of Fig. 3.5 shows, this is a very pessimistic model because most of

the rf that comes from the feedthroughs is actually predominantly polarised along

x, not y, close to the edge of the plates. These polarisation maps will be undertaken

when the improvements discussed in the second half of this thesis are completed,

since these may change the distribution of rf radiation inside the machine.

Before these measurements are undertaken, we can get a very pessimistic upper
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limit for the ratio of y polarised rf to x polarised rf, ry/x, by looking at the bias

magnetic field B0 needed to centre the interferometer phase. Normally, we think

that this field needs to be applied to cancel external magnetic fields, but if instead

we think that it corrects for a fixed angle between the two rf pulses, we can place

an upper limit on ry/x. Using the data from the July 2013 data set taken after the

chokes were installed we find that ry/x < 0.15.

If the y polarised rf changes in size when E reverses, then this will lead to a

rotation in the rf direction. Since the amplitude of the y polarised rf is directly

proportional to the amplitude of rf on the high voltage lines in this pessimistic

model, we can measure the size of this effect by injecting rf into the high voltage

supplies, and monitoring how the fraction of back reflected rf changes when E is

reversed. Preliminary tests indicate that we can measure fractional changes in the rf

field ΔBrf, line on the lines in this way to a few parts in a million when the relays are

switched. Thus, either with the current set-up or with additional chokes if necessary,

we could hope to limit the fractional change in the y polarised rf to one part in a

million.

Provided the x polarised rf component is much larger than the y polarised rf

component (as we expect it to be), small changes in the y component of the rf

will cause a rotation in the direction of the rf polarisation in each rf region given

by |θ1(2)| = ry/xΔBrf, line. In the worst case, given the location of the high voltage

feedthroughs and the radiation pattern shown in Fig. 3.5, we could expect the two

E-state dependent rotation angles to be opposite in sign, so that the total difference

in rf polarisation angle between electric field switch states would be

θ21 = 2ry/xΔBrf, line . (3.2)

At an applied electric field of 12.5 KVcm−1 this gives a false eEDM of

de,rf = 8.4× 10−23ry/xΔBrf, line . (3.3)
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If we can suppress the back reflected rf to one part in a million (ΔBrf, line < 10−6),

and we can limit the ratio ry/x < 0.1, then the upper limit for the systematic error

will be less than 8.4× 10−30 e cm.

3.5 High voltage supplies systematic

3.5.1 Discovery

After we installed the improved high voltage cables in the summer of 2013, we took

the data shown in Fig. 3.3 (b) to check that the eEDM values reported for the

various manual states were now all consistent. A mistake half way through this

data run led to the high voltage cables between the vacuum chamber and the first

set of ferrites being reversed (see Fig. 2.8 for the location of this switch), effec-

tively performing an unintentional manual reversal. The value of the eEDM we were

measuring also changed sign at this point. This implied that we were measuring

a very large value for the eEDM, consistently across all the manual states, equiv-

alent to 〈[EDM]〉 = (5.0± 0.6)× 10−27 e cm with the blind removed. This equates

to a phase shift correlated with the direction of the electric field relative to the

magnetic fields of (120 ± 10) μrad. To confirm whether or not we really had mea-

sured a non-zero eEDM, we reduced the voltage on each plate from ±7.5 kV to

±2.44 kV. This decreased the polarisation factor of the molecule from η = 0.61 to

η = 0.32, 1.87 times smaller. The un-blinded eEDM channel value for these blocks

was 〈[EDM]〉 = (−0.3± 2.5)× 10−27 e cm, inconsistent at the 2.1σ level with the

previous ±7.5 kV dataset. This suggests that the cause of the 〈[EDM]〉 channel in

the ±7.5 kV dataset is not a genuine eEDM signal, but rather some other systematic

effect which depended on voltage. We can also express 〈[EDM]〉 for the low voltage

data as an E, B correlated phase of (3± 30) μrad. If we think that the fake eEDM

is being caused by an E switch state dependent rf rotation as we observed in the

previous section, then we would expect the high and low voltage data to give the
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same E,B correlated phases. The 3.5 σ inconsistency between these phases means

we can confidently rule out the rf rotation systematic causing the fake eEDM.

We were able to discount leakage currents from causing the systematics: using

the data from the nano-ammeters the size of the leakage currents would imply an

eEDM no larger than 7 × 10−29 e cm. In more tests, we ruled out the possibilities

that voltage asymmetry or offset systematics (entries 1 and 2 in Table 3.1) were

responsible for this error.

Given that the fake eEDM is inconsistent with the 2011 published measurement,

which reported an eEDM of (2.4± 5.7stat ± 1.5syst)× 10−28 e cm, we concentrated on

the parts of the experiment which were changed between 2010-11 when those data

were taken and 2013 when we noticed the large eEDM. Since the fake eEDM seems

to be related to voltage, suspicion quickly fell on the high voltage supplies.

In the 2011 data set we used two different high voltages supplies: a Bertan

602C-150N negative supply and a Bertan 602B-150P positive supply. In case elec-

trical differences between these supplies might somehow produce a false eEDM, these

were subsequently replaced by an identical pair of Applied Kilovolts HP010 10 kV

supplies. In order to test whether the change of supplies had actually caused a

systematic error, we went back to using the Bertan supplies. The value of the

eEDM channel then dropped to 〈[EDM]〉 = (0.7± 1.4)× 10−27 e cm at ±7.5 kV and

〈[EDM]〉 = (1.0± 1.1)× 10−27 e cm when the plates were charged at ±12 kV. These

two results are respectively 2.8 and 3.2 σ inconsistent with the ±7.5 kV data taken

with the Applied Kilovolts supplies. Thus it seemed that these supplies might be

causing the problem. Unfortunately, when we returned to the Bertan supplies, we

also changed the way the electric field was switched, which I now describe.

The 2011 data set, taken with the Bertan supplies, and the March and July

data sets taken with the Applied Kilovolts supplies, used the switching sequence

illustrated for the case of ±7.5 kV in the top graph of Fig. 3.7. The control voltages

start at ±7.5 V, so that the high voltage supplies, which supply 1000× the voltage,
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Fig. 3.7: Control voltages and charging currents for Bertan and Applied Kilovolts supplies.
The dashed lines show when control signals are sent to the supplies and the relays,
the action is explained in the text

are at ±7.5 kV. At the first dotted line the E-switch sequence starts, and the control

voltages are stepped down to zero over 2 s. At the second dotted line, a switch

is thrown to ground the plates, then at the third line the relays are switched and

each supply is connected to the opposite plate. Starting at the fourth dotted line

the plate voltages are ramped up to 1.15 times their operating value and held at

this voltage for 5 seconds before being reduced at the fifth dashed line to the values

for eEDM data taking. There is then a 2 s settling time before eEDM data taking

begins again. When we returned to the Bertan supplies the 15% overshoot was not

applied, because we wanted to run at ±12 kV and the overshoot caused sparking. To

ensure that the plates had fully charged, the settling time after the switch sequence

was increased to 3 s. Because of this, we could not say whether it was the change of

supplies or the change of switching pattern that had caused the eEDM to go away.

In an effort to elucidate this, we took data with the Applied Kilovolts supplies

without an overshoot, and with the Bertan supplies with an overshoot. They are

shown in the bottom two rows of Table 3.4. Also shown are the results of the

2011 measurement, the July 2013 data set taken with the Applied Kilovolts supplies
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and the data taken with the Bertan supplies and no overshoot in rows 1,2 and 3

respectively.

Date
Plate volt-
age (kV)

Supplies used
Overshoot
applied ?

eEDM (10−27 e cm)

2011 ±6.0 Bertan Yes 0.24± 0.57stat ± 0.15syst

07/2013 ±7.5 Applied Kilovolts Yes 5.0± 0.6stat

11/2013 ±7.5 Bertan No 0.7± 1.4stat

11/2013 ±7.5 Applied Kilovolts No 2.9± 1.1stat

11/2013 ±7.5 Bertan Yes 2.8± 0.8stat

Tab. 3.4: Some measurements of 〈[EDM]〉 made with the Applied Kilovolt and Bertan
supplies with and without the overshoot. The error from other systematic effects
is not included in the data taken in 2013 but it is smaller than the systematic
error associated with the 2011 measurement, ±0.15× 10−27 e cm.

Unfortunately, the results of these tests (rows 4 and 5) were inconclusive, since

they both equally support the hypothesis that the supplies were responsible for the

problem, or that the overshoot was causing the problem.

Since we could not distinguish between these two changes to the machine, we

started by focusing on a systematic error that both changes could influence: mag-

netisation caused by charging currents that flow into the machine during the E-switch

sequence. Reducing the operating voltage should also affect the size of the charg-

ing currents that flow, so all the signs pointed to this as a possible explanation. In

discussing the results, it is helpful to consider dc charging currents and ac charging

currents separately, which we do in the following two sections.

3.5.2 dc charging currents

Direct current (dc) charging currents are what we commonly think of when the elec-

tric field plates are charged: current flows out of the high voltage supplies, through
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Fig. 3.8: (a) A circuit diagram of the components in the electric field and rf system nec-
essary to understand the charging currents. The arrows indicate the currents
that flow when the voltages to the North plate are increased and the South plate
decreased simultaneously. (b) The current path for the dc shield magnetisation
test. (c) The current path for the ac shield magnetisation test.

the current limiting resistors and the ammeters and onto the high voltage plates.

The direction of this current when the magnitudes of the supply voltages are in-

creased is shown by the red arrows in Fig. 3.8 (a). Charging currents could cause a

magnetisation of any magnetically permeable material close to where they flow. The

experiment is designed so that there are no ferromagnetic materials inside the main

vacuum chamber, so the chief material that could be magnetised is the mu-metal

shield. To avoid this, we limit the dc charging currents using 20 MΩ resistors on the

high voltage lines after the supplies (the ammeters on the high voltage lines also add

a 1 MΩ series resistance to the lines), and we also put the high voltage feedthroughs

close together on one side of the machine (see Fig. 3.8 (a) again) so that the magnetic

fields generated by the charging currents largely cancel.

Nevertheless, one can imagine that dc charging currents might magnetise the

shields. To estimate the eEDM signal we could expect from a dc leakage current

a test was performed in July 2009 before I joined the group, as follows: a loop of

wire was passed through the high voltage hole in the side of a copy of the inner
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shields and 350 μA current was sent along this wire. The path of the current is

indicated in Fig. 3.8 (b). The current was applied for 7 s through this loop. The

field inside the shield along what would be the machine z axis was then measured

using a Bartington fluxgate magnetometer. The current was then reversed and the

field re-measured. The change in the magnetometer reading of (0.39± 0.43) pT was

consistent with zero magnetization. If we assume that the magnetisation is at worst

linear in the applied current then the systematic error from dc shield magnetisation

is no larger than 0.5 × 10−29 e cm/μA of current flowing. It should be noted that

the dc charging currents all flow for much less than 7 s, but we do not additionally

scale the systematic error to account for this.

The charging currents running through the high voltage cables when the Applied

Kilovolts and Bertan supplies are used can be seen in Fig. 3.7. While there are

obvious differences in the fast response, neither has a dc charging current that is

sufficient to magnetise the shields to produce a fake eEDM on the scale that we see:

taking the worst peak current that flows when the Bertan supplies are used (10 μA)

only gives an eEDM of 5 × 10−29 e cm, doing the same for the Applied Kilovolts

supplies are used only gives an eEDM of 1.6× 10−28 e cm, far smaller than the shift

we have to account for.

3.5.3 ac charging currents

The ac component of the charging current offers a different possibility. This current

can be transmitted capacitively from the high voltage lines, as illustrated by the blue

arrows in Fig. 3.8 (a). Currents flowing in this way through the shields are more

likely to magnetise them because the magnetic fields they generate do not cancel at

the feedthrough.

To quantify how much magnetic field we could expect for a given current flowing

in this way, we performed another test on the spare copy of the inner magnetic

shields. We passed a loop of wire through the electric feedthrough hole and out of
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the top of the shields, a current path indicated by Fig. 3.8 (c). A current was applied

for 500 μA through this wire for 7s, followed by a 7s pause and then the magnetic

field along the z axis was measured. The current was then applied in the opposite

direction and the field was re-measured. We recorded a magnetic field change of

0.8 ± 1.9 pT along z, implying an upper limit to the size of any ac magnetisation

systematic error of 1.3× 10−29 e cm/μA.

Now all we need to know is how much current actually follows this path for each

of the different supplies, with and without the overshoot. The Bertan and Applied

Kilovolts supplies differ significantly in their potential for ac charging currents. Look-

ing at Fig. 3.7, we can see that the Applied Kilovolts respond rapidly to the steps

in the control voltage, producing large transient currents whose ac component could

flow as shown in Fig. 3.8 (c). In contrast, the Bertan supplies respond much more

slowly to the voltage steps, only showing very small transients in the charging and

discharging currents in the periods between 2–4 s and 7–9 s. Using these charging

currents and a circuit model of the electric and rf plates, we can use SPICE, a free

circuit simulation software package, to estimate the size of the transient currents.

We have to resort to simulating these currents because the capacitor on the output

of the bias tees reduces the ability of the rf ammeter to see such fast current changes.

For a net ac current to flow in the leakage path indicated by 3.8 (c), one of two

things must be true: either the capacitance between the North plate and nearest rf

plate must differ from the capacitance between the South plate and its neighbour-

ing rf plate, or the timing of the voltage steps must not be synchronised. We can

actually see evidence that our voltage steps are not synchronous in the Applied Kilo-

volts charging graphs in Fig. 3.7: the current that flows through the north leakage

monitor when the voltages are reduced at around 14.5 s clearly happens before the

corresponding current spike on the south leakage monitor. Using SPICE and the

leakage currents shown in this Fig. 3.7 we can estimate the maximum peak currents

flowing along the leakage path illustrated in Fig. 3.8 (c). These are listed in Table 3.5.
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Supplies used Peak ac charging current
without overshoot and asso-
ciated eEDM (μA, e cm)

Peak ac charging cur-
rent with overshoot asso-
ciated eEDM (μA, e cm)

Applied Kilovolts <1.0 1.3× 10−29 <1.1 1.4× 10−29

Bertans <0.27 0.35× 10−29 <0.35 0.46× 10−29

Tab. 3.5: ac charging current with and without overshoot for Bertan and Applied Kilovolt
supplies.

The figures in this table illustrate that while there may be quite large transient

currents on the high voltage lines, most of these flow capacitively from the core of

the high voltage lines to the cladding, and very little of the current is transmitted

through the ac charging path shown in Fig. 3.8 (c). The upper limits on the shield

magnetisation systematics caused by these currents are two orders of magnitude too

small to explain the shifts in the 〈{EDM}〉 channel we actually see. Thus we conclude

that like dc magnetisation, ac magnetisation effects are not sufficient to produce a

large enough systematic error to account for the shift we see.

3.5.4 Other explanations

We have yet to discover what the cause of the systematic error is, but the following

are possible lines of enquiry:

Magnetisation of something other than the mu-metal shields

The discussion and tests on the magnetic shields show that we can be confident that

the charging currents caused by the overshoot or the Applied Kilovolts supplies are

not magnetising the mu-metal shields. It is still possible that another item is being

magnetised, for instance the outer vacuum chamber which is made from steel, or

some tiny magnetic impurity close to the experiment. When we dismantled part of

the machine in 2015 we also noticed that there were some 1 MΩ resistors with some
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slight magnetic permeability inside the main vacuum chamber. We will investigate

to ensure that the currents flowing during the shield charging cannot magnetise these

components either.

Other effects of the overshoot

Having ruled out magnetisation, it is difficult to know how else the overshoot could

produce a systematic error. To accentuate any effects related to the settling of the

electric fields, we took data with the Applied Kilovolts supplies at ±7.5 kV but

removed the 2 second settling time after the supplies are reduced from their overshot

value. The un-blinded eEDM value is consistent with the value taken with the 2

second settling time, 〈{EDM}〉 = (4.0 ± 2.0) × 10−27 e cm. This strongly suggests

that we can discount the overshoot as being in any way responsible for the fake

eEDM signal we see.

Other differences between the two sets of high voltage supplies

It is possible that some difference between the two sets of supplies, other than the

charging currents, is responsible for the systematic error. We compared the 50 Hz

and 100 Hz ripple and found some slight differences, but it is difficult to know how

this could lead to a systematic error. It is also possible that the Applied Kilovolt

supplies, with their much larger bandwidth, are in some way picking up control

signals from our experimental computer and varying the potentials on the plates in

an unexpected way. We will continue to investigate to see if any other important

differences become apparent.

3.6 Conclusion and next steps

We struggled from November 2012 to May 2014 to understand the systematic errors

presented in this chapter. In the course of that, we learned that any error from rf
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discharge is small, and that the rf rotation systematic can be controlled and quan-

tified. However, we have yet to establish what is causing the electric field supplies

systematic. At the end of May 2014 we decided that we should improve the sensi-

tivity of the experiment so that it would be easier to find what exactly was causing

this last systematic error. In the next chapter, the current limit on the experimental

sensitivity is analysed, paving the way for the remainder of the thesis, where the

ways of improving the experiment are laid out.



4. SENSITIVITY ANALYSIS

4.1 Introduction

In the previous chapter, we described some new systematic errors that have been

discovered. We were left at the end of the chapter with a systematic error whose origin

could not be determined. We resolved to improve the sensitivity of the experiment

to make it easier to track down the origin of the systematic error. In order to do

this most effectively, we had to understand what the major contributions to our

statistical uncertainty were. This is the subject of the current chapter.

4.2 Shot noise limit

When we take a cluster of B blocks of eEDM data and work out the 5% trimmed

mean and bootstrap error, as introduced in Chapter 2, we generally find that the

68.3% confidence interval on the mean is ±2.5/
√
B × 10−26 e cm. Roughly speaking

then, we can think of the 1-σ uncertainty on a single block of eEDM data as being

σde = 2.5 × 10−26 e cm. We refer to this as the sensitivity of the machine. It is

instructive to investigate why the eEDM experiment has this sensitivity, since the

answer will elucidate how we can improve the experiment.

Three quantities will be important in our discussion of the eEDM sensitivity. The

first two are PNORM and PTOP the average number of photons detected by the pump

and probe PMT detectors, respectively. These can be extracted from the following

channels:
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PTOP =
〈{SIG}〉

0.1
PNORM =

〈{SIG}NORM〉
0.02

. (4.1)

Here 0.1 and 0.02 are the appropriate conversion factors to turn the signals in Vμs

into numbers of photons counted. The last quantity is the contrast, C, defined the

as amplitude of the interference curve (A/2 in Eq. (2.24)) divided by its mean value

(A/2+G in Eq. (2.24)) for the block, averaged over all molecular arrival times. This

can also be extracted from the block values as follows:

C � 1

tgate

16
π
〈{δB}〉

〈{SIG}〉 , (4.2)

where tgate = t2− t1 is the total length of the integration gate, defined by Eq. (2.33).

Having defined these useful quantities, we turn now to look at the combination of

channels defined in Eq. (2.32), [EDM], which gives the size of the eEDM. Integrating

over all molecular arrival times, the dominant term in 〈[EDM]〉 is
〈

{E·B}
{δB}

〉
. The

other terms inside the brackets of that equation only make small contributions to

the central value and error of 〈[EDM]〉 and can be ignored in the present discussion.

Making this approximation, the value of the eEDM is then

de =
�π

32ηEeffτdetgate

〈{E ·B}
{δB}

〉
. (4.3)

For estimating the uncertainty on de in one block, we further assume that the {E·B}
{δB}

channel is constant over the integration gate, in which case we can write

de � �π

32ηEeffτdetgate

〈{E · B}〉
〈{δB}〉 . (4.4)

We can use equations (2.28) and (2.33) to write out 〈{E · B}〉 and 〈{δB}〉 channels
as
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〈{E · B}〉 =
N∑
i=1

(WE·B)i
Ñ

Ni

∫ t2

t1

STOP
i (t) dt , (4.5)

〈{δB}〉 =
N∑
i=1

(WδB)i
Ñ

Ni

∫ t2

t1

STOP
i (t) dt . (4.6)

Each of these equations represents the sum of 4096 terms, and the sign of the ith or

jth term is given by the waveform value at that term (WδB)j or (WE·B)i. Each term

represents the value of the top detector on the ith shot, registered at the detector

at a time tk, normalised to the pump PMT signal for the same group of molecules.

These two signals are shown on pages 57 and 53 respectively, where it should be

noted that the gain of the pump PMT amplifier is 5× 107 counts/V and the probe

PMT amplifier is 1× 107 counts/V.

Let us now consider a single term in one of these sums. Expanding Eq. (2.24)

about the linear part of the interference curve where we always work, and using the

fact that φB = (WδB)i
π
32

+ (WB)i
π
4
, we can rewrite the ith term of the sum as

Ñ

Ni

∫ t2

t1

STOP
i (t) dt =

Ñ
∫ t2
t1

(Ai(t)(WB)i
(
1
2
+ (WδB·B)i

π
32

+ (WE)iφE

)
+ Gi(t)

)
dt∫ t2/κ

t1/κ
SNORM
i (τ)dτ

.

(4.7)

Here κ is the ratio of pump and probe distances discussed below Eq. (2.33) on

p. 70. Now each of these terms may have some variability which could lead to an

uncertainty in measuring STOP
i (t). For instance, the pre-factor Ai(t) might vary

because of frequency noise on the probe laser. Notice, however, that fluctuations in

the molecule number, which would scale A and SNORM by the same factor do not lead

to noise on the quantity
∫ t2
t1

STOP
i (t) dt/Ni (because A/2 � G in our experiments).

