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Abstract

We show that a Bose-Einstein condensate (BEC) interferometer on an atom chip is capable

of making an absolute force measurement. We demonstrate this by making an absolute

measurement of the gravitational acceleration g.

We implement two interferometer arms by splitting a BEC into two symmetric wells us-

ing radio-frequency (rf) adiabatic potentials. The independent control of the rf currents

running through the chip surface allows us to change the polarisation of the rf field and

hence the orientation of the double well potential. Tilting of the system with respect to the

horizontal introduces an energy difference ∆V and the relative phase between the BECs

starts to evolve. After moving the atoms back to their initial position and overlapping the

clouds in free fall we measure the resulting phase from the interference pattern.

In order to derive a number for g from experimental results a detailed analysis and under-

standing of the interferometer scheme is essential. For this type of interferometer we have

identified two main limitations to the accuracy of the measurement: a systematic error due

to rf field gradients, and a statistical error due to phase spreading from atom-atom interac-

tions. Taking all errors into account we expect a value for g to within 16%. The statistical

uncertainty of the measurement is 5%.

We have a strategy for reducing all systematic errors to less than 1%. In order to reduce

the rate of phase spreading we want to squeeze the relative number of atoms between the

wells in future experiments.
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Chapter 1

Introduction

This manuscript is thought of as a manual on how to build an atom Bose-Einstein condensate

(BEC) interferometer. The starting point is a single BEC trapped near an atom chip

surface. From there on we will describe the various steps to implement an interferometer

and making it work. The demonstration of an absolute measurement of the acceleration of

free fall will prove the capability of the device. The determination of the limitations of an

atom BEC interferometer will be derived from the detailed discussion of the results and are

the important conclusions of this thesis.

Everybody should be warned in advance that at the end of our journey we will not end up

with a small and handy device. The working interferometer still takes a whole optical table

and has the complexity of most typical ultra-cold atom experiments. However, it illustrates

how the principles of quantum mechanics and the concept of BEC can be used for an

actual application. So far we should be allowed to draw some analogue to Konrad Zuses Z3

which is considered the world’s first operational computer [1]. The Z3 demonstrated binary

arithmetic and programmability while its dimension basically took a whole room. Today

every mobile phone is more powerful than the Z3 and therefore a comparison with modern

computers is difficult.

Such a process we call evolution and if we have a look back we will notice that also

interferometry with atoms has developed a lot since the first diffraction experiments in the

last century.

1.1 Coherence of Atoms

The development of the first light interferometers in the 19th century had an huge impact

on the physical world view. For example, it was the Michelson-Morley experiment [2]

which gave evidence that a luminiferous aether does not exist and therefore opened the

way for special relativity. Today the laser provides the optimal tool for light interferometry

producing perfectly coherent light with high coherence lengths. However, photons have the

big drawback that they interact only very weakly with gravitational, magnetic and electric

fields and therefore their use as a sensor is limited. The possibility to sense such fields with
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atom interferometers developed within the last decades.

1.1.1 Atom Diffraction

At the beginning of the 20th century three crucial observations provoked a discussion on the

nature of light. Although its wave property was proved in Young’s double slit experiment,

the measurement of the spectrum of black body radiation, the photoelectric effect and

the Compton scattering of light on electrons point to a particle character of light. The

explanation of the photoelectric effect where a single photon transfers its whole energy to one

single electron brought Albert Einstein the Noble Prize in physics in 1921. Thinking about

the wave-particle dualism of light Louis de Broglie in 1924 suggested the same concept to

solid particles such as neutrons, electrons and atoms. From the relation between wavelength

and momentum p he derived the de Broglie wavelength of a matter wave λdB = h/p with

h being the Planck constant. Indeed only a few years later the diffraction of electrons shot

through a thin crystal foil was observed [3]. Esterman and Stern [4] finally proved the wave

propagation of atoms by diffraction of He on a LiF crystal surface. In both experiments the

measured atom distribution showed patterns similar to the diffraction patterns of X-rays.

The diffraction of atoms was repeatedly demonstrated on various types of gratings.

Advances in the fabrication processes opened the path for transmission gratings on a nm

scale necessary to observe diffraction of atoms with de Broglie wavelengths of only a few

pm [5, 6]. Another experiment makes use of two counter-propagating laser beams [7] with

wavelength λlaser. The resulting standing wave then acts as a transmission grating for

He atoms with a period λlaser/2. Constructive interference of neighbouring matter waves

spreading from the grating occurs if the particles’ path difference is a multiple of the de

Broglie wavelength. Therefore we define the angles θn with n = 0, 1, 2,... of maximum

particle density on an observation screen as

nλdB =
λlaser

2
sin θn (1.1)

which directly depends on the de Broglie wavelength λdB. This experiment clearly demon-

strates the concept of the particle-wave duality that particles can interfere in the same way

light does. Diffraction of particle projectiles is now widely used to investigate the structure

of targets such as biomolecules or even other particles.

1.1.2 Atom Interferometer

The wave properties of solid particles inspired Heisenberg and Schrödinger to the idea of

describing particles as wavepackets and to the development of quantum theory. Within this

theory a particle is described by a wavefunction Ψ which can contain information about

both external and internal states. The interesting point in terms of interferometry is that

the wavefunction allows the occurance of a phase term eiφ without affecting the outcome

of a classical measurement. In particular the measurement outcome of a classical variable
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represented by the operator Ô is described by
∣∣〈Ψ†∣∣Ô∣∣Ψ〉∣∣2. Modifying the wavefunction

with an additional phase such that Ψ′ = Ψeiφ does not alter the observation of the classical

variable
∣∣〈Ψ′†∣∣Ô∣∣Ψ′〉∣∣2 =

∣∣〈Ψ†∣∣Ô∣∣Ψ〉∣∣2. The situation, however, looks completely different

if we ask for the interference pattern of two particles with the wavefunctions Ψa and Ψbe
iφ.

Then ∣∣∣Ψa + Ψbe
iφ
∣∣∣2 = |Ψa|2 + |Ψb|2 + 2Ψ∗aΨb cosφ, (1.2)

where the phase obviously manifests as a modulation of the total density. Equation (1.2)

itself represents the quantum mechanical basis of a solid particle interferometer and tells us

what is necessary to implement such a device.

First, the interferometer needs to have two arms a and b which are represented by the

two wavefunctions. Second, a phase shift can be applied on one of the arms but the phase

has to be well defined. Otherwise, a repeated measurement would not deliver the same

result. We refer to this requirement usually also as coherence of the wavefunctions.

From these simple considerations we can define five steps which all interferometers have

in common: (1) state preparation, (2) coherent splitting, (3) phase evolution, (4) coherent

recombination and (5) read out of the phase. Different types of interferometers differ in the

particles, the method of manipulation and the states which are used.

One early type of interferometer is the 3-grating interferometer which represents the

analogue to the Mach-Zehnder setup [8] for light. The first grating separates the incoming

particles by diffraction into two beam paths. The particles are recombined in the plane of

the third grating after which a detector counts the particle flux in the different diffraction

orders. The Mach-Zehnder interferometer separates the particles spatially and interactions

between the arms are disabled. In the past this setup was successfully implemented for

electrons [9], neutrons [10] and atoms [11].

Atoms with their rich structure of internal states open the path for interferometers where

atoms in the two interferometer arms occupy different atomic states or superpositions of

states. A high precision measurement of the acceleration of free fall was demonstrated with

such a device by Peters et al. [12]. The interferometer achieved an absolute uncertainty

∆g/g = 10−9 by preparing atoms from an atomic fountain in a superposition of momentum

and atomic level entangled state. The relative phase is then proportional to the gravitational

field g and quadratic in the interaction time between the π/2 Raman pulses driving the

atomic transitions.

In the last decade a completely new concept of atom interferometry has been developed.

Instead of using freely moving atom beams these new devices manipulate the states of

atoms within a confined potential. The preparation of the atoms as a BEC which exhibits

long range order guarantees the coherence between the atoms. Interferometry by splitting

and recombining a BEC into a double well potential was demonstrated by various groups

[13, 14]. A phase shift applied to one of the two spatially separated wells is extracted from

an interference pattern. The sensitivity of such a BEC interferometer is typically limited by

the dephasing effects causing an increased spread in the phase measurements. A promising
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method to increase the coherence time seems to be the implementation of number squeezing

which was reported by G.-B. Jo et al. [15].

Despite a lot of progress, however, an absolute measurement of an external field with

confined atoms has not been performed yet. This is exactly the point where this thesis

contributes to the interesting field of atomic physics.

1.2 Technological Advances

Atom interferometers based on trapped atoms only developed recently. In the following we

give a brief overview over the recent key technologies and discoveries essential to build an

atom chip BEC interferometer.

1.2.1 Trapping of Atoms

One important property of atoms is their interaction with light, magnetic and electric fields.

The influence of laser light with a frequency near a transition of an atomic state shifts the

energy level of the atom [16]. The magnitude of the shift is proportional to the intensity

of the light field and depends on the sign of the detuning. Therefore an atom in a red-

detuned Gaussian laser beam is accelerated towards the focus of the beam. Such traps were

successfully implemented in cold atom experiments [17, 18, 19].

A similar effect is caused by a magnetic field B. The total atomic spin F̂ interacts with

the external field and shifts the energy of the atomic state which is known as the so-called

Zeeman-shift and is described by the Hamiltonian [20]

ĤZeeman = gFµBF̂ · B̂ (r) . (1.3)

Here gF describes the hyperfine Landé factor and µB is the Bohr magneton. For hydrogen

like atoms in their ground state the atomic spin F̂ can be identified with the orbital angular

momentum of the atom. In general the coupling of the hyperfine states with external,

magnetic fields behaves non-linearly. However, most cold atom experiments operate at field

strenghts low enough that a linear approximation is justified

∆EZeeman = gFµBmF |B| . (1.4)

The projection mF of the total atomic spin onto the magnetic field takes the values −F ≤
mF ≤ F and defines the sign of the energy shift. If the shift is positive we end up with

a low-field seeking state, while a negative sign causes the atom to be sucked into an area

of higher magnetic field. The Earnshaw theorem forbids a local maximum of the absolute

value of a magnetic field in free space. Therefore static magnetic traps for high-field seeking

states are impossible to implement in contrast to blue-detuned optical dipole traps.

A famous example of a magnetic trap with a local, magnetic field minimum is the Ioffe-

Pritchard (IP) trap. It is today a typical trapping configuration in atom chip experiments
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where it is created by overlapping the magnetic field of a chip wire with a homogenous

external magnetic field. The magnetic field minimum is non-zero to prevent losses of trapped

atoms by Landau-Zener transitions. Typically the trapping potential of an IP trap can be

written in the form

V (r, z) =
1

2
mω2

rr
2 +

1

2
mω2

zz
2 (1.5)

which has axial symmetry with the radial trap frequency ωr and the longitudinal trap fre-

quency ωz.

The versatility of such traps is greatly enhanced by the implementation of radio-frequency

(rf) adibatic potentials which were theoretically proposed by Zobay and Garraway [21, 22].

An rf magnetic field dresses the hyperfine states of the atoms. The new state of the atoms

is then described by a superposition of the original states. Depending on the application of

the dressing fields the atoms experience a potential of different shape. The most common

implemented setup is the double well potential used to split a BEC into two wells [13, 23].

However, other trap configurations [24] are also possible.

1.2.2 Cooling of Atoms

Atoms cannot be held in a trap unless their thermal energy is substantially lower than the

depth of the trap. Laser cooling in a magneto-optical trap (MOT) [25] is the standard

method of achieving this. A MOT consists of a magnetic quadrupole field combined with

six confining laser beams propagating from the six directions ±x, ±y and ±z. Atoms enter

the cooling area from a background gas vapour. The laser beams are slightly detuned from

the atomic cooling transition. Whenever an atom moves in a certain direction the Doppler

shift causes resonance with the corresponding, counterpropagating laser beam. The atom

scatters photons and experiences a net kick into the direction opposite of its movements.

Each scattered photon takes a part of the kinetic energy away and the atom cools down in

momentum space. The Zeeman splitting in the quadrupole field and the opposite helicity

of counterpropating laser beams ensures that the atoms only experience forces towards the

centre of the trap. Therefore the quadrupole field provides trapping in position space.

Laser cooling though is not possible with every kind of atom. In fact it is limited to

only a few atoms of the periodic table, most of them the alkali metals, since the atomic

structure has to be simple enough to implement a closed cooling cycle of internal states.

Otherwise the atom can end up in a state which is not resonant to the laser beams after

the first scattering process preventing further reduction of kinetic energy. As cooling occurs

due to a scattering process there is a lower limit in achievable temperature Tmin set by the

natural linewidth Γ [26]

kBTmin = ~Γ/2 (1.6)

with kB the Boltzmann constant and ~ the Planck constant divided by 2π.

In order to reach even lower temperatures further cooling techniques were demonstrated

in the last 20 years, i.e. Sisyphus cooling, Raman cooling and resolved-sideband Raman
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cooling. For neutral atoms in magnetic traps BEC transition, however, was first achieved

with evaporative cooling [27, 28] where an applied rf field drives spin flips of hot atoms

to untrapped mF states. The hot atoms are expelled from the trap and take a part of

the thermal energy with them. Like in a hot cup of coffee where the steam takes energy

away from the liquid which cools down, the remaining atoms establish a new equilibrium

at a lower temperature. By subsequently lowering the rf frequency and hence moving the

resonant sphere closer to the trap centre temperatures on the order of only a few nK can

be achieved in the case of large initial atom numbers.

1.2.3 Bose-Einstein Condensation

Regarding a many-body system with N particles, a BEC represents a system with a number

of particles occupying a certain state which is on the order of N . Such a behaviour can be

achieved in tight traps with high atomic densities. Reducing the temperature of the system

decreases the selection of available states, since then most of the atoms do not have enough

energy to occupy higher states.

Concerning the distribution of the atoms among the states the quantum statistical

properties of bosons are crucial for condensation to occur. Quantum theory gives only a

probability to find an atom at a certain point in space, hence identical atoms moving in the

same volume are indistinguishable in a measurement. Assuming two states occupied by two

non-identical atoms, e.g. a blue and a red atom, we will find four possible configurations to

distribute the atoms among the states. In the case of indistinguishable particles, however,

the number of configurations reduces to three possibilities. In fact the configurations where

exactly one atom occupies each state remain unaffected after a particle swap and hence

represent the same physical situation.

Taking this theoretical considerations on bosons and quantum statistics into account A.

Einstein derived the equation for the transition temperature to BEC [29]

Tc =
~ωgeo

kB

(
N

ζ (3)

)1/3

(1.7)

for non-interacting bosons in 1925. In the equation we find the Riemann ζ function and the

geometric average of the trap frequencies ωgeo = (ωxωyωz)
1/3. Although the existence of

BEC [30] was theoretically imaginable, it took several decades until the necessary techniques

for atom trapping and cooling were available. Since the first realisation of BEC in 1995,

scientific interest exploded.

The complexity of BEC is extended by atom-atom interactions which play an important

role in the behaviour of the system and are the focus of various studies [31, 32, 33]. The long

range order within a BEC causes the coherence of the atoms which led to the demonstration

of atom lasers [34, 35] in the past.
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1.2.4 Atom Chips

In order to gain large trapping confinement, high field gradients are necessary. The mag-

netic field gradient of a single wire scales as ∂ |B| /∂r ∝ 1/r2 which becomes large in the

limit r → 0. It is therefore advantageous to create a magnetic trap near a single wire instead

with fields created with structures outside the vacuum chamber.

Based on this consideration tight traps with wire diameters down to 50µm were realised

[36, 37]. Further miniaturisation finally led to the development of so-called atom chips. An

atom chip consists of wires or a permanent magnetic structure placed onto a substrate.

The production of atom chips enormously benefits from the well-known micro-chip tech-

nologies, and as the most important fabrication techniques electroplating and evaporated

microstructures have been established. The first atom chips were created by electroplating

a conductor on a sapphire substrate [38, 39]. The rough surface of electroplated structures,

however, has consequencs for the smoothness of magnetic potentials near the chip surface

[40]. Evaporation of thin metal films onto a Si or GaAs substrates achieved better results

[41]. Since these materials are semiconductors, the substrates are insulated with a thin

SiO2 layer with a thickness up to 5µm. The wires are patterned in a conductive surface

deposited on top and have dimensions in the order of only a few µm. As a conductor a

material with high reflectivity, typically gold, is processed. The reflective surface allows the

implementation of a mirror-MOT which is necessary to load the magnetic trap. In recent

years also the fabrication of multi-layer chips was demonstrated [42].

Depending on the exact configuration tight magnetic traps which also allow the con-

finement of a BEC [43, 44] or arrays of traps [45, 46] can be realised near the chip surface.

Another advantage of an atom chip is the possibility of integrating micro-optical elements

into the chip, e.g. pyramid-MOTs [47], waveguides [48], cavities and optical fibres for atom

detection [49, 50, 51, 52].

Typical trapping distances from the surface are of the order of 10µm to a few 100µm.

At very small distances < 100µm the potential suffers distortion from fragmentation and

the Casimir-Polder force. Atoms depositing on the chip over time can also cause the patch

effect and limit the trap depth [20]. The crucial limiting factor in the design, however, is

the transport of heat away from the chip surface. Due to the small wire cross-section a high

amount of power is dissipated at fairly low currents of around 1 A. If the heat conductivity

of the chip is not sufficient, the wires will melt and be destroyed. At this point also the

mount of the chip serving as a heat sink plays an important role.

1.3 Principle of the Experiment

In the following we give a brief overview of the principles of the experiment which should

help to understand the context in the detailed discussions of the later chapters.
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1.3.1 Interference Pattern

Similar to the famous double slit experiment the two BECs in a double well potential can

be considered as point like sources. When we turn off the confining potential, the atom-

atom interaction potential transforms into kinetic energy and the whole cloud spreads like

the wave spreads from the impact area of a stone in a pond. By starting with two BECs

close to each other we can overlap the expanding atoms after release. The result is not,

as one would expect classically, one big atomic gas cloud. In fact ultra-cold atoms behave

like a wave and we find a pattern analogue to a standing wave with areas of high and low

atomic density, so-called interference fringes described by equation (1.2). A simulation of

the experiment is compared with the observed interference pattern in figure 1.1.