However, even if we stabilise all the experimental parameters, there is a fundamental

lower limit on the uncertainty with which we can measure
∫ t2
t1

STOP
i (t) dt/Ni because

each signal is made up of a discrete number of photon counts.
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If some Poissonian process produces counts in a detector at a rate R, the mean

number of counts during a time t will be Rt, with a standard deviation of
√
Rt.

That is called shot noise. At best our signals are Poissonian and we can hope to

reach the shot noise limit. Now each shot records (on average) PTOP photons at the

top detector, and PNORM at the pump. Assuming that the uncertainties in these

two counts are just given by the shot noise, and both the pump and probe detectors

measure the same group of molecules1, then the uncertainty in the normalised count

of Eq. (4.7) is

σi = 〈{SIG}〉
√

1

PTOP
+

1

PNORM
. (4.8)

In the ideal case, there are no other noise sources from shot to shot apart from these

photon counting uncertainties. Hence, we can treat each shot as independent mea-

surement of the quantity
∫ t2
t1

STOP
i (t) dt/Ni, and the fractional error in N such shots

is just σi/
√
N . We now have the values for the errors σ〈{E·B}〉 and σ〈{δB}〉 associated

with the quantities 〈{E · B}〉 and 〈{δB}〉. The error in the ratio 〈{E ·B}〉 / 〈{δB}〉
is just found using standard error propagation

σ2
〈{E · B}〉/〈{δB}〉 =

σ2
〈{E·B}〉

〈{δB}〉2 +
〈{E · B}〉2
〈{δB}〉4 σ2

〈{δB}〉 . (4.9)

Since 〈{E · B}〉 � 〈{δB}〉 we can neglect the second term. Inserting this result into

Eq. (4.4) and using the definition for C we find the error on Eq. (4.4) to be

σde �
�

ηEeffτ2C
√
N

√
1

PTOP
+

1

PNORM
. (4.10)

Eq. (4.10) agrees with Eq. (5) of Ref. [66] if PNORM � PTOP.

Finally then, we can look to see how the actual experimental sensitivity compares

to Eq. (4.10). We do this for two large datasets that we took in March 2013 and July

2013; the results are shown in Table 4.1. The data for March 2013 has been divided

1 A full correlation analysis between the pump and probe signals can in principle be performed
to investigate the relationship between these two detector signals more fully.
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into rf manual true and false data and analysed separately, because otherwise the rf

rotation systematic error, shown in Fig. 3.3 (a), broadens the distribution of eEDM

values and affects the measurement of the sensitivity.

Date rf Blocks C PTOP PNORM
Sensitivity (10−26 e cm/

√
block)

Shot noise limit Measured

03/13 T 973 0.63 697± 5 3390±30 2.04± 0.01 2.56± 0.01

03/13 F 2156 0.65 722± 3 3168±20 1.97± 0.01 2.39± 0.01

07/13 both 2740 0.60 651± 2 3390±20 2.21± 0.01 2.61± 0.02

Tab. 4.1: Parameters relating to the eEDM statistical sensitivity for the July and March
datasets. The March data set has been split into blocks in rf manual state true
and rf manual state false. The July data set contains both rf manual states.

We see that the expected sensitivity is very close indeed to the sensitivity pre-

dicted by the shot noise limit. It is instructive to peer within the datasets to look

a little more closely at the relationship between the measured sensitivity and the

predicted sensitivity according to shot noise. To do this, we determine for each block

the measured eEDM and the eEDM shot noise given by Eq. (4.10). These pairs are

ordered according to the size of the shot noise, then collected into groups of 50. For

each group we calculate the eEDM sensitivity defined above and plot it against the

corresponding shot noise, as shown in Fig. 4.1.

There are several important points to note. First, for both datasets, the measured

sensitivity for the group of blocks generally tracks the predicted sensitivity; that is

to say, blocks where the molecular signal was higher and where the interferometer

contrast was better were also better at measuring the value of the electron EDM.

Also, if we look at the July dataset, it seems that photon counting noise is the dom-

inant noise source, and the sensitivity of a block to the eEDM is close to Eq. (4.10).

For the March dataset, the sensitivity is generally a little poorer than the shot noise

level, indicating that there may be additional noise sources.
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Fig. 4.1: Comparison of measured sensitivity to shot noise limit for March 2013 data run
(left, red dots rf state false, blue dots rf state true) and July 2013 data run (right).
The dashed red line is y=x.

In conclusion, it seems that noise in eEDM interferometer is currently dominated

by photon shot noise, and the uncertainty that we could hope to achieve with one

block of eEDM data taking is given to a good approximation by Eq. (4.10). That

is interesting because one might have expected magnetic noise to be troublesome.

However, the next section shows explicitly that we are still far from being limited by

external magnetic field noise.

4.3 Magnetic field noise

The eEDM interaction affects the molecules like a magnetic field that changes sign

with the electric field direction. A field of 1 pT along the z axis, switching syn-

chronously with the electric field, would produce a signal in the eEDM channel of

3.6 × 10−27 e cm. Therefore, any magnetic field fluctuations have the potential to

increase the error in the eEDM channel. Since the direction of the electric field is

modulated, magnetic field noise below the frequency of electric field switch is heavily

suppressed. We take great care to minimise our exposure to higher frequency noise
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by shielding the experiment within three layers of magnetic shielding and also by

phase locking the experiment to the mains frequency.
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Fig. 4.2: Top: Average magnetic field, 〈{B}MAG〉 detected by Bartington magnetometer
during July 2013 data run. Bottom: Component of magnetic field detected by
the Bartington magnetometer correlated with the direction of the applied electric
field, 〈{E}MAG〉. In both graphs the red shaded blocks make up the noisy blocks
and the blue shaded blocks make up the quiet blocks. The unshaded blocks have
some ambiguity over whether or not the magnetic field was ramping and so are
not included in the analysis discussed in this section.
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In the previous section, we saw that the error from magnetic field noise must be

significantly smaller than the photon counting shot noise. In this section we assess

how large it is. We do so by looking at the magnetic field using a Bartington mag-

netometer placed between the innermost and middle magnetic shields, at a location

indicated in Fig. 2.6. We expect that if the Bartington detects a large magnetic

field correlated with the electric field direction, i.e. if 〈{E}MAG〉 is large, then the

value of 〈[EDM]〉 for that block should also be shifted. Because the Bartington does

not measure the magnetic field along the path of the molecules, but rather samples

a particular place some distance away, the conversion between 〈{E}MAG〉 to a false

〈[EDM]〉 depends crucially on the origin of the noise.

We stress this point because while both the March and July datasets were taken,

we were able to detect a ramping magnetic field from a solid state laboratory two

floors above the eEDM experiment. We concentrate now on the first half of the July

data set, data from which are shown in Fig. 4.2. Blocks taken when the magnet was

operating, shown shaded in red in the top half of Fig. 4.2, had an additional ambient

field of up to a few hundred nT. We call these the noisy blocks. In other blocks,

shown shaded in blue in Fig. 4.2, the field was not ramping and the magnetic field

was stable. These are the quiet blocks.

Some Fourier components of the ramping magnetic field coincide by chance with

the E switch, so the value of 〈{E}MAG〉 during the noisy blocks is on average larger

than during the quiet blocks, as shown in the bottom graph of Fig. 4.2. However, it

is very gratifying to see that the eEDM sensitivity is not affected by these ramping

fields: it is (2.56±0.01)×10−26 e cm/
√
block for both the quiet and the noisy blocks.

Even so this field is far from ideal and we prefer not to have it when taking eEDM

data. That magnet has now been moved, so it will not feature as a noise source in

future eEDM experiments.

Let us therefore concentrate on the correlation between 〈{E}MAG〉 and 〈{EDM}〉
in the quiet blocks, which is more representative of the magnetic field noise that
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molecules will experience in the future. In Fig. 4.3 we plot the values of 〈{E}MAG〉 and
〈{EDM}〉 against each other. To determine the relationship between these quantities,

we use a bootstrapped linear regression. First, we make 1000 replicates of the data

shown in the graph by sampling the dataset with replacement, as described at the

end of Chapter 2. We then fit a straight line to each replicate dataset using linear

regression. However, standard linear regression does not account fully for the errors

in the x-direction, and the effect of this is to underestimate the slope. We correct

this using the reliability ratio (see Ref. [49], p. 87). Finally, we calculate the mean

and standard deviation of the replicate gradients, which gives us our estimate for

the gradient and error on the gradient of (10± 2)× 10−26 e cm/nT. The gradient is

shown in Fig. 4.3.

As might be expected from a dataset where the spread in the x coordinate (stan-

dard deviation 0.085±0.003) is almost identical to the error in measuring the x coor-

dinate (0.053±0.001), those points with the largest absolute values for 〈{E}MAG〉 are
the most powerful in determining the relationship between 〈{E}MAG〉 and 〈{EDM}〉.
If we drop the largest and smallest 5% of the points, the determination of the gradi-

ent becomes more uncertain, giving (10± 4)× 10−26 e cm/nT. The adjusted R2 for

the fitting procedure is 0.08± 0.02, which indicates that the points are spread very

far from the regression line, however, this spreading results from the uncertainty in

measuring 〈{E}MAG〉 and 〈{EDM}〉, rather than indicating that a more complicated

model should be used.

Using the 5% trimmed gradient and the spread in the 〈{E}MAG〉 channel, we can
estimate the RMS shift in the 〈{EDM}〉 channel (the error) due to the fields detected
by the Bartington to be σB = (9± 3)× 10−27 e cm/

√
block. If this error is added in

quadrature to the shot noise limits shown in Table 4.1, the result is to increase the

eEDM error per
√
block by 2× 10−27 e cm. This leaves around 2× 10−27 e cm excess

noise to be accounted for.
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Fig. 4.3: Correlation between 〈{E}MAG〉 and 〈{EDM}〉 for quiet blocks in the July 2013
data run. For blocks taken in electric field manual state false, the value of
〈{E}MAG〉 has been multiplied by -1, to correct for the fact that the manual
reversal effectively inverts the E-switch waveform.

4.4 Conclusion

In this section, we showed that the sensitivity of the YbF electron eEDM experiment

can be largely explained by the uncertainty in the number of photons counted, and we

can understand how to improve the experiment by trying to minimise the expression

shown in Eq. 4.10. We also made an estimate for the size of the magnetic field noise,

which is difficult given that it is much smaller than the shot noise. We measure a cor-

relation between eEDM values and the magnetic field at the external magnetometer

which shows that the magnetic field noise on the eEDM is σB = (6.0± 0.2)× 10−27

e cm/
√
block. With the present shot noise level of approximately 2.1 × 10−26 e

cm/
√
block, this magnetic noise is negligible. When the shot noise is reduced to a

comparable level, we will have to revisit this magnetic noise if it is not to become

the dominant noise source.



5. OVERVIEW OF IMPROVEMENTS TO THE EXPERIMENT

5.1 Increasing sensitivity by increasing signal

In the last chapter, we showed that the statistical error on each block of eEDM data

in 2013/4 was close to the shot noise limit given by Eq. (4.10), which we reproduce

here

σde �
�

ηEeffτ2C
√
N

√
1

PTOP
+

1

PNORM
. (5.1)

Now we investigate how to reduce this quantity, so that we can make an improved

eEDM measurement. The effective field Eeff = 26 GV cm−1 is a fixed property

of the X 2Σ+ (N = 0, F = 1) level in YbF. However, we can slightly increase η,

the polarisation factor, by working at higher static electric fields. A side benefit of

improving the high voltage cabling as described in section 3.4.2 was that by changing

the connectors on the HV lines to 10 kV SHV connectors, we were able to operate

at ±12 kV without too much difficulty. If we could run the experiment like this

permanently, that would increase the polarisation factor from 0.61 to 0.69, a modest

but useful reduction in σde .

Increasing the free evolution time τ is a long term goal of the experiment. The

first step along this path is to develop a buffer gas source which will provide an

intense beam of molecules travelling slowly (between 100–200 m s−1) with 1.9× 1010

YbF molecules per steradian per pulse in X 2Σ+ (v = 0, N = 0) [67] [68]. This source

will be incorporated into the experiment when it is completed. Looking even further

into the future, the group is currently working to build a laser-cooled fountain of
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YbF molecules [21], where the molecules would interact with the fields for 300 times

longer than at present.

The contrast C of the interferometer can be improved by reducing the pulse length

of the rf used to drive the π-flips. With shorter pulses, the molecules sample less

of the inhomogeneity in the rf field, and so can be more efficiently π-flipped. Using

2 μs pulses gives an average contrast of C = 0.76 ± 0.02, compared to the average

contrast of C = 0.61 ± 0.01 shown in Table 4.1. As discussed in Chapter 3, shorter

rf pulses can lead to multipactor discharges. At the time when we were dealing with

the discharges, we did not want to break vacuum in the main chamber and interfere

with the interaction regions. However, while we install the improvements discussed

in this section, we can take additional steps such as coating the rf plates or placing

insulating barriers to disrupt the multipactor discharges and allow us to return to

shorter length rf pulses.

While these improvements are being perfected, our parallel goal is to increase

the factor PTOP. This will be achieved both by increasing the number of molecules

pumped into the X 2Σ+ (v = 0, N = 0, F = 0) state, and by detecting these molecules

more effectively. We will also incorporate a way of detecting molecules left in both

X 2Σ+ (F = 0) and (F = 1), which will remove the need for a normalising detector

and further improve our sensitivity.

We present a series of proposals to do this in this chapter, and expand upon them

in the following chapters. If all the improvements discussed in this section can be

successfully implemented, there should be an order of magnitude improvement in the

sensitivity of the experiment.
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5.2 New experimental apparatus

The improvements to the experiment are shown in diagram 5.1 in the sections marked

with a blue shaded circle, and in the photographs of Fig. 5.2. In the pump region

2 and Fig. 5.2 (a)–(c), three resonant rf coils shown in red and a microwave horn

deliver more pumping fields to the molecules. In addition, the pump laser light

has been elongated slightly along the y axis, and more frequencies have been added.

These changes are to increase the number of molecules pumped into the |0, 0〉 starting
state, as we discuss below. The probe region, 6 has been completely re-designed in

order to improve detection, also discussed below. Now in section 6.1 the molecules

fly through a parallel plate microwave transmission line, designed to support TEM

microwaves whose electric field is along the x axis. Two views of this transmission line

are shown in the Figs. 5.2 (d)–(e). They then interact with the first probe beam in

section 6.2 . Once again, scattered photons are imaged onto a PMT. The molecules

then fly through a second transmission line in section 6.3 , and interact with a second

probe laser beam in section 6.4 . To understand how all these improvements increase

the molecular signal, we now describe the new experimental sequence. Steps 1 and

3 – 5 are unchanged from the previous experimental sequence, section 2.4.1 on

p. 52, and so we just include the title of the action here; the reader can refer back

to that section if necessary.
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Fig. 5.1: The improved pumping and detection regions. The changes to the machine are
in the regions 2 and 6 , shaded in blue. The remaining regions are unchanged
from Fig. 2.6, p. 45.
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Fig. 5.2: (a) A view of the new pumping region 2 , showing the four rf coils and mi-
crowave horn, the centre lines of the molecular beam and laser beam. The reso-
nance frequencies of the coils are 1) 155.7 MHz, 2) 36.4 MHz, 3) 161.2 MHz and
4) 30.9 MHz. (b)–(c) Two pictures of the resonant rf coils, mounted on the plate
support structure. (d)–(e) Two views of the microwave transmission line, sections

6.1 and 6.3 . The absorber is not shown.
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5.3 The new experimental sequence

5.3.1 A shot

1 Make some YbF

2 Pump system into |0, 0〉 using lasers, microwaves and rf radiation

1
0

1
0

1
0

0
2

1
3

2+

2-

1-

1+

N=0

N=1

N=2

X 2S+ n>0

P'=1

P'=-1

X 2S+n=0

A 2P12n'=0 F'

F

abc
d

f 
g

h i

Decays to
unaddressed

levels

Fig. 5.3: The transitions driven in the new pumping region. Microwave radiation (f)
and rf radiation (g)–(i) mix the rotational population in N = 1 into the state
(N = 0, F = 1). The population in (N = 0, F = 1) is pumped to the excited state
using a laser beam (d). Any decays into N = 2 are re-pumped using lasers (a)–(c),
collectively called the N = 2 lasers. As well as decays to any of the N = 0 or
N = 2 states addressed by laser beams (not shown), the excited state can decay
into |0, 0〉 or X 2Σ+ (v > 0), as indicated by the wiggly lines.

Pumping region 2 is designed to transfer as much as possible of the thermal
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population from X 2Σ+ (v = 0, N = 0, 1, 2) into X 2Σ+ |0, 0〉 by optical pumping.

To do this, the molecules are subjected to laser fields tuned to the four frequencies

labelled (a)–(d) in Fig. 5.3. The polarisation of these fields will need to be modulated

to excite all the components of the two F = 2 levels of X 2Σ+ (N = 2). Microwaves

tuned to the X 2Σ+ (N = 0, F = 1) → (N = 1, F = 2) transition (transition

(f)) are applied by a horn. Radio-frequency fields drive magnetic dipole transitions

F = 1+ → F = 2 (30.9 MHz, transition (g)), F = 2 → F = 1− (161.2 MHz,

transition (h)) and F = 0 → F = 1− (155.7 MHz, transition (i)) in the X 2Σ+ (N = 1)

level. These fields, produced by a set of resonant coils shown in the Figs. 5.2 (a)–(c),

are linearly polarised at ±45 ° to the x axis. The microwave horn is rotated about

the x axis so that the linearly polarised field it produces lies in the z-y plane at 50.5°

to the y axis. With these fields it should be possible to mix all the N = 1 levels with

the (N = 0, F = 1) level and hence to optically pump them into |0, 0〉 (with some

losses to X 2Σ+ (v > 0)). In section 5.4.1 we discuss exactly how much population

is available to be pumped and how well we can expect to do in transferring this

population into |0, 0〉.

3 Prepare the YbF into a superposition of |1,−1〉 and |1, 1〉

4 Let the YbF spin evolve in electric and magnetic fields

5 Drive population in |1, 1〉 − |1,−1〉 back to |0, 0〉 with a second rf pulse

6 Count the number of molecules left in X 2Σ+ F = 1 and F = 0

After the second rf pulse (step 5 ), the new detection region aims to count the

molecules in F = 0 and the number in F = 1. The detection is scheme has four

steps:
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6.1 Transfer |0, 0〉 into X 2Σ+ (N = 1, F = 1−,mF = 0)

The first step is to move molecules from the |0, 0〉 state into the

(N = 1, F = 1−,mF = 0) = |1, 1−, 0〉 state with a microwave π-pulse at

14,467,158 kHz.1 The only allowed transitions of |0, 0〉 into N=1 are to the

F = 1− and F = 1+ levels. Of these transitions, the transition matrix element to

F = 1+ state is 20 times smaller than the matrix element to F = 1−, so we choose

the more favourable transition. (see Chapter 6 and Appendix B for details of how

to calculate these matrix elements).

6.2 Detect (N=0,F=1) population using cycling detection

Now the population left in (N = 0, F = 1) is detected by the first probe beam. This

is made up of four laser frequencies already used in the pumping section, plus an

additional beam resonant with the X 2Σ+ (v = 0, N = 0, F = 0) → A 2Π1/2 transition

and labelled (e) in Fig. 5.4. The polarisation of the beams is modulated so that

all the magnetic sub-levels of the F = 2− and F = 2+ states are addressed. By

applying these five beams (instead of one) we enable each YbF molecule to scatter

many photons (instead of one) before decaying to X 2Σ+ (v > 0) and becoming dark.

This increases the detection efficiency by more than ten times, as we calculate in

section 5.4.2. These fluorescence photons are imaged onto a PMT. The signal in this

detector, named P1, measures the population left behind in the F = 1 state after

the second rf pulse

Sp1(E,B; t) = A(t) sin2 (φB + φE) + G(t) . (5.2)

1 We choose to shelve |0, 0〉 rather than the superposition left in (N = 0, F = 1) because the
orientation of the latter may vary in a way that is sensitive to the relative direction of the electric
and magnetic fields in the region between the electric field plates and the microwave transmission
line. This has potential to cause a signal which contributes to the 〈{EDM}〉 channel. Instead, we
shelve the scalar state |0, 0〉.
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Fig. 5.4: The transitions driven in the new probing regions. The population in N = 0 and
N = 2 is driven to the excited state using lasers (a)–(e). The excited state can
decay to any of the N = 0 or a N = 2 states addressed by laser beams, from
which it is re-pumped to the excited state, or to X 2Σ+ (v > 0).

6.3 Transfer |1, 1−, 0〉 back into |0, 0〉

While the (N = 0, F = 1) population was being detected, the population that

had been shelved in |1, 1−, 0〉 was flying through the machine. We transfer it back

to |0, 0〉 with a second microwave π-pulse as it flies through the second microwave

transmission line region. Any population in the states |1, 1−,±1〉 remains shelved

after the second π-pulse because the microwave field is polarised along x, so it is

important to stop the |1, 1−, 0〉 state rotating about the x or y axis and thus gaining

some amplitude in these states. To this end, we suppress stray magnetic fields
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using a probe inner shield shown in Fig. 5.1, and two outer shields which will be

elongated versions of the shields shown in Fig. 2.7 (b). In the main experimental

chamber, which has approximately the same level of shielding, we are able to reduce

the ambient fields to below 10 nT. If we are able to achieve a similar level of control

of the fields in the new chamber, then the rotation of the |1, 1−, 0〉 spin direction due

to magnetic fields will be less than 2× 10−2 rad and the microwave transition back

to |0, 0〉 can be very efficient.