The important observation relevant to our experiment is that the position where the

(a) (b)

(c)

50 µm

Figure 1.1: (a) Simulation by Robin Scott of two BECs confined inside two wells. After the
confinement is turned off the atoms spread from the two wells and overlap (b) showing an interference
pattern. (c) The interference pattern actually observed in the experiment.

fringes occur depends on the relative phase of the two BECs. The relative phase is the most

interesting quantity for an interferometer and therefore a great part of this thesis deals with

the observation of the interference pattern, the extraction of the phase and the limits of a

phase measurement.

In the first experiment of this kind by Andrews et al. [53], the interference fringe

position was not reproducible in repeated experiments due to a random relative phase

between the halves. Following experiments [14, 13] finally showed coherence of the process

and a repeatable relative phase measurement was guaranteed.
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1.3.2 Applying a Phase Shift

Observing an interference pattern and extracting a relative phase does not yet make an

interferometer. We rather have to implement a complete scheme which also allows the

evolution of the phase. In general the evolution of the relative phase φ is given by

φ = −1

~

∫
t
∆V (x) dτ, (1.8)

and depends on the trapping time t of the atomic clouds and the potential difference ∆V

between the two BECs.

If ∆V is caused by an external field, its gradient can be extracted from the interference

pattern. We are interested in measuring the gravitational acceleration g and therefore it

stands to reason to introduce a height difference between the two BECs.

The experimental scheme for our atom chip BEC interferometer is shown in figure 1.2.

After preparing the BEC in a magnetic trap we split it coherently into a double well po-

tential. We then introduce a potential difference between the two wells of the potential.

After moving the BECs back to their initial position we recombine the clouds in free fall

and observe the interference pattern.

This experimental cycle completes the five basic steps of an interferometer. Since the ap-

plied potential shift depends on various parts, a detailed analysis of the system is necessary

to extract the gravitational constant g.

∆V

Figure 1.2: Basic procedure of the experiment. After preparation of a BEC in a magnetic trap we
split it into a double well potential. By applying a potential difference the relative phase between
the two condensates starts to evolve. We read out the resulting phase shift from the interference
pattern after overlapping the atoms in free fall. The applied potential gradient can be determined
from the phase evolution allowing the measurment of external fields.

1.4 Thesis Outline

The plan for this thesis is the following:

In chapter 2 we discuss the basic theory of matter wave interference. We examine the

meaning of the phase and the origin of the interference pattern. We also describe the-

oretically dephasing and longitudinal phase fluctuations which limit the precision of an

interferometer. The knowledge of this part is essential to understand the behaviour and

the operation method of the atom BEC interferometer. A physicist from the field might be
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confident with the presented concepts and can consider this chapter as a reference guide.

We then move on to the experiment itself and present the needed hardware, the setup

and computer control in chapter 3. Here we also describe how the experimental cycle looks

like and how we achieve BEC in a magnetic trap near the chip surface.

We explore the characteristics and properties of the magnetically trapped BEC in chap-

ter 4 which represents the starting point for our interferometer. First, we describe the

magnetic trap and calculate the resulting trapping fields. Then we determine properties

such as trap bottom, lifetime and trap frequencies of the confining potential from experi-

ments. A crucial part of this chapter is also the calibration of the imaging system which is

essential to extract numbers from images.

In chapter 5 we present how we split the BEC into two interferometer arms. An applied

radio-frequency (rf) field dresses the atoms which then experience a double well potential.

In this context we also present the method to apply an energy shift between the wells mak-

ing the potential asymmetric. A detailed characterization of the asymmetric double well

potential follows. The results of this chapter are crucial for a comparison with the interfer-

ometer measurements presented later in the text.

We present the observation of an interference pattern after recombining the BECs from

two wells during free fall in chapter 6. We show how a phase can be extracted from the

fringe pattern and that the repeated experiment delivers a reproducible relative phase. The

width of the phase distribution is influenced by the turn off and the time the atoms spend

inside the double well potential. In that context we explore the limits of our system due to

dephasing.

Finally, in chapter 7 we combine all the steps in one single scheme which enables a

working interferometer. After discussing the theory and expectations for the outcome of

the measurement we run the experiment and derive the gravitational acceleration g from

the shift of the relative phase with a statistical error of around 5%. In addition we present

a modified scheme from which we gain additional knowledge about the double well system.

The thesis ends with our conclusions on the experimental results and an error discussion

on the g measurement in chapter 8. In a short outlook we present possible improvements

of the atom BEC interferometer for the future.
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Chapter 2

Theoretical Background

2.1 Introduction

The concept of Louis de Broglie to assign a wavelength to particles such as electrons, neu-

trons and atoms and the development of quantum mechanics led to the first interference

experiments for particles. The observation of an interference pattern proves the wave char-

acter of massive objects and therewith also the existence of a phase. Unlike the velocity or

the mass, the phase of a particle has no physical significance and manifests itself only in

interference experiments. It turns out, however, that the phase evolves by the coupling of

a particle to external fields and potentials. Measuring the relative phase between two par-

ticles moving in a known and unknown potential therefore enables us to draw a conclusion

on the unknown one. Since atoms couple to gravitational, magnetic and electric fields, the

behaviour of their phase is a quantitiy of great interest.

The relative phase can be determined from interference experiments but mostly requires

a source of coherent atoms. For an ensemble of atoms coherence is achieved by reducing

momentum and its uncertainty. In the concept of BEC an accumulation of many particles

occupies one single ground state where the whole ensemble has one global phase. Therefore

a BEC represents an ideal source of coherent particles.

In this section we cover the basic theory needed to understand an atom BEC interfer-

ometer. We start in section 2.2 with the examination of a particle’s phase shift. We then

extend the picture from a single atom to a BEC where all atoms occupy the same state and

can be described by an order parameter. This concept of a condensate wavefunction implies

the establishment of a global phase. Two BECs overlapping in free fall show the existence

of the global phase in a characteristic interference pattern. We discuss the occurrance of

matter wave interference and its properties in section 2.3. The theoretical background pre-

sented in this chapter builds the basis for an atom BEC interferometer and is therefore

essential to understand the procedures throughout this thesis.
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2.2 The Phase

2.2.1 Phase of a Particle

We start our considerations with a single, nonrelativistic particle of mass m moving with

momentum p in an external potential V (x). The Hamiltonian for this simple system is

written as

Ĥ =
p̂2

2m
+ V̂ (x) . (2.1)

Suppose we want to examine the event that the particle travels from one place (xa, ta)

to another (xb, tb). The questions that arise then are: Which path will the particle take

and what is its probability to happen? In the formalism of the canonical Hamiltonian the

amplitude is simply given by the expression
〈
xb, tb

∣∣∣e−iĤ(tb−ta)/~
∣∣∣xa, ta〉.

Another solution for the problem can be derived from Feynman’s path integral formalism

[54] which is based on the superposition principle of quantum mechanics. The amplitude

for the particle to travel from (xa, ta) to (xb, tb) is then nothing other than the coherent

sum of the amplitudes for all possible paths. The paths are all equally important but can

differ from each other by a phase φp which has no influence on the probability of a certain

path x (t). Hence we write the total amplitude as the functional integral [55]

A (xa,xb, ta, tb) =

∫
Dx (t) eiφp[x(t)] (2.2)

where the symbol
∫
Dx (t) means the sum over all possible paths. In the classical case,

however, the path of the particle is set by the initial conditions. The classical path xcl (t)

is unique and satisfies the principle of least action

δ

δx (t)
S [x (t)] |xcl = 0 (2.3)

where S =
∫
L (ẋ,x) dt is the classical action. In order to describe nature the different

theories have to be consistent with each other. Therefore we expect that in the classical

limit only the classical path contributes to the amplitude. A particular path in equation

(2.2) is then unique if its phase is also unique which is in fact nothing else than the classical

action S/~.

Assuming a time-independent potential V (x) the particle with the total energy E ac-

quires a phase shift of

φp =

∫ [√
2m

~2
(E − V (x))−

√
2m

~2
E

]
d3x. (2.4)

Expanding this expression to first order in V/E leads us to the approximation for this phase

shift of

φp ≈ −
1

~v

∫
V (x) dx = −1

~

∫
t
V (x) dτ, (2.5)
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where v is the velocity of the particle and t = tb − ta is the interaction time. The phase

evolution depends on both the potential and the time the particle spends inside the po-

tential. A classical force which can be viewed as a potential gradient F = −∇V (x) will

cause the same effect. But such a force will not only change the phase but will also change

the motion of the particle. For the sake of completeness we mention that there are also

topological phase shifts induced between two particles such as the Aharonov-Bohm effect

[56]. Such topological effects are independent of the velocity and the path of an atom. A

discussion of these is beyond the scope of this thesis.

2.2.2 Phase of a BEC

Order Parameter

In the case of a dilute Bose gas trapped in an external potential Vext (r, t) where the s-wave

scattering length is much smaller than the average distance between the atoms, Gross [57]

and Pitaevskii [58] derived independently the Gross-Pitaevski (GP) equation

i~
∂Ψ (r, t)

∂t
= − ~

2m
∇2Ψ (r, t) + Vext (r, t) Ψ (r, t) + g |Ψ (r, t)|2 Ψ (r, t) . (2.6)

The GP equation is valid in the case of a large number of atoms in the condensate N0 and

for low temperatures. The last term describes atom-atom interactions with the coupling

constant

g =
4π~2a

m
(2.7)

where m is the atomic mass and a is the s-wave scattering length. A posititive a corresponds

to repulsive forces, while a < 0 describes an attractive interaction. For a = 0 we get

vanishing interactions and the GP equation becomes the well-known Schrödinger equation.

The function Ψ (r) is a macroscopic Schrödinger wavefunction normalised to the number of

atoms N which describes the whole ensemble of atoms within a mean-field approximation.

It is called the order parameter and can be written as

Ψ (r, t) =
√
n (r, t)eiφ(r,t). (2.8)

The order parameter has a well-defined phase φ and the atom density n is fixed by the

relation n (r, t) = |Ψ (r, t)|2. The construction of the classical field Ψ (r) goes back to the

ideas of Bogoliubov [59] on dilute Bose gases in the limit N →∞.

Velocity Field

In order to proceed with our examination of the order parameter and the meaning of its

phase we make use of the tools provided by classical field theory. A closer look at the

Hamiltonian of equation (2.6) shows that it is invariant under a transformation Ψ→ Ψeiφ

which is nothing else than a phase shift of the order parameter. According to Noether’s
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theorem every transformation that leaves the equations of motions unchanged induces a

symmetry. In the case of BEC the conserved quantity is the four-current [55]

jµ =
~

2im
[(∂µΨ∗) Ψ−Ψ∗ (∂µΨ)] (2.9)

which is a vector containing both charge and current. Combining this relation with the

order parameter of equation (2.8) and taking the condition for conservation ∂µj
µ = 0 into

account, leads us to the expression

∂

∂t
n+

~
m
∇ (n∇φ) = 0. (2.10)

Equation (2.10) is nothing else than the well-known equation of continuity which expresses

the conservation of particles. A comparison with the classical equation of continuity suggests

to define the superfluid velocity as

v (r, t) =
~
m
∇φ (r, t) . (2.11)

The phase of a BEC fixes its velocity field. A trapped BEC without vortices resting in

the steady state has a vanishing velocity field and hence according to equation (2.11) the

phase is constant over the whole condensate. Since a BEC is defined by the macroscopic

occupation of the lowest energy state, the intuitive expectation is indeed that the atoms

establish a global phase. A manipulation on the external potential Vext (r) is the same for

each particle in the condensate experiencing a total shift in phase according to equation

(2.5).

Globality

As a trapped Bose gas is cooled down below the critical temperature for condensation

Tc, density and phase fluctuations quickly vanish, and the condensate establishes a global

phase. The situation, however, is quite different in lower dimensions. The Mermin-Wagner-

Hohenberg [60, 61] theorem states that condensation does not occur at finite temperatures

in uniform one- (1d) and two-dimensional (2d) Bose gases. Studies of 1d traps [62, 63] with

aspect ratios λ = ωr/ωz >> 1 between the radial trap frequency ωr and the longitudinal

trap frequency ωz showed suppressed density fluctuations at finite temperature T << Tc.

However, along the length of the cloud phase fluctuations are present due to thermal excita-

tions. The main contribution comes from axial excitations with energies εν < ~ωr. Typically

the range of the excitations’ wavelengths are smaller than the length of the elongated BEC

but larger than its diameter. In the vicinity of phase fluctuations we can no longer speak

of a true BEC and we refer to such a system rather as a quasicondensate. The length scale

on which phase fluctuations occur depends on the 1d density n1 of the cloud and is defined
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by the phase coherence length

Lφ =
~2n1

mkBT
. (2.12)

In fact the phase coherence length increases with decreasing temperature T . Since a realistic

confining potential is of finite size, a true BEC is observed as soon as Lφ becomes of the order

of the length L of the BEC. We define the 1d transition temperature Tφ as the temperature

where Lφ = L yielding

Tφ =
~2n1

mkBL
. (2.13)

At temperatures Tφ < T < Tc the coherence length is smaller than the condensate and

causes the break up into ξ local domains of constant phase along the length of the cloud

ξ =
T

Tφ
=

L

Lφ
. (2.14)

In terms of interferometry the locality of the phase immediately provokes the question

whether a phase shift is actually measureable with such a system. Indeed we operate a

magnetic trap in our experiment with an aspect ratio of around λ = 71 whereas Dettmer

et al. [63] observed longitudinal phase fluctuations for much smaller ratios. Hence, the

repeatability of a phase measurement is not trivial. An answer was given experimentally by

G.-B. Jo et al. [23] in 2007. They demonstrated that a determination of the relative phase

in a split BEC with an aspect ratio of ∼ 200 is robust against phase fluctuations.

2.3 Theory of Matter Wave Interference

In this section we deal with the simple situation sketched in figure 2.1 where two BECs

A and B that are initially well separated and independent overlap in free fall after being

released from the trap at time t = 0. During their expansion the clouds establish their

relative phase [64, 65] in the measurement of the resulting interference pattern. We define

their relative phase as φ = φa − φb, the difference of the individual phases φa,b. We want

to note that for simplification we refer to the relative phase often also only as phase within

the text of this thesis.

2.3.1 Mean Field Picture

The simplest description of interference fringes [66] can be derived within the mean field

picture, where Ψa,b (r, t) =
√
na,b (r, t)eiφa,b(r,t) are the equilibrium wave functions of the

two condensates. The initial separation of the condensates is d, the condensate A being

centered at xa = +d/2, and the condensate B at xb = −d/2 with d = |d|. The initial

order parameter of the system at time t = 0 is then written as a linear combination of the

individual wavefunctions

Ψ (r) = Ψa (r) + Ψb (r) , (2.15)
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with the overlap of the wavefunctions∫
Ψ∗a (r) Ψb (r) d3r ∼= 0. (2.16)

If we neglect the interaction between the two condensates but account for the atom-atom

interactions during free expansion, the total density n = |Ψ|2 of the overlapping condensates

exhibits modulations of the form

n (r, t) = na (r, t) + nb (r, t) + 2
√
nb (r, t)nb (r, t) cos [φa (r, t)− φb (r, t)] . (2.17)

By recalling that the phase of a condensate is related to the velocity field of a wavefunc-

tion via v = ~
m∇φ and assuming that the velocity field of a condensate asymptotically

approaches the classical velocity of the particles va,b = ra,b/t we find from integration the

expression

φa,b (r, t) =
1

2

m

~t
(r± d) · r + const. (2.18)

The difference between the two phases at the space point r then becomes

φa (r, t)− φb (r, t) =
m

~t
d · r + φ. (2.19)

One should notice that the integration constant has to be replaced by the relative phase φ

which is an initial, constant offset inside the trap. Since φ has no physical significance with

respect to a single cloud, the release of both clouds has the same properties and the relative

phase is independent of the position in space. Hence equation (2.17) can be written as

n (r, t, φ) = na (r, t) + nb (r, t) + 2
√
nb (r, t)nb (r, t) cos

(
md

~t
x+ φ

)
(2.20)

which shows that in a single experiment the interference pattern is characterized by straight

line fringes orthogonal to the splitting axis with spacing

Λ =
ht

md
(2.21)

between adjacent fringes. Since the absolute position of the fringes depends on the initial

relative phase φ, the relative phase can be determined from the density distribution of

two overlapping condensates. This is the basic principle of a phase measurement used

for evaluating images from the interferometer. How this works in practice is presented in

chapter 6.

2.3.2 Two Mode Theory

The mean field approximation predicts the occurrance of interference and describes well

the fringe spacing Λ. However, it makes no comment about how the density measurements

establish the relative phase φ. In order to address this we introduce the two mode approx-
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B A

x

Figure 2.1: Schematic of two interfering BECs. The elongated BECs have an initial separation d
and overlap in during time-of-flight. An observer looking along the length of the cloud can see the
characteristic interference pattern. Ideally a fringe visibility of 100% is expected. In experiments,
however, phase fluctuations along the length of elongated BECs lead to a reduced contrast.

imation which has been extensively discussed in the literature and is also used to describe

the relation between phase and relative atom number in double well systems [67]. In the two

mode expansion the field operators are expanded in terms of two mode functions ψi (r, t)

with i = a,b. The model works if higher excitation modes can be neglected and the re-

striction to two modes is adequate for most aspects of the problems with weak atom-atom

interactions [68].

The two mode theory defines the annihilation âi (t) and creation operators â†i (t) such

that at a point in time t

â†a,b (t) =

∫
ψa,b (r, t) Ψ̂† (r) d3r. (2.22)

The time-dependent definition ensures that the theory is also capable of describing the

physics after the BECs are released from the trap. We have then just to put in the correct

single particle wavefunction at time t. The bosonic field operators Ψ̂ (r) satisfy the standard
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commutation relations [
Ψ̂
(
r′
)
, Ψ̂ (r)

]
=
[
Ψ̂†
(
r′
)
, Ψ̂† (r)

]
= 0,[

Ψ̂
(
r′
)
, Ψ̂† (r)

]
= δ

(
r′ − r

)
. (2.23)

In analogy to equation (2.8) we can write the field operator in terms of a relative density n̂

and relative phase operator φ̂

Ψ̂ (r) =
√
n̂ (r)eiφ̂(r). (2.24)

Reproduction of the commutation relations (2.23) implies[
n̂ (r) , φ̂

(
r′
)]

= iδ
(
r− r′

)
(2.25)

which means that the density and phase operator are conjugate variables. From the fact

that the two operators do not commute follows immediately an uncertainty relation. If the

relative atom number between two BECs is well-defined, then the relative phase appears to

be completely random.

Number States

In the two mode picture we can define the so-called relative number states

|k,N〉 =

(
â†a
)(N

2
−k)

[(
N
2 − k

)
!
] 1
2

(
â†b

)(N
2

+k)

[(
N
2 + k

)
!
] 1
2

|0〉 (2.26)

where N is the total number of atoms in the system and k can have the values −N/2,

−N/2 + 1,..., +N/2. The atoms occupy two independent modes which we define as a

fragmented state. In such a state, also called Fock state, the number of atoms in each mode

is well-defined and it therefore immediately follows from (2.25) that the absolute phase is

not well-defined.

We want to examine the interference properties of such a state when released from the

trap. After a long enough time-of-flight in the regime that the two clouds overlap we can

write the single particle wavefunctions as a Gaussian function

ψa,b = ua,b (r, t) eiQa,b·r (2.27)

where Qa,b = m (r± d/2) /~t are the wavevectors and ua,b are slowly varying real functions

describing the overall density. The strong overlap of the mode functions yields the following
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normalization ∫
ua,b (r, t)2 d3r = 1, (2.28)∫

ua (r, t)ub (r, t) d3r ≈ 1. (2.29)

Asking for the amplitude of density oscillations at wavevector Q = Qa−Qb the associated

operator in second quantization is given by

ρ̂Q =

∫
Ψ̂† (r) Ψ̂ (r) eiQ·r d3r (2.30)

which is the Fourier transform of the number density operator at the corresponding wave

vector. The expectation value of the operator ρ̂Q can be calculated explicitly for the number

state defined in equation (2.26)

〈k,N |ρ̂Q| k,N〉 =

〈
k,N

∣∣∣∣∫ Ψ̂† (r) Ψ̂ (r) eiQ·r d3r

∣∣∣∣ k,N〉 . (2.31)

We evaluate the integral by assuming that the extension of the clouds ua,b varies on a scale

longer than the fringe wavelength 1/ |Q|. Evaluation of the Fourier integral annihilates

then all parts with a wavevector different from Q and together with the normalization in

equation (2.28) and (2.29) we find

〈k,N |ρ̂Q| k,N〉 =
〈
k,N

∣∣∣â†aâb

∣∣∣ k,N〉 = 0. (2.32)

This result seems to suggest that there are no density modulations for number states. A

single shot experiment, however, clearly exhibits an interference pattern consistent with

equation (2.20). This arises because the expectation value in quantum mechanics has to be

interpreted as the statistical average over many experiments. For a Fock state the relative

phase is completely random [69] and the repeated and averaged experiment recovers the

result of equation (2.32). A Fock state would therefore constitute an incoherent input state

making it completely unsuitable for interferometry.

Phase States

In order to describe a many-body state with a well-defined phase we need to introduce the

binomial, or so-called phase states,

|φ,N〉 =
1√
N !2N

(
a†a + e−iφa†b

)N
|0〉 . (2.33)

All atoms occupy the same single particle state
(
ψa + e−iφψb

)
/
√

2 which is a superposition

of the two mode functions. This is called an unfragmented BEC. Although the total number

of atoms is fixed, the relative atom number k is completely uncertain. The relative phase
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φ is constant and the calculation of the expectation value of the density operator ρ̂Q yields

〈φ,N |ρ̂Q|φ,N〉 =
N

2
e−iφ. (2.34)

This result suggests that the interference pattern develops with a fixed phase φ. The crucial

point is that the average of repeated experiments delivers the same result as a single shot. In

fact for a pure binomial state
〈
φ̂
〉

= φ and
〈
∆φ2 (t)

〉
=
〈
φ,N

∣∣φ̂2
∣∣φ,N〉−(〈φ,N ∣∣φ̂∣∣φ,N〉)2 =

0.

Phase states represent a basis of the many-particle Hilbert space, thus we can write any

state as a superposition of phase states. For example we can write the Fock state as

|k,N〉 =

∫ +π

−π
χ (φ) |φ,N〉 dφ (2.35)

where χ (φ) = 1
2π is the distribution of the phase states and is called the phase amplitude.

In this picture one can interpret the phase measurement as the projection onto a random

phase state with a probability given by χ (φ). The ensemble average would, however, still

be given by (2.32).

Ensemble Average

In this section we discussed what we can expect from repeated experiments with the two

extremes of number states and binomial states. Let us now consider which state we end up

with when splitting the BEC in a double well potential. It is possible that the distribution

of phase states χ (φ) is completely different, i.e. we can assume a Gaussian time-dependent

phase amplitude [70]

χ (φ, t) =
1

(2π 〈∆φ2 (t)〉)1/4
exp

(
− φ2

4 〈∆φ2 (t)〉
+
iδ (t)

2
φ2

)
, (2.36)

where δ (t) is a function in time. We are now able to calculate the averaged ensemble density

for an arbitrary phase spread
〈
∆φ2 (t)

〉
by

n (r, t) =

∫ +π

−π
n (r, t, φ) |χ (φ, t)|2 dφ =

1

2
[na (r, t) + nb (r, t) + nint (r, t)] (2.37)

with the interference term

nint (r, t) = 2
√
na (r, t)nb (r, t) cos

(m
~t

d · r + φ
)
e−〈∆φ2(t)〉/2. (2.38)

In the averaged ensemble the fringe contrast is a measure of the phase distribution. The

highest contrast we find again for the binomial state for which
〈
∆φ2 (t)

〉
= 0. The ensemble

average is hence a tool to reconstruct the quantum state of the double well potential and

tells us how close we are to the binomial or number state after the preparation of the atoms.
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2.3.3 Dephasing of a Coherent State

The simplest model [66] of our experiment is to assume that each atom makes a choice of

occupying the left or right well. This splits the initial BEC into a coherent state,

|φ,N〉 = e−iNφ/2
∑
k

c (k) eikφ |k,N〉 . (2.39)

The probability distribution |c (k)|2 is bionomial. The coefficients are

c (k) =

√
N !√

2N (N/2 + k)! (N/2− k)!
. (2.40)

Each number state |k,N〉 differs in energy due to atom-atom interactions which depends

on the number of atoms. Therefore each state evolves with a phase factor e−iE(k)t/~ and by

expansion of the number state energy E (k) around k = 0 we find [71]

|Ψ (t)〉 = e−iE0t/~
∑
k

c (k) e−iEck2t/~ |k,N〉 , (2.41)

where E0 is the ground state energy of the double well potential and Ec = ∂2E(k)
∂k2
|k=0 the

on-site energy. The quantum state is a sum of number states each evolving with its own

phase. Since each phase evolves differently, the width of the phase distribution increases

in time. For an ideal gas Ec = 0 which means the phase spreading arises from atom-

atom interactions. The phase spread 〈∆φ (t)〉 increases with time from the initial phase

distribution σφ,0 at the end of the splitting process according to

〈
∆φ2 (t)

〉
= σ2

φ,0 + σ2
k

(
Ec

~
t

)2

. (2.42)

The phase spreading is proportional to the fluctuations in relative atom number σ2
k which

remains fixed as there is no tunneling. The uncertainty in relative atom number is ac-

companied by an uncertainty in the relative chemical potential σ∆µ = ∂µ(k)
∂k |k=0σk be-

cause the chemical potential µ on one site is linked to the energy of a number state via

E (k) =
∫
µ (k) dk.

The dephasing time td is defined by the relation
〈
∆φ2 (td)

〉 ∼= 1 rad [64, 66]. A state

with an initially well-defined phase σφ,0 << 1 has therefore a dephasing time of

td =
~
σ∆µ

. (2.43)

Assuming Poissonian number fluctuations σk =
√
N the Thomas-Fermi model [72] estimates

an uncertainty of

σ∆µ = ~
(

72

125

m

~

)1/5 ω6/5a
2/5
s

N1/10
(2.44)
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where ω is the geometric mean frequency of the trap and as the s-wave scattering length.

Hence, the dephasing time depends weakly on the atom number with td ∝ N1/10.

2.3.4 Contrast in Elongated Systems

So far we have only considered the interference of 3-dimensional (3d) systems with a global

phase. Theory predicts for interfering clouds in a coherent state a fringe contrast of 100%.

Low frequency fluctuations of longitudinal BECs, however, lead to phase fluctuations along

the length of the cloud. Splitting a BEC creates two identical clouds with zero relative phase

and despite the locality of the phase, interference fringes are aligned and clearly visible

along the length of the clouds [73]. Phase spreading, however, increases the uncertainty of

a local phase measurement and the position of the fringes varies from domain to domain.

Assuming the clouds are aligned along the z axis, and that we observe the system along the

same axis, imaging then represents an integration over the imaged area with a length L.

Hence the fringe contrast is reduced due to fluctuations in the phase difference. Therefore

phase diffusion with time is relevant for the fringe contrast in elongated systems.

The fringe amplitude is again given by the operator ρ̂Q of equation (2.30) whereas for

a 1d system the reduced dimensionality requires only the integration along the z direction,

and the operators âa,b (z) and â†a,b (z) are z dependent. In the limit of a large atom number

N within the integration length L the expectation value of ρ̂Q is given by the expression

[74] 〈
|ρ̂Q (L)|2

〉
=

∫ L

0

∫ L

0

〈
â†a (z) â†b

(
z′
)
âa

(
z′
)
âb (z)

〉
dz dz′. (2.45)

Since the clouds are split into a symmetric double well potential, the clouds are identical

and have the same atom density with equal interaction coupling. Equation (2.45) simplifies

then to 〈
|ρ̂Q (L)|2

〉
=

∫ L

0

∫ L

0

〈
â† (z) â

(
z′
)〉2

dz dz′ (2.46)

with â (z) = âa,b (z) and â† (z) = â†a,b (z). This equation allows us to have a qualitative

discussion about the influence of phase fluctuations on the contrast. For small coherence

length Lφ << L the expectation value
〈
â† (z) â (0)

〉
decays fast with distance z. Assuming

an exponential decay yields the scaling |ρ̂Q (L)| ∝
√
LφL and the smaller the coherence

length the smaller the fringe contrast. In the opposite regime that the coherence length is

on the order of the integration length Lφ ∼ L the correlation function
〈
â† (z) â (0)

〉
must be

constant and hence the fringe amplitude is |ρ̂Q (L)| ∝ L depending only on the integration

length.
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Chapter 3

Experimental Requirements

3.1 Introduction

Atom chips have greatly simplified many atomic physics experiments. Despite this the com-

plexity of such experiments remains high. Although there have been attempts to build more

compact BEC experiments [75], our experiment still requires an entire optical table. The

main obstacle is to combine the different technologies required for condensation, i.e. lasers,

vacuum, electronics etc., and to coordinate a multitude of operations with µs precision.

In this chapter we present the experimental setup and describe how we achieve a BEC

on an atom chip. The subject is also covered in earlier theses on our apparatus [76, 77, 78]

where the parts of the hardware and the experimental cycle are discussed in more detail.

The purpose of this chapter is to give the reader an idea of the basic requirements necessary

to achieve condensation. We present the infrastructure and the individual components of

the system in section 3.2. Especially, the implementation of the rf generation is of impor-

tance for the later chapters in this thesis. Afterwards we briefly discuss the experimental

cycle and the control software in section 3.3. The different steps and the sequence to achieve

condensation are explained.

3.2 Infrastructure

3.2.1 Vacuum System

Ultra-high vacuum (UHV) is necessary to achieve BEC transition and long magnetic trap

lifetimes. A schematic of the vacuum setup is presented in figure 3.1. It consists of two

parts, the low velocity intense source (LVIS) chamber and the main chamber, separated

by a small aperture and a gate valve. Inside the vacuum chambers only clean and UHV-

compatible components are permitted, since contaminated parts would outgas preventing

UHV. In order to remove water from the parts inside the chamber we baked the system at

temperatures chosen low enough not to destroy the chip assembly. Following a bake out at

150◦C for one week we eventually obtained a pressure of less than 10−11 Torr in the main
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chamber after two month of pumping. Especially in the science chamber where the atom

chip is located an extremely low pressure is essential to achieve BEC.

V
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Figure 3.1: The vacuum system contains the experimental platform. The two main parts, the
science chamber and the LVIS chamber are connected via a 1 mm pinhole in the extraction mirror.
The pressure in each chamber is maintained by an ion pump. Viewports allow optical access for the
MOT, optical pumping and imaging beams.

LVIS Chamber

The LVIS chamber serves as a 2d MOT providing slow atoms for the experiments on the

atom chip. This LVIS allows fast loading of the MOT while maintaining low vacuum

pressure in the science chamber. The LVIS design is based on the system described in C.

Sinclair’s thesis [79]. The LVIS vacuum chamber consists of two 23
4 in conflat six-way crosses

connected by a T-piece. The four viewports of the cross close to the science chamber give

access to four laser beams in order to create a 2d MOT. A push beam enters the viewport at

the second cross perpendicular to the other beam paths. The push beam is retro-reflected
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on a mirror with a 1 mm aperture through which the atoms are released into the science

chamber. The aperture connects both parts of the vacuum system with a conductance of

0.02 ls−1. A Varian VacIon Plus 20 ion pump with a pumping rate of 20 ls−1 maintains the

vacuum pressure in the LVIS system. A soft iron shell around the ion pump shields its large

magnetic fields from the experiment. Two rubidium dispensers are mounted in the flange

of the T-piece. We keep the dispenser in use warm by permanently running a current of 2 A

through them. At a current of around 4.5 A rubidium vapor is released into the chamber

allowing loading of the LVIS MOT.

Main Chamber

The main vacuum chamber has a spherical-octagon shape and is made from 304 grade

stainless steel by Kimball Physics Inc. Four of the eight CF40 conflat ports around the

perimeter are equipped with viewports. Together with the large CF160 viewport at the

bottom of the chamber these provide sufficient optical access for the MOT, imaging, optical

pumping beams and visual inspection. The top of the chamber is sealed with a CF160

flange on which the chip mounting is assembled. The chip on its mount hangs upside down

in the science chamber. The top flange also contains three multi pin feedthroughs to make

electrical connections to the outside world.

To maintain UHV we use a 20 ls−1 Varian VacIon Plus 20 ion pump and a non-evaporable

getter (NEG) made of an Al-Zr alloy. The remaining CF40 port is equipped with a Lesker

VZCR40R angle valve providing the possibility of attaching a turbo pump to the system.

We record the pressure with an ion gauge mounted on a T-piece between angle valve and

science chamber.

3.2.2 The Atom Chip

The atom chip shown in figure 3.2 consists of a 3µm-thick gold layer evaporated onto a p-

doped silicon wafer cut along the [100] axis. Silicon has an advantage over other substrates

because of its high thermal conductivity. The substrate has a resistivity of 17-30 Ωcm and

must therefore be electrically isolated from the chip wires to avoid cross connections. This

is achieved with a 100 nm layer of SiO2 between the gold and the silicon. The oxide is kept

thin to avoid reduction reducing the thermal conduction. The wire pattern on the surface

is defined by ion beam milling. Special attention must be paid to wire defects as the surface

quality and edge roughness can lead to inhomogenous current densities [77] which introduce

anomalous magnetic fields along the length of the trap. The fabrication process is described

in detail in [78] and our fabrication paper [80] where the characterization of the chip wires

is also discussed.
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Figure 3.2: The atom chip used in our experiment. The four Z-shaped wires in the centre are
clearly visible. Two of them have a width of 50µm, the other two are 100µm wide. The inset shows
a magnified image of the central region. The Z-wires carry both DC and rf currents to create the
magnetic trap and control the splitting into a double well potential. The additional wires parallel
to the ends of the Z-wires can carry large currents to provide additional axial confinement of the
trap. The highly reflecting gold pads act as a mirror for the mirror MOT in the early stage of atom
trapping.

Wire Pattern Design

The layout of the chip wires is relatively simple and is presented in figure 3.2. There are

four parallel Z-wires, labelled Z1 to Z4, in the centre of the chip that are used to produce

the necessary DC and rf fields for trapping and manipulating BECs near the surface of the

chip. The wires in the outer pair are 100µm wide and have a centre to centre separation of

300µm. The inner wires are 50µm wide and have a separation of 85µm. The central section

of the wires along the z axis, above which the BEC is trapped, is 7 mm long. Two more

wires are patterned onto the chip parallel to the ends of the Z-wires along the x axis. These

so-called endwires can provide an additional field to adjust the frequency of the magnetic

trap along the z axis and play a key role for loading the magnetic trap. The large gold pads

on the chip surface are highly reflective and serve as a mirror for the reflection MOT in the

initial, experimental stage.

In a previous series of experiments two of the chip wires were accidentally damaged by

running excessive currents for too long, leaving only one of the inner and one of the outer

Z-wires available for use. This also reduced the cross resistance between the two wires to
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around 200 Ω. All the experiments presented here are therefore realized with two unequal

wires, labelled Z3 and Z4 respectively. The centre-to-centre separation for these two is

107.5µm. The resistance of Z3 is 4.6 Ω while Z4 has a resistance of 2.4 Ω due to the larger

cross sectional area.

Chip Mounting

The position of the atom chip inside the vacuum chamber is defined by the chip mount which

must be mechanically stable and should not drift during the lifetime of the experiment. It

also provides the electrical connections for the chip and acts as a heat sink.

We mount the atom chip directly onto a Shapal-M base plate using two copper clamps.

Shapal-M is a glass ceramic with a high thermal conductivity (90 Wm−1K−1) which is easy

to machine. Embedded into the Shapal-M plate is a copper structure which has direct

contact with the back of the atom chip. The structure has the shape of an H with a 2 mm

square cross section and a central cross piece of 2 mm length and is glued in place with

UHV compatible epoxy (Bylapox). The H is centred on the chip surface and serves two

purposes. First, it dissipates heat away from the wires and second, we can run currents

through it to provide additional magnetic fields, both static and rf. In our experiments we

run small rf currents through the copper-H to implement evaporative cooling or to perform

rf spectroscopy on the magnetically trapped atoms.