6.4 Detect |0, 0〉 population using cycling detection

Now we detect the population in |0, 0〉 as it passes through the second set of probe

beams. The frequencies used are the same as in step 6.2 . The signal in this detector,

labelled P2 is given by

Sp2(E,B; t) = A′(t) cos2 (φB + φE) + G ′(t) . (5.3)

5.3.2 Extracting a signal proportional to the eEDM phase in the new scheme

As well as increasing the signal, the improvements described in the previous section

will change how the data is analysed at the end of the experiment. The pump PMT

and optics have been removed, so there is no normalisation signal, but it is still

possible to reject noise associated with shot-to-shot fluctuations of the molecular

beam intensity. To do this we construct the following composite signal out of the

signals from the new detectors

SA(t) =
Sp1(t)− Sp2(t)

Sp1(t) + Sp2(t)
, (5.4)

which cancels out the molecular beam fluctuations provided G ′ ,G � A and A � A.
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We can then use SA(t) directly to calculate the value of the eEDM

de =
�

2τηEeff

{E · B}A + small correction terms . (5.5)

5.4 Rough calculations of the increase in signal

Having described the proposed improvements to the experiment, we now make some

crude calculations of the increase in signal that we might expect. For the pump and

probe regions in turn, we first present simple arguments for the maximum possible

increase in signal, then get a rough idea of how the signal increase depends on the

powers and durations of the applied fields by applying a simplified rate equation

model. We then compute what intensity laser, rf and microwave fields we will need.

In later chapters we repeat this process using a full quantum mechanical treatment,

but a very simple model is useful to see if the proposal seems plausible, and to

validate the more complicated treatment.

5.4.1 New pumping scheme

Theoretical maximum

The increase in |0, 0〉 population from the new pumping scheme depends on collecting

molecules from the states X 2Σ+ (N = 0, F = 1), (N = 1, F = 2, 1−, 1+, 0) and

(N = 2, F = 2−, 2+, 1) into |0, 0〉. Ideally each YbF molecule that starts in one of

these states should be excited to A 2Π1/2 . Once in the excited state it would decay

to |0, 0〉, or back to one of these states, or to X 2Σ+ (v > 0). The maximum possible

increase should be when no population remained in those states after pumping. The

fraction of the excited population that ends up in |0, 0〉 is then

∑
F ′,m′

F
P (|F ′,m′

F 〉 � |0, 0〉)∑
F ′,m′

F

[
P(|F ′,m′

F 〉 � |0, 0〉) + P(|F ′,m′
F 〉 � X 2Σ+ (v > 0))

] � 0.69 , (5.6)
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where P(|F ′,m′
F 〉 � Z) the probability of the excited state |F ′,m′

F 〉 decaying to the

state Z and the sums are over the four mF ′ sub-levels of the excited level. We have

evaluated this using the results of Table B.1. We therefore conclude that 69% of

molecules that are initially in a pumped level can ideally be transferred to the state

|0, 0〉 using the new scheme, with the remaining 31% being lost to X 2Σ+ (v > 0).

In the current experiment where only X 2Σ+ (N = 0, F = 1) is pumped, we should

expect only 29% of the X 2Σ+ (N = 0, F = 1) population to be transferred to |0, 0〉,
and that is in good agreement with what we observe.

The new pumping scheme not only allows the X 2Σ+ (N = 0, F = 1) population

to be more efficiently pumped to |0, 0〉, but also brings in molecules from many other

levels. Now we consider how far the |0, 0〉 population can be enhanced by these addi-

tional molecules. For a beam of rotational temperature T in the ground vibrational

state, the probability of occupying a state of energy EN,F (+/−),mF
� N(N + 1)Bh is

given by the Boltzmann distribution as

P(N |T ) = N (T )e−N(N+1)hB/kBT , (5.7)

where N (T ) is a normalising constant, B = 7.234 GHz is the rotational constant and

h is Plank’s constant. The maximum possible fractional increase in population in the

state |0, 0〉 under the new pumping scheme for a beam of temperature T, compared

to the current pumping scheme is therefore

f(T ) =
P(N = 0|T ) + 0.69 [3P(N = 0|T ) + 12P(N = 1|T ) + 13P(N = 2|T )]

P(N = 0|T ) + 0.29× 3P(N = 0|T ) .

(5.8)

Here the numbers multiplying the probabilities in Eq. (5.8) are just the number of

mF sub-levels being addressed in each of the rotational levels.2 The factor f(T ) is

plotted as a function of T in Fig. 5.5. This factor is rather large for the typical

2 Recall that (N = 2, F = 3) cannot be excited to A 2Π1/2 (J
′ = 1/2), so the factor multiplying

P(N = 2|T ) is 13 not 20.
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rotational temperatures of our beam (1.5–6 K), giving between 5 and 9 times more

signal.
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Fig. 5.5: Fractional increase in |0, 0〉 if new pumping scheme is applied to a beam of rota-
tional temperature T.

The average value for the rotational temperature of our beam is around 3 K,

which implies we should expect the number of molecules to increase by a factor of

up to 7.6 with the new pumping scheme.

Simple Rate Model

The almost 8-fold increase in signal predicted by the previous section only applies

in the limit of very long interaction times and high powers. Unfortunately, our

molecular beam is flying at 590 m s−1 upwards, so taking into account the dimensions

of the ports in our vacuum chamber the molecules are never going to have more than

around 50 μs to interact with the light. In this section, we estimate how complete

the pumping could be, given this interaction time and a reasonable laser power. In

Chapters 6 and 7 we will develop a more rigorous model to handle the difficulties

associated with various types of dark states, but for now we adopt a very simple rate

equation model to get a feel for whether the scheme stands any practical chance of

working.

Since this simple model will be used at various places in the rest of this thesis, we
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Fig. 5.6: Levels and transitions in the simple rate model.

start by describing the model in a more general way before focusing on the specific

details of the new pumping scheme. The situation we have in mind is shown in

Fig. 5.6. There are Ng ground states, Ne excited states and NL ‘leak’ states, those to

which population can be lost. We treat the distribution of population among those

states as a classical probability distribution, having no quantum coherences. Each

excited state decays at a rate γg into the collection of ground states, and γL into the

collection of leak states, with a total decay rate γg + γL = Γ. Also, certain pairs of

ground (g) and excited states (e) are linked by real classical driving fields with rates

Rg,e,i. Here i is an index which labels the driving fields, and we call the sum of the

rates Rtot =
∑

i Rg,e,i.

We additionally assume that there are other mechanisms not included in this

model which ensure that the populations of the ground states are all equal, and the
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populations of the excited states are all equal. These mechanisms could be additional

fields which mix the population among the levels (such as the rf and microwave fields

of the new pumping scheme), or they could be transverse magnetic fields. They could

also be a modulation of the laser polarisation if the ground and excited states were

the magnetic sub-levels of some angular momentum state. The major caveat in this

model is that we assume that the mixing of all the populations has no effect on the

rates Rg,e,i at which population is driven to the excited state.

Let ng be the probability of occupying one of the ground states, and ne and nL

be the probability of occupying one of the excited and leak states respectively. The

rate equations for this system are then

Neṅe = −ΓNene +Rtot(ng − ne) , (5.9)

Ngṅg = γgNene −Rtot(ng − ne) , (5.10)

NLṅL = γLNene , (5.11)

together with the normalisation condition

1 = Nene +Ngng +NLnL . (5.12)

We can substitute Eq. (5.12) into Eq. (5.9) to get

Neṅe = −ΓNene +
Rtot

Ng

(1−Nene −NLnL −Ngne) . (5.13)

Now we finally assume that γg � γL, so that the system of levels g and e can stay in

a quasi-steady state, while their populations gradually leak into the levels L. This is

equivalent to assuming that over the time-scales in which it takes the g and e levels

to come into equilibrium, nL remains constant. Solving Eq. 5.13 for this quasi steady

state by setting ṅe = 0 and ṅL = 0, we find that the total excited state population
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is given by

Nene =
Ne

Ne +Ng

(
(1−NLnL)

ΓNeNg/ (Rtot(Ne +Ng)) + 1

)
. (5.14)

We now insert Eq. (5.14) into Eq. (5.11) to see how nL varies over longer times. As-

suming that there are initially no molecules in any of the leak states, the probability

to be in these states grows over time according to

NLnL(t) = 1− exp

[ −γLNet

ΓNeNg/Rtot +Ne +Ng

]
. (5.15)

Equations (5.14) and (5.15) will be frequently used in the second half of this thesis.

It is useful to rewrite the pumping rates Rg,e,i in terms of some more convenient

quantities. Section II of Ref. [69] gives many useful formulae to do this. In particular,

the rate of the transition driven on resonance between an upper and lower state in

a system of atomic rate equations is given as Rg,e,i = |Ωg,e,i|2/Γ. The Rabi rates

Ωg,e,i can be related to the transition strengths by fg,e,isi = 2|Ωg,e,i|2/Γ2, where

si = Ii/Isat is the saturation parameter, Ii is the intensity of radiation and for

the optical transitions, Isat = πhcΓ/3λ3 is the saturation intensity. The transition

strengths can be written as fg,e,i =
|〈g|d̂·εi|e〉|2∑

k |〈k|d̂|e〉|2 , where d̂ is the dipole operator, εi

is the polarisation of vector of the light and the sum over k includes all states to

which the upper state e can decay. For the YbF transitions we will consider, these

can be found by squaring the projection factors found in Tables B.1 and B.2 as

appropriate. Other transition strengths for rf or microwave transitions can also be

found by squaring the relevant projection factors given in Appendix B.

The values of Rtot for a few frequently encountered cases are shown in Table 5.1.

Here it is assumed that the intensities of the driving fields are all equal, and their

frequencies are close enough that we use a single saturation intensity Isat for all the

transitions.
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Case Example level diagram Rtot Notes

1) Ne = 1, NL = 0,
ΓI

2Isat

This is the sit-
uation described
in appendix A of
Ref. [21]

2) Ne > 1, NL = 0,
all possible decays paths
from excited levels ad-
dressed with equal in-
tensity.

NeΓI

2Isat

Follows from the
definition of fg,e,i

3) Ne > 1, NL =
0, Each upper level
with quantum number
F ′ linked to a lower level
F with radiation of a
single polarisation.

NeΓI

6Isat

Must be 1/3 of
2) by isotropy of
space

4) New pumping scheme
with linear polarisation
on all beams

See Fig. 5.3
0.515ΓI

Isat

Calculated with
Table B.1

5) New probing scheme
with linear polarisation
on all beams

See Fig. 5.4
0.619ΓI

Isat

Equal to 4f00ΓI
6Isat

,
f00 is the
Franck-Condon
factor

Tab. 5.1: Evaluation of the total pumping rate for a selection of relevant cases. The inten-
sity driving each transition is always equal to I



5. Overview of improvements to the experiment 133

Many situations involving laser cooling or cycling detection with diatomic

molecules [70] [21] correspond to case 3) in Table 5.1, where typically the num-

ber of ground states addressed by laser beams Ng greatly outnumbers the number of

excited states Ne. In these cases, using Table 5.1 and Eq. (5.14), the total excited

state population can be written as

Nene =
Ne

Ne +Ng

(
Ng6Isat

(Ne +Ng)I
+ 1

)−1

. (5.16)

This equation is very close to the steady state behaviour predicted when the full

time dependent rate equations are solved for YbF, given in Ref. [21]. It is helpful to

compare this with the familiar two level-system, (case 1) with Ng = 1), for which

ne =
1

2

(
Isat
I

+ 1

)−1

. (5.17)

As I/Isat → ∞, the population in both systems is becomes equally distributed over

all the levels, so that in the two level system ne → 1/2, whereas in the multilevel

system Nene → Ne/(Ng + Ne). This limits the maximum possible scattering rate

to ΓNene. Now compare the dependence on I/Isat. Both equations have the same

form, but the I/Isat of the 2-level formula is replaced in the multilevel case by

I

Isat
→ (Ne +Ng)

2Ng

I

3Isat
. (5.18)

The change from two levels to many levels reduces the intensity in two ways. First,

through the factor (Ne+Ng)

2Ng
, and second because of the an extra factor of 1/3. The first

factor has appeared because the number of ground and excited states has increased,

and the second appears because the transition is only being driven with one laser

polarisation, while the decays can be to any polarisation. Notice that in the limit

Ng � Ne, the right hand side of expression (5.18) becomes I/(6Isat).

The conclusion is clear: in our new pumping and detection schemes, the saturated
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scattering rate is going to be small compared with Γ, and we will need high intensity

to approach saturation.

Solution of the rate model for new pumping scheme and required laser, microwave

and rf intensities
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Fig. 5.7: Fraction of population left in the pumped levels as a function of interaction time
for a variety of laser intensities. The intensity here is the value of the intensity
driving each transition.

Now we apply this simple rate model to the new pumping scheme. We imag-

ine driving resonantly each of the transitions from X 2Σ+ (N = 0, F = 1) and

X 2Σ+ (N = 2, F = 2+, 1, 2−) up to A 2Π1/2 using linearly polarised light, as shown in

Fig. 5.3. In this case, using the results of Table 5.1 and the parameters {γL = 0.22Γ,

Γ = 2π×5.7 MHz, Ne = 4, Ng = 28}, we calculate the evolution for the population

shown in Fig. 5.7, for a selection of laser intensities. This indicates that an intensity

on each of the laser frequencies of around Isat should be enough to complete the

pumping in 50 μs.

The area of the pump laser beam should be 3 cm by 0.4 cm to cover the width

of the beam and give a 50 μs interaction time. Using this with the value for the

saturation intensity for our transitions, Isat = 4.4 mW cm−2, gives a required power
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of around 5 mW on each sideband, or 20 mW in total. This should not be too

difficult to produce.

At this point in the discussion, we have not yet calculated the field strengths

needed for the rf and microwave transitions marked (f)–(i) in Fig. 5.3. As a rough

estimate, though, we can expect that the Rabi rates of these fields should be com-

parable to or larger than the laser Rabi rate. There is no single laser Rabi rate,

because the differing oscillator strengths for each transition give different Rabi rates,

but if each transition is driven at I = Isat, then the Rabi rates are all similar and

lie between 2π×0.6 MHz and 2π×1.8 MHz. The microwave intensity required to

produce this Rabi rate on transition (f) is of the order of a few hundred micro-watts

per square centimetre, and is easily accessible with commercial microwave frequency

sources and a microwave horn. The rf field will need to be much higher because this

drives the magnetic dipole transitions (g), (h), and (i). However, we know that the

amplifier driving our 170 MHz transmission line in the present eEDM experiment

can produce Rabi rates of up to 2π × 0.25 MHz. With the resonant rf coils shown

in Fig. 5.2 (b)–(c) we achieve a quality factor of around Q = 200, which if used in

combination with a similar amplifier to our current rf systems should give Rabi rates

of up to 2π × 3.5 MHz.

We will also need to modulate the laser polarisation to avoid dark states, and the

ideal rate for that is also yet to be determined. This too optimises at a rate similar

to the Rabi frequency, and modulating the laser polarisation at this frequency should

not be too challenging using a Pockels cell.

5.4.2 New detection scheme

We now turn our attention to the new detection scheme, which aims to produce a

large increase in the numbers of photons scattered by each molecule. After shelving

the F = 0 population ( 6.1 in Fig. 5.1), we detect the F = 1 molecules by exciting

them into A 2Π1/2 with the probe lasers shown and (a)-(e) in Fig. 5.4. The only states
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they can fall into that will not be re-excited are X 2Σ+ (v > 0). The probability of

such a decay from A 2Π1/2 is 1 − f00, where f00 = 0.928 is the branching ratio to the

v = 0 [53]. Therefore, the average number of photons that each molecule will scatter

if the interaction time is long enough and the powers are high enough is

〈Nphotons〉 = 1

1− f00
= 13.9 photons . (5.19)

The same analysis with the current detection schemes shows a yield of only 1.3

photons, so there is potentially an 11-fold increase in signal at the first detector( 6.2

in Fig. 5.1). The net detection efficiency of our collection optics is 0.6% (including

the quantum efficiency of the PMT), so the probability of detecting a given molecule

will be 5%. This means that the shot noise will still be dominated by the number

of photons counted, rather than the number of molecules that make it through the

experiment. The shelved molecules are then recovered in section 6.3 in Fig. 5.1 and

detected in section 6.4 in Fig. 5.1. If the shelving and recovery work perfectly, then

taking both detectors together we could expect a 22-fold increase in signal compared

with the present detection scheme.

5.4.3 Rate equation calculations

In the previous section we found that the average molecule only scatters 13.9 photons

when there is an unlimited interaction time. Now we consider how many photons we

can practically scatter in a limited interaction time.

The average number of photons scattered is just 〈Nphotons〉× fraction pumped

to X 2Σ+ (v > 0), and that fraction can be approximately calculated with the help

of Eq. (5.15). The relevant constants are {γL = 0.07Γ, Ne = 4, Ng = 17}. The

results for various laser intensities are shown in Fig. 5.8. To ensure that the photons

scattered by the molecules are successfully imaged onto the PMT detectors, we will

need to restrict the size of the probe laser beams to be around 15 mm in length, and

16 mm in width. This will provide an interaction time of 25 μs for the detection to
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take place. From Fig. 5.8, we can see that with I = Isat we scatter 12 photons in

25 μs, around 86% of the maximum possible. This requires about 10 mW on each

sideband, or 50 mW of total laser power in each detection region.
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Fig. 5.8: Number of photons scattered during the improved detection scheme predicted by
the simple rate equation model.

5.4.4 Microwave π-pulse efficiency

Another important consideration is the efficiency of the microwave pulse in shelving

and unshelving the F = 0 population. This is influenced by two main factors: the

first is the velocity spread of the molecules, the second the homogeneity of the electric

field.

The spread in velocities leads to the faster molecules spending less time traversing

the microwave field, and so they receive a little less than a π-pulse, while slower

molecules receive a little more than a π-pulse. The probability of Rabi flopping

from one state to another after time τ is sin2(Ωτ/2) [71, p.128]. For our typical

timing gates, we sample molecules with velocities between 568 and 612 m s−1. This

means that the product Ωτ/2 varies by ±3.7% either side of π/2. However, as sin2

is quadratic around π/2, the population transfer only varies as the square of this
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spread, in other words by ±0.5%. Averaging over the velocity distribution leads to

a maximum π-pulse efficiency more than 99%.
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Fig. 5.9: MEEP Simulations of the microwave transmission line. (a) shows absolute value
of the microwave electric field field, integrated between z = −∞ and z = ∞,
which the molecules would experience as they fly through the transmission line,
as a function of the x and z. The distances are plotted in terms of the microwave
wavelength λ = 20.7 mm. The centreline of the molecular beam will be at the red
dot. (b) and (c) are two slices through graph (a) at z=0 and x = 10λ respectively.

The efficiency of the π-pulse will more critically be limited by variations in the

microwave electric field over the waveguide. The flared parallel plate microwave

transmission line shown in Fig. 5.2 (d)–(e) was chosen because computer simulations

with MEEP, a finite-difference time-domain simulator, indicated that the microwave

field homogeneity in the x-z plane (transverse to the molecular beam) should be good

with this arrangement. That is because the TEM waveguide mode launched at the

feedthrough is maintained as the waveguide is flared up, despite the fact that the

parallel plates support higher modes. The design is also supposed to avoid unwanted

lossy modes that reflect off the edges of the waveguide [72]. The results of the MEEP

simulations are shown in Figs. 5.9 (a)–(c). In Fig. 5.9 (a), the integral of the absolute

value of the microwave electric field |E| along a line from z = −∞ to z = ∞ is plotted
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as a function of the x-y position of the molecules in the waveguide. Fig. 5.9 (b) shows

a slice through the graph along x at z = 0, and (c) shows a different transverse slice

along z at x = 10λ, where λ = 20.7 mm is the microwave wavelength. The centre of

the molecular packet will be at x = 0, z = 10λ. It will be important to terminate the

line correctly, or standing waves will affect the homogeneity. We plan to use a tapered

termination wedge made from flaked graphite bonded with vacuum compatible resin,

since this has good absorption properties at our microwave frequencies [73]. If the

standing waves can be suppressed, then most of the molecules can receive almost

a perfect π-pulse, as shown in Fig. 5.10. Averaging over the whole region that the

molecule occupy (±15 mm either side of the centre in x, ±8 mm either side of the

centre in z) , the total π-pulse efficiency should be around 97%.
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Fig. 5.10: Fraction of a π-pulse experienced by molecules travelling through the microwave
transmission line. The overall amplitude of the microwave field has been adjusted
to maximise the average efficiency of the π-pulse. The red dot shows the centre
of the molecular beam.

5.5 Conclusion and overview of the next half of the thesis

In conclusion, it seems reasonable on the basis of these relatively simple calculations

that we can realise a 9-fold increase in the eEDM signal using the new pumping

scheme and a further 20-fold increase in signal from the new detection scheme.
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In the next two chapters, we deal more fully with the proposed improvements

to the experiment. This begins in Chapter 6 where we lay out the optical Bloch

equations (OBEs) for the system. Then, in Chapter 7, we use these equations to

calculate the true pumping times for the new detection and pumping regions.



6. DERIVATION OF THE OPTICAL BLOCH EQUATIONS FOR

THE EVOLUTION OF YBF IN OPTICAL, MICROWAVE AND RF

FIELDS

6.1 Overview

This chapter lays out the theory necessary to model the optical, microwave and radio-

frequency transitions between the X 2Σ+(v = 0, N = 0, 1, 2), A 2Π1/2(P ′ = ±1) and

X 2Σ+(v > 0) states. Transitions between these states form the basis of the new

pumping and detection schemes described in the previous chapter. By solving the

optical Bloch equations, we are able to predict how any initial collection of YbF

molecules will evolve under the applied fields and calculate important properties like

the number of photons scattered per molecule.