To mount the whole structure inside the chamber, as shown in figure 3.3 (left), the

Shapal-M is glued to a 7 mm thick copper block which is in turn connected to the vacuum

flange by three copper legs with a length of 21.5 mm. The copper legs are directly screwed

onto the copper block and the flange permitting high thermal dissipation to the vacuum

chamber which serves as a heat sink. Together with the legs we also assembled the holder

for the two MOT coils shown in figure 3.3 (right). The MOT coils provide a magnetic

quadrupole field centred a few mm above the chip surface. The holder is a bent metal sheet

that holds one coil former below, and one above, the atom chip.

Since it is difficult to solder to a gold surface, the electrical connection to the chip

wires is made by clips. The broad pads at the chip edge are especially designed for this

purpose. The clips are directly plugged onto the chip and not further held by glue. They

are supported by two Macor blocks screwed to each other. These clips are commercially

made from a copper-tin alloy CuSn6 by Batten&Allen. In order to connect to the outside

world copper wires are attached to vacuum feedthroughs with barrel connectors. On the

chip side the wires are soldered directly to the clips using UHV-compatible, fluxless solder

from Allectra.

3.2.3 Laser System

In order to cool and prepare the atoms for magnetic trapping we need various laser beams

locked to the rubidium D2 transition. For this purpose we have four different lasers providing

the light for the MOT, imaging and optical pumping. A detailed description of the laser



Chapter 3. Experimental Requirements 37

MOT-Coils

Copper Legs

Atom Chip

Copper-H

Clips

Figure 3.3: Left: Schematic of the chip mount. Right: Picture of the chip mount assembled to the
top flange just before putting it into the vacuum chamber.

setup and the locking techniques can be found in M. P. A. Jones’ thesis [76]. A schematic

diagram is given in figure 3.4.

The Lasers

The trapping and imaging light comes from a Coherent MBR-110 Ti:Sapphire laser with

an output power of up to 1 W linearly polarized light at 780 nm wavelength. The MBR-110

consists of a ring cavity with a Ti:Sapphire crystal pumped by laser light at 532 nm. An 8 W

Verdi laser from Coherent produces the necessary pump beam. The MBR-110 possesses a

reference cavity for locking. The error signal for the laser lock is derived from a beat signal

with the reference laser locked to the Fg = 2 → Fe = 3 transition. This results in a stable

output frequency of the MBR-110 which is 100 MHz blue-detuned to the same transition

The reference laser and the repump laser are home-made external cavity diode lasers

in Littrow configuration [81]. Both have a mode hop free scan range of around 3 GHz and

an output power of 30 mW at a wavelength of 780 nm. Beside the beat signal the reference

laser also provides light for the optical pumping beam. The repump laser is needed to close

the loss channel in the laser cooling cycle and is thus locked to the Fg = 1 → Fe = 2

transition.
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Figure 3.4: The laser setup includes four different lasers. The MBR-110 is pumped by a 8 W Verdi
laser and generates the trapping light for the MOT and the imaging beams. A beat lock with the
reference diode laser, also used for optical pumping, assures frequency stability. The exact detuning
of each beam is set by an AOM in the beam path. To close the cooling cycle another diode laser
provides repump light which is overlapped with the trapping beams in a beam cube.

MOT Beams

For the MOT we red-detune laser light from the MBR-110 by 13 MHz with an acousto-

optical modulator (AOM) and overlap it with the repump light in a polarizing beam cube.

An additional shutter after the AOM ensures the blocking of the beam. The laser light

is telescoped after the cube and splits into the beam paths for the diagonal MOT beams,

the horizontal MOT beams and the LVIS MOT beams. The diagonal MOT beams enter

the chamber at the bottom through the big CF160 viewport and are retro-reflected under

an angle of 45◦ on the atom chip surface. The horizontal MOT beams enter through two

opposite viewports travelling parallel to the chip surface in z direction. A λ/4 waveplate

in the beam path of each MOT beam shifts the linearly polarized light into the required

circular polarisation.
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Optical Pump Beam

The optical pumping beam is derived from the reference laser, double passed through a

140 MHz AOM. The switching of the light is controlled by both the AOM and an additional

shutter. Its frequency is 13 MHz red-detuned from the Fg = 2 → Fe = 2 transition and is

overlapped with one of the diagonal MOT beams to pass it onto the atoms.

3.2.4 Imaging System

In order to get information out of the system we have to take an image of the atoms in the

state of interest. Since our imaging technique is destructive, imaging also defines the end of

the experimental cycle. A complete picture of an experimental outcome is usually gathered

from repeated experiments. Therefore a stable and reliable setup of the imaging system is

essential.

Camera

Z

x

MOT Beam

MOT Beam

Imaging Beam

Axis 1

Axis 2

Lens

λ/4 Waveplate

Mirror

Flip Mirror

Polarizing 
Beam Splitter

Atom Chip

Legend

Figure 3.5: The imaging system provides two axes to observe the BEC on the chip. A flip mirror
allows the selection between axis 1 and 2. Imaging axis 2 is orientated along the length of the
trapped BEC and needs to be overlapped with the horizontal MOT beams. We use polarizing beam
splitters for both to combine and separate the two laser beams. The imaging beams on both axes
hit the camera under an angle of 26◦ to avoid etalon effects.

Imaging Beam

We image the atoms inside the vacuum chamber using absorption imaging [82] with a laser

beam resonant on the Fg = 2 → Fe = 3 transition of the rubidium D2 line. The pulse
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duration of 30µs and the frequency of the beam is set by the AOM in the beam path. After

the AOM the imaging beam is linearly polarized and passes through a spatial filter with a

40µm pinhole. We adjust the intensity with a λ/2 plate and a polarizing beam splitter. A

flip mirror allows the choice of two different imaging axes, marked as 1 and 2 in figure 3.1.

Imaging Axes

On imaging axis 1 we image perpendicular to the Z-wires along the x axis (see figure 3.1).

A λ/4 waveplate in front of the vacuum chamber sets the polarisation to σ+ with respect

to the imaging field along the x direction. After passing through the chamber the imaging

beam is focussed onto the camera chip by a single spherical lens in a 2f-2f configuration.

The lens consists of a pair of achromatic doublets placed back to back with a focal length of

80.5 mm from Comar. The magnification on axis 1 is M = 1.2. We can capture fluorescence

images of both the MOT and UMOT using this axis as well as absorption images of the

trapped and dropped BEC.

Imaging on axis 2 coincides with the z axis of the chip. This imaging beam has to be

overlapped with the horizontal MOT beams using a polarizing beam splitter. The MOT

setup already requires a λ/4 waveplate in front and behind the vacuum chamber in order

to achieve circularly polarized light. The first waveplate where the imaging beam enters

the chamber changes its polarization to σ+ with respect to a magnetic field along the z

axis. The second λ/4 waveplate sets the initial polarisation and we are able to separate

the imaging beam from the MOT beams with another polarizing beam splitter. The image

is focussed onto the camera by two spherical lenses, the Melles-Griot 01 LAO 625 with a

nominal focal length of f = 200 mm and the Melles-Griot 01 LAO 688 with a focal length

of f = 400 mm. Imaging axis 2 has a magnification of M = 1.67. The interference patterns

of two overlapping BECs can be observed on this axis.

Camera

We use a PentaMAX camera from Princeton Instruments to image our atoms. The heart

of the camera is a CCD chip from Kodak which has 1317 × 1035 pixels each with an area

of 6.8µm×6.8µm providing 0.026 counts per photon. The camera saturates at 4095 counts

per pixel. For a reduced background signal the CCD chip is permanently cooled to −30◦C.

All camera parameters are set in the WinView Software from Princeton Instruments. Our

control software initializes the camera at the beginning of each experimental cycle. A TTL

trigger times the exposure of the CCD. Typically a received trigger opens the mechanical

camera shutter for 110 ms. WinView then reads in the raw images and saves them into a

file on the hard drive for further processing. To avoid etalon effects on the entrance window

the camera is tilted by an angle of 26◦ in the horizonatal plane with respect to the imaging

axis.
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3.2.5 External Magnetic Fields

In order to create and control the MOT and the magnetic trap several external magnetic

fields are required. With the exception of the quadrupole field generated by the LVIS MOT

and the MOT coils, which are in anti-Helmholtz configuration, all other external magnetic

fields are homogenous.

The two LVIS MOT coils have 100 turns of kapton-insulated copper wire each and are

mounted onto the two vertical viewports of the LVIS chamber with a mean separation of

6.5 cm. For a working LVIS we typically run 2 A through each of the coils resulting in a

field gradient of 15 Gcm−1. The same current in the MOT coils creates a magnetic field of

around 11 Gcm−1. The MOT coils are mounted inside the chamber along an axis at 45◦ to

the chip surface. The MOT coils are wound onto a stainless steel coil former with a 12.5 mm

inner radius and a 45 mm centre to centre separation. A cut through each former prevents

the flow of induced current when the coils are switched on or off.

Apart from the chip wire fields two external magnetic fields are important to create a

magnetic trap, the X-bias field pointing along the x axis and a quantization field along the

z axis. The former determines the distance of the trap from the chip surface while the latter

defines the trap bottom and prevents spin flips. Both fields are produced by coils mounted

outside the science chamber.

Additional coils provide shim fields along the x and y direction. These fields are primarily

needed to optimise the loading of the trap and to define a quantization axis for imaging.

3.2.6 Current Control

The stability of the magnetic trap depends strongly on the noise level in the currents. To get

stable currents independent of the load, we use low-noise power supplies and custom-made

current controllers.

Power Supplies

For all currents running through the coils and chip wires we use commercial power supplies

from TTi Ltd. and ISO-Tech. The current for the chip wires is delivered from a TTi

EX354R with a ripple voltage < 2 mV rms.

Current Controller

The design of our home-made current controllers is presented in figure 3.6. The current

through the chip wires is controlled by high current op-amps of the type OPA548 and

OPA549. The output current is set by an analogue control voltage from the experiment

computer. The integrated circuit LF412 provides two additional op-amps in front of the

OPA548(9). The whole circuit has a common ground but the LF412 has a separate power

supply. The first op-amp compares the control voltage with the voltage drop over a 1 Ω

sense resistor R4 connected in series with the chip wires. A trimmer circuit takes a voltage
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Figure 3.6: Schematic of our home-made current controller. The output current is set by the
external control voltage. The LF 421 contains two op-amps comparing the control voltage with a
reference. The output is provided by an high power op-amp of the series OPA549. The current
running through the chip wires is fed back to the system via the sense resistor R4. The voltage drop
over the sense resistor defines the reference voltage and contains the information about the current
running through the chip wires.

drop over a potentiometer and adds it to the control voltage as an offset. This enables

us to compensate the small offset current which arises due to the imperfect behaviour

of op-amps [83]. The second op-amp operates as an integrator with a variable gain to

stabilise the circuit. The integrator gain dominates the turn off behaviour of the chip wire

current. Indeed we realised that the interference pattern of BECs released from a double well

potential is strongly affected by both the current offset and current turn off time. If these

parameters are not well balanced the clouds can shoot off in opposite directions without

overlapping in free fall. In the experiment the two Z-wires for the IP trap are connected in

series and the wire current is adjusted to vanish within 80µs as the measurement in figure

3.7 shows.

We use this same design of the controller for all tunable currents as it is flexible and

can be operated in a bipolar mode. Some shim field coils are operated with fixed currents

switched by a digital line. A level setter allows the adjustment of the output current. In

these cases we use an assortment of controllers like this and current controllers where the

power op-amp is replaced by a power FET.

3.2.7 Radio-Frequency Coupling

Radio-frequency magnetic fields are used at various points in this experiment. The most

important tasks are the implementation of forced evaporative cooling and dressed adiabatic
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Figure 3.7: The turn off of the wire current. The graph shows the voltage drop over the sense
resistor in series with the chip wires. Around 80µs after the turn off the voltage reaches 0 V but
overshoots slightly. Both the turn off time and the overshoot is set by the integrator gain. The
voltage offset with respect to 0 V can be adjusted with another potentiometer in the circuit. In
order to achieve a smooth release of the atoms from the magnetic trap we balance the different
parameters carefully.

potentials. To create rf fields we use two different configurations. One setup runs a rf

current through the copper-H below the chip, while the other directly couples the rf current

onto the chip wires.

Rf Current in the Copper-H

For evaporative cooling and spectroscopy on the trapped atoms we apply an rf voltage

across diagonally separated ends (Z-configuration) of the copper-H to create vertically po-

larized rf field at the site of the atoms. The rf signal is generated by a Versatile Frequency

Generator (VFG150) which allows arbitrary control of an output sequence at frequencies up

to 150 MHz. The shape of the sequence, its frequency, amplitude and phase at any point in

time is programmed by software written in C++ [84], and downloaded in advance through

a USB port to the VFG150. A TTL signal triggers the start of the sequence. The VFG150

output power ranging −69 dBm to 0 dBm, is not sufficient for all our applications and the

rf amplifier ZHL-3A from Mini-Circuits provides an additional gain of 25 dB. The amplifier

is powered by a 24 V DC low-noise supply for smooth operation. The amplifier output port

is then directly connected to the feedthroughs of the copper-H.

Rf Coupling onto the Chip Wires

For splitting the BEC trap into a double well, we use an rf field generated by rf currents in

the two Z-wires. These are supplied independently so that we can have full control of the

double well potential, as we discuss in the next chapter.
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The rf sources are two phase locked DS345 Function Generators from Stanford Research.

The maximum output power is 24 dBm at frequencies up to 30 MHz. The DS345 has an

amplitude modulation input which allows control of the output amplitude with a voltage

between 0 V and 5 V. Each of the function generators is followed by a ZHL-32A amplifier

and a ZASWA-2-50DR switch from Mini-Circuits. The switch has the important role of

ensuring the rf currents switch on and off with a typical rise/fall time of 5 ns and an in-out

isolation of 100 dB at frequencies of up to 100 MHz. The fast switching allows precise timing

control. If the output of the DS345 is turned off by applying a modulation voltage of 0 V,

we can still observe a background signal at its output port. When the switch is also turned

off, its high isolation suppresses this background signal on the chip wires.

We couple the output from the switches to wires using bias-T configuration. The rf

signal is coupled via a T1-1T rf transformer from Mini-Circuits to block any DC offset

on the output of the switch. Conversely, to prevent a DC current running through the

transformer, it is connected in series with a 15 nF capacitor. The value of the capacitor

sets the minimum frequency of the rf signal which is coupled to the chip wires to around

200 kHz.

3.3 Making BECs

3.3.1 Computer Control

The experimental cycle necessitates switching currents and laser light with sub-millisecond

timing accuracy in a complex sequence. In some cases a simple TTL signal is enough, i.e.

to switch a shutter, but some tasks require a sequence of swept control voltages.

Our control computer is based on a 2.08 GHz AMD Athlon XP2600+ processor with

1 GB RAM and five PCI slots. It is equipped with a digital pattern generator PCI-6543

from National Instruments to output the TTL signals. The analogue signals are provided

by an analogue output board PCI-6713 as well from National Instruments.

The output is controlled by custom-made Java software called Hermes which allows

the specification of an experimental sequence, calculates a waveform and puts it onto the

National Instrument cards. The internal timing of the software has a resolution of 200µs.

Details on the software and the timing can be found in the programmer’s thesis [79].

We extended the software to allow automated repetition of identical experimental runs,

which reduced the time for data taking dramatically. The basic requirement for that is to

automate the acquisition and saving of data and the processing in Mathematica. The com-

muncation between Java and Mathmatica is realized with the J/Link package. After each

run Hermes calls a Mathematica function which processes the images and stores experimen-

tal parameters in a central database. The database contains all experimental parameters,

images and fits and is easily accessible via a web browser or the Mathematica software.
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Figure 3.8: Output sequence of the analogue output board for making a BEC. After around 20 s
the MOT coils turn off and the magnetic trap is switched on. The whole experimental cycle lasts
for around 30 s. The inset magnifies a time interval of 310 ms where the atoms are transfered from
the MOT into the magnetic trap.

3.3.2 Experiment Cycle

Here we will describe the standard procedure for making BECs with the presented setup.

The magnetically trapped BEC is the starting point for all experiments throughout this

thesis. Thus it is necessary at least briefly, to present the experimental cycle at this point,

although a detailed description can be found in R. J. Sewell’s thesis [78].

One experimental cycle lasts for about 30 s. The example in figure 3.8 shows the be-

haviour of the control voltages generated by the analogue output board for making a BEC.

After the sequence has finished we allow a 30 s break for processing data and cooling down

of the coils. Since the process is automated, we analyse the outcome of an experiment about

every minute.

Loading the MOT

We start by running a current of 4.5 A through the dispensers and collecting the Rb atoms

in the LVIS. The LVIS is connected with the main chamber via a small pinhole and loads a

MOT around 4 mm below the atom chip surface. The MOT is created by four laser beams,

two counterpropagating, horizontal ones and two counterpropagating beams reflected from

the chip surface at an angle of 45◦ [85]. The trap laser is 2Γ red-detuned from the Fg = 2→
Fe = 2 transition of the Rubidium D2 line which has the natural linewidth Γ = 6 MHz. The

atoms are laser cooled by absorbing photons and randomly reemitting them back into free

space. After the photon emission, however, some atoms end up in the Fg = 1 state. The

repump laser overlapped with the trapping beams transfers the Fg = 1 atom back to the

Fe = 2 state and closes the cooling cycle. The two MOT coils inside the vacuum chamber

run a current of 2 A in anti-Helmholtz configuration to provide the quadrupole field required

for the MOT with a gradient of 11 Gcm−1 along their symmetry axis. After a loading time
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of 15 s the MOT contains around 109 atoms at a temperature of a few hundred µK. We

then turn off the LVIS and the dispenser.

UMOT Stage

After waiting for 2 s we move the MOT closer to the chip surface by ramping up an additional

homogenous bias field along the x axis within 50 ms which moves the MOT up to 1 mm

from the chip surface. Then we turn on a current of 2 A in the trapping wires and 4 A in one

of the endwires so that the net current runs in a U-shape. At the same time we turn off the

MOT coils while keeping the laser beams on. The net magnetic field forms a quadrupole

with large field gradients and the atoms are compressed into a UMOT. The shape of the

UMOT is an elongated ellipsoid that matches well the geometry of the magnetic trap. After

a hold time of 20 ms we detune the trapping laser to 6Γ and further increase the bias field

over another 20 ms, moving the atoms to some 0.5 mm below the chip surface.

Molasses and Optical Pumping

Further cooling is achieved by a molasses process where all magnetic fields are turned off

simultaneously. The trapping laser is detuned to 10Γ from the cooling transition. The cloud

expands for 3 ms held in place only by the light force.

In the next step we prepare all atoms in the |F = 2,mF = 2〉 Zeeman state by an optical

pumping cycle of 800µs. The MOT and repump laser beams are turned off as the X-bias

field is ramped up to define a quantization axis for optical pumping by a light pulse of 400µs.

This optical pump beam is 13 MHz red-detuned from the optical pumping transition which

is the Fg = 2→ Fe = 2 transition.

Magnetic Trap

The atoms prepared in |F = 2,mF = 2〉 of the 52S1/2 electronic ground state are now loaded

into a magnetic trap. In order to catch atoms close to the UMOT position, we run a current

of 2 A through the Z3 and Z4 wires and overlap the resulting field with a relatively small

X-bias field of 13.7 G. The trap frequencies are ωz = 2π × 6 Hz and ω⊥ = 2π × 627 Hz.

Due to power dissipaton in the chip, safe operation of the chip wires with a permanent

current of 2 A is not guaranteed. After holding the atoms for 50 ms in the initial magnetic

trap we therefore linearly ramp the current down to 1 A over 100 ms while ramping up the

X-bias field to 23.1 G. At the same time we turn on a bias field of 0.9 G oriented along

the z axis in order to prevent atom loss due to spin flips in the trap centre. This step

compresses the atoms into the final magnetic trap with trap frequencies of ωz = 2π× 28 Hz

and ω⊥ = 2π× 2 kHz, a trap bottom of 630 kHz at a distance to the chip surface of around

160µm. The adiabatic compression naturally leads to heating, so a 2 s hold time follows so

that the hot atoms can spill out of the trap. We end up with 5×106 atoms at a temperature

of 100µK.



Chapter 3. Experimental Requirements 47

Evaporative Cooling

In the final phase we cool the atoms down to the BEC transition using forced evaporative

cooling. We run an rf current in Z-configuration through the copper-H below the chip wires.

This removes hot atoms from the trap through induced spin flips. The rf frequncy is ramped

exponentially from initially 15 MHz down to 0.67 MHz. At a value of 1 MHz the rf power is

reduced to avoid losses of cold atoms in the BEC phase due to power-broadening. The total

ramp lasts for around 4.6 s. After the ramp we let the atoms thermalise for 20 ms and the

BEC is ready for experiments. In the next chapter we give details about the BEC itself.
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Chapter 4

Characterising the Magnetic Wire

Trap

In the last chapter we presented and discussed the basic experimental setup as well as the

procedure to achieve BEC in a magnetic trap near the atom chip surface. As we will see

later the trapped BEC serves as the input state for the atom interferometer, while the

magnetic trap represents the platform for all further experiments. It is necessary to build

a more complete picture of the initial system in order to understand the implementation

and the operation of the interferometer. In this chapter we characterise the IP trap and the

BEC and compare the results with theory.

We will also use the gained knowledge about the magnetic trap to calibrate our imaging

system. Taking images is the interface to get any information about the atoms. Absorption

imaging, for example, gives us not only information about the density distribution of the

atoms but also about the length scale on which the experiment takes place. Additionally to

modelling the imaging system, its magnification can also be determined from moving the

trap minimum by small modifications to the magnetic fields. At the end of the discussion

we will obtain a number for the magnification from an in situ measurement.

4.1 The Magnetic Wire Trap

The static magnetic trap is created by running a current through each of two neighbouring,

Z-shaped wires. The resulting magnetic field is overlapped with an homogenous magnetic

X-bias field in x direction as shown in figure 4.1. At a certain distance above the chip

surface the X-bias field cancels the field from the wires and creates a minimum in magnetic

potential. In order to avoid atom losses from spin flips a homogenous quantization field

B0 is applied along the z axis. The side pieces of the Z-shape provide the longitudinal

confinement which is much weaker than the confinement in radial direction.
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4.1.1 Ioffe-Pritchard trap

Such a trapping configuration is known as IP trap and the basic idea is sketched in figure

4.1. The IP field is modelled by

BIP (r) = B0
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where B′ = ∂ |B| /∂x = ∂ |B| /∂y and B′′ = ∂2 |B| /∂2z. Near the centre, where the IP trap

can be approximated by a cylindrically symmetric, harmonic potential, the trap frequencies

in the radial and axial direction are

ωr =

√
gFµBmF

m

B′2

B0
and ωz =

√
gFµBmF

m
B′′. (4.2)

This kind of trap was first discussed by Ioffe [86] in combination with plasma confinement.

Later it was adapted to atom trapping by Pritchard [87, 88]. As is typical the radial trap

frequency is much larger than the axial trap frequency ωr >> ωz. We write the approximate

potential V (r) in cylindrical coordinates as

V (r) =
1

2
m
(
ω2
rr

2 + ω2
zz

2
)
. (4.3)

A BEC moving in this potential has an aspect ratio λ = ωr/ωz. For large aspect ratios

λ >> 1 the 1d regime is achieved in the case that both temperature and chemical potential

satisfy the condition T, µ << ~ωr.

I

IBwire

Bx

I

I

r0

Bs = Bwire + Bx

Figure 4.1: Schematic of an IP trap. The field of a Z-shaped wire is overlapped with an external,
homogeneous bias field. At a certain height above the wire the magnetic fields pointing in opposite
direction cancel each other and form a minimum in magnetic field. Longitudinal confinement is
given by the magnetic fields from the side pieces of the Z-shape.
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4.1.2 Magnetic Trapping Fields

Infinitely Thin Wire

For a first examination of the magnetic chip trap, let us consider an infinitely long and

infinitely thin wire. Biot-Savart’s law yields a magnetic field strength at a distance r from

the wire

B (r) =
µ0I

2πr
(4.4)

and by differentiation we find a field gradient of

∂B (r)

∂r
= − µ0I

2πr2
. (4.5)

Combining the magnetic wire field as sketched in figure 4.1 with a homogenous X-bias field

Bx forms a point of zero-magnetic field at a distance

r0 =
µ0

2π

I

Bx
(4.6)

from the wire. The distance is directly proportional to the current I running through the

wire. With typical values in our experiment of I = 2 A and a bias field strengthBx = 23.14 G

the distance from the chip surface would be around 173µm.

Finite Size Effects

The geometry of the chip wires, however, is rectangular. The aspect ratio of the wires, with

a height of h = 3µm and widths of w = 50µm and 100µm, is much smaller than unity.

Since for typical experiments h << r0, the finite height of the wire can be neglected. But

the width w is on the order of the separation between trap minimum and chip surface and

will therefore play a role in determining the magnetic field. For a long wire with finite width

the analytical expression is [89]

B (x = 0, y) =
µ0I

πw

(
π

2
− arctan

2y

w

)
. (4.7)

The consequence is that at a critical X-Bias field strength Bx,crit = µ0I/ (2w) the trap will

touch the wire surface. In the limit that the external field is small and hence the distance

to the wire is big, equation (4.7) approaches the thin wire result. At a distance d ∼ 170µm

we expect a deviation from equation (4.4) due to finite size effects of less than 5%, and less

than 10% for the corresponding field gradient.

A 2d calculation of the two broad-wire configuration in our atom chip experiment is

presented in figure 4.2. The origin is located in the middle of the two wire centres which

have a separation of 107.5µm. In analogy to our experiment we assume two wires of different

width, namely 50µm and 100µm. With the same parameters we used for the infinitely thin

wire, I = 2 A (1 A in each wire) and Bx = 23.14 G, we find a surface to trap minimum
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distance of d = 163µm instead of 173µm.
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Figure 4.2: The 2d plot shows the magnitude of the magnetic trapping field created by two infinitely
long wires and an homogenous external bias field. We use two wires with widths of 50µm and 100µm
respectively. The centre to centre separation is 107.5µm. The calculation is performed for a current
of 1 A in each wire and an bias field strength of 23.14 G. We find two minima forming above the
chip surface which cannot be observed in the case of a single wire. The atoms are trapped in the
minimum at a distance of around 163µm from the chip surface. This corresponds to a correction of
around 5% in comparison to the infinitely thin wire approximation.

4.2 Characterisation of the BEC

Based on the theoretical considerations we create the magnetic trap and fill it with a BEC.

The experimental situation is sketched in figure 4.3. The procedure to achieve BEC is as

described in section 3.3. Interesting properties which make the trapped BEC distinctive

are parameters such as trap frequencies, trap bottom, lifetime, etc. These numbers are

important for analysing experiments in later chapters. In particular, the splitting of the

BEC into a double well potential directly depends on the parameters of the magnetic trap.

We derive a complete picture of the system by analysing step by step the various properties

of the trapped BEC.
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Figure 4.3: Schematic of a trapped BEC near the atom chip surface. The static magnetic field Bs

is a result of the chip wire fields and the external bias field. It has the shape of a quadrupole field in
the x-y plane with a minimum at a distance r0 from the chip surface. The BEC is elongated along
the cental piece of the Z-wires.

4.2.1 BEC near the Chip Surface

Figure 4.4 presents the BEC in the magnetic trap at several temperatures. We image the

clouds looking along imaging axis 1 after 3 ms time-of-flight. The atom number and temper-

ature of the BEC are determined by the stop frequency of the evaporation ramp. The closer

we ramp the evaporation stop frequency to the bottom of the trap gFµBB0/h the colder

and fewer the atoms become. For high stop frequencies three BECs are visible each sitting

in a lump of the magnetic trap. The fragmentation of the BECs near current carrying chip

wires has repeatedly been reported [90, 91, 92]. It is due to a variation of the magnetic field

δBz (z) and hence the trapping potential along the length of the wire. Together with the

bias field B0 the total magnetic field minimum becomes |B0 + δBz (z)|. The BEC will split

into different lumps, if the magnitude of the field variation is on the order of the chemical

potential µ . µBδBz (z).

Ideally the external X-bias field and the magnetic field generated by the current cancel

each other to zero at a certain distance from the wire. A local deviation of the current direc-

tion, however, causes a tilt between the overlapping magnetic fields and locally an overspill

in field strength remains [93]. In the literature three possible reasons for a transverse cur-

rent component are discussed, namely bulk defects, surface and edge roughness. Latter is

the main contribution to fluctuations in the vicinity r0 ≥ w. A quantitative analysis on the

effect of edge roughness was derived by Wang et al. [94].

Typically we look at the interference pattern of the BECs along the z axis. Fragmenta-

tion of the cloud into different lumps leads to a series of independent clouds whose density

is integrated along the z axis by the imaging beam. The result is a reduced visibility of the

interference pattern. As shown in figure 4.4 we remove atoms from the different lumps by

decreasing the stop frequency of the evaporation ramp until we end up with only one single,
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elongated BEC. In the case that the trap bottoms of the lumps are close to each other,

it can happen that the remaining BEC is too small to observe interference after several

ms time-of-flight. In that case one could also remove selectively the atoms from unwanted

clouds by applying an rf pulse resonant on the trap bottom.

The BEC remaining after the evaporation ramp is the starting point for implementing

an atom BEC interferometer. It contains approximately 3× 104 atoms at a temperature of

around 0.5µK.

νstop = 697.8 kHz 

νstop = 683.9 kHz 

νstop = 657.7 kHz 

νstop = 639.8 kHz 

νstop = 644.0 kHz 

Figure 4.4: Absorption image of cold atom clouds 3 ms after release from the magnetic trap. The
final temperature of the atoms is determined by the stop frequency of the evaporation ramp. Due
to a variation in a magnetic field along the trapping potential the cloud is fragmented into different
lumps. At the transition temperature a BECs form in the different lumps. We remove atoms from
the various clouds by further evaportion until all remaining atoms belong to one single BEC.

4.2.2 Trap Frequencies

We determine the longitudinal trap frequency by displacing the BEC and letting it fall back

into the initial trap minimum. Increasing the MOT coils current within a few ms shifts the

BEC position along the z axis. A sudden jump of the current back to its initial value causes

the BEC to oscillate in the magnetic trap. We release the cloud from the trap after various

oscillation times and take images after 3 ms time-of-flight on imaging axis 1 to determine

its position. The fit in figure 4.5(a) yields an axial trap frequncy of 28.2 ± 0.2 Hz with an

e−1 damping time of 354± 2 ms.

Since the magnetic trap has a large radial confinement, we expect oscillation periods

along this direction on the order of the time resolution of our control software. Therefore

an in situ observation of the oscillation is not possible. Instead we use parametric heating.

A small AC current running through the central part of the copper-H creates an oscillating

magnetic field along the y axis at the position of the atoms. If the frequency of the AC
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field is resonant with the radial trap frequency atoms are accelerated and start to spill out

after a few ms. From absorption images we obtain the optical density for several driving

frequencies. As plotted in figure 4.5(b), this shows a broad, asymmetric resonance curve.

Due to the asymmetric wire configuration we find two resonances at around 2005 kHz and

2037 kHz by fitting Lorentzians to the two different slopes on each side of the curve.
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Figure 4.5: (a) The axial trap frequency is much smaller than the radial frequency and can be
measured by observing oscillations. Increasing the MOT coils field we displace the BEC and let it
fall back into the initial trap. The oscillation in position has a frequency of 28.2 Hz. (b) The radial
trap frequency is measured by parametric heating. The minimum in the frequency scan is broad
and asymmetric. We fit a Lorentzian on each of the two slopes. The two resonances at 2005 Hz and
2037 Hz are due to the asymmetric wire configuration.

4.2.3 Trap Bottom

The trap bottom defines the energy minimum in the magnetic trap. In general we assume

that for a BEC all atoms occupy the lowest energy state. An rf field with a frequency

resonant to the trap bottom ωrf = gFµBB0/~ [87] couples the five equally spaced energy

levels of an F = 2 atom and results in spin flips. Atoms driven into an untrapped mF state

leave the trap.

We measure the trap bottom by applying a fixed frequency rf knife after the BEC is

already prepared. We repeat the experiment at different rf frequencies and determine the

optical density after 2 ms time-of-flight. Sharp resonance peaks are achieved at small rf

power and long rf knife pulses of 200 ms length. The typical frequency scan in figure 4.6

suggests a trap bottom of 630 kHz or 0.9 G for our standard magnetic trap with an X-Bias

field strength of 23.14 G. The distance of the BEC from the chip surface can be controlled

with the X-Bias field. A variation in height also changes the trap bottom.

We found that the trap bottom has day to day fluctuations of ±5 kHz but is stable

within a series of experiments over one day with a change less than ±1 kHz. Over night we

turn off all power supplies. This seems to cause the variation which can be due to a change

in the earthing potentials. The consequence is that the current either running through the

chip wire or the X-Bias coils is different which influences both the position of the BEC and
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the trap bottom.
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Figure 4.6: (a) A scan of the rf knife frequency performed on our standard magnetic trap. An
interaction time of 200 ms at a very low rf power yields a sharp peak at 630 kHz. We run usual
experiments at a X-Bias field strength of 23.1 G. (b) The trap bottom changes with the X-Bias field.
A higher X-Bias field moves the BEC closer to the chip surface.

4.2.4 Trap Lifetime

An important property of the BEC is its lifetime in the magnetic trap, since this will

limit the maximum available time for experiments. Loss of trapped atoms is caused by

background collisions and heating due to noise in the apparatus. For BEC experiments an

UHV environment is essential. With a base pressure of ≈ 10−11 Torr we expect condensate

lifetimes of several seconds and also spin flips are suppressed by the quantization field [95].

In order to measure the trap lifetime we hold the atoms inside the magnetic trap and

vary the time after which we release the BEC from the trap. The exponential decay in

peak optical density is clearly visible in figure 4.7. The fit has an e−1 lifetime of around

340 ms which is satisfactory for our purposes. We will see later in this thesis that the limit

in available time for a single interferometer measurement is set by other parameters and is

in the order of 10% of the magnetic trap lifetime.

4.3 Calibration of the Imaging System

All the information extracted from the system comes from camera images. We derive

numbers by fitting a model to an image or summing the pixel counts. All parameters

related to a length scale are first measured in pixels. If we actually want to measure a

physical quantity or make a comparison with a theoretical model a calibration mapping

pixels onto a length scale is necessary in most cases. The standard method is to drop the

BEC in the gravitational field and deduce the magnification M from its positions after

different times-of-flight. This, however, is not acceptable for an apparatus that is supposed

to measure the gravitational accleration g. We therefore present a different calibration

method by moving the trapped BEC with respect to the chip surface with magnetic fields.
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Figure 4.7: Lifetime of the BEC in the magnetic trap. The peak optical density decays exponen-
tially with retention time of the BEC. The measured lifetime of 340 ms, however, is sufficient for the
experiments in this thesis.

In order to verify the approach we compare it with the standard procedure. The calibration

is presented for imaging axis 2 which plays the important role for the interferometer.

4.3.1 Magnification from Gravity

We prepare a typical BEC and release it from the trap. We monitor its vertical position

for different time-of-flights and fit the well known model for a uniformly accelerated object

to the data. We assume a homogenous gravitational acceleration of g = 9.81 m/s2. Con-

sidering the pixel size of 6.8µm the fit in figure 4.8 yields a magnification of 1.674 ± 0.14.

Furthermore, the fit yields a small initial velocity of 6.5 mm/s in −y direction. Fitting the

time-of-flight data with the constraint of zero initial velocity delivers a magnification of

1.61 ± 0.03. Since the chip wire and X-Bias turn off is not infinitely fast, the atoms can

experience a small kick during release and a velocity offset is most likely.

4.3.2 Calibration with Magnetic Fields

The second method to determine the magnification of the imaging system is to compare

the in-trap position of the BEC with the expectation from the magnetic trap model. Due

to diffraction of the imaging beam and improper focussing on the chip surface the absolute

distance of the cloud from the atom chip cannot be measured from the image. Small position

movements, however, are clearly observable. Modifications of the X-bias field changes the

distance between cloud and chip surface. For small changes in the field we make a Taylor

expansion of the simple model regarding an infinite long wire of equation (4.6) which yields

y(Bx) =
µ0I

2πBx,0
− µ0I

2πB2
x,0

(Bx −Bx,0) +
µ0I

2πB3
x,0

(Bx −Bx,0)2 +O
[
(Bx −Bx,0)3

]
. (4.8)
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Figure 4.8: Vertical cloud position vs. time-of-flight. The blue line is a fit of a steadily accelerated
object which yields a magnification of 1.674± 0.14 on imaging axis 2.