6.2 Equation of motion

The evolution of a YbF molecule can be modelled by including a phenomenological

relaxation term r in the Liouville-von Neumann equation

˙̂ρ(S) =
1

i�

[
Ĥ, ρ̂(S)

]
+ r(ρ̂(S)) . (6.1)

Here, ρ̂(S) is the density operator for the molecular system written in the Schrödinger

picture, Ĥ is the Hamiltonian of the system and the operator r governs the incoherent

evolution of the density matrix operator because of spontaneous emission from the

electronically excited states. These equations are usually called the optical Bloch
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equations (OBEs).

We will always evaluate the matrix elements of the density operator using a basis

which is the set of molecular eigenstates of the internal Hamiltonian Ĥ0, which we

label |i〉 , |j〉 and so on

|i〉 〈i| ρ̂(S)(t) |j〉 〈j| = ρij |i〉 〈j| . (6.2)

The diagonal entries in the density matrix ρii are called the populations, and they give

the probability of finding the molecule in that state |i〉. The off-diagonal elements ρij,

i �= j are called coherences : they represent some element of superposition between

the states i and j.

Our approach will be to start with the first term in Eq. 6.1, which captures the

coherent interactions of the system with the applied field. We then use the results

of a full QED calculation [74] of the interaction between an atom and a light field to

give the form of r.

6.3 Coherent interaction terms

We start by explicitly writing the Hamiltonian for the system

Ĥ = Ĥ0 + Ĥint , (6.3)

here Ĥ0 is the internal Hamiltonian of the molecule, while Ĥint describes the inter-

actions of the molecules with laser, rf and microwave fields

Ĥint = Ĥlaser + Ĥmicrowave + Ĥrf . (6.4)

Fig. 2.4 summarises all the transitions that we will be considering. For a given

simulation where there are a number of fields, labelled f , with frequencies ωf , the
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matrix elements of Ĥ in terms of the set of molecular eigenstates of the field-free

Hamiltonian Ĥ0 are

(
Ĥ0

)
ij
= �ωiδij , (6.5)

(
ĤLaser + ĤMicrowave

)
ij
=
∑
f∈F

〈i| −
∑
p

d̂ · εpEf
p Cosωf t |j〉 , (6.6)

(
ĤRF

)
ij
=
∑
f∈F

〈i| −
∑
p

μ̂ · εpBf
pCosωf t |j〉 . (6.7)

Here d̂ = −er̂ is the electric dipole operator and μ̂ = −μB

(
gsŜ + glL̂

)
is the

magnetic dipole operator, neglecting the small contributions from nuclear spin and

rotation and taking gs as the absolute value of the electron g factor ge � −2. Ef
p (Bf

p )

are the complex electric(magnetic) amplitudes of each component of the field labelled

f , written in terms of the spherical basis unit vectors εp. In terms of the Cartesian

unit vectors ex, ey and ez these are written as ε0 = ez, ε±1 = ∓(ex ± iey). F is the

set of all applied oscillating fields being considered in a given simulation.

To keep the following section from becoming too cluttered, we rewrite the matrix

elements in the following form

M f
ij =

∑
p

1

2�
〈i| m̂ · εpAf

p |j〉 , (6.8)

where if i and j are different electronic or rotational levels m̂ = d̂ and Af
p = Ef

p , and

if i and j are in the same rotational level of the ground electronic level, then m̂ = μ̂

and Af
p = Bf

p . An explicit evaluation of the M f
ij for all relevant states is carried out

in Appendix B.

Substituting Eq. (6.8) into (6.1) we find that the density matrix elements evolve

according to Eq. 6.9.

ρ̇
(S)
ij = −i (ωi − ωj) ρ

(S)
ij +

∑
f,k

(
iM f

ikρ
(S)
kj − ρ

(S)
ik iM f

kj

) (
eiωf t + e−iωf t

)
+ rij . (6.9)

Now we want to make a substitution which will remove the first term on the left hand
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side of Eq. (6.9). The replacement ρ
(S)
ij = e−i(ωi−ωj)tρij, which transforms the density

matrix operator into the interaction picture, achieves this. After some rearrangement

and using ωij = ωj − ωi and Δf
ij = ωij − ωf Eq. (6.9) can be rewritten

ρ̇ij =
∑
f,k

{
iM f

ikρkj

(
e−iΔf

ikt + e−i(2ωf+Δf
ik)t
)
− ρik

(
e−iΔf

kjt + e−i(2ωf+Δf
kj)t
)
iM f

kj

}

+ e−iωijtrij . (6.10)

Next, we discard a great many rapidly oscillating terms in Eq. (6.10). These include

terms where the driving field is very far detuned from resonance, and also terms of

the form e−i(2ωf−Δf
ij)t, provided of course that 2ωf−Δf

ij is not close to resonance with

any other transitions (as is the case for all the fields considered in this thesis). The

effect of this “rotating wave” approximation (RWA) is to consider only the coarse-

grained evolution of the density matrix elments in Eq. (6.10). The time interval

Δτ over which the equations of motion are “smoothed” is set by the most rapidly

oscillating terms retained in Eq. (6.10), which is now rewritten as

ρ̇ij =
∑
f,k

iM f
ikρkje

−iΔf
ikt − ρike

−iΔf
kjtiM f

kj + e−iωijtrij . (6.11)

We typically retain terms where the detunings Δf
ij are up to around 5 times the

natural line width of the excited state, Γ = 2π × 5.7 MHz. For the simulation

durations (up to 100 μs) and Rabi rates (up to 2π × 10 MHz) we consider in our

simulations, retaining higher frequency terms has a negligible effect on the final

populations.

6.4 Relaxation terms

The relaxation terms we use for our system are derived in Ref. [74], which treats

the interaction between an atomic or molecular system with multiple excited and

ground states and a quantised light field using quantum electro-dynamics. Their
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approach builds on the work of Ackerhalt et al. [75] [76] in two level systems. It

allows both the (coherent) excitation of the atomic system by an applied field, and

its relaxation, to be derived at the same time from the interaction between the

electromagnetic vector potential and the atom or molecule. In our case, we only

want to take those terms which account for the relaxation of the system. We add

these terms phenomenologically to the coherent evolution of the system we derived

in the previous section.

It is useful at this point to make a distinction between electronically excited and

ground states, since the expressions for the relaxation of coherences between pairs of

electronically excited states, pairs of electronic ground states and coherences between

ground excited states are different in these different cases. We use the indices e and

e′ for electronically excited states and g and g′ for ground states.

Taking the relaxation terms from equations (18) (a)–(c) and also using the ex-

pression for the total decay rate of an excited state (16c), all in Ref. [74], we find, in

agreement with Ref. [77], that the elements of r are given by

reg = − ω3
0

6πε0�c3

∑
e′,g′,p

〈e| d̂ · εp |g′〉 〈g′| d̂ · εp |e′〉 ρ(S)e′g , (6.12)

ree′ = − ω3
0

6πε0�c3

∑
e′′,g,p

(
〈e| d̂ · εp |g〉 〈g| d̂ · εp |e′′〉 ρ(S)e′′e′+

〈e′′| d̂ · εp |g〉 〈g| d̂ · εp |e′〉 ρ(S)e′e′′

)
, (6.13)

rgg′ =
ω3
0

3πε0�c3

∑
e,e′,p

〈g| d̂ · εp |e〉 〈e′| d̂ · εp |g′〉 ρ(S)ee′ . (6.14)

In writing the relaxation terms in this form it is assumed that the energy spacing

between pairs of excited states or ground states is much much smaller than the energy

difference between ground and excited states: ωee′ � ωeg and ωgg′ � ωeg. We have

approximated the various optical frequencies ωeg by their average ω0. The error in

assuming this is only one part in 1000.
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Sometimes, it is convenient to rewrite the pre-factor in equations (6.12)-(6.14) in

terms of the excited state decay rate Γ using the following formula

Γ =
ω3
0

3πε0�c3

∑
g,p

| 〈e| d̂ · εp |g〉 |2 . (6.15)

where the sum in p is over the three polarisations, and in g is over all electronic

ground states. The quantity
∑

g,p | 〈e| d̂ · εp |g〉 |2 = μ2 is square of the transition

dipole moment μ.

To reassure ourselves that these terms are correct, we can take a step back from

the complicated YbF system and check that the terms they produce reduce to the

expected form in a pair of simpler cases.

6.4.1 Relaxation terms in a two level system

Firstly, consider a two level system with only one ground and one excited state.

Then, using Eq. (6.15) the four elements of rij are the familiar terms [71]:

reg = −Γ

2
ρ(S)eg , (6.16)

rge = −Γ

2
ρ(S)ge , (6.17)

ree = −Γρ(S)ee , (6.18)

rgg = Γρ(S)ee . (6.19)

6.4.2 Relaxation terms in a J ′ = 1 → J = 1 system

Now let us consider the slightly more complicated case with angular momentum

J ′ = 1 in the excited state and J = 1 in the ground state, each having three

projections mJ = +1, 0, 1. There are 6 states in total and 36 relaxation matrix

elements. The requirement that the density matrix remain Hermitian when it evolves

under the relaxation matrix means that the matrix must also be Hermitian (rij =
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r∗ji), which limits the unique entries to 21. We use the notation ρ
(S)

e/gmF e′/g′ m′
F

=

〈e/g,mF | ρ(S) |e/g,mF 〉 and re/gmF e′/g′ m′
F

= 〈e/g,mF | r |e/g,mF 〉, so for instance

the term in the relaxation matrix for the coherence between the excited mF = −1

level and the ground mF = 0 level is written as re−1g0. Where the result applies

for all excited or ground mF elements we drop the mF subscripts and return to the

previous subscript notation, so reg is the relaxation rate of the coherence between

any excited state e and any ground state g.

Using the Wigner-Eckart theorem we can work out the matrix elements to be

substituted into equations (6.12)-(6.14)

〈e,mF | d̂ · εp |g,m′
F 〉 = μ(−1)1−m′

F

⎛
⎜⎜⎝

1 1 1

−m′
F p mF

⎞
⎟⎟⎠

√
3 . (6.20)

Pleasingly, the results of the simpler two level system carry over into this more

complicated 6 level system. The excited-ground state coherence decay terms reg,

and on diagonal excited-excited decay terms ree decay in exactly the same way as

the two level case, obeying equations (6.16)–(6.18). The off-diagonal excited-excited

state coherences also decay at a rate of Γ

ree′ = −Γρ
(S)
ee′ . (6.21)

Also, we find that the ground state populations grow as follows:

rg−1g−1 =
Γ

2

(
ρ
(S)
e−1e−1 + ρ

(S)
e0e0

)
, (6.22)

rg0g0 =
Γ

2

(
ρ
(S)
e−1e−1 + ρ

(S)
e1e1

)
, (6.23)

rg1g1 =
Γ

2

(
ρ
(S)
e0e0 + ρ

(S)
e1e1

)
. (6.24)
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Each excited state population, which decays at a rate Γ, equally decays into two

ground states, filling each of these at a rate Γ/2.

The final terms that need to be considered are those which modify the ground

state coherences, the rgg′ terms. It might seem surprising that spontaneous emission

can change the value of these terms, but consider the following example: suppose we

start with a single atom in an excited pure state |ψ〉 = 1√
2
(|e, 1〉+ |e, 0〉)⊗|0 photons〉

of the atomic system, and the ground state of the vacuum, the states shown with

slightly faded blue circles in Fig. 6.1.

s+ photon
emitted

Fig. 6.1: An excited state superposition of an F = 1 upper level decaying into a ground
state superposition via the emission of a single σ+ photon

We know that if we leave this state for long enough, it must decay into the

ground state by emitting a photon with an energy around the excited-ground state

separation, so roughly speaking the state vector must evolve into

|ψ〉 → 1
2

(|g, 1〉 ⊗ |π photon〉+ |g, 0〉 ⊗ ∣∣σ+photon
〉)

(6.25)

+ 1
2

(|g, 1〉 ⊗ ∣∣σ−photon
〉
+ |g,−1〉 ⊗ ∣∣σ+photon

〉)
.

If we now transform the right hand side of expression (6.25) into the density matrix

picture, then take the partial trace over the photonic part of the Hilbert space to

recover the density matrix for the atomic part of the system, we find that not only

have the ground state populations increased so that the ρ
(S)
g−1g−1 = ρ

(S)
g0g0 = 0.25,

ρ
(S)
g1g1 = 0.5, but so have the ground state coherences ρ

(S)
g0g−1 = ρ

(S)
g−1g0 = 0.25. Essen-
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tially, the fact that either part of the upper state superposition can decay by emitting

a σ+ photon means that after a decay the state must retain part of its pure character,

represented by the amplitude to be in the ground state superposition |g, 0〉+ |g,−1〉.
An illustration of such a decay is indicated in Fig. 6.1.

Returning to equations (6.12)-(6.14), the growth of the ground state coherences

from spontaneous decays from the excited states are given by

rg−1g0 =
Γ

2
ρ
(S)
e0e1 , (6.26)

rg−1g1 = −Γ

2
ρ
(S)
e−1e1 , (6.27)

rg0g1 =
Γ

2
ρ
(S)
e−1e01 . (6.28)

This form of the relaxation elements can also be found in Ref. [78] and Ref. [79],

Appendix A.

We end this subsection on the J ′ = 1 → J = 1 system with a brief note about

transforming rij into the interaction picture. We need to use the transformed term

e−iωijtrij at the end of Eq. (6.10). Conveniently, for any system in which the excited

and ground states are just the mF projections for a single J level, all of the expo-

nentials cancel and we recover a set of relaxation terms in the interaction picture

which are identical in form to the Schrödinger picture terms, but with every matrix

element ρ
(S)
ij replaced by its interaction picture equivalent ρij. As we shall see, for

more complicated systems like YbF where there the upper and lower electronic lev-

els are manifolds with several values of J this simple interchangeability between the

Schrödinger and Interaction picture matrix elements no longer holds.

6.4.3 Relaxation terms in the YbF System

Having gone some way in reassuring ourselves that the relaxation terms for decays

between collections of ground and excited states reproduce the familiar terms in
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two simple cases, we now proceed to evaluate them for the more complicated YbF

system. In doing so, we can reuse much of the calculation performed in Appendix B

to find the matrix elements M f
ij in the case where f is an electric field. What

we want is not rij but r̃ij = e−iωijtrij where once again each Schrödinger picture

density matrix element in rij has been transformed into the interaction picture using

the transformation ρ
(S)
ij = eiωijtρij. So, if we substitute the matrix elements from

Appendix B into equations (6.12) and (6.13) we get the simple expressions

r̃eg = −Γ

2
ρeg , (6.29)

r̃ee′ = −Γρee′ , (6.30)

whereas Eq. (6.14) becomes

r̃gg′ =
Γ

|μA-X|2
∑
e,e′,p

〈g| d̂ · εp |e〉 〈e′| d̂ · εp |g′〉 ρee′ei(ωee′−ωgg′ )t . (6.31)

Now Eq. (6.31) indicates that every electronic ground state coherence has the

possibility of increasing as a result of excited state decays. This includes not only

coherences between the different mF components of the same level, but also the co-

herences between states in different hyperfine and/or rotational levels. The growth

of coherences between states of significantly different energy should seem surpris-

ing given the physical mechanism for the coherence growth terms discussed in sec-

tion 6.4.2. Conveniently, the exponential term at the end of Eq. (6.31) comes to

our rescue. The basic idea is that for a large number of terms, this exponential

will oscillate very quickly compared to any other terms in Eq. (6.11). Recall that

after applying the rotating wave approximation to get Eq. (6.11), the fastest oscil-

lating exponentials were any detuning terms, and those oscillated at a frequency of

order 5× Γ. We therefore retain only those terms in Eq. (6.31) which oscillate at a
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frequency less than 5× Γ. This is a version of the secular approximation [78].

The terms retained in Eq. (6.31) are as follows: starting with the sum over pairs

of excited states e and e′, this is now restricted to pairs of states which belong to the

same parity component of the Ω-doublet. Now turning to the pairs of ground states

g and g′, these must be in the same rotational and vibrational state. Also, terms

affecting coherences between any of the mF states in the lower F level and the upper

F level(s) in each rotational state are dropped.

Making these restrictions, we can use Eqs. (6.31) and (6.11) together with the re-

sults of appendix B to predict the pumping and scattering rates for our YbF system.

To solve the equations, we use Mathematica 9.0, a computer package which supports

the symbolic manipulation of algebraic expressions and the numerical solution of

arrays of coupled complex differential equations. Each solution of the coupled differ-

ential equation takes between 1–10 seconds to complete, depending on the number

of driving fields. In the following chapter we discuss some of these solutions.



7. SOLUTIONS OF THE OPTICAL BLOCH EQUATIONS FOR

THE IMPROVED PUMPING AND DETECTION SCHEMES

7.1 Overview

In this chapter we use the optical Bloch equations introduced in Chapter 6 to nu-

merically evaluate the new cycling detection and enhanced pumping schemes shown

in Fig. 7.1.

In both the pumping and detection, we want all the population that we address in

the ground electronic states to be excited up to the A 2Π1/2 state and then undergo

spontaneous decay, either to pump the molecules into |0, 0〉 in the new pumping

scheme, or to scatter photons repeatedly in the new detection scheme. In section 7.2

of this chapter, we explore the ways that this can go wrong as a result of population

trapped in X 2Σ+ . These trapped states are called dark states of the system. Looking

at a pair of simple example systems, we show how two classes of dark states can be

destabilised by modulating the polarisation of the driving fields, and by detuning the

driving fields from resonance. We compare the behaviour when this destabilisation is

optimised with the prediction of the simple rate equations introduced in section 5.4.1,

to see how closely the rate equations are able to model the full quantum mechanical

treatment.

Having examined these simple systems, we move on to the full simulation of the

new schemes. In section 7.3 we examine how to optimise the detection scheme with

respect to the power, detuning and modulation rate of the driving light. We then

do the same in section 7.4 for the new pumping scheme. These calculations allow us
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to estimate with some confidence the enhancement in signal that the new pumping

and detection schemes should provide.
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Fig. 7.1: Left: The new pumping scheme. Right: The new probing scheme. Decays to
levels addressed by laser beams are omitted.

Our approach expands on work by Berkeland and Boshier [80] and Lindvall et.

al [81] in the destabilisation of dark states in atomic systems and J. Barry [82] in

molecular systems in a number of ways. Firstly, we simulate a fully coupled molecular

system which has many more levels (22 for the probe scheme and 41 for the pump

scheme) than have previously been considered. In the work of J. Barry, only a

simplified system is considered. Also, by comparing our results with the rate models

throughout the discussion, we ascertain to what extent these much simpler models
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can be applied in our case. Finally, in our simulations of the pumping scheme, we

examine the interplay of radio-frequency, microwave and laser fields in a way which

has not been considered before.

7.2 Dark States

It might seem that a molecule in one of the X-states addressed by laser beams (a)–(e)

must surely be excited up to A 2Π1/2 and undergo spontaneous emission. However,

unless we are careful, there are dark states within these levels which stubbornly resist

being driven up to A 2Π1/2 .

It is helpful to make a somewhat artificial distinction between two types of dark

states: the first, discussed in the next subsection, are angular momentum dark states

that arise from trying to drive the (N = 2, F = 2±) levels into the F ′ = 1 excited

state. The second type are dark states that occur when two or more states are

driven to a third state with equally detuned radiation. Since this phenomenon is

called Coherent Population Trapping [83], we refer to these dark states as CPT dark

states. The reason we make this distinction is because two different techniques must

be used to destabilise each type of dark state. To understand how dark states of

both these types arise and how they can be removed, we leave the YbF system for

now and consider in the following two sections some simpler systems.

7.2.1 Angular momentum dark states and their destabilisation

When a level with total angular momentum F is driven up to an excited level with

total angular momentum F ′ = F − 1, there are always states in the ground level

which are not excited [80]. The specific example relevant to us is an F = 2 level

being driven up to an F ′ = 1 level, shown in Fig. 7.2. This is the situation we

encounter in both the pumping and detection schemes when we try to drive the

(N = 2, F = 2±) levels into the F ′ = 1 excited state. When the light is purely
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Fig. 7.2: Pumping a F = 2 → F ′ = 1 transition in zero magnetic field with linear polari-
sation causes all the population to build up in the mF = ±2 ground states

linearly polarised, it is clear that the mF = ±2 components will be left un-pumped,

as shown in Fig. 7.2. If the light is σ+ polarised the two states will be mF = 1, 2

and if the light is σ− polarised they will be mF = −1,−2. If the light is an arbitrary

mixture of linear and σ+, σ− then there are still two dark states. These are now

superpositions of the ground states such that the transition dipole moment is still

orthogonal to the polarisation of the light.

If we apply the lasers shown in either scheme of Fig. 7.1, but do nothing to address

these angular momentum dark states, then molecules leak into the dark states at a

rate comparable with the Rabi frequency. This compromises the pumping scheme,

and it reduces the number of fluorescence photons in the new detection scheme since

it dramatically increases the probability of leaking out of the cycling scheme every

time the excited state is visited.

There are several ways to solve this problem. The simplest way is to apply a static

magnetic field, making the spin precess. This phase shifts the Zeeman components

relative to each other, causing the dark states to be remixed into the pumping cycle

at a rate determined by the Larmor frequency. The difficulty in our case is that

the magnetic field would need to be fairly large, because the (N = 2, F = 2−) level

has a gF factor of only 0.023 (see Table B.3). The Larmor precession frequency will

need to be comparable to the laser Rabi rates - around 1MHz. To achieve this Rabi
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rate, we would need a field of 3 mT. This would be required in both the probe and

pump region, and would completely dwarf the fields we currently apply (∼ 10 nT)

in the main eEDM interaction region. It would also make it difficult to drive clean

microwave π-pulses in the two microwave transmission-line regions.

Instead, we opt for the next simplest solution: a modulation of the laser po-

larisation. This is achieved by passing the laser beam through an optically active

lithium niobate (LiNbO3) crystal, where the refractive index for one polarisation is

electrically modulated (Pockels effect).

Alternating between σ+ light, which pumps towards more positivemF values, and

σ− which pumps back towards negativemF , will stop the population from building up

in the angular momentum dark states. Similarly, we may switch between vertically

and horizontally polarised light, when the occupancy of the lower levels will be

oscillate between states of low |mF | and high |mF |.

Simple system being driven with polarisation modulated light

Our practical problem is to find out for a given laser electric field E what choice of

parameters optimises the pumping rate out of the F = 2 level. Eventually we will

answer this question for the full system of levels used in the pumping and detection,

but for now we would like to solve the optical Bloch equations for a simpler system

to get a feel for the physics. We follow the approach of Berkeland and Boshier [80]

and solve the optical Bloch equations for a system with a lower F = 2 level and

an upper F ′ = 1 level. The 8 sublevels are driven by an electric field of amplitude

E, which propagates along z and has x and y components (in the rotating wave

approximation) E exp[iΦ0g(t, τ)]ex exp[iωf t]/
√
2 and E exp[iφ]ey exp[iωf t]/

√
2. The

phase shift in the x component is the differential shift imposed by the electro-optic

modulator, which varies with period τ between 0 and Φ0. The time-dependence

is given by g(t, τ), which oscillates between 0 and 1. The phase shift φ in the y

component allows us to change the ellipticity of the input field. The equations of



7. Solutions of the optical Bloch equations 157

motion for this system are almost identical to those derived in Chapter 6

ρ̇ij =
∑
k

iMikρkje
−iΔikt − ρike

−iΔkjtiMkj + rij , (7.1)

where ρij are the interaction picture elements of the density matrix, Δik is the detun-

ing of the laser field from the transition frequency, and since we have only one field

we have dropped the f superscripts throughout. The matrix elements Mik and the

relaxation matrix rij can both be evaluated using equations (B.1) and (6.12)–(6.14)

together with the following expression for the dimensionless matrix elements found

in those equations

〈1,m′| d̂ · εp |2,m〉 = |μ|(−1)1−m′√
3

⎛
⎜⎜⎝

1 1 2

−m′ p m

⎞
⎟⎟⎠ . (7.2)

Numerically solving Eq. (7.1) we find, without modulation, that the steady state has

no population in F ′ = 1 because the molecules have pumped into a dark state. By

contrast, with modulation the F ′ = 1 population reaches a quasi-steady oscillating

state which allows the molecule to continue scattering. An example of this is shown

in Fig. 7.3.

In Fig. 7.3, we have taken Φ0g(t, τ) to be π sin2(πt/τ), we have set τ equal to the

lifetime of the excited states, 1/Γ, and the light field has intensity 2Isat. After an

initial transient, caused by switching the light on suddenly, the system relaxes into

its quasi-steady state with as relaxation time of order ten upper state lifetimes. This

means it takes a few scatters to forget the initial condition.

In order to optimise the excited state population, and hence the scattering rate,

I have repeated this calculation for a range of modulation depths Φ0, and for a

range of periods τ , with modulation functions g(t, τ) that are square, sinusoidal and
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Fig. 7.3: The evolution of the ground and excited state populations calculated using
Eq. (7.1). Parameters are φ = 0, Φ0 = π, g(t, τ) = sin2(πtτ), τ = 1/Γ and
I = 2Isat, and the population is initially evenly distributed over all levels. We see
that the excited state population is sustained by modulating the polarisation.

triangular. We also use a fourth function Φ0g(t, τ) = Φ0t/τ which can be pictured

as a constant frequency difference between the two components of Φ0/(2πτ). The

results are shown in Fig. 7.4, which plots the mean excited state populations after

a time equal to several hundred times the inverse natural linewidth. Again we take

I = 2Isat and φ = 0.

Starting with Fig. 7.4 (a) which shows the results for a square modulation, we

see that the excited state population is periodic in the modulation depth parameter

Φ0 with period 2π. This is as expected, since jumping between 0 and Φ0 has to be

the same as jumping between 0 and Φ0 + 2π. The optimal modulation depth is π,

indicating that switching between + and −45° light achieves the highest scattering

rate. Looking now at the dependence on the modulation rate for δ = 2π/τ , we see

that the excited state population rises steeply to a maximum at δ = 0.27× Γ before

slowly tailing off. The behaviour at low rates is straightforward: the molecules all

pump into a dark state where they remain until the polarisation flips and hence the

mean scattering rate is roughly proportional to the modulation rate δ. A natural

way to characterise the pumping rate is Ω̄ = Γ
√

I/(2Isat). In the case of a 2-level
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the three graphs Ω = Γ and φ = 0. The red dot indicates the choice of parameters
which maximises the excited state population for this choice of Ω and φ = 0

system Ω̄ is just the Rabi frequency, which determines how quickly the molecule is

excited. In Fig. 7.4 I = 2Isat hence Ω̄ = Γ. With many levels, the oscillator strength

is shared across several transitions, and several excitations may be required to find a

dark state, so the optical pumping rate is correspondingly several times slower than

Γ. When the polarisation flips rapidly, the time available for excitation becomes

short compared with the inverse of Ω̄. In this regime the depletion of the ground

state (or growth in population of the excited state) is quadratic in the interaction

time, and the polarisation switching becomes less and less effective with increasing

frequency. To maximise the probability of population transfer taking place, therefore,

it is important that the time spent at each polarisation state is sufficiently long so

that the population transfer can leave the quadratic region.

Now we consider graph (d). Instead of jumping between two fixed phases as

in graph (a), the phase in this graph is constantly modulated at a rate Φ0/τ or

Φ0δ/(2π). A phase modulation like this could be realised by applying a constant

frequency difference equal to Φ0δ/(2π) between the two components by using an

acousto-optic modulator. Given the symmetry in this phase modulation function

between Φ0 and δ, this graph must be symmetrical if reflected in the line Φ0 = δ and

the contours of equal excited state population must be of the form Φ0 = 2πa/δ.



7. Solutions of the optical Bloch equations 160

Graphs (b) and (c) correspond to an intermediate case between the extremes of

graphs (a) and (d). Turning first to graph (b), which corresponds to a sinusoidal

modulation: this exhibits a residue of the periodicity in Φ0 seen in graph (a), but

also shows some symmetry between Φ0 and δ seen in graph (d). This is because the

sinusoidal modulation has some periods where the polarisation direction is modulated

at a constant rate (like graph (d)), and other regions around the turning points of

the modulation function g which are more like the static polarisation regions seen in

graph (a). This last graph shows similar behaviour to that seen by Berkeland and

Boshier [80, Fig. 5] for a sinusoidal polarisation modulation in an F = 1 → F ′ = 0

system. For the triangular wave modulation shown in graph (c), the phase is always

being modulated back and forth at a rate 2Φ0δ/2π, i.e 2Φ0/τ . We notice that

this graph has largely lost its periodicity in the modulation strength Φ0, and the

region of high excited state population has become increasingly boomerang shaped,

corresponding more closely to the situation encountered in graph (d).

The corresponding graphs for circularly polarised input light (φ = π/2) are almost

identical with only slight variations in the location of the absolute maxima for the

various modulation functions.

Dependence of the optimum modulation rate and strength on the Rabi rate

Fixing φ = 0 and varying Ω̄, we now investigate the changes in the values of Φ0 and

δ which maximise the excited state population. At each value of Ω̄, the excited state

population was maximised numerically with respect to Φ0 and δ. The top row of

Fig. 7.5 shows the variation with Rabi frequency of the optimised modulation rate.

We see that for Ω̄ � Γ, the optimum values of δ converge on a fixed fraction of Ω̄,

which for this value of φ is ≈ 0.36 for the square modulation, ≈ 1/3 for the sinusoidal

modulation and ≈ 0.17 for the triangular modulation. As Ω̄ becomes comparable

to or smaller than Γ, the optimum values diverge slightly from the large Ω̄ limiting

fractions, tending to higher fractions of Ω̄. The modulation strength Φ0 (bottom
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Fig. 7.5: The values of the modulation rate δ and modulation strength B which maximize
the excited state population for a given choice of the Rabi frequency Ω̄. The effect
of increasing Ω̄ relative to Γ on the excited state population is shown in Fig. 7.7.

row of Fig. 7.5) that maximises the excited state population is constant at π for

the square modulation, but decreases for the sinusoidal and triangular waves as Ω̄ is

increased.

Effect of detuning on the optimum modulation rate

There is one more important consideration when it comes to angular momentum

dark states, namely how the optimum modulation rate is affected by detunings of

the laser beams. To understand this problem, for a square modulation we fix the

Ω̄ = Γ, Φ0 = π, φ = 0 and vary the laser detuning. The results are shown in Fig. 7.6.

As expected, positively or negatively detuning the driving lasers reduces the ex-

cited state population. However, notice that it also changes the optimum polarisation

modulation rate, increasing it in proportion to the size of the applied detuning. The

red line on the graph indicates the optimum polarisation modulation rate for a given

detuning, its gradient for large detunings is 1. As the laser is detuned, it is advanta-

geous to increase the modulation rate by exactly the same amount, since this acts to
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Fig. 7.6: The effect on the excited state population of simultaneously varying the detuning
of the driving laser field Δ and the polarisation modulation rate δ. The modula-
tion function is the square wave Φ0 = 1 and Ω̄ = Γ. The red line shows the value
of δ which maximises the excited state population for a given value of the laser
detuning.

shift the frequency of the laser out to ±δ thus partially decreasing the effect of the

modulation. This is useful to know since we may try to address several transitions

off resonantly with the same laser, some of which may be F = 2 levels.

Comparison with rate equations

We end this section on angular momentum dark states by seeing how the scattering

rate at the optimum values of δ and Φ0 depend on the Rabi rate Ω̄ for the three

modulation functions, and comparing this to the simple rate equation model derived

in section 5.4.1 on page 128. Of course, the comparison with the rate equation

model is not really fair, because it cannot capture the fact that the driving fields

are constantly addressing different levels, but we just ignore this difficulty and treat

the laser beams as always being linearly polarised, and assume that the effect of the

polarisation modulation is just to spread the population equally among the mF sub-

levels of the ground state and them′
F sub-levels of the excited state. This corresponds

to case 3) of Table 5.1, so that Eq. (5.14) for the total excited state population can
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be written as

Nene = 3
(
8 + 15Γ2/Ω̄2

)−1
. (7.3)

Comparing this rate equation model to the results found from solving the optical

Bloch equations for the optimum parameters (Fig. 7.7), we notice two things. Firstly,

if B and δ are optimised, all of modulation functions produce nearly identical scat-

tering rates, so we can choose whichever function is easiest to realise experimentally.

This will usually be a sinusoidal modulation. Secondly, for the optimised parameters

all of the functions only achieve between 80%–90% of the scattering rate we would

naively expect if we just considered the levels as being linked by classical driving

fields. Another way of putting this is that roughly speaking, the effect of dark states

in this system is to modify Eq. (7.3) by replacing Ω̄ → 0.69Ω̄, or to say that the

effective intensity driving the transitions is reduced by a factor of 0.692 � 1/2. Of

course, if the rates are not optimised, then the occupation of the excited state and

hence the overall scattering rate can be far lower.
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Fig. 7.7: The excited state population as a function of Ω̄ for the three types of modulation,
with Φ0 and δ set to their optimum values for each value of Ω̄. Also shown is the
predicted excited state population from a simple rate equation model.
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Summary of results

To summarise the practical conclusions from this section

1. Angular momentum dark states can be successfully destabilised by modulating

the polarisation of the driving light.

2. For the optimum choice of parameters, the total excited state population follows

the simple rate equation model (5.14) but with I replaced by I/2.

3. All three functions come to almost exactly the same maximum value for a given

Ω, so we should choose the easiest to implement in the lab. This is a sinusoidal

modulation.

4. The ideal modulation rate for a sinusoidal modulation is ≈ Ω̄/3, and the ideal

modulation depth is between 3π/2 and π (see Fig. 7.5).

5. If the laser is detuned by Δ, the polarisation modulation rate should be also

increased by Δ to optimise the scattering rate.

7.2.2 CPT dark states

We now move from discussing angular momentum dark states to a more general form

of dark state that exists when several (possibly non-degenerate) mF sub-levels are

coupled together using coherent radiation. The specific case we will focus on is one

where many ground electronic states are coupled up to the same excited state. This

is a situation which occurs in both the pumping and detection schemes. We find that

the lessons learnt above carry over into the more complex collection of inter-linked

states that can be found in the new pumping scheme, where a great many levels are

all linked together by coherent radiation.

To see that systems like these can have dark states, we start by considering a

simple lambda-system with two levels |1〉 and |2〉 coupled to a third state |e〉 with

laser fields resonant with the transition frequencies and with Rabi rates Ω1 and Ω2
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Fig. 7.8: A Lambda system

and detunings Δ1 and Δ2 respectively. The state |e〉 can decay spontaneously by

emitting a fluorescence photon into the states |1〉 and |2〉, with partial rates γ1 and

γ2, but the states |1〉 and |2〉 are stable and do not decay. This is shown in Fig. 7.8.

If Δ1 = Δ2 = 0, then there is a dark state of this system given by

|ψD(t)〉 = Ω2e
−iω1t |1〉 − Ω1e

−iω2t |2〉√
Ω2

1 + Ω2
2

. (7.4)

We can check this state is dark by substituting it into the the Schroedinger equation

for the system

i�
∂

∂t
|ψ(t)〉 = Ĥ |ψ(t)〉 , (7.5)

where in the rotating wave approximation, the Hamiltonian can be written as

Ĥ = � (ω1 |1〉 〈1|+ ω2 |2〉 〈2|+ ωe |e〉 〈e|)
+ 1

2

(
e−i(ω1+Δ1−ωe)tΩ1 |1〉 〈e|+ e−i(ω2+Δ2−ωe)tΩ2 |2〉 〈e|

)
+H.C. . (7.6)

The time evolution of this state never contains any amplitude to be excited to |e〉.
This means that any population that starts in this state will not be excited to the

upper level. Now suppose the system does not start in this dark state, then at some
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time it will be excited up to |e〉 by the lasers. Once in |e〉, the state will sometimes

spontaneously decay, falling into |1〉 with probability γ1/Γ or |2〉 with probability

γ2/Γ. This means that after each spontaneous decay, the probability to be found in

|ψD(t)〉 increases since 〈ψD(t)|1〉 �= 0 and 〈ψD(t)|2〉 �= 0. In other words, whatever

state the systems starts in, eventually it will decay into |ψD(t)〉. Systems with more

levels and more driving fields will experience CPT when two or more fields are equally

detuned from a common excited state to which they are driving transitions.

1

2

n

1

2

n

e

1
2

n

1
2

n

Fig. 7.9: A generalised lambda-system consisting of n stable ground states coupled to a
single excited state |e〉

Luckily for us, the solution to destabilising CPT dark states is remarkably simple:

just set Δ1 �= Δ2, and then there is no state of the form (7.4) for the system to pump

into. This then leads naturally to two questions:

1. What detunings and Rabi rates best optimise the excited state population?

2. How does the excited state population for the optimum parameters compare
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with what we might expect from a simple rate equation model?

Once again, we turn to the trusty OBEs to answer these questions. We start by

considering a simple system of n lower energy levels all coupled to a single upper

level |e〉, illustrated in Fig. 7.9. Since each level is at most linked with one other by a

driving field, we can again drop the f superscript and use the results from Chapter 6

to write the OBEs as

ρ̇ij =
∑
k

iMikρkje
−iΔikt − ρike

−iΔkjtiMkj + rij , (7.7)

where

Mij =
1
2
δieΩj +

1
2
δjeΩi − δieδjeΩe , (7.8)

rij = (1− δie)δijγiρee − 1
2
δieΓρej − 1

2
δjeΓρie , (7.9)

Δij = Δjδie −Δiδje , (7.10)

Γ =

Ng∑
i

γi . (7.11)

The indices i, j and k run from 1...Ng, e where 1...Ng are the lower levels and e is

the excited state, as does the sum in Eq. (7.7). δij is the Kronecker delta symbol.

In writing the relaxation terms, we have assumed that the energy spacing Ei −
Ej for any pair of levels is large compared to the quantity �Δij. Recall also that

Ωi = Γ
√
γiIi/(Γ2Isat), where Ii is the intensity driving the transition between the

excited state and the ith ground state.

Since each level couples to at most one other level, we can rewrite Eq. (7.7) to

remove the time dependence of the right hand side via the substitution ρij = ρ̃ije
−iΔij .

Now we can solve for the steady state by setting the left hand side derivatives to
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zero, leading to

0 = iΔij ρ̃ij +
∑
k

iMikρ̃kj − iρ̃ikMkj + r̃ij , (7.12)

r̃ij = (1− δie)δijγiρ̃ee − 1
2
δieΓρ̃ej − 1

2
δjeΓρ̃ie . (7.13)

These equations can be solved exactly so as to determine the excited state population

ρ̃ee, which once again is proportional to the number of florescences photons per

second, given by Γρ̃ee.

Solutions when all the partial decay rates are equal

Let us start with the simple case of two ground states, Ng = 2, shown in Fig. 7.8, and

let us take γ1 = γ2 and Ω1 = Ω2. Our goal is to detune each laser from resonance so

as to achieve the maximum scattering rate. Because of the symmetry of this problem

with respect to the labelling of the states 1 and 2, we might reasonably expect the

excited state population to maximise when the detunings Δ1 and Δ2 are equal in

magnitude but opposite in sign: Δ1 = −Δ2. The excited state population as a

function of detuning and Rabi rate subject to this constraint is shown in Fig. 7.10.

As expected, when Δ1 = Δ2 = 0, the steady state excited state population drops

to zero, as the system pumps into the dark state (|1〉−|2〉)/√2 discussed at the start

of this section. Also, we can see from this graph that the detuning which optimises

the excited state population is always a fixed fraction of Ω1, given by Δopt
1 = ±Ω/2.

This optimum detuning is illustrated by the red line in this figure.

How does the scattering rate in this optimised case compare with the scattering

rates we hoped to achieve before we knew about the existence of CPT dark states? To

answer this, we once again compare the excited state population with that predicted

by the simple picture in section 5.4.1. We are considering case 1) of Table 5.1 with
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Fig. 7.10: Top: Excited state population for various values of the detuning Δ1 = −Δ2

and Rabi rate Ω1 = Ω2 for a three level lambda system. Bottom: Excited state
population setting Δ1 = Ω1/2, identical to the rate equation model

Ne = 1, NL = 0, for which Eq. (5.14) becomes

ne =
1

(Ng + 1) + Γ2/Ω2
1

. (7.14)

Remarkably, this is also the excited state population that we get by solving the OBEs

for the optimum detuning Δopt
1 = ±Ω/2. For Ng = 2 the exited state population

exactly matches the curve at the bottom of Fig. 7.10. Detuning the driving fields to

remove the dark states leads us back to exactly the same scattering rate as we would

expect if we treated the problem as an entirely classical system of rate equations.

Now we consider what happens when we increase the number of ground states,

while keeping all the partial decay rates equal. Surprisingly, we find that if the

parameters are optimised to give the maximum scattering rate, Eq. (7.14) continues

to give the correct excited state populations, at least up to Ng = 7 where we stopped

checking. These optimum parameters are as follows. For a fixed total intensity of

light, equal intensities should drive each transition, which results in equal Rabi rates.

The frequencies should be chosen so that pairs of transitions have opposite detunings
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±Δ1, ±Δ2, etc and if there is an odd number of transitions, the unpaired one has

zero detuning. These detunings are listed in Table 7.1 for systems having Ng up to

5.

Number of ground states, Ng Optimum detunings

2 Δopt
1 = Ω

2

3 Δopt
1 = Ω

√
3

2

4 Δopt
1 =

Ω
√

3+
√
6

2
, Δopt

2 =
Ω
√

3−√
6

2

5 Δopt
1 =

Ω
√

5+
√
10

2
, Δopt

2 =
Ω
√

5−√
10

2

Tab. 7.1: The detunings that optimise the excited state population in a system of n lower
levels coupled to a single upper level.

These solutions are not unique. Any way of pairing the transitions will do, since

there is nothing to distinguish one ground state from another. Aside from this trivial

relabelling, it is also possible that there there may be other ways of arranging the

detunings and intensities to match or exceed the excited state population given by

Eq. (7.14), but I have not been able to find them.

In this symmetrical case with one excited state, we conclude that the scattering

rate given by the simple rate equations can still be achieved, provided each transition

is addressed with equal intensity radiation and the lasers are appropriately detuned

from each transition.

Solutions when the partial decay differ

Now we consider what happens if the partial decay rates are not equal. The situation

is more complex, and in some ways even more surprising. We start once again with

the three level lambda system shown in Fig. 7.8, and for a range of values of the

partial decay rate γ1 we numerically vary Δ1, Δ2, I1 and I2 to maximise the excited
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state population, subject to the constraint that the total intensity Itot = I1 + I2 is

fixed. We then repeat this process for a range of fixed total intensities and track

how the parameters Δ1, Δ2, I1 and I2 that maximise excited state population vary.

The results are shown in Fig. 7.11. In the previous section, we found that the

optimum detunings were fixed fractions of the Rabi rate, so it is helpful to define a

characteristic rate for a given total intensity Ω̄Av = Γ
√
Itot/(2NgIsat).
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Fig. 7.11: (a) The fraction of the total intensity I1/Itot and (b) the decay rate Δ1/Ω̄Av

that maximise the excited state population ρee as a function of Ω̄Av and γ1. The
red dashed line in (b) shows the location of the slice shown in Fig. 7.12.