The Taylor series delivers an analytical expression allowing direct comparison with data

points from the experiment.

Therefore we prepare the BEC for different X-Bias values Bx while keeping the chip

wire currents constant and image the atoms without time-of-flight inside the trap. In the

absorption images we observe a movement of the in-trap BEC along the y axis. We make a

precise measurement of the current I running through the chip wires by probing the volt-

age drop over the sense resistor of the current driver. For magnetic trapping we measure

a current of 2.09 A. The X-Bias field was mapped inside the chamber with a Hall probe

when building the experiment. Typically we create the BEC at an X-Bias field strength

of Bx,0 = 23.14 G. Small changes of the bias field are applied by modification of the corre-

sponding control voltage in the computer output.

We choose a certain region of interest on the absorption images and plot the y position

against the bias field in figure 4.9. Calculating the expected absolute height of the cloud

and fitting the Taylor series to the data yields a magnification of around 1.70. The spread of

the data points around the fit causes an error of 6% in good agreement with the previously

described calibration method. To improve our measurement we extend our model by taking

finite size effects of the wire into account. We calculate the expected height movement of

the BEC analogue to the simulation presented in figure 4.2. The comparison with the data

then yields a magnification for imaging axis 2 of 1.67.

The demonstrated procedure represents an alternative method to determine the magnifi-

cation of an imaging system independent of g. The uncertainty of around 6% is comparable

to the error in the g dependent method. As expected the correction for finite size effects

makes a small modification to the result. Additional confirmation for the measured mag-

nification we gain from modelling our imaging system presented in figure 3.5 using ABCD

matrices [96] and OSLO [97]. The simulation taking the surfaces of the chamber windows,
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the waveplates, the cube and the lenses into account yields a result of M = 1.68± 0.01.

The experimental measurements and the theoretical prediction agree perfectly and we

therefore assume a value of M = 1.67 as the standard magnification on imaging axis 2 in

all following experiments.
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Figure 4.9: Position of the in-trap cloud against X-bias field. For small modifications in the X-
bias field the change in height can be linearly approximated. The blue line is the fitted Taylor
approximation of the simple model.
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Chapter 5

Symmetric and Asymmetric

Double Well Potential

5.1 Introduction

The atom chip provides a platform to implement microscopic magnetic traps. Its designs

can be adapted especially for a certain task by a particular wire pattern in the surface or by

adding micro-optical devices such as fibres. In recent years the flexibility of the atom chip

was greatly enhanced by application of rf adiabatic potentials [24]. These new traps opened

the path for building double well atom interferometers [13, 23], the implementation of beam

splitters [98] and studies of phase fluctuations in low dimensions [99]. The big advantage of

dressed state potentials is that they are fully adjustable by the rf current running through

the chip. Modern rf generators offer easy control of the various parameters such as frequency

and rf power making adjustments in the trap geometry accessible. We in particular use

rf adiabatic potentials to split a BEC into a double well and change the relative energy

difference between the wells. This flexibility allows more complicated schemes suitable for

interferometry.

In this chapter we discuss the basic theory of rf adiabatic potentials and show how the

double well potential is implemented and controlled in our experiment. After a theoretical

overview in section 5.2 we start in section 5.3 with the splitting of the BEC into two

symmetric wells. We describe the scheme used for splitting and how we balance the double

well potential. Since the goal for our interferometer is to measure the gravitational energy

difference between two BECs, we develop a method to tilt the double well potential with

respect to the horizontal axis. Depending on the orientation of the splitting axis a energy

gap is established between the two wells. But tilting not only changes the relative height

and hence the gravitational potential of the two atom clouds, it also leads to a change in

the local magnetic landscape. An accurate characterization of the asymmetric double well

is essential for the comparison with later results. We measure the tilt angle and hence the

gravitational potential difference. Spectroscopy of the dressed atoms is used to determine
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the magnetic energy gap. The detailed discussion of the asymmetric double well is presented

in section 5.4.

5.2 RF-Adiabatic Potentials

The basic principle of magnetic trapping is the Zeeman effect [100] which shifts the energy

of a given spin state |mF 〉 accordingly to the local magnetic field. A coupling of different

mF states was first suggested for rf evaporative cooling [101] and used in the 1990s to

achieve BEC [30, 102, 103] . Instead of using rf fields to spill atoms out of a magnetic trap

a new idea by Zobay and Garraway [21, 22] was to dress the Zeeman states in order to

create completely new trap geometries. Figure 5.1 visualises the basic principle with the

help of a 1d harmonic, magnetic trap. An applied rf field is resonant in two points in space,

left and right of the trap minimum. At resonance the avoided level crossing causes a new

shape of the trapping potentials. The combination of spin states and rf photons leads to the

so-called dressed states as the new eigenstates of the system, labelled by m̃F in analogy to

the Zeeman states. A double well geometry is implemented by positive m̃F states whereas

negative values describe potentials used for evaporative cooling. The dressed atom picture

was first suggested in the 1960s when Haroche and Cohen-Tannoudji [104, 105] developed

a full quantum mechanical treatment.
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mF = +1

mF = 0

mF = -1

mF = -2
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Figure 5.1: Coupling between different mF states of atoms moving in a 1d harmonic, magnetic
trap. The rf field with frequency ωrf is resonant to the energy gap between the states at two points
in space. At the resonance the are coupled to each other and the atoms experience a new trap
geometry, the so-called dressed state which are labeled with m̃F . The states with negative m̃F are
used for evaporative cooling.

5.2.1 The dressed state Hamiltonian

Considering an atom moving in a static magnetic field Bs (r) dressed by an oscillating field

Brf (r, t) of frequency ωrf we write down the full Hamiltonian according to Haroche and
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Cohen-Tannoudji as

Ĥ = gFµB [Bs (r) + Brf (r, t)] · F̂ + ~ωrfâ
†â (5.1)

where gF is the Landé factor, µB the Bohr magneton and â and â† are the annihilation and

creation operator of the rf field. The first part of the Hamiltonian describes the interaction

between the external magnetic fields and the atomic angular momentum F. The second

part takes the energy of the rf field into account with N the number of photons.

We choose for any fixed point in space r a coordinate system such that the z axis is

aligned with Bs. The component of the oscillating field Brf orthogonal to the static magnetic

field defines the x axis. The rf field with a sinusoidal time dependence is then written as

Brf (t) =
1

2

 0

brf,y

brf,z

 eiωrft + c.c.. (5.2)

This choice does not describe the general case. In fact we restrict ourselves to this particular

one with vanishing x component because it represents our experimental situation as we will

see later.

We write equation (5.1) in terms of the bare state basis |mF , N〉 = |mF 〉 ⊗ |N〉 with

mF = −F ,...,F , where

Ĥ = gFµBBsF̂z + ~ωrfâ
†â+

gFµB

2
√
〈N〉

[(
Brf,y (t) â†F̂y + h.c.

)
+
(
Brf,z (t) â†F̂z + h.c.

)]
.

(5.3)

Note that Brf,y (t) denotes the y component of Brf (t). The resulting Hamiltonian can be

split into four parts Ĥ = Ĥspin + Ĥfield + Ĥy + Ĥz. The part of the Hamiltonian describing

the interaction between the atom spin state and the rf field splits into two terms Ĥy and

Ĥz. The first term Brf,y (t) â†F̂y (+h.c.) raises (lowers) the number of rf photons by one and

lowers (raises) the atomic spin state, while the second one containing Brf,z (t) â†F̂z (+h.c.)

raises (lowers) the photon number but leaves the spin unchanged. Therefore a photon

with σ+ polarisation (relative to the local quantisation axis) interacts with the atoms by

transfering its spin, while σ− and π polarised photons do not in general couple to atomic

spin states.

We assume that the average number of photons 〈N〉 is large and the variation around

the mean value is small which justifies the approximation
√
N ≈

√
N + 1. Remembering

also the relation for the ladder operators F̂± = F̂x ± iF̂y which have the eigenvalues

F̂± |F,mF 〉 =
√
F (F + 1)−mF (mF ± 1) |F,mF ± 1〉 (5.4)
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we can easily calculate the matrix elements of the Hamiltonian〈
m′, N ′

∣∣∣Ĥspin

∣∣∣m,N〉 = gFµBBsmδm′,mδN ′,N (5.5)〈
m′, N ′

∣∣∣Ĥfield

∣∣∣m,N〉 = ~ωrfNδm′,mδN ′,N (5.6)〈
m′, N ′

∣∣∣Ĥy

∣∣∣m,N〉 =
gFµB

2
Brf,y (t)

√
F (F + 1)−m (m+ 1)δm′,m+1δN ′,N−1

+
gFµB

2
B∗rf,y (t)

√
F (F + 1)−m (m− 1)δm′,m−1δN ′,N+1 (5.7)〈

m′, N ′
∣∣∣Ĥz

∣∣∣m,N〉 =
gFµB

2
Brf,z (t)mδm′,mδN ′,N+1 +

gFµB
2

B∗rf,z (t)mδm′,mδN ′,N−1

(5.8)

In our basis the matrices Hspin and Hfield are diagonal, while the ones describing the coupling

between the states are off-diagonal. The Kronecker delta δi,j with i, j ∈ N defines the

selection rules for transitions between different states in the off-diagonal terms. Equations

(5.5) to (5.8) hold as long as the adiabaticity criterion is fulfilled, which means that the

orientation of the atomic spin vector can follow the magnetic field vector.

Since the field of the static magnetic trap varies spatially, the Hamiltonian matrix has

to be diagonalised at every point in space in order to determine its eigenenergies. The

problem can be solved numerically but we gain a better understanding of the atom-field

system by introducing the so-called rotating wave approximation (RWA). We discuss the

approximation in the following which delivers simple analytical equations valid for certain

regimes.

5.2.2 The Rotating Wave Approximation

Following [106] we group the states {|mF , N〉} into the manifold {|mF , κ− sgn (gF )mF 〉}
denoted by the quantum number κ. For fixed κ this trick delivers matrix elements which are

now independent of the photon number N . The next step is to introduce the RWA where an

operation of the form R̂z (ωrft) = exp
(
−iF̂zωrft

)
applied to the Hamiltonian transfers it into

a rotating frame [107]. The approximation then consists of neglecting all time dependent

terms and is only valid for small detunings namely ωrf − ω0 << ω0, where ω0 denotes the

Larmor frequency. The transformed matrix elements H̃m′m =
〈
m′, κ−sgn (gF )m′

∣∣H̃∣∣m,κ−
sgn (gF )m

〉
are then written as

H̃m′m = gFµB

(
~ωrf

gFµB
−Bs

)
δm′,m + κ~ωrfδm′,m

− gFµB
brf,y

4

√
F (F + 1)−m (m+ 1)δm′,m+1

+ gFµB
brf,y

4

√
F (F + 1)−m (m− 1)δm′,m−1. (5.9)

Since we are not interested in the state of the rf field we drop the rf photon energy κ~ωrf

which couples the different manifolds of rf photons. The comparison then shows that the
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matrix elements H̃m′m are equal to that of a spin particle in a static magnetic field written

as

Beff (r) =

(
Bs −

~ωrf

gFµB

)
ez +

brf,y
2

ey. (5.10)

Defining Ωθ (r) = gFµB |Beff (r)|, the Hamiltonian of the simplified system is just

ĤRWA = Ωθ (r) F̂θ. (5.11)

which is diagonal in the dressed state basis |m̃F 〉 where m̃F = −F ,...,F and F̂θ = cos θF̂z +

sin θF̂y is the spin operator in the new basis with the angle θ as defined below. The dressed

state can be interpreted as the magnetic quantum number with respect to the quantization

axis defined by the effective magnetic field. If the adiabaticity criterion is satisfied the

position dependent potential becomes

U (r) = m̃F~
√
δ2 + Ω2, (5.12)

where δ2 is called the resonance term and depends on the local detuning between the Larmor

frequency and the rf field

δ =
|gFµB|

~
|Bs (r)| − ωrf. (5.13)

The second term Ω2 is the so-called coupling term. It is position dependent and takes the

influence of the rf field into account which depends also on its local orientation with respect

to the static magnetic field. In our case of linearly polarized light the coupling term becomes

Ω =
|gFµB|

~
|brf (r)×Bs (r)|

2 |Bs (r)|
. (5.14)

For a static magnetic field perpendicular to the rf vector the coupling term becomes Ω =
|gFµB |

2~ |brf (r)| which is in general called the Rabi frequency. Considering equation (5.10)

the effective magnetic field lies in the x-z plane at an angle

tan θ = −Ω

δ
0 ≤ θ ≤ π (5.15)

to the quantization field. We can therefore describe the dressing of the atoms as a tilt of

the initial spin vector and the dressed states are written in terms of a rotation operator

R̂x (θ) = exp
(
iF̂xθ

)
|m̃F 〉 = R̂x (θ) |mF 〉 . (5.16)

A sudden turn off of the rf field causes the atoms to be projected onto their bare magnetic

spin states. Thus, instead of obtaining the initial state in which the atoms were prepared

they can rather end up in a superposition depending on Rx (θ).
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5.2.3 Double Well Spectroscopy

We have now achieved a concrete picture of the dressed adiabatic potentials, given in the

RWA by equation (5.12). With the right experimental parameters equation (5.12) describes

a double well potential. In general we determine the trap bottom of a magnetic trap with

spectroscopy using an rf field. For the double well potential we expect that its spectrum

is given by U (r). In the following, however, we will see that the formal derivation of this

result is not that simple in the vicinity of another rf field.

Doubly Dressed Hamiltonian

The behaviour of spectroscopy on dressed adiabatic potential can be understood by solving

the dressed atom Hamiltonian with an additional, weak rf field of frequency ωsp, field

strength bsp and the respective Rabi frequency Ωsp = gFµBbsp/2~. The two rf fields have a

frequency difference of ∆ = ωsp − ωrf. We assume that both rf fields are linearly polarized

along the y axis. The new Hamiltonian is extended by the additional rf field and since it is

very weak one can then apply the same RWA as described in section 5.2.2 which leads us

to [108]

Ĥ (r, t) = ΩθF̂θ + Ωsp

[
F̂x cos (∆t) + F̂y sin (∆t)

]
. (5.17)

This Hamiltonian describes the system in a rotating frame of frequency ωrf. The first

term describes the dressed adiabatic potential, while the second term is time-dependent.

Expressing the Hamiltonian through a rotation ˆ̄H = R̂∆ĤR̂
†
∆ with R̂∆ = exp

(
iF̂θ |∆| t

)
permits the application of a second RWA yielding the effective Hamiltonian

ˆ̄H (r) = − (|∆| − Ωθ (r)) F̂θ +
Ωsp

2
[1 + sgn (∆) cos θ (r)] F̂⊥θ, (5.18)

which is equivalent to the Hamiltonian in equation (5.11) with the coupling

Ω∆ (r) =

√
(|∆| − Ωθ (r))2 +

Ω2
sp

4
[1 + sgn (∆) cos θ (r)]2. (5.19)

The eigenstates of the now doubly dressed states are labeled by |m̄F 〉 and correspond to

the single dressed states |m̃F 〉 rotated by an angle

tan θ∆ =
Ωsp [1 + sgn (∆) cos θ]

2 (|∆| − Ωθ)
(5.20)

analogue to the single rf field case. We see that the physics is scarcely more complicated

with the application of a second, weak rf field. We turn next to the transition frequencies

between the singly dressed states, which are not immediately obvious from the Hamiltonian.
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Outcoupling of Atoms

The frequency spacing between the singly dressed states at a certain space point r is given

by Ωθ (r). For large enough detuning ∆ we can always find a surface inside the double

well potential where the resonance condition Ωθ (r) = |∆| is fulfilled. At these space points

atoms are outcoupled with a coupling rate of Ωsp [1 + sgn (∆) cos θ] /2. Indeed we find from

equation (5.11) that the resonance condition is realized by the two values θ0 = arcsin (Ω/∆)

and π − θ0 within one of the wells. In the literature the two resonances are refered to as

inner (IR) and outer resonances (OR). Atoms which are hot enough to reach the IR and the

OR make transitions to untrapped states and are removed from the double well potential.

This priniciple was successfully implemented for evaporative cooling within rf adiabatic

potentials [109].

At an angle θ0 = π/2 the resonances meet in the well centres. For a BEC trapped in

a double well potential all atoms occupy the lowest energy state and are therefore located

in the well minima. The point is that to remove all atoms with an additional rf field

both outcoupling at the well centre and the resonance condition have to be fulfilled which

means Ω∆ (Ωθ = |∆|) = Ω∆ (θ0 = π/2). Using the fact cos θ =
√

∆2 − Ω2
θ/ |∆| which can

be derived from equation (5.18) we find the relation

Ωsp

2

1 +

√
∆2 − Ω2

θ

|∆|

−
√

(∆− Ωθ)
2 +

Ω2
sp

4
= 0. (5.21)

Therefore we expect resonances of the spectroscopy signal at the frequencies ωsp = ωrf±Ωθ.

In a perfectly symmetric double well, all atoms are removed from the trap at two frequencies.

In an asymmetric double well each of the wells has its own resonances and the energy

difference in the trapping potential is given by the difference of the corresponding transition

frequencies.

Beyond the Rotating Wave Approximation

The RWA treatment of the Hamiltonian with two rf fields predicts two allowed transitions.

The problem is that the RWA only considers couplings within one manifold of κ as discussed

in section 5.2.2. However, for large rf dressing field amplitudes the fluctuation in photon

number becomes large and transitions to higher manifolds have to be considered. The

occurance of new sideband resonances for Zeeman states due to higher manifolds were first

proposed by Haroche [110]. In connection with adiabatic potentials the transition matrix

elements for the spectroscopy field were calculated numerically by Hofferberth et al. [106]

who found a chain of allowed transition frequencies.