To understand Fig. 7.11, we begin with the left hand side of (a), where Ω̄Av is

small compared to Γ, or equivalently where Itot/2 is small compared with 2Isat. In
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this region, the best choice is still to set both intensities to be equal, irrespective of

the value of γ1. Staying with Fig. 7.11 (a), we now move to the right hand side of the

graph, where Ω̄Av > Γ. In this region, it is no longer best to set all the intensities to

be equal. Instead, if γ1 < γ2 (i.e. if γ1/Γ < 1/2) it is better to use a higher fraction of

the total light intensity on the |1〉 → |e〉 transition. The opposite is true if γ1 > γ2.

This is quite surprising: if we have a lambda system driven far above saturation

(Itot � Isat) and where the decay rate to one level is very low, the best strategy is to

put a higher fraction of the total intensity into driving the weakly allowed transition.

D2

D1

0.0 0.2 0.4 0.6 0.8 1.0

-0.4

-0.2

0.0

0.2

0.4

g1G

D
iW Av

Fig. 7.12: The normalised detunings Δ1/Ω̄Av and Δ2/Ω̄Av that maximise the excited state
population, as a function of the partial decay rate to state |1〉, γ1. Ω̄1 = Ω̄2 =
Γ/

√
2.

Now consider Fig. 7.11 (b), which shows the optimum value of the detuning Δ1 as

a function of Ω̄Av and γ1. First of all, consider the behaviour of Δ1 as γ1 is varied, for

fixed Ω̄Av. When γ1/Γ approaches 1 (or zero), it is favourable to reduce (or increase)

the detuning of the laser driving the |1〉 → |e〉 transition. A slice through graph (b)

at Ω̄Av = 0.4Γ, indicated by the red dashed line, is shown in Fig. 7.12, which also

includes the corresponding value of Δ2. Now we consider how the optimum value

of Δ1 changes as Ω̄Av is increased. In the region where Ω̄Av < Γ, the optimum is

always a fixed fraction of Ω̄Av. This can be seen from the fact that the contours of

Fig. 7.11 (b) are parallel to the x axis in the range 0 < Ω̄Av/Γ � 1. As we move
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to the right hand side of the graph where Ω̄Av > Γ, the contours at large and small

values of γ1 begin to curve. This indicates that the optimum detuning no longer

scales linearly with Ω̄Av

Having found the parameters that optimise the scattering rate, we move on to

investigate what the excited state population is for these parameters. The most

surprising feature of having unequal partial decay rates is that the excited state

population can exceed the maximum available with γ1 = γ2. In other words, it is

possible to achieve an excited state population that exceeds the steady-state solution

(7.14) of the rate equation. This is shown in Fig. 7.13 (a), which plots the ratio of

the excited state populations given by the OBEs and by the rate model, for the case

where Itot = 4Isat. In both models, the detunings have been adjusted to maximise

the excited state population. When γ1 �= γ2, OBEs give slightly more population in

the excited state than the rate model. This occurs because as γ1/Γ → 1 or 0, the

population is no longer equally distributed between the ground states, but instead

is concentrated in the state that is favoured by the decay from |e〉. This means

that the system starts to behave more like a two level system and hence the excited

state population increases. By contrast, the rate model gives equal ground state

populations when constrained to maximise the scattering rate, even when the partial

decay rates are not equal, as shown in the appendix of Ref. [21].

This unexpected enhancement of the scattering rate does not seem to be limited

to the Ng = 2, case, as 7.13 (b) illustrates. This graph shows the ratio between the

excited state population found by solving the OBEs, and that which is found from

the simple rate model as a function of the two partial decay rates γ1/Γ and γ2/Γ for

the case Ng = 3. The Rabi rates are equal to each other and to Γ, and the detunings

have been adjusted to maximise the excited state population. The minimum possible

excited state population occurs when γ1 = γ2 = γ3, right at the centre of the graph.

As one decay becomes more probable than the others (moving towards the in the

corners of the graph) the excited-state population from the density matrix model
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Fig. 7.13: Maximum steady excited population ρee from solving the OBEs, divided by ne

from the rate equation model (Eq. (7.14)), plotted as a function of the partial
decay rate(s). (a) Three level lambda system (Ng = 2) where Ω1 = Ω2 = Γ, (b)
Four level lambda system (Ng = 3), Ω1 = Ω2 = Ω3 = Γ.

exceeds the excited state population ne given by the rate model.

After this discussion, we tentatively conclude that CPT dark states should not

stand in the way of achieving the scattering rates predicted by the simple rate equa-

tion model.

7.3 Simulations of the new detection scheme

We are now finally in a position to begin simulating the full YbF system, with

a reasonable degree of confidence that the simple predictions of the rate equation

model should be achievable, at least roughly, as long as proper efforts are made to

destabilise the dark states. We begin with the new detection scheme, since this is

simpler than the new pumping scheme and what we learn about the powers and

detunings of the detection lasers can then be applied to the pumping lasers.
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7.3.1 Dark states of the new detection scheme

The detection scheme we ultimately want to simulate is shown in the right hand

side of Fig. 7.1. To check that our discussion of dark states in section 7.2 is valid

for this more complex YbF system, we will start by making all the mistakes that

we know should lead to dark states: we set the polarisation to be linear along the

quantisation axis z, so allowing the population to build up in the mF = ±2 states

of N = 2, and we also set lasers (a), (c) and (e) to be resonant with their respective

transitions, allowing the possibility of CPT dark states among the ground states.

We also detune the lasers driving transitions (b) and (d) an equal 1.5 MHz from the

F ′ = 0 and F ′ = 1 levels.
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Fig. 7.14: Evolution of the populations of the new detection scheme shown on the right
hand side of Fig. 7.1. Notice that the excited state populations drop to zero in
the steady state, and only ∼ 10% of the population is pumped to X 2Σ+ (v > 0).

We set the intensity of each laser beam to be equal to the saturation intensity, and

solve the OBEs for this system (Eq. (6.11)) with all the population starting in the

|0, 0〉 state. The evolution of the populations over time is shown in Fig. 7.14. After

about 3 μs all the population that started in the absolute ground state has been
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redistributed among the levels in N = 0 and N = 2, with about 10% being optically

pumped into X 2Σ+ (v > 0). This happens after each molecule has scattered 1.6

photons on average. The system then goes dark, the excited state populations drop

to zero, and the populations enter a steady state. The system is now in a mixture of

various angular momentum and CPT dark states. We can confirm this visually by

looking at a matrix plot of the density matrix elements in the steady state, Fig. 7.15.

Fig. 7.15: Matrix plot of the steady state solution of the density matrix for the simulation
shown in Fig. 7.14. Each entry in the grid represents the absolute value of the
density matrix element |ρij | = |〈i| ρ̂ |j〉|, where the quantum numbers for 〈i| are
shown along the right hand side of the grid and |j〉 along the top of the grid.
The ground electronic, v = 0 states are labelled |X, N, F±,mF 〉. The ground
electronic, v > 0 states are collectively labelled |X, v > 0〉. The electronically
excited states are labelled |A,P ′, F ′,m′

F 〉.

The shading of each square in this 22 × 22 grid represents the absolute value

of the density matrix elements |ρij| = |〈i| ρ̂ |j〉| indicated by the x and y labels of

the grid. The diagonals indicate population, while we refer to the off-diagonals as

“coherences”. So, the square in the top left hand corner indicates the population in
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the absolute ground state, and the lighter shaded square in the top row, column 7 is

the value of the coherence between the absolute ground state and X 2Σ+ (v = 0, N =

2, F = 2−,mF = 0). Following the notation of Eq. (2.3), page 37 these two states

are |X,Λ = 0〉 |0〉 |0, 0, 0〉 and |X,Λ = 0〉 |0〉 |2, 2−, 0〉, or |X, 0, 0, 0〉 and |X, 2, 2−, 0〉
following the streamlined notation explained in the caption to the figure.

The matrix plot lets us visually confirm our diagnosis of the nature of the final

state of the system. First of all, the diagonal shading tells us what we already knew

from Fig. 7.14, there is some population left in the ground states. In Fig. 7.15, it is

broken down into all of the mF sub components, where as in Fig. 7.14 the sublevel

populations within each F level are summed together. We can also see that for some

states like |X, v > 0〉 and |X, 2, 2±,±2〉, the only entries in Fig. 7.15 are those for

populations; there are no coherences involving these states. Thus we can say that

with respect to our chosen quantisation basis the system has pumped into each of

of these states with some probability, given by the darkness of the diagonal entry.

For all the other ground electronic states states like |X, 0, 0, 0〉 the situation is more

complex. Taking this state as an example, it has coherences with |X, 2, 2±, 0〉, which
we might expect since these three states are all linked to a common excited state

|A,−1, 1, 0〉 and so can be pumped into a CPT dark state.

In our experiment, two separate lasers will drive the transitions from N = 0 and

N = 2 and these will not be phase locked to each other. Their phases will remain

correlated only for a limited time—essentially the inverse laser line width. As these

are in the range 10 kHz–1 MHz, the dark state will not be stable beyond about

100 μs. However, the pumping and detection will take place over some tens of μs,

so we should not rely on the inherent instability of the lasers to destabilise the dark

states. Instead, let us follow the lessons we learnt in section 7.2.2 and detune each

laser from the central frequency of the transition by an amount of order 1 MHz,

ensuring that no two detunings are equal. For the moment, we keep the polarisation

of all the lasers fixed along the z axis, and maintain the intensity of all the beams at
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Fig. 7.16: Evolution of the populations of the new detection scheme shown on the right
hand side of Fig. 7.1, where each beam is now slightly detuned from resonance

I = Isat.

Now, as we can see from Fig. 7.16, almost half the population pumps out of the

levels being addressed and into X 2Σ+ (v > 0). This takes much longer than in the

previous simulation- around 40 μs. As shown in Fig. 7.17, the molecules that remain

are in the F = 2± levels of N = 2. These cannot be excited because the laser is

linearly polarised along z, and the excited states have no mF = ±2 sub-levels. This

is shown in the matrix plot for the steady state of this simulation, Fig. 7.17.

Finally, to make sure we also address these angular momentum dark states, we

modulate the laser polarisation by breaking the light into two components at ±45° to

z and delaying the phase of one component with a sinuosoidal modulation function, as

discussed on page 158, where we set the modulation frequency somewhat arbitrarily

to 2π × 1 MHz, which is approximately the same size as the laser Rabi rates when

I = Isat, in keeping with what we learnt in section 7.2.1.

Now, at last, the entire population pumps into X 2Σ+ (v > 0), as shown in

Fig. 7.18, scattering on average 13.9 photons per molecule in the process. How-
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Fig. 7.17: Matrix plot of the steady state solution of the density matrix for the simulation
shown in Fig. 7.16. See the caption for Fig. 7.15 for more information.

ever, notice how long it takes this scattering to happen: it takes 80μs to pump 90%

of the molecules to X 2Σ+ (v > 0), compared with 30 μs in the simple rate equation

picture (Fig. 5.8).

In the next section, we will optimise the detection by varying the detunings of the

laser beams, the polarisation modulation rate, and the balance of intensities between

the beams.
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Fig. 7.18: Evolution of the populations of the new detection scheme shown on the right
hand side of Fig. 7.1, where each beam is now slightly detuned from resonance
and the laser polarisation is modulated at 1 MHz.

7.3.2 Optimising the parameters for the new detection scheme

In this section, our goal is to scatter as many photons as possible during our limited

detection time. To restrict the problem to a manageable size, we vary 11 parameters

which are: the detunings of the 5 beams, the fraction of the total laser intensity

contained within each beam, and the frequency of the laser polarisation modulation.

We use a sinusoidal function, but section 7.2.1 indicates that other functions will

produce similar results. The modulation depth Φ0 is fixed at 1.5× π, which should

maximise the excitation rate when the Ω̄ � Γ, as will be the case in all the following

simulations. We further assume that all the laser beams are combined together

and propagate along the same axis. The polarisation of the light going into the

polarisation modulation crystal is chosen as either + or −45° to the modulated axis.

The way they are generated in the laboratory means that beams (a) and (b) have

the same polarisation. Because all the beams are combined using polarising cubes,

one of the remaining beams has the same polarisation as (a) and (b) while the other

two are orthogonal. We arbitrarily choose (d) to have the same linear polarisation
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as (a) and (b) while (c) and (e) have the orthogonal polarisation.

For each set of parameters, we look at the fraction of molecules pumped into

X 2Σ+ (v > 0) after 25 μs. Since we know that it takes on average 1/(1−f00) = 13.9

photon scatters before a molecule is pumped to X 2Σ+ (v > 0) (Eq. (5.19)), the

fraction in X 2Σ+ (v > 0) after a certain time, multipled by 13.9, gives the average

number of photons scattered per molecule.

The number of photons scattered depends in a complicated way on the detun-

ings and powers of each of the other laser beams. We optimise the scattering rate

by maximising it with respect to each parameter in turn, then iterating several

times. For a given staring condition this converges on a local maximum of the func-

tion, and we repeat it for a few different initial conditions to search for the global

maximum. We then repeat this for four values of the total intensity which are

Itot = 2.5Isat, 4Isat, 5Isat and 7.5Isat.
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Fig. 7.19: Average number of photons scattered after 25μs with Itot = 5Isat as a function
of the detuning of each laser and the fraction of the total intensity in each beam.
The red line is an interpolation function between the points. The labelled arrows
indicate the optimum detunings.



7. Solutions of the optical Bloch equations 183

To understand a bit more clearly how the number of scattered photons depends

on the detunings, modulation rate and powers in each beam, we focus for the time

being on the case where the total intensity of the lasers beams is fixed at Itot = 5Isat.

We scan each parameter about its optimum value, keeping all the others fixed at their

optimum values, and plot the effect this has on the number of photons scattered.

The results for scanning the detunings and intensity ratios are shown in Fig. 7.19,

while the effect of scanning the polarisation modulation rate is shown in Fig. 7.20.

Let us start by looking at how the pumped fraction depends on the detunings,

which are the left hand graphs in Fig. 7.19. We see that each graph has a roughly

Lorentzian lineshape, with a width of ten or twenty MHz, and some finer features.

The broad line is associated with the (power-broadened) width of the scattering

resonance associated with that particular transition. For the graphs (b) and (d),

there are really two transitions as the laser excites both F ′ = 1 and F ′ = 0, which

are separated by 3 MHz. The sharp dips occur when the detuning of the laser that

is being scanned equals that of another laser addressing the same upper level. When

this happens the molecule can pump into a CPT dark state, which may or may

not be destabilised by other laser beams. On each of these graphs there are four

grey and one green arrows. The green arrow shows the location of the optimum

frequency for the transition that is being scanned, and the four grey arrows indicate

the detunings of the other lasers, which match up with the locations of the dips.

Clearly there is much more to be said about why the features take the form they do,

but for our present purposes they are a nuisance since many numerical maximisation

techniques get stuck in the local maxima next to these deep features. The graphs on

the right hand side of Fig. 7.19 show how the scattering rate depends on the division

of the laser intensity between the beams. This is much more benign, with each beam

needing between 0.15 and 0.3 of the total intensity.

Fig. 7.20 shows that the polarisation modulation rate affects the the scattering

rate in a similar way to the simpler case we simulated above, of an F = 2 system



7. Solutions of the optical Bloch equations 184

0. 0.5 1. 1.5 2. 2.5 3.

8.5

9.0

9.5

10.0

10.5

Polarisation modulation frequency d2p MHz

Ph
ot

on
s

sc
at

te
re

d
pe

rm
ol

ec
ul

e

Fig. 7.20: Average number of photons scattered per molecule as a function of the polari-
sation modulation frequency.

being driven to F ′ = 1 (results in Fig. 7.4 on page 159). The scattering rate rises

steeply to a maximum at about 0.25 MHz before tailing off slowly as the rate is

increased above this frequency. This exactly mirrors the behaviour of the second

graph of Fig. 7.4, if we take a section through the contour plot when Φ0 = 3π/2.

The small features on this plot are a result of the interplay between the detunings and

the polarisation modulation rate, which in section 7.2.1 page 161 we found should be

matched to maximise the scattering rate. On both of the F = 2 → F ′ = 1 transitions

there is an intensity of I = 1.2Isat; from our earlier discussions this would suggest

that the the polarisation modulation rate should be set at 1.5 MHz. The actual rate

that maximises the scattering rate is somewhat lower than this at 0.25 MHz.

In Fig. 7.21 we compare the average number of photons scattered in a given

interaction time when the parameters have been optimised in this way with the

result predicted by the simple rate equations (p. 128). The four graphs show this

for different total laser intensities. In each case, we see that the full density matrix

solution gives a scattering rate that is only slightly below the rate equation result,

indicating that we have indeed managed to destabilise the dark states, even though
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the system is now much more complex than before. Roughly speaking, the results

one finds by solving the OBEs for an average intensity I on each beam match the rate

equation results one would expect if 0.7I–0.8I is used instead—thus we can think of

the dark states as effectively reducing the laser intensity by between 20% to 30%.
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Fig. 7.21: Average number of photons scattered per molecule as a function of interaction
time after some optimisation of the detunings, ratios of intensity between the
beams and polarisation modulation frequency, for four different values of the
total laser intensity, Itot. These are: (a), Itot = 2.5Isat, (b) Itot = 4Isat, (c)
Itot = 5Isat and (d) Itot = 7.5Isat. The solid lines are the solutions of the OBEs,
the dashed lines from the rate model, Eq. (5.15)

7.3.3 Transverse Doppler broadening

So far, we have assumed that the YbF molecules have no Doppler shift, being in a

perfectly collimated beam, at a right angle to the laser beams. However, in reality

the molecular beam is not perfectly collimated, so some of the molecules will have

a small Doppler shift. Fig. 7.22 shows how the number of photons scattered per
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Fig. 7.22: Number of scattered photons as a function of laser Doppler shift and velocity
parallel to the probe laser beam propagation direction.

molecule varies with a common detuning of the laser beams. Notice that only those

molecules which have a Doppler shift smaller than the natural linewidth scatter

close to the maximum number of photons. Those molecules with larger shifts scatter

very few photons. For reference, the graph also shows a grey dashed line which

represents the number of photons scattered under the old, single laser detection

scheme with intensity set at Isat/2. Here, all the molecules in this velocity range

scatter 1.2 photons. This means that we can expect a factor of 10 increase in signal

for molecules with Doppler shifts up to a few MHz, and a smaller improvement for

those with higher Doppler shifts.

By taking spectra of our molecular beam at low laser power we have determined

that the Doppler profile is well approximated by a Gaussian with a 15 MHz FWHM.

This, together with the results shown in Fig. 7.22, gives the average number of

photons we can expect each molecule to scatter in a 25 μs interaction time. The

results are listed in Table 7.2 for a selection of total laser intensities. The middle

column shows for comparison the number of photons that would be scattered in the
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absence of any Doppler shift.

Total intensity of
laser beams, Itot

Number of photons scattered by
molecules with no Doppler shift

Average photons scattered
per molecule averaged
over Doppler profile

2.5 Isat 8.1 5.0

4 Isat 9.7 6.4

5 Isat 10.5 7.2

7.5 Isat 11.8 8.6

Tab. 7.2: Average number of photons scattered per molecule in the new detection scheme
with and without the effect of transverse Doppler shifts.

These numbers show that, given the laser power available, we should not expect

to reach the ideal maximum of 13.9 photons per molecule, but we should expect a

large improvement over the present detection efficiency.

7.3.4 Conclusion on the new detection scheme

If we aim for the modest goal of having the average intensity on each beam as Isat

(Itot = 5Isat), and an interaction time of 25 μs, then the total laser power required

will be around 53 mW in each of the probe regions, and the beam area in each region

will be 16 × 15 mm for the detection light to address the full molecular beam with

and provide the necessary interaction time. Using the results of Table 7.2, and taking

Itot = 5Isat in each probe region, we expect a 6-fold increase over what we currently

detect, giving in total a twelve-fold increase in detection efficiency.

A significant challenge will be working with large, intense laser beams close to the

PMT optics, and not overwhelming the signal with scattered light. With our present

detection optics and a somewhat smaller detection beam, we are able to achieve a

background scattering rate of around 70 kHz/mW of laser light [84]. If we can do

this well with the larger beam then we could hope to have a background scatter rate



7. Solutions of the optical Bloch equations 188

of 4MHz. This would be very satisfactory as the photon count rate from molecules

will be around 26 MHz in each detector, even without the improvement in the beam

intensity from the proposed new pumping scheme. Once this is taken into account

the signal to noise ratio will improve even further.

7.4 Simulations of the new pumping scheme

7.4.1 Preliminary considerations

Now we turn to the simulation of the new pumping scheme shown in the left hand

energy level diagram of Fig. 7.1. Before we embarked on the simulations, we spent

some time considering how we would actually be able to deliver the laser, rf and

microwave fields to the molecules. The important design considerations were to

make sure that the fields were large enough, that the potential interaction time with

the molecules was long enough and that the polarisations of the rf magnetic fields

were not parallel or perpendicular to the microwave electric field polarisation. This

last requirement ensures that all the mF components of X 2Σ+ (N = 1, F = 2) are

mixed together by the rf fields and can be driven to X 2Σ+ (N = 0, F = 1) by the

microwave radiation.

The solution we decided on is shown in diagram (a) of Fig. 5.2. The four laser

beams propagate along the machine x axis. Before entering the machine, the light

is polarised either along y or z, and is passed through the polarisation modulation

crystal orientated at 45° to the y axis, so that the polarisation is modulated in the

y-z plane. The rf coils generate fields which are nominally in the x-z plane, polarised

at either ±45° to the x axis. There are four coils in the vacuum chamber, three are

resonant with the transitions labelled (g)–(i) in Fig. 7.1, and an additional coil can

drive the F = 1+ → F = 0 transition in N = 1 if needed. Finally, the microwave

horn, shown in Fig. 5.2 launches microwaves which travel along the z axis. The horn

is rotated so that two corners of the aperture (dimensions 21× 25 mm) lie on the y
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axis. Since the polarisation of microwaves is aligned to the short side of the horn,

these microwaves are polarised in the y-x plane at 50.5° to the y axis. Of course,

in reality the fields (especially the microwave field) are likely to be complicated by

reflections from all the metallic structures in this region.

In the probe region, our goal was to maximise the scattering rate with respect

to total intensity of the probe light. In the pump region, we do not have to worry

about scattered laser light, so the laser power can be higher, the only limit being

the powers we can produce with our lasers. Because the YbF beam is smaller in the

pump region, the intensity of the laser beams will also be higher for a given laser

power, so we can imagine using a total laser intensity of up to around 8Isat. The

interesting question is to work out how big the rf and microwave fields need to be if

they are to work well with this laser intensity.

7.4.2 Initial simulation

We start by picking some plausible parameters to check that the simulation works as

expected. We know from the probe simulations that all the driving fields need to be

suitably detuned slightly from resonance, and from each other, to prevent population

being trapped in a CPT dark state. With that in mind we detune each of the rf and

microwave fields a few hundred kHz from resonance. The magnetic field is chosen

so that for each rf frequency, μB|B|
�

= 2π × 1 MHz, and the microwave electric field

is chosen so that μe|E|
�

= 2π × 1.5 MHz, where μe = 3.91 ± 0.03 Debye is the YbF

permanent dipole moment [50]. We set the total laser intensity to 8Isat and the

detunings, polarisation modulation rates and relative intensities in each beam to be

those which maximised the probe scattering rate when Itot = 5Isat.

In the initial state of the molecular beam, the probability that a given mF sub-

level of rotational quantum number N is populated can be found from the Boltz-

mann distribution, Eq. (5.7). We normalise the probability distribution by restrict-

ing ourselves to molecules created in the first three rotational levels, N ≤ 2, so that
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∑N=2
0 4(2N + 1)P(N |T ) !

= 1. This means that the diagonal elements of the density

matrix can be interpreted as the probability of occupying that energy level, given

that the molecule was created with N ≤ 2. For now, we will assume that the beam

is at 3 K, the average rotational temperature of our source during normal operation.

At this temperature, the probabilities of starting a given mF level in N = 0, 1, 2 are

in the ratio 1:0.79:0.5, which means that there is 23.5 times more YbF produced with

N ≤ 2 than in |0, 0〉.
The populations of the ground electronic states evolve under these conditions as

shown in Fig. 7.23. We see that the population is pumped into the absolute ground

state X 2Σ+ (v = 0, N = 0, F = 0), as desired, over the first 50 μs or so. The

population also grows in the vibrationally excited states X 2Σ+ (v > 0). Population

in (N = 2, F = 3) is weakly mixed into the system of pumped levels by the rf field

(h), which off-resonantly drives the transtion (N = 2, F = 2−). Since the coupling

is weak, we can ignore this level in our remaining calculations, but we should bear

in mind that this level could also be accessed in future if we like. All the other

remaining v = 0 levels are pumped out, with a characteristic pumping time of order

10 μs. The excited state populations are shown in Fig. 7.24.

The results plotted in Fig. 7.23 are very promising. The probability of occupying

|0, 0〉 after 50 μs has increased from 4.2% to 54.2%, a 13 fold increase in the ground

state population. This is 7 times more signal than we have using the current pumping

scheme. Of the remaining population, 25.0% is in X 2Σ+ (v > 0), 14.1% is in the

(N = 2, F = 3) level and the remaining 6.7% is distributed over the other ground

states.

In the following section we will investigate how the pumping rate depends on the

microwave and rf fields, so that we have a better idea what powers we should use,

before repeating this calculation taking into account the Doppler shift of the laser

beam.
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Fig. 7.23: Evolution of the ground state populations of the new pumping scheme shown on
the left hand side of Fig. 7.1. The parameters for each beam are described in
the accompanying text. We see that more than half the molecules are pumped
into the ground state X 2Σ+ (v = 0, N = 0, F = 0).

7.4.3 Fraction pumped for various rf and laser powers

The fields in the pump region are not as well controlled as in the detection region;

The variations in the power and direction of the microwave and rf fields are likely

to be significant and complicated to determine. Therefore, it is a waste of time to

painstakingly optimise the pumping rate for a given set of parameters. Instead, we

just scan two parameters: the magnitude of the microwave electric field (f) and the

magnitude of the three rf magnetic fields (g), (h) and (i), which we set to be equal.

We do this for the same intensity as in the previous section, Itot = 8Isat. All other

parameters are also left unchanged. For each simulation, we plot the gain in the

|0, 0〉 population after 50 μs, which is the maximum available interaction time in

practice. The results of this simulation are shown in Fig. 7.25.

The important point to take away from this Fig. is that the microwave and rf

Rabi rates have a definite optimum region: if too large or small a rate is used, the

fraction of molecules pumped to |0, 0〉 decreases. The microwave optimum happens
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Fig. 7.24: Evolution of the excited state populations of the new pumping scheme shown
on the left hand side of Fig. 7.1. The parameters for each beam are described in
the accompanying text.

because the frequency of the microwave field (f) is only 9.1 MHz away from the

transition (N = 0, F = 0) → (N = 1, F = 1−). If the microwave power is too high

this drives molecules out of |0, 0〉, redistributing the population among the electronic

ground states before eventually it is lost to a vibrationally excited state. Similarly,

if the rf radiation is too strong, the fields (h) and (i) off-resonantly drive population

from |0, 0〉 into (N = 0, F = 1), again reducing |0, 0〉 final population. Fig. 7.25

shows that the values used in the previous simulation, μB|B|
�

= 2π × 1 MHz and

μe|E|
�

= 2π × 1.5 MHz are close to optimum.

7.4.4 Comparison of results with simple models in section 5.4.1

In section 5.4.1 we used a simple rate equation model to estimate the laser intensities

needed to empty out all the levels being addressed. It is interesting now to see how

coherences affect the pumping rate. This is illustrated in Fig. 7.26, which plots the

fraction of the population that is pumped according to the OBEs (solid red line)

and according to the rate equations (dashed red). Population in the weakly coupled
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Fig. 7.25: Increase in |0, 0〉 population as a function of microwave and rf Rabi rate. The
total intensity is Itot = 8Isat.

(N = 2, F = 3) state is neglected.

Initially, the classical model performs tolerably well, predicting that the levels

are pumped at twice the rate given by the OBEs. However, after around 20 μs the

two models diverge, as the pumping speed becomes limited by the rate at which the

dark states can be destabilised. This slow decay rate was not correctly captured by

the classical model, and underlines the importance of a full quantum treatment to

correctly predict the effectiveness of the new scheme.



7. Solutions of the optical Bloch equations 194

0 10 20 30 40 50 60 70 80 90 100
0.0

0.2

0.4

0.6

0.8

1.0

Interaction time mS

Fr
ac

tio
n

pu
m

pe
d

ou
to

f
ad

dr
es

se
d

st
at

es

Fig. 7.26: The fraction of the population that is pumped according to the OBEs (solid red
line) and the rate equations (dashed red) Itot = 8Isat.

7.4.5 Doppler broadening

Much as with the new probing scheme, it is also important to consider the distribution

of transverse velocities. The relationship between the detuning of the laser beams

and the final population pumped to the absolute grounds state after 50 μs is shown

in Fig. 7.27. Similarly to the situation for the probe region, those molecules with

high transverse velocities will not be efficiently pumped to the ground state.

Using the measured Doppler profile (identical to the transverse Doppler profile

used in section 7.3.3), and weighting the results of Fig. 7.27 accordingly, we find

that the final population in the absolute ground state is increased by a factor of 10.5

when the total laser intensity is 8Isat, the interaction time is 50 μs and the microwave

electric and rf magnetic fields are μe|E|
�

= 2π × 1.5 MHz and μB|B|
�

= 2π × 1 MHz

respectively.
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Fig. 7.27: The increase in the |0, 0〉 population after 50 μs of the new pumping scheme, for
various values of the laser Doppler shift. The grey dashed line at the bottom of
the graph shows the population in |0, 0〉 after the current pumping scheme.

7.4.6 Conclusion to the discussion of the new pumping scheme

The simulations in this section show that applying the laser, microwave and rf fields

shown in Fig. 7.1 along the directions shown in Fig. 5.2 and with the polarisations

described in 7.4.1 should result in an increase in the final population in the |0, 0〉 state
population of 10.5. Under the current, single frequency pumping scheme the increase

is only 1.9, so the new pumping scheme should increase the population available to

participate in the experiment by a factor of 5.6.

In order to achieve this, we need a total laser intensity of 8Isat, or 42 mW. We

also a microwave electric field of μe|E|
�

= 2π × 1.5 MHz. If we ignore the effects of

reflections from the rf coils and other metallic obstructions, this should require around

6 dBm of microwave power, which is easily achieved with a commercial synthesiser

and amplifier. Finally, we need oscillating magnetic fields of μB|B|
�

= 2π × 1 MHz

at each of the three rf frequencies. Even with the resonant coils, this may require a
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high power amplifier.

7.5 Conclusions on OBE simulations

The goal of this chapter was to form a clear idea about how well the new pumping

and detection schemes will work. In particular, we wanted to whether dark states

would significantly compromise the scattering rates we hope to achieve.

We began by arguing that both angular momentum and CPT dark states could

be remixed to avoid drastic reduction of the scattering rate, provided that the laser

detunings and powers were optimised. We then moved on to the full YbF system. In

our discussion of the new pumping scheme, we showed that our arrangements of fields

can cause most of the population in the first three rotational levels to be pumped to

|0, 0〉, the only exceptions being the (N = 2, F = 3) state and those molecules with

large transverse velocities. Compared with our current scheme, the overall increase

in the number of molecules able to participate in the experiment should be around

a factor of 5.6.

In our simulations of the new probing scheme, we found that for optimised laser

detunings and modulation rates, the scattering rate predicted by the full solution

to the OBEs is very close to the simple rate picture. However, it is important to

emphasise how relatively low this scattering rate is; even though the radiative decay

rate from the excited state is 2π × 5.7 MHz, the scattering rate from the excited

state is only 2π× 9 kHz when each transition is driven at I = Isat because of the low

probability for the molecule to occupy the excited state. Because of the Doppler shift

it is likely that only those molecules with low transverse velocities will scatter the

full 13.9 photons. Even so, we anticipate a large increase in the number of photons

scattered per molecule, around 6 times more signal in each detection region.

One difficulty associated with the new detection scheme which we may need to

address is that any signal left in the N = 2 or N = 0 by the first set of detection lasers
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will be available to be detected again by the second set of lasers, reducing the contrast

of the interferometer signal in the second detection region. Two effects will mitigate

this. First, the new pumping scheme will be slightly velocity selective. It will narrow

the transverse velocity spread and hence the Doppler width by preferentially pumping

those molecules with low transverse velocities into |0, 0〉. Second, the molecules left

in N = 0, N = 2 after the first set of detection lasers will be those with high Doppler

shifts, and these will be excited less strongly by the lasers in the second detection

region.

If the contrast in the second detection region still remains a problem, even taking

these mitigating factors into account, there are a number of steps we could take.

1. We could attempt to work with higher power laser beams, but at some point the

scatter from the lasers will overcome the gains from increased photon scattering.

2. We could use an additional “clean-up” laser beam between the first detection

region and the second microwave transmission line to complete the pumping

process, making sure that this was in a region where the scatter could not be

detected by the PMTs.

3. We could introduce a slit to mask off the wings of the molecular beam, only

allowing those molecules in the centre of the distribution with low Doppler

shifts to participate in the experiment. This is obviously unattractive since it

reduces the overall signal.

4. Alternatively, a drastic solution would be to leave the population transferred

to N = 1 in place (i.e. not apply a second microwave pulse), and detect it

with a different set of lasers tuned to the positive parity excited state. This

measurement would not have any background signal from molecules left in

N = 0, 2, but would require an additional laser system.

However things work in practice, we think it should be possible to dramatically

increase the number of photons counted in each shot of the interferometer.
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Improvement
Fractional improvement in

sensitivity

Higher electric field 1.13

Higher contrast from
shorter rf pulses

1.25

New pumping scheme 2.37

New probing scheme 3.46

Product 11.6

Tab. 7.3: Gains in sensitivity from improved experiment

This chapter suggests that it should be possible to increase the number of photon

counts per shot by a factor of 70 in total (6 from beam intensity and 12 from detection

efficiency). If the magnetic field noise continues to be well controlled, the operating

voltages can be increased to ±12 kV, and the contrast can be improved with shorter

rf pulses, (as summarised in Table 7.3), then this should lead to a new sensitivity of

2.2× 10−27 e cm/
√
Block, more than a factor of 10 lower than our current statistical

sensitivity.



8. CONCLUSION AND OUTLOOK

This thesis discussed the progress that has been made towards a new, more sensitive

measurement of the eEDM using YbF. We can divide this progress into two main

areas: First, we have increased our understanding of systematic errors affecting the

measurement, and second, we have developed a comprehensive strategy to improve

the experimental sensitivity.

8.1 Systematic Errors

Chapter 3 describes three new sources of systematic error with the measurement.

The first involved rf discharge that could flow from the rf plates, potentially leading

to a magnetic field which was correlated with the direction of the applied electric

field. We showed that if the discharge is well controlled, this current, combined

with the regular leakage currents from the high voltages plates, leads to a maximum

systematic error no larger than 0.2 × 10−28 e cm. The second systematic error was

more troublesome: a rotation of the rf polarisation when the electric field direction

was reversed. Improving the cabling between the electric field generation equipment

and the machine greatly reduced this error, and we have formulated a good plan to

associate a stringent error on the size of any residual effect. The final systematic

error seems to be connected with a change in the high voltage supplies. So far, we

have had more success in ruling out possible causes of the systematic than uncov-

ering its exact origin, but we have discounted 1) the magnetisation of the shields

through ac or dc currents 2) the rf rotation systematic error 3) any other previ-

ously known systematic error. Although this effect is at present unacceptably large



8. Conclusion and outlook 200

(∼ (5.3± 2.6)× 10−27 e cm) the fact that it can be made much smaller by exchang-

ing the supplies suggests that with a little more persistence we can track down the

origin of this systematic and remove it altogether.

8.2 Sensitivity

In Chapter 4 we showed that the statistical error in our measurement of the eEDM

is dominated by shot noise, with a very small contribution from external magnetic

field noise. This led us to propose in Chapter 5 that we could increase the statistical

sensitivity of the machine by increasing the number of molecules able to participate

in the experiment, and by detecting those molecules more efficiently.

We plan to increase the number of molecules participating in the experiment by

pumping molecules produced by the source in X 2Σ+ (N = 0, F = 1), (N = 1, F =

2, 1−, 1+, 0) and (N = 2, F = 2−, 2+, 1) into F = 0. In Chapter 5 we calculated that

with our beam’s average rotational temperature (3K), we could expect a maximum

of around 7.6 times more signal from this process. We then developed a simple rate

model that predicted this increase should be attainable with the interaction times

and laser powers at our disposal.

To detect the molecules more efficiently we plan to use a four part scheme. First

the population in F = 0 is transferred to N = 1 with a microwave π-pulse, delivered

with a microwave transmission line. This step can be close to 100% efficient. Second,

the molecules remaining in F = 0 are detected with lasers tuned to address all the

decays from A 2Π1/2 (P = −1) to X 2Σ+ (v = 0). Each molecule in F = 0 will

scatter a maximum of 14 photons on average, more than ten times more signal than

at present. Third, another microwave π-pulse will return the N = 1 population to

F = 0. Fourth and finally, another set of lasers, tuned to address all the decays from

A 2Π1/2 (P = −1) to X 2Σ+ (v = 0) will interact with the F = 0 molecules. Each

one of these molecules will also scatter a maximum of 14 photons on average before
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decaying to v > 0.

To help us better understand the new pumping and detection schemes, we devel-

oped a more comprehensive density matrix model in Chapters 6 and 7 which could

capture the effects of dark states on the pumping and probing schemes. We found

that if sufficient care is taken to destabilise dark states, the scattering rates in the

new probing scheme can be very close to the simple rate model, with the scattering

rate given by Eq. 5.14, but with I → 0.7I. The average number of photons scat-

tered in 25 μs with a total intensity Itot = 5Isat is 10.5, compared to the 12 photons

predicted by the rate equation model. For the new pumping scheme, the effects of

dark states show that the rate model does not give a good indication of the pumping

rate, especially at longer interaction times. Even so, with a 50 μs interaction time

and a total intensity of Itot = 8Isat, we achieve a fractional increase in the signal of

6.8 compared to our current pumping scheme, if the beam is at a rotational temper-

ature of 3 K. This should be compared to a maximum possible increase of 7.6 at this

rotational temperature. We find that for both the pumping and probing schemes,

the transverse Doppler width decreases the effectiveness of the process, by 18% in

the case of the pumping and 31% in the case of the new probing scheme. Taking

this into account, we expect to increase the number of molecules participating in the

experiment by a factor of 5.6 through the new pumping scheme, and increase the

number of photons scattered per molecule by a factor of 6 in each detection region,

for a total gain in signal of a factor of 12 in each shot. Combined with some other

small improvements, we expect the total increase in sensitivity to be around a factor

of 12.

8.3 Outlook

At the end of this thesis, we are left with a clear plan as to how to reduce the

statistical uncertainty in our measurement of the eEDM by a factor of more than 10.
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All of the apparatus to undertake the improved measurement has been constructed,

and we anticipate that the new improved experiment will be operational by January

2016. Table 8.1 shows us how the parameters of the improved experiment compare

to the 2014 ACME experiment. If we ran the experiment for around 100 days (about

the length of last eEDM data run), we would achieve a statistical sensitivity of around

1.4× 10−29 e cm, a factor of 2.5 better than the current limit.

Property ACME
2014

Imperial

2011 2015 Proposed

Eeff (GVcm−1) −81.5±5.7a −26b −26b −26b

WS/Eeff (e cm) 1.3× 10−20c 8.6× 10−21c 8.6× 10−21c 8.6× 10−21c

Polarisation
factor |η| 1 0.558 0.61 0.69

Magnetic
moment g (μB)

0.0044d 1 1 1

Interaction time
(ms)

1.1 0.642 0.980 0.980

State lifetime
(ms)

∼ 2 ∞ ∞ ∞

Molecules
detected per

pulse
∼ 1000e 500 685 46,000

Contrast C 0.94± 0.02e 0.55f 0.61± 0.01 0.76± 0.02

Sensitivity
(10−28e cm/

√
day)

4g 30 16 1.4

Tab. 8.1: A comparison of some relevant parameters associated with the ThO experiment
in 2014, and the YbF experiment in 2011, 2015 and after the improvements
described in this thesis. a Ref. [34], b Ref. [32], c Ref. [33], d Ref. [35], e Ref. [14],f

Ref. [66], g Ref. [85]

The current upper limits on various systematic errors and their projected values
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Systematic Error
Current upper

limit (10−28 e cm)
Projected upper
limit (10−28 e cm)

Un-corrected E-asymmetry 0.5∗ 0.05

Voltage offset 0.063∗ 0.063

Residual rf1 detuning 0.6∗ 0.06

dc and rf leakage currents 0.2∗∗ 0.2

dc shield magnetization† 0.5 (1.6) 0.25

ac shield magnetization† 0.05 (0.14) 0.05

rf rotation - 0.084

Geometric phase 0.01 0.01

Motional magnetic field 0.0005 0.0005

Sum in quadrature 0.87 0.35

Tab. 8.2: Current and projected systematic errors. †numbers without brackets are for
Bertan supplies and with brackets are for the Applied Killovolts supplies. ∗taken
with 2μs pulses. ∗∗taken with 9μs pulses.

are shown in Table 8.2. With the exception of the high voltage supplies systematics

(not listed) the other systematic errors associated with the experiment are well con-

trolled to less than 1 × 10−28 e cm at present. Looking forward to the size of those

systematic errors in the improved experiment, we expect many errors to continue

to reduce in size in line with the new statistical sensitivity. If this is the case, then

the total systematic error-bar (again excluding the unknown high voltage systematic

error) will be less than 0.35 × 10−28 e cm. This error is dominated by the dc shield

magnetisation and the leakage currents. There is considerable scope for more careful

measurement of these effects with the current apparatus, and we are also buying

improved optical magnetometers that can sit inside the vacuum chamber and make

better direct measurments of both these errors.

Thus, we expect that in the near future, the YbF experiment will be able to
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make a new, world leading measurement of the eEDM with a total uncertainty of a

few 10−29 e cm and we can continue the search for new T-violating physics with the

apparatus described in this thesis.



APPENDIX



A. QUANTUM MECHANICAL ROTATION MATRICES

The operator R̂(α) that rotates a quantum mechanical state |ψ〉 by an angle α about

the axis α/|α| to leave it in the new state R̂(α) |ψ〉 = |ψ′〉 can be written as

R̂(α) = e−iα·F̂ , (A.1)

where F̂ is the vector operator whose elements are the projection of the total angular

momentum operator onto the three coordinate axes F = (F̂x, F̂y, F̂z) [86]. The

rotated version of an operator Â is simply

R̂†(α)A R̂(α) . (A.2)

Often, we want to find the matrix elements R̂ij = 〈i| R̂ |j〉 of the rotation operator.

When these are written in terms of the basis states of the total angular momentum

F and the projections m, m′ along a particular z axis then they form what is known

as Wigner rotation matrix

〈F,m′| R̂ |F,m〉 = DF
m′m . (A.3)

The values of DF
m′m can be looked up and are useful in evaluating the various matrix

elements found in the next appendix.