The weak spectroscopy field is intended to induce transitions between the dressed states

m̃F and m̃′F . Due to absorption and emission of photons we expect similar selection rules

as for the dressing field with m̃F − m̃′F = ±1. It is intuitively clear from figure 5.2 that

a spectroscopy field of frequency ωsp = Ωθ (r) drives such a transition at the space point
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r. Since we assume a strong rf dressing field with a large variation of photons in the

order of
√
〈N〉, a coupling between different manifolds can occur. The link between the

different manifolds is induced by multi photon processes and hence the resulting transition

frequencies are

ωsp = nωrf ± Ωθ (r) (5.22)

for n = 1, 2,... and ωsp = Ωθ for n = 0. In the case n = 1 with ωsp − ωrf = Ωθ, for example,

an atom undergoes a transition from m̃F = 2 to m̃F = 1 by emitting two dressing field

photons and absorbing one photon of the weak probing field.
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Figure 5.2: Transitions between the various dressed states m̃F occur where the spectroscopy field
is resonant to the level spacing Ωθ (r). This happens at four surfaces in the dressed potentials. Due
to multi photon processes coupling the different manifolds transitions occur at the same positions
also for the condition that Ωθ (r0) = |ωsp − nωrf| with n ∈ N.

5.3 Splitting of the BEC

We now have enough theoretical background to describe an experimental situation. The

goal is to deform a magnetically trapped BEC into a symmetric double condensate. The

experimental situation is sketched in figure 5.3. The static currents Iwire generate trapping

fields for the magnetic trap. In addition, the two chip wires Z3 and Z4 also carry an rf

current creating an rf magnetic field at the position of the atoms. Before we discuss the

technical details for splitting a BEC, however, we want to have some further thoughts on

the configuration of the magnetic fields and the resulting potentials.

5.3.1 The Double Well Potential

The magnetic field of the two trapping wires overlapped with a homogenous external mag-

netic field produces a quadrupole field in the x-y plane. The magnetic field of the IP trap
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brf

Bs

x

ybrf,Z4

brf,Z3

IZ4(t) = Iwire + Irf,Z4 cos(ωt+π) IZ3(t) = Iwire + Irf,Z3 cos(ωt)
∼ ∼

γ

Figure 5.3: The currents are in the two chip wires are a combination of static and rf currents.
The static currents provide magnetic fields for the IP trap whereas the rf currents with a π phase
shift create a linearly polarized rf magnetic field at the position of the atoms. Due to dressing of
the atomic spin states the atoms experience a double well potential in the x-y plane. The direction
of splitting encloses a certain angle γ with the horizontal depending on the orientation of the rf
amplitude vector brf.

in the z = 0 plane is given in polar coordinates by

Bs (r) =

 B′r cos (ϕ+ π/4)

−B′r sin (ϕ+ π/4)

B0

 . (5.23)

The rotation by π/4 takes the geometry of our system into account, B′ is the magnetic field

gradient and B0 is the homogenous Ioffe field strength. We generalize the rf field vector for

linearly polarized light to an arbitrary direction in the x-y plane

brf =

 brf cos (ϑ)

brf sin (ϑ)

0

 . (5.24)

The absolute value of the rf field |brf| = brf is independent of its direction which is defined

by the angle ϑ. The explicit description of the magnetic fields permits the calculation of

the coupling term Ω in the dressed adiabatic potential of equation (5.12) which becomes

U (r) = m̃F

√
[gFµB |Bs (r)| − ~ωrf]

2 +

(
gFµBbrf
2 |Bs (r)|

)2 [
B2

0 +B′2r2 sin2 (ϑ+ ϕ+ π/4)
]
.

(5.25)
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The direction of the smallest coupling defines the direction of the splitting and is determined

from the condition ϕ+ϑ+π/4 = 0 or ϕ+ϑ+π/4 = π. When the rf field is linearly polarized

along the y axis, with ϑ = ±π/2, the minima of the coupling term are located at ϕ = ±3π/4

and ϕ = ±π/4. Since the sign of the rf field vector is changing in time, the splitting occurs

along the x axis. A rotation of the rf field around the z axis results in a rotation of the

splitting direction by the same amount but opposite direction.

For a sufficiently large Ioffe field we can make the assumption r << B0/B
′ and an

approximation of equation (5.25) yields the position of the potential minima [111]

r0 =
1√
2B′

√
b2rf −B2

crit. (5.26)

For creating a double well potential we follow the example of Schumm et al. [13] and use

a red-detuned rf signal with ~ωrf < gFµBB0. The potential splits into two minima only if

the rf field strength is larger than the critical field strength

Bcrit = 2

√
B0
gFµBB0 − ~ωrf

|gFµB|
. (5.27)

The transformation from a single well to a double well is hence possible by tuning one

of the parameters brf, B0 or ωrf. The separation distance, however, is independent of the

orientation of the linearly polarized rf field.

Although the rf field is not resonant with the Zeeman energy gap at any point in space,

the states are still coupled and it is possible to create two wells with a sufficiently large rf

field strength. Since in the trap centre the detuning is nearest to resonance, the potential

is pushed up furthest there and results in a local maximum.

5.3.2 The Splitting Process

In the following we describe the procedure to create symmetric double well potentials, used

throughout all the experiments of this thesis. The exact numbers for the parameters were

found by optimising the experiment for the best results.

The double well potential is implemented by overlapping the DC current in the trapping

wire with two independent, phase-locked rf currents. The coupling is realized with a bias-T

as described in section 3.2.7. The phase between the two rf currents is π which creates

a linearly polarized rf magnetic field at the position of the atoms. The field is polarized

along the vertical y axis which yields a splitting along the horizontal. In order to split the

BEC into the double well we ramp up the rf currents linearly over 20 ms. The rf frequency

is fixed at 540 kHz which is 90 kHz red-detuned from the bottom of the magnetic trap.

In experiments we found that we start to outcouple atoms from the trap due to power

broadening at detunings smaller than 80 kHz. The final rf field strength is adjustable.

For balanced splitting the rf current in each wire is adjusted independently. The ratio

of these currents, however, is fixed during the whole process. Estimate from the rotating



Chapter 5. Symmetric and Asymmetric Double Well Potential 69

wave approximation and numerical simulations for our setup show that the BECs are well

separated for fields of around 0.8 G [78]. From equation (5.26) we estimate that two minima

start to form at around 0.68 G, hence the actual spatial separation happens within the last

5 ms of the splitting process.

5.3.3 Balancing of the Double Well

After ramping up the rf power in the two wires the wells can differ in the energy of the

lowest states, causing the two BEC clouds to have unequal atom number. Equation (2.20)

shows that the contrast of the fringe pattern is maximal for an equal fraction of atoms in

each well. Therefore it is favourable to prepare the atoms in a symmetric double well.

As we have already discussed in detail, the splitting direction depends on the spatial

orientation of the rf field. Since the two trapping wires are not symmetric and have different

impedances, an equal rf output power on both rf generators does not split the cloud hori-

zontally. Since the rf field gradient of an infinitely long wire drops with distance from the

wire ∂ |brf| /∂r ∝ 1/r, the cloud closer to the chip surface sees a larger rf magnetic field and

hence has a larger Rabi coupling Ω which increases the trap bottom of the corresponding

well. In the case of two broad wires we expect a modified scaling of the rf field gradient, but

still the rf field will not be uniform over the extent of the double well. For balanced splitting

the contributions from the magnetic interaction potential and gravity have to cancel the

energy difference between the wells. Only if

∆Vgrav + ∆Emag = 0 (5.28)

where ∆Emag is the difference in magnetic field energy and ∆Vgrav in gravitational potential,

a balanced potential can form.

mF = 1mF = 2

mF = 0

mF = 2

Figure 5.4: Images of the double well atoms after applying the balancing scheme. We turn off the
rf field while maintaining the IP trap. The clouds from the two wells projected onto the mF = 1 and
2 magnetic spin states are accelerated inside the harmonic potential and cross each other. After the
release from the trap the clouds are thrown in opposite directions. Due to the different magnetic
coupling not only the atoms from the two wells are identifiable but also the different spin states.
The blob in the middle refers to the mF = 0 state falling in the gravitational potential. The image
in the middle shows a balanced double well, while the others have an emphasized left and right well
respectively.

A balanced double well potential is achieved by monitoring the atom number in the

minima of the potential for experiments with different rf current ratios. The imaging system,
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however, does not permit the resolution of the double well potential with its separation of

typically 2µm to 4µm. We check that the clouds are of equal size using a scheme desribed

in [112]. The BEC is split and instead of simply releasing it, we first turn off the rf field.

During the rf turn off the atoms are projected onto their bare magnetic spin states which

move now in the single IP trap. The atoms in the high field seeking states with mF = −1 and

mF = −2 are immediately expelled from the trap, while the mF = 0 state atoms fall freely

under gravity. Atoms in the mF = 1 and mF = 2 state are accelerated from the positions

of the double well minima towards the centre of the IP trap. The clouds from the two

wells cross in the trap centre without disturbing each other due to their low density. After

400µs, which corresponds to approximately three-quarters of a radial oscillation period,

we additionally turn off the static magnetic fields and the kinetic energy gained from the

movement in the magnetic trap separates the clouds of the two wells far enough from them

to be optically imaged. Since the potential is different for the mF = 1 and mF = 2 spin

states, both have different kinetic energy and are resolved after 2 ms time-of-flight. The

resulting images for wells with different imbalancing are shown in figure 5.4. Counting the

atoms in the different components gives an estimate of the size of the BECs inside the

adiabatic potential.
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Figure 5.5: Fraction of atoms in each of the well in dependence wire current ratio. The fraction is
determined by counting the atoms in the mF = 1 and 2 states using the described balancing scheme.
A higher ratio results in an increased atom number in the right well (green) while the atom number
in the left well (orange) is decreased. At a ratio of IZ4/IZ3 = 0.60 the clouds are well balanced.

The fraction of atoms in each well in dependence of the current ratio is shown figure 5.5.

We repeat the balancing experiment for different ratios and count the atoms in the mF = 1

and 2 states. In the presented case the clouds in each well are of equal size at a ratio of

IZ4/IZ3 = 0.60. Increasing the rf current in Z4 while decreasing it in the other by the same

amount increases (decreases) the number of atoms in the right (left) well and vice versa.

The described scheme is used at various points within this thesis and is succesfully
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applied to optimise the splitting process. However, it is not a precise measurement of

the energy difference in the wells. Figure 5.4 shows balanced clouds at a current ratio

of IZ4/IZ3 = 0.65 which is the value we use for splitting in the following experiments.

We realised, however, that for optimal results this value should be checked regularly and

modifications in the order of 10% can be necessary on a time scale of a few weeks.

5.4 Implementation and Characterisation of the Asymmetric

Double Well

In a symmetric double well potential the trap bottoms of both sites have the same energy

level and we call the potential balanced. Especially, in the case of a very slow splitting

of a BEC where the system has enough time to adjust itself we end up with two clouds

of equal atom number. A deviation from a balanced energy difference between the lowest

states in each well leads to a so-called asymmetric double well with unequal atom number

on each site. A precise measurement of the gravitational constant g by splitting a BEC

into an asymmetric potential and counting the atoms in each well was demonstrated on an

atom chip [113] in 2007. However, if we want to apply an energy shift while maintaining

an uniform atom distribution, we rather first split the BEC into balanced clouds and then

apply an asymmetry afterwards. At large enough separation the sites lose their coupling

link and an exchange of atoms is no longer possible. Our goal in this section is to imbalance

the energy levels of the two wells in such a way that all the other parameters like atom

number, splitting distance, etc. remain unaltered. After developing a scheme for tilting the

orientation of the double well potential with respect to the horizontal, the following task is

to characterise the energy difference between the wells which is due to a gravitational shift

and a shift in Rabi coupling.

5.4.1 Tilting of the Double Well

We determined the ratio of the rf wire currents for a symmetric double well from the

balancing experiment. Together with the desired splitting distance this ratio defines the

power outputs we dial up on the two rf generators. If we want to implement an asymmetry,

that is an energy difference ∆V between the wells, we can just dial up a slightly different

rf current ratio. The disadvantage is then that the asymmetry cannot be varied during an

experimental cycle and the splitting process is always imbalanced resulting in a difference

in atom number between the clouds. Therefore we use a much more flexible scheme.

Parametrising the Asymmetry

The rf sources have a modulation input which takes values between 0 V and 5 V correspond-

ing to zero output and maximum output of the dialed power respectively. The amplitude

of the output signal is proportional to the modulation voltage. In fact we control the linear



Chapter 5. Symmetric and Asymmetric Double Well Potential 72

brf brf

Bs

x

ybrf,Z4

brf,Z3

∆V

brf,Z4-bmod
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Figure 5.6: Schematic of the tilting process of the double well potential. By adding and subtracting
a small modulation field Bmod to the magnetic fields Brf,Z3 and Brf,Z4 respectively, the double well
is tilted around the z axis. The resulting height difference introduces an energy difference ∆V and
hence an asymmetric potential.

rf ramp for the splitting process with the modulation input. First, we adjust all parameters

such that we create a balanced double well at a modulation voltage of 4.5 V instead of 5 V.

After the splitting process has finished we increase the modulation voltage on one rf source

while decreasing it on the other source by the same amount leading to a modification of

the rf magnetic field vectors. The situation is illustrated in figure 5.6. The resulting rf

field vector is the superposition of the fields generated by both wires and hence tilts by an

angle ϑ with respect to the y axis while its length stays constant. According to equation

(5.25) this rotates the splitting direction of the double well by the same amount but with

opposite sign. In order to parametrise the imbalance we introduce the artificial asymmetry

parameter

α = 10
(Vmod,Z3 − Vmod,Z4)

2
, (5.29)

where Vmod,Z3 and Vmod,Z4 are the modulation voltages on the according rf generators with

the condition that

Vmod,Z3 + Vmod,Z4 = 9 V. (5.30)

Although the modulation voltages are changed in opposite direction, we have to be aware

that in the described scheme the total rf field strength at the space point of the atoms

changes by a small amount because the output amplitude of the rf generator is proportional

to the selected power. Splitting into a symmetric double well, however, requires an initial

imbalance in output power. It follows that by tilting we also change the rf field amplitude

by a small amount.
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Behaviour of the Well Separation

The splitting distance is related to the fringe wavelength according to equation (2.21) which

is a good approximation at large enough well separations (see later discussion). Since an in-

trap observation of the splitting distance is impossible with our imaging system, we make use

of the fringe wavelength to quantify the effect of the tilting scheme on the well separation.

At this point we anticipate the next chapter where we discuss in detail the observation

and analysis of an interference pattern. We split the BEC into a symmetric double well

potential defined by α = 0 V and a power ratio of PZ4/PZ3 = −13.9 dBm/ − 9.9 dBm. We

then ramp the modulation voltages to a certain asymmetry α over 1 ms and determine the

fringe wavelength Λ after 12.4 ms time-of-flight as described in chapter (6).
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Figure 5.7: Behaviour of the fringe wavelength in dependence of the asymmetry parameter α. Every
data point represents the average of 20 repeated experiments. Over the small range of operation a
linear approximation seems to be justified. The fit yields a slope of −0.055± 0.005 pixel/V.

By observing the fringe wavelength we indirectly also measure the splitting distance

d. In figure 5.7 we plot the wavelength Λ for different double well configurations which

clearly exhibits a correlation between well separation and asymmetry parameter. Every

data point represents 20 repeated experiments. The change of the quantity Λ can be linearly

approximated within the observed range of tilt angles. From the linear regression we are able

to determine the variation to within 0.6%. Taking the camera setup and the magnification

into account the symmetric potential at α = 0 V has a well separation of around 3.23µm

and varies between 3.05µm and 3.43µm over a range of α = ±5 V which corresponds to a

modification on the order of ±6%. The well separation increases (decreases) in the direction

of positive (negative) values of the asymmetry parameters.

This experiment shows qualitatively the behaviour that we expect from the tilt process.

The quantitative use of the data, however, is restricted by the experimental parameters.

The condition is that we perform all experiments concerning the asymmetric well at the

specified power ratio and within the studied range of the parameter α. Otherwise we would
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have to expect a modified behaviour of the splitting distance. Where it is justified, however,

the linear fit gives us a simple approximation to describe the double well behaviour.

Observing the Tilt

In order to proof that we are able to tilt the potential we dial up an rf power of PZ4/PZ3 =

−12.0 dBm/ − 8.0 dBm which gives a fairly large splitting distance and release the clouds

using the balancing scheme. Already after 4 ms time-of-flight a change in height difference

is clearly observable for different α. In figure 5.8 we present averaged images for the tilt

parameters α = −5 V and α = 5 V. The dashed line represents the horizontal with respect

to the camera chip. A position change of the atoms in the mF = 1 and mF = 2 is clearly

visible. The opposite movement in height is the result of the rotation around the z axis.

α = -5 V α = +5 V

Figure 5.8: Averaged images of 10 experiments after 4 ms time-of-flight. The change in height of
the two wells is clearly visible. The big cloud in the middle are atoms projected onto the mF = 0
state which is insensitive to magnetic fields and keeps its position. Left: Asymmetry parameter
α = −5 V. Right: Asymmetry α = +5 V.

Finally, we present a scheme which permits full control of the double well potential. Not

only the splitting distance and the balancing can be controlled with the rf currents but also

the energy difference can be adjusted. Basically there are two contributions to the energy

shift, the difference in gravitational potential and the shift in magnetic energy. Since in the

rotated potential one well is closer to the chip surface than the other, the atoms closer to

the chip see a much larger Rabi coupling. The characterisation of the energy shift and its

origin is essential for understanding of experiments on the asymmetric double well and is

hence the main topic of the following sections.
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5.4.2 Gravitational Potential Difference

Consider two atoms each with a mass m and in different sites of the double well potential.

In the homogenous gravitational field g near the earth surface both have a certain potential

energy depending on their position in height. To determine the gravitational energy dif-

ference in the double well potential we need to know their relative difference in height ∆y.

Since we are not able to measure ∆y in-trap we calculate it from the splitting distance d and

the tilt angle γ between the two clouds with respect to the horizontal. The gravitational

potential then becomes

∆Vgrav (α) = mgd (α) sin [γ (α)] . (5.31)

Both the well separation d and the angle γ depend on the asymmetry parameter α. We

derive the splitting distance and its behaviour with asymmetry in the last section. In order

to get a complete picture of the asymmetric double well we discuss the determination of the

tilt angle γ in the following. So far we described the asymmetry of the trapping potential

with the artificial parameter α. The conversion to an angle, however, will give us a more

concrete picture.