B. MATRIX ELEMENTS FOR YBF

This appendix explains how to calculate the matrix elements for magnetic and electric

dipole transitions between the various states of the X 2Σ+(v = 0, N = 0, 1, 2) and

A 2Π1/2(v = 0, J = 1
2
,P = ±1) levels. The starting point for these elements are

the terms shown in Eq. (6.8). Because we make the dipole approximation, Af
p is

constant and can be factorised out of the inner product

M f
ij =

∑
p

Af
p

2�
〈i| m̂ · εp |j〉 . (B.1)

The symbol f denotes that this element is for the field labelled f . If i and j are

different electronic or rotational levels m̂ = d̂ and Af
p = Ef

p , and if i and j are in

the same rotational level of the ground electronic level, then m̂ = μ̂ and Af
p = Bf

p .

The remainder of this chapter is concerned with the calculation of the “projection

factors” 〈i| m̂ · εp |j〉. First, we need to express the molecular states |i〉 |j〉 in terms

of some convenient basis functions, which we do in the following sections. Then, to

evaluate a given projection factor, we start by applying the Wigner-Eckart theorem to

separate the orientation-dependent part of the projection factor from the rotationally

invariant part, otherwise known as the reduced matrix element. We then uncouple

the angular momenta back to a level that is common to both the bra and ket of the

reduced matrix element. The specific formulae used to uncouple angular momentum

can be found in many standard texts such as Zare [3] and Brown and Carrington

[87]. In order to do this we need a more explicit form of the YbF wavefunctions

which are given in Refs. [50] and [88], and reproduced here in section B.1. In the
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specific case of the optical transitions, we follow an identical procedure to Wall et al

in Ref. [88] but using the parameters for YbF not CaF. In all of these calculations I

am indebted to M. Tarbutt for his Mathematica notebooks and assistance.

B.1 Form of the wavefunctions

B.1.1 A 2Π1/2

As we discussed in section 2.2.3, the A 2Π1/2 is an Ω-doublet, having positive and

negative parity states. These excited states are not degenerate because there is a

small (amplitude of order 0.01) mixture of the B 2Σ+ state, but we ignore that here

and take the sate to be of pure A 2Π1/2 character. We choose basis states which are

eigenfunctions of Λ̂, Σ̂ and Ω̂, the projections of L̂, Ŝ and Ĵ = L̂+Ŝ respectively onto

the internuclear axis. This scheme is known as Hund’s case (a). The wavefunction

(2.10) can now be written as symmetric and antisymmetric combinations of states

with |Λ| = 1, |Ω| = 1/2 and J = 1/2

|ψES〉 =
∣∣A, J = 1

2
,P〉 |v′ = 0〉 ∣∣I = 1

2
, F,mF

〉
=

1√
2

(∣∣1, 1
2
,−1

2
, 1
2
, 1
2

〉
+ P ∣∣−1, 1

2
, 1
2
, 1
2
,−1

2

〉) |0〉 ∣∣1
2
, F,mF

〉
, (B.2)

where the parity P takes the values +1 (even) and −1 (odd).

Typically we will join the first and third kets in the above expression together so

that the basis vectors for the non vibrational part of the excited state wavefunction

are labelled by

|Λ, S,Σ, J,Ω, I, F,mF 〉 . (B.3)
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B.1.2 X 2Σ+

In the ground state, the situation is slightly more complicated because of the nonzero

rotational angular momentum. We start by picking the basis

∣∣N,S = 1
2
, J, I = 1

2
, F,mF

〉
(B.4)

that specifies the quantum numbers for the three angular momenta (N̂ , Ŝ, Î), defined

on p. 38, that make up F̂ . In this basis, we first couple N̂ and Ŝ to make Ĵ = N̂+Ŝ,

and then let F̂ = Ĵ + Î. This is known as Hund’s case bβJ [87].

For N = 0, F has just two values, F = 0 and F = 1, arising from the coupling

of Ŝ and Î. For N > 0, there are four states, with F quantum numbers F = N + 1,

F = N , F = N and F = N − 1. The first and last of these states are just given by

|N,F = N ± 1,mF 〉 =
∣∣N, 1

2
, N ± 1

2
, 1
2
, N ± 1,mF

〉
. (B.5)

The remaining states are mixtures of J = N± 1
2
whose coefficients are given by Sauer

et al [50]. For N = 1 and N = 2 the J-mixed states are

∣∣1, 1−,mF

〉
= −0.536

∣∣1, 1
2
, 1
2
, 1
2
, 1,mF

〉
+ 0.884

∣∣1, 1
2
, 3
2
, 1
2
, 1,mF

〉
, (B.6)

∣∣1, 1+,mF

〉
= 0.884

∣∣1, 1
2
, 1
2
, 1
2
, 1,mF

〉
+ 0.536

∣∣1, 1
2
, 3
2
, 1
2
, 1,mF

〉
, (B.7)

∣∣2, 2−,mF

〉
= −0.564

∣∣1, 1
2
, 3
2
, 1
2
, 2,mF

〉
+ 0.826

∣∣2, 1
2
, 5
2
, 1
2
, 2,mF

〉
, (B.8)

∣∣2, 2+,mF

〉
= 0.826

∣∣1, 1
2
, 3
2
, 1
2
, 2,mF

〉
+ 0.564

∣∣2, 1
2
, 5
2
, 1
2
, 2,mF

〉
. (B.9)

When we need to calculate matrix elements connecting X 2Σ+ and A 2Π1/2 levels, we

need to write the states in terms of a common basis. The simplest way to do this
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is to rewrite the states of X 2Σ+ in terms of those of A 2Π1/2 , using
1 Eq. (23 a) of

Ref. [89], which for a linear molecule is

|η,Λ, N, S, J, I, F,mF 〉 =
∑
Ω,Σ

(−1)N−S+Ω
√
(2N + 1)

⎛
⎜⎜⎝
J S N

Ω −Σ −Λ

⎞
⎟⎟⎠

× |η,Λ, S,Σ, J,Ω, I, F,mF 〉 .
(B.10)

Here η stands for any other quantum numbers. In our case for the electronic ground

states with Λ = 0 and S = 1/2 this becomes

|N,S, J, I, F,mF 〉 = 1√
2
|Λ, S,−Σ, J,−Ω, I, F,mF 〉

+
(−1)N+J−1/2

√
2

|Λ, S,Σ, J,Ω, I, F,mF 〉 . (B.11)

B.2 Calculating the projection factors

Now we can finally calculate the factors 〈i| m̂ · εp |j〉 that project the dipole onto the

direction of the external field components. First we calculate the matrix elements

for transitions between the basis states, which are given by expression (B.4) for the

rf and microwave transitions, and expression (B.3) for the optical matrix elmements.

Then, we expand |i〉 and |j〉 on this basis to compute the projection factors.

B.2.1 Projection factors for the rf transitions

In the new pumping scheme, we drive rf transitions between F components in the

same rotational state of the X-state.2 The matrix elements between the basis states

1 Note that Eq. (6.149) of Ref. [87] is incorrect because of the effect of anomalous commutation
relations, see Ref. [89].

2 It does not help to drive transitions within the A-state.
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are of the form

−gsμB 〈N ′, S, J ′, I, F ′,m′
F | Ŝ · εp |N,S, J, I, F,mF 〉 δvv′δXX′ . (B.12)

The spin operator does not act on the orbital electronic wavefunction and vibrational

wavefunctions, hence they are contracted over and have been removed, leaving the

two Kronecker delta functions. Now this matrix element can be evaluated by first

applying the Wigner-Eckart theorem (Eq. (5.14) of Ref. [3]) to give

gsμB(−1)1+F ′−m′
F

⎛
⎜⎜⎝

F ′ 1 F

−m′
F p mF

⎞
⎟⎟⎠ 〈N ′, S, J ′, I, F ′‖Ŝ‖N,S, J, I, F 〉 . (B.13)

The Ŝ operator acts on the first angular momentum Ĵ of the coupled system

F̂ = Ĵ + Î, and acts on the second part of the coupled system Ĵ = N̂ + Ŝ, so we

twice use the equations for a rank-1 tensor acting on one part of a coupled system

(Eqs. (5.72) and (5.73) of Zare [3]) to give

〈N ′, S, J ′, I, F ′‖Ŝ‖N,S, J, I, F 〉 =
(−1)2J

′+N ′+1+F
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)×⎧⎪⎪⎨
⎪⎪⎩
J ′ F ′ 1/2

F J 1

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩
1/2 J ′ N ′

J 1/2 1

⎫⎪⎪⎬
⎪⎪⎭

〈N ′, S‖Ŝ‖N,S〉 . (B.14)

The last term is a standard expression which gives

〈N ′, S‖Ŝ‖N,S〉 = δN ‘N

√
(2S + 1)S(S + 1) . (B.15)
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Putting it all together we get that if f is an rf field3

〈N,S, J ′, I, F ′,m′
F | μ̂ · εp |N,S, J, I, F,mF 〉 =

gsμB(−1)1+F ′−m′
F+2J ′+N+1+F

√
3
2
(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)×⎛

⎜⎜⎝
F ′ 1 F

−m′
F p mF

⎞
⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩
J ′ F ′ 1/2

F J 1

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩
1/2 J ′ N

J 1/2 1

⎫⎪⎪⎬
⎪⎪⎭

. (B.16)

B.2.2 Microwave projection factors

Microwave transitions can be driven between different rotational levels of the ground

electronic state. The operator that does this is d̂ · εp = μ̂e · εp, where μ̂e is the

permanent dipole moment of the molecule caused by the separated Yb+ and F− ions

in their ionic bond. In the molecule-fixed frame, this permanent dipole lies along the

z-axis. The Wigner rotation matrix (Eq. (A.3)) allows us to project that onto the

external field direction

μ̂e · εp = μ̂eD1
0p . (B.17)

The matrix elements of the projection factor are then

〈X,Λ = 0| μ̂e |X,Λ = 0〉 〈N ′, S, J ′, I, F ′,m′
F | D1

0p |N,S, J, I, F,mF 〉 δvv . (B.18)

The first inner product just gives the expectation value of the molecular dipole

moment μe = 3.91 ± 0.03 Debye [50]. The procedure to evaluate the second inner

product is almost identical to that on p. 266 of Ref. [87] with the added complication

of the fluorine nuclear spin. First we apply the Wigner-Eckart theorem to give the

3 This is similar to Eq. (9.95) in Ref. [87] but with the added complication of the fluorine spin
in our case.
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reduced matrix element just as with the rf elements

μe(−1)F
′−m′

F

⎛
⎜⎜⎝

F ′ 1 F

−m′
F p mF

⎞
⎟⎟⎠ 〈N ′, S, J ′, I, F ′‖D1

.0‖N,S, J, I, F 〉 , (B.19)

where D1
.0 is the reduced rotation matrix operator. Now, we need to rewrite the

reduced matrix elements in a basis where N̂ has been uncoupled from Ŝ and Î,

because D1
.0 only act on the spatial degrees of freedom. As with the rf elements we

notice that D1
.0 only acts on the first part of the coupled system F̂ = Ĵ + Î and only

acts on the first part of the coupled system Ĵ = N̂ + Ŝ so applying Eq. (5.72) of

Ref. [3] twice we find

〈N ′, S, J ′, I, F ′‖D1
.0‖N,S, J, I, F 〉 =
(−1)J

′+J+N ′+1+F
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)×⎧⎪⎪⎨
⎪⎪⎩
J ′ F ′ 1/2

F J 1

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩
N ′ J ′ 1/2

J N 1

⎫⎪⎪⎬
⎪⎪⎭

〈N ′‖D1
.0‖N〉 . (B.20)

The final reduced matrix element is a standard result, given by Eq. (5.148) of Ref. [87]

〈N ′‖D1
.0‖N〉 = (−1)N

′√
(2N ′ + 1)(2N + 1)

⎛
⎜⎜⎝
N ′ 1 N

0 0 0

⎞
⎟⎟⎠ . (B.21)

Combining these results, the projection factors for the dipole matrix elements are
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given by

〈N ′, S, J ′, I, F ′| d̂ · εp |N,S, J, I, F 〉 =
(−1)J

′+J+1+F+F ′−m′
F

×
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)(2N ′ + 1)(2N + 1)

×

⎛
⎜⎜⎝

F ′ 1 F

−m′
F p mF

⎞
⎟⎟⎠
⎛
⎜⎜⎝
N ′ 1 N

0 0 0

⎞
⎟⎟⎠

×

⎧⎪⎪⎨
⎪⎪⎩
J ′ F ′ 1/2

F J 1

⎫⎪⎪⎬
⎪⎪⎭

⎧⎪⎪⎨
⎪⎪⎩
N ′ J ′ 1/2

J N 1

⎫⎪⎪⎬
⎪⎪⎭

. (B.22)

B.2.3 Optical projection factors

The final set of matrix elements that need to be calculated are those for the optical

transitions between the X 2Σ+ and A 2Π1/2 levels. These are used both to calculate

the matrix elements that arise when laser beams are applied to the molecules, and to

evaluate the relaxation terms in the optical Bloch equations. As with the microwave

transition, it is helpful to rewrite the operator d̂ · εp in terms of the components of

the angular momentum tensor in the molecule-fixed frame. Unlike the microwave

transitions, however, the electric dipole in this case is the dipole operator for the

optically active electron d̂ = −er̂ which does not have to lie along the z axis of the

molecule-fixed frame. Using the Wigner rotation matrices this becomes

d̂ · εp =
∑

q∈{−1,0,1}
d̂qD1

qp . (B.23)

We choose to evaluate this operator using the basis states (B.3)

∑
q∈{−1,0,1}

〈Λ′, S ′,Σ′, J ′,Ω′, F ′,m′
F | d̂qD1

qp |Λ, S,Σ, J,Ω, F,mF 〉 〈v′|v〉 . (B.24)
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Unlike the rf and microwave transitions, the optical matrix elements connect differ-

ent electronic states. These have slightly different vibrational wavefunctions which

are not orthogonal, so the second inner product is not equal to one. For YbF

|〈v′ = 0|v = 0〉|2 = 0.928 [53]. After applying the Wigner-Eckart theorem and un-

coupling F̂ back into Î and Ĵ the first factor in expression (B.24) can be rewritten

as

(−1)2F
′−m′

F+J ′+3/2
√
(2F ′ + 1)(2F + 1)

⎛
⎜⎜⎝

F ′ 1 F

−m′
F p mF

⎞
⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩
J ′ F ′ 1/2

F 1/2 1

⎫⎪⎪⎬
⎪⎪⎭

×

∑
q∈{−1,0,1}

〈Λ′, S ′,Σ′, J ′,Ω′‖d̂qD1
q.‖Λ, S,Σ, J,Ω〉 . (B.25)

The sum over reduced matrix elements in this last expression can be rewritten [88]

as

∑
q∈{−1,0,1}

〈Λ′, S ′,Σ′, J ′,Ω′‖d̂qD1
q.‖Λ, S,Σ, J,Ω〉 =

∑
q∈{−1,1}

(−1)J
′−Ω′√

(2J ′ + 1)(2J + 1)

×

⎛
⎜⎜⎝

J ′ 1 J

−Ω′ q Ω

⎞
⎟⎟⎠μA-X , (B.26)

where |μA-X|2 = 3πε0�c3Γ
ω3 is the transition dipole moment, equal to 4.39± 0.16 Debye

[53].

Thus, the projection factors for optical transitions between the basis states are
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given by

〈Λ′, S,Σ, J ′,Ω′, I, F ′,m′
F | d̂ · εp |Λ, S,Σ, J,Ω, I, F,mF 〉 〈v′|v〉 =

μA-X〈v′|v〉(−1)2F
′−m′

F+2J ′−Ω′+3/2
√

(2F ′ + 1)(2F + 1)(2J ′ + 1)(2J + 1)

×
∑

q∈{−1,1}

⎛
⎜⎜⎝

F ′ 1 F

−m′
F p mF

⎞
⎟⎟⎠

⎧⎪⎪⎨
⎪⎪⎩
J ′ F ′ 1/2

F 1/2 1

⎫⎪⎪⎬
⎪⎪⎭

⎛
⎜⎜⎝

J ′ 1 J

−Ω′ q Ω

⎞
⎟⎟⎠ . (B.27)

The real ground-state and excited-state eigenvectors |ψGS〉 and |ψES〉 can be writ-

ten out in terms of the basis vectors using Eqs. (2.3), (2.10), (B.2), (B.11) and

(B.5)–(B.9). When we calculate the projection factors with these real states, we

find as expected that the dipole operator only connects states of opposite parity, so

there are two separate systems: A 2Π1/2 (P = 1) can only be excited from, and decay

to X 2Σ+ (N = 1) whereas A 2Π1/2 (P = −1) can transition to X 2Σ+ (N = 0) and

X 2Σ+ (N = 2). The projection factors for these two closed systems are shown in the

two Tables B.1 and B.2.

By squaring the elements in these two tables one obtains the relative probability

that a given excited state |F,mF 〉 will decay into each of the ground states. This is

also called the branching ratio.
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A 2Π1/2 (P = −1)

|0, 0〉 |1,−1〉 |1, 0〉 |1, 1〉

X 2Σ+

(v = 0)

|0, 0, 0〉 0 −0.454 −0.454 −0.454

|0, 1,−1〉 0.454 0.454 0.454 0

|0, 1, 0〉 −0.454 −0.454 0 0.454

|0, 1, 1〉 0.454 0 −0.454 −0.454

|2, 2−,−2〉 0 −0.222 0 0

|2, 2−,−1〉 0 0.157 −0.157 0

|2, 2−, 0〉 0 −0.091 0.181 −0.091

|2, 2−, 1〉 0 0 −0.157 0.157

|2, 2−, 2〉 0 0 0 −0.222

|2, 1,−1〉 0.321 −0.161 −0.161 0

|2, 1, 0〉 −0.321 0.161 0 −0.161

|2, 1, 1〉 0.321 0 0.161 0.161

|2, 2+,−2〉 0 0.325 0 0

|2, 2+,−1〉 0 −0.230 0.230 0

|2, 2+, 0〉 0 0.133 −0.265 0.133

|2, 2+, 1〉 0 0 0.230 −0.230

|2, 2+, 2〉 0 0 0 0.325

Tab. B.1: Projection factors 1
μA-X

〈ψES| d̂ · εp |ψGS〉 between the hyperfine levels |F,mF 〉
of A 2Π1/2 (P = −1) and the hyperfine levels

∣∣N,F+/−,mF

〉
of X 2Σ+ . The

sum of the squares of each column gives the branching ratio for decays to the
X 2Σ+ (v = 0) levels, f00 = 0.928.
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A 2Π1/2 (P = 1)

|0, 0〉 |1,−1〉 |1, 0〉 |1, 1〉

X 2Σ+

(v = 0)

|1, 1−,−1〉 0.028 −0.379 −0.379 0

|1, 1−, 0〉 −0.028 0.379 0 −0.379

|1, 1−, 1〉 0.028 0 0.379 0.379

|1, 0, 0〉 0 −0.454 −0.454 −0.454

|1, 2, 2〉 0 0.393 0 0

|1, 2,−1〉 0 −0.278 0.278 0

|1, 2, 0〉 0 0.161 −0.321 0.161

|1, 2, 1〉 0 0 0.278 −0.278

|1, 2, 2〉 0 0 0 0.393

|1, 1+,−1〉 0.556 0.297 0.297 0

|1, 1+, 0〉 −0.556 −0.297 0 0.297

|1, 1+, 1〉 0.566 0 −0.297 −0.297

Tab. B.2: Projection factors 1
μA-X

〈ψES| d̂ · εp |ψGS〉 between the hyperfine levels |F,mF 〉 of
A 2Π1/2 (P = 1) and the hyperfine levels

∣∣N,F+/−,mF

〉
of X 2Σ+ . The sum of

the squares of each column gives the branching ratio for decays to the X 2Σ+ (v =
0) levels, f00 = 0.928.
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B.3 g factors

We also want to consider how the energy levels shift when a static magnetic field B is

applied along a given axis. Taking that axis to be z, the shift in a ground state energy

level
∣∣N,F+/−,mF

〉
(which has no orbital angular momentum) for small applied fields

is found via first order perturbation theory to be

ΔE =gsμBB
〈
N,F+/−,mF

∣∣ Ŝ · ε0
∣∣N,F+/−,mF

〉
, (B.28)

here gs is once again the absolute value of the electron gyromagnetic ratio ge � −2.

These energy shifts can be rewritten in terms of the Landé g-factors gF for a given

level

ΔE =gFμBBmF , (B.29)

where the g-factors gF = gF
mF

〈
N,F+/−,mF

∣∣ Ŝ · ε0
∣∣N,F+/−,mF

〉
shown in Table B.3

can be calculated using the results in subsection B.2.1.

∣∣N,F+/−〉 −gF

|0, 0〉 0

|0, 1〉 1

|1, 1−〉 0.071

|1, 0〉 0

|1, 2〉 1/2

|1, 1+〉 0.428

|2, 2−〉 0.023

|2, 1〉 −1/2

|2, 2+〉 0.477

Tab. B.3: gF factors of a few of the X 2Σ+ (v = 0) states
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Finding the gF factors for the excited states is slightly more complicated be-

cause the magnetic dipole operator contains contributions from the orbital angu-

lar momenta and from smaller terms that arise from mixing between A 2Π1/2 and

other neighbouring electronic states. To find the gF factors one needs to evaluate

Eq. (9.71) of Ref. [87], using the various constants given in Ref. [90]. This has been

done by M. Tarbutt [69], giving the gF factors for the F ′ = 1 levels of A 2Π1/2 (P) as

gF = −0.268× P .
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