Tilt Angle

The tilt angle is difficult to access in situ, since the splitting distances are on the order of

a few µm. Instead we make again use of the balancing scheme as described in section 5.3.3.

After the rf turn off the atom clouds in the mF = 1 and 2 states cross each other in the centre

of the IP trap. The movement inside the static trap changes their relative distance while the

relative orientation with respect to the camera chip is preserved. We image the clouds after

a fixed time-of-flight of 2 ms for different asymmetries α and measure their relative tilt angle

with respect to the horizontal which is defined by the camera chip. We achieve a better

resolution by increasing the total rf field strength but keeping the ratio of the wire currents

constant. The larger splitting inside the trap results in a higher kinetic energy gain while

moving in the IP trap. Since the clouds move in opposite directions, they appear further

separated while the tilt angle is maintained. Especially, in this measurement the dialed rf

output powers are −12.0 dBm/−8.0 dBm compared to the usual −13.9 dBm/−9.9 dBm we

use typically for interferometry. In figure 5.9(a) we present the measured tilt angle versus

the asymmetry parameter. The fit indicates a slope of around 0.51±0.05◦/V. Especially, for

large tilt angles the observed error is increased and the data points seem no longer to lie on

a straight line. An additional fit through the central region yields a slope of 0.63± 0.04◦/V

reproducing well the measured data for angles between −4◦ and 2◦. However, an immediate

conclusion on the correct tilt angle is impossible.

Influence of the Release

Considering the previous measurement the question arises if the angle changes during free

fall as the release might not be smooth. In fact according to figure 3.7 the static wire current
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in the chip wires decreases to 0 A within 80µs which could cause a force onto the released

atoms. A kick acting unequally on the wells influences the trajectory of the clouds and

results in a change of the clouds’ relative position. Especially at large splitting distances

we have to take this effect into account.

A repetition of the previous measurement at various release times is therefore necessary.

As shown in figure 5.9(b) the tilt angle changes indeed during free fall. Since tan γ ≈ γ for

γ in the order of a few degrees, the assumption that a small linear relative movement of

the clouds implies a linearly changing tilt angle is justified. Hence the linear extrapolation

of the data yields the initial in-trap angle. The extrapolation at α = 0 V has with 0.33 ±
0.05 rad/ms a much smaller slope compared to that at the two extreme asymmetries of

around 0.415 ± 0.08 rad/ms. Fitting to the initial trap orientations shows a change in tilt

angle of 0.60 ± 0.06◦/V which agrees well with the result for small angles in the previous

measurement. It is also observable that for large tilt angles we find again a larger error.

We conclude that the previously underestimated angle of 0.51◦/V follows from the different

behaviour after the release and the big uncertainty at the outer border of the measurement

range.
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Figure 5.9: a) Measured angle versus asymmetry of the double well after 2 ms time-of-flight. The
fit (solid line) shows a slope of 0.51◦/V per asymmetry unit. A fit through the central data points
(dotted line) reproduces the well the measurement. The angle seemed to be reduced especially
for large asymmetries. b) An investigation of the angle for different time-of-flights shows that the
angle changes linearly during free fall. The extrapolation to the initial tilt angle γ yields a slope of
0.60◦/V.

Conversion

The determination of the tilt angle allows a direct conversion from the abstract and artificial

parameter α to a more practical one. We obtain the in-trap orientation of the double well

from the behaviour of the angle during free fall. Unfortunately, the limited amount of data

in this set does not allow a meaningful derivation for the slope of the conversion. The

observation that the tilt angle changes less after release for a small range of tilt angle,

however, justifies partly the use of our first angle measurement where more data points link
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the connection between asymmetry parameter and tilt angle. Taking this considerations

into account we find a conversion given by γ (α) = −1.05◦ + 0.63◦V−1 α.

If we ask for the gravitational potential difference, however, we have to remember that the

angle measurement is referenced with respect to the camera chip. The true orientation of

the camera chip, direction of splitting and gravitational field with respect to each other

is hardly accessible. Thus our angle conversion only delivers a relative gravitational shift

∆Vgrav but not its exact absolute value. The point is that an angle of 0◦ in our conversion

corresponds to ∆Vgrav = 0 according to equation (5.31) which might not be the case in

reality because the orientation with respect to the gravitational field might be different.

5.4.3 Spectroscopy

Tilting the clouds out of the horizontal not only induces a gravitational energy shift, it also

results in one cloud being closer to the chip surface than the other. Hence the cloud closer

sees a larger rf dressing field brf and experiences a larger Rabi coupling Ω. We expect from

calculations that this magnetic energy shift ∆Emag is comparable in order of magnitude to

the gravitational energy shift. The complete characterisation of the asymmetric double well

requires an in situ measurement of ∆Emag which we present in the following.

Experimental Procedure

We prepare the BEC in the double well potential as described in section 5.3.2 at an asym-

metry α = 0 V and a power ratio of PZ4/PZ3 = −13.9 dBm/ − 9.9 dBm, the typical values

for all interferometer experiments. After the preparation we tilt the potential to the asym-

metry at which we want to probe the energy difference between the wells. We hold the

atoms in this position for 30 ms while applying an additional rf field bspe
iωspt. The field is

generated by running a small rf current in Z configuration through the copper-H below the

chip and is linearly polarized along the y axis. This is exactly the same configuration we

also use for evaporative cooling. The rf field strength is with |bsp| ≈ 1.5× 10−4 |brf| small

compared to the dressing field which is necessary to prevent a shift in energy by deforming

the adiabatic potential. The frequency of the spectroscopy signal defines a sphere on the

double well potential where hot enough atoms are coupled out of the trap. If the probe

field is resonant with the trap bottom of one of the potential wells, the atoms in the lowest

energy level will cascade from their initial state to the untrapped states and will leave the

confining potential. Monitoring the atom number with the frequency ωsp of the probe field

then gives us direct information about the level spacing of the dressed states. Since the

five eigenenergies of the dressed potential are equally spaced, the magnetic energy on the

resonance sphere is just twice the splitting ~ωsp between adjacent levels.

We work with a red-detuned trap at fairly large rf coupling Ω in which case we expect

that the transition rates for higher orders of n are more pronounced [106]. Instead of scan-

ning the frequency over Ωθ, we probe the transitions around the resonances for n = 1 with

ωres = ωrf + Ωθ allowing high outcoupling at a small spectroscopy field strength. On the
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otherhand we have to avoid outcoupling of all atoms inside each well in order to get a sharp

minimum in the spectral lines. Saturation of the transition would broaden the minimum

and decrease the accuaracy of the measurement.

The spectroscopy on an asymmetric double well should show twice the amount of res-

onances of a single well trap. As the tilt angles are only of the order of a few degrees we

expect that the resonances for the two wells are too close to each other to be distinguished.

Therefore, we resolve the two sites after 2 ms time-of-flight after applying the balancing

scheme at the end of the spectroscopic probing. The population in each well can then be

counted independently for a certain rf frequency ωsp.

Theoretical predictions for adiabatic potentials yield the transition frequencies at the

minimum of the double well. In practice, however, the gravitational sag shifts the position

of the atoms into an area of higher trapping potential. The displacement due to gravity

is given by g/ω2
r . Regarding that the double well potential has a modified radial trap fre-

quency ωr of 1.4 kHz [78] this displacement corresponds to 0.1µm. Since the atoms move

in an area of higher magnetic field gradient, the frequency range over which atoms are out-

coupled is broadened. However, we do not expect that the trap bottoms of the two wells

shift significantly relative to each other, since the displacement due to gravity is less than

half of the characteristic radial extension of the wavefunction ar = (~/mωr)1/2 in one well

which is around 0.3µm.

Observed Transition Frequencies

We repeat the spectroscopy experiment at four different asymmetries α = −5 V, −2 V,

0 V and 5 V. At each orientation we scan the frequency over the predicted transitions.

The results of the four frequency scans are presented in figure 5.10 where we see typical

resonance lines for each of the wells. We determine the minima in optical density from the

Gaussian fits. At the minimum in optical density the spectroscopy field is resonant with

the corresponding BEC and most of the atoms are outcoupled. The transition frequencies

are nearly degenerate at α = −5 V but show a clearly visible gap at α = 5 V. We determine

the energy shift for the different asymmetries and plot it against the tilt angle γ in figure

5.11 showing a linear increase. The magnetic energy shift has a slope of ∂∆Emag/∂γ =

234.04± 21 Hz/◦. The overall shift between α = −5 V and 5 V is with around 1.4 kHz two

times larger compared to the gravitational contribution with a total shift of around 0.7 kHz

over the same range assuming a well separation of 3.23µm.

Remarkable is also the variation in optical density at the population minima. The values

of the minimum optical density are nearly equal at α = −5 V. Increasing the asymmetry

parameter the minimum of the left well increases while that one of the right hand side

decreases. We explain this observation with a shift in coupling strength which is expected

to be Ωsp/2 at the well centres. In the experiment, however, we have to consider the sag due

to gravity. Depending on the orientation of the potential with respect to the horizontal the

position of one cloud is shifted towards the IR while the other sags towards the OR. Since the
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coupling is antisymmetric around the well centre at θ = π/2, the coupling frequencies are

Ωsp [1− sgn (∆) cos θ] /2 and Ωsp [1 + sgn (∆) cos θ] /2 respectively. In the resonance lines

this asymmetry clearly manifests itself in the opposite outcoupling behaviour of the atoms

measured for the two wells.

Furthermore, we observe an overall shift in transition frequencies which is due to the

small shift in |brf| induced through the linear modulation of the rf sources with slightly

different output power. We calculate the mean resonance frequency for each asymmetry

and plot it against the tilt angle in figure 5.12. The fit indicates a slope of 2.64±0.04 kHz/◦.

Remembering equation (5.22) we estimate an rf field strength of |brf| = 0.813± 0.005 G at

the balanced position α = 0 V or γ = −1.05◦. Over a maximum tilt range from −4.05◦

to 1.95◦ the field strength increases from around 0.77 G to 0.85 G showing a variation of

around 5% in agreement with change variation we found in separation distance.

5.5 Conclusion

We implemented successfully rf adiabatic potentials in our atom chip trap. We demon-

strated that it is possible to split a BEC equally into two wells. By adding/subtracting a

small rf modulation to the rf currents in the chip wires we are able to tilt the double well

potential with respect to the horizontal. The tilt introduces a small asymmetry between

the wells in the form of a small potential difference. If the potential is rotated after the

splitting, the size of the two clouds, however, stays constant. We identified the potential

difference to be due to a height difference in the gravitational earth field and an increased

(decreased) rf coupling of the atoms closer to (further away from) the atom chip surface.

In order to determine the gravitational contribution, a parametrisation of the asymmet-

ric double well in terms of the tilt angle is necessary. The shift in magnetic coupling is

gained from spectroscopy on the rf adiabatic potentials and is around twice the amount due

to gravity. The analysis shows that the overall potential difference can be approximated by

a linear function in tilt angle. This simple relation gives us easy control over the asymmetry

of the double well potential.
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Figure 5.10: Typical resonance lines of the two wells at four different asymmetries α = −5 V, −2 V,
0 V and 5 V from top to bottom. The frequency of maximum atom outcoupling is determined with
gaussian fits. At α = −5 V the transition frequencies of the left (orange) and right (green) well are
nearly degenerated. An obvious gap is observed for larger asymmetry parameters. Due to a change
in coupling strength the minimal value in population of the two sites behave oppositionally. Since
with asymmetry we also make a small change to the total rf current, the mean transition frequency
of the wells shifts over a range of around 15 kHz allowing an estimate of the rf field strength |brf|.
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Figure 5.11: Magnetic energy difference between the left and right well plotted against the tilt
angle γ. The overall shift of around 1.4 kHz corresponds to twice the amount of the gravitational
potential gap for the implemented trapping configuration. The shift has a slope of 234.04± 21 Hz/◦

which is a crucial result for the characterisation of the double well potential.
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Figure 5.12: Shift of mean resonance frequency vs. tilt angle γ. The linear fit has a slope of
2.64 ± 0.04 kHz/◦. The data allows an estimate of the rf field strength which varies in a range
between 0.77 G to 0.85 G.
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Chapter 6

Making the Interferometer Work

6.1 Introduction

Theory predicts the evolution of density modulations if two BECs are combined in free fall.

The position of the modulations depends on their relative phase. The basic prerequisite for

a reliable and repeatable phase measurement is that the splitting and recombination process

of the BEC is coherent. This is not immediately clear, e.g. a very slow splitting in which the

system has enough time to adapt itself to the changing environment would lead to a number

state with a completely undefined phase. On the other hand any randomness like noise

during the experimental sequence will also affect the outcome of the phase measurement.

In the past a reproducible relative phase was reported in interference experiments of two

BECs released from optical potentials [14] and from adiabatic potentials on an atom chip

[13].

In this chapter we analyse the reliability and reproducibility of a phase measurement. We

start with the observation of matter wave interference and how we determine the relative

phase. In the next step we test if the splitting and recombination process is coherent. We

discuss our studies and make improvements in the trap release which lead us to a more

stable measurement. Finally, in section 6.5 we measure the dephasing rate between the

two interferometer arms which is a crucial result for both the limit and the precision of our

device.

6.2 Matter Wave Interference

The observation of matter wave interference is the most striking demonstration of the

existence of a theory such as quantum mechanics. Its occurrance postulates both the wave

nature as well as the phase property of a solid particle and cannot be explained within any

classical theory. We consider one special case of matter wave interference occuring when

two clouds of atoms all occupying the same ground state are overlapped and it was not

until 1997 that this type of experiment was demonstrated [53] for the first time.
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6.2.1 Observation of Interference

Interference Pattern

The emerging of the density modulations in the overlap of two BECs during free fall is

presented in figure 6.1. We image the cloud on axis 2 along the z axis and the initial BEC

is split as described in section 5.3 where the rf field is ramped up over 20 ms. We release

the atoms from the double well potential by turning off the static magnetic field and the rf

field at the same time. The density modulations within the cloud are clearly distinguishable

after 12 ms free fall which is a typical time-of-flight for our experiments.

3 ms 6 ms 9 ms 12 ms

Figure 6.1: Time-of-flight images of two BECs released from a double well potential. The two
clouds overlap in free fall and initially only a cloud with Gaussian profile is visible. First density
modulations emerge after 9 ms time-of-flight and are clearly visible 12 ms after the release of the
atoms.

Splitting Time

We linearly ramp up the rf field within a time of 20 ms. We choose this specific time from

tests where we vary the splitting time for the interference experiment. At ramp times slower

than 30 ms the contrast of the fringe pattern is strongly reduced. On the other hand the

interference pattern seems to be distorted, if the BEC is divided faster than 5 ms.
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In fact the shape and the length of the rf ramp influences the quantum state in which

the two wells end up. In the theory part we discussed the binomial and number states. For

splitting times τ → ∞ the system can adjust itself and ends up in a number state. In the

case of a sudden divide it is impossible to tell in which well a single atom is located because

the wavefunction of each atom is spread initially over the whole BEC and an adaptation is

impossible. The result is a binomial distribution of the atoms. Between the binomial and

number state other atom distributions are imaginable. Number squeezed states in multi

well systems were realized by adjusting the splitting time of the BEC in the Oberthaler

group [114]. Such states are of great interest for interferometry as they show increased

coherence times [15].

In this thesis, however, we only consider one specific state of the atom distribution which

is characterised in this chapter. However, to improve the precision of our interferometer in

the future the study of different rf ramping shapes and times might be profitable.

Wavelength

We control the wavelength of the fringe pattern indirectly through the separation of the

two wells. According to equation (5.26) a higher rf field strength leads to a larger splitting

distance. At small enough rf field only one single fringe is observed, whereas a higher rf field

decreases the wavelength as can be seen qualitatively in figure 6.2. The pattern with the

large central peak defines the regime where the BECs are split into a double well potential

but the chemical potential µ of the two BECs is still larger than the barrier height V0

and both occupy the same wave function [115]. The relative phase is locked and an applied

energy difference will result in a total and global phase shift. More fringes appear for µ < V0

and the tunnel coupling decreases proportional to e−2
√

2m(V0−µ)d/~. With the reduction of

the tunnel coupling the BECs become independent and can acquire a shift in relative phase

[116]. The limit for the minimal observed fringe wavelength is set by the resolution of the

imaging system. Hence, at large separation lengths the density modulations appear no

longer well defined.

In the past a discrepancy of equation (2.21) for small well separations was observed

[13, 117, 118] which is explained with interaction effects [115] and the consideration of

extended sources [78]. In terms of interferometry we are interested in measurements of

the relative phase which in principle requires only that the two BECs are well separated

and tunneling can be neglected. A proof that the wells are independent in the regime

where we operate the interferometer is provided later in this chapter. However, in order

to calculate the energy difference between the wells due to gravity we need to know their

splitting distance. Since the interferometer requires independent BECs, we operate at fringe

wavelengths much larger than that of the observed single fringe. For that reason we assume

in the following that equation (2.21) is a good approximation.
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(a) (b) (c)

Figure 6.2: Interference patterns after 12 ms time-of-flight for three different rf field strengths.
(a) The single fringe occurs at barrier heights where the wavefunctions of the BECs still overlap
in the potential. At larger separation length more fringes appear whose wavelength decreases with
larger rf fields. The fringe pattern in (b) is typical for the field strength at which we operate the
interferometer and shows a well defined fringe pattern. At smaller wavelengths (c) the resolution of
the camera starts limiting the visibility of the density modulations.

6.2.2 Extracting Information

In order to extract information from images of the density modulation we cut the image

perpendicular to the fringes. The cut is integrated over several pixels parallel to the fringes

which smoothens local fluctuations in density. To the resulting one dimensional array we

can then fit the function

F (x) = A exp

[
−(x− x0)2

r2

][
1 + v cos

(
2π
x− x0

Λ
+ φ

)]
(6.1)

which satisfies the physics of equation (2.20). The first, Gaussian, part of the function

describes the total overlap of the two BECs where x0 is the centre of the cloud and r

its width. The second part describes the density modulations with wavelength Λ and the

contrast v of the pattern with respect to the maximum A of the Gaussian function. The

contrast can be reduced by the integration [119] if the fringes are not perfectly perpendicular

to the cut at any point. Typically, we integrate over only 5 pixels of the central region as

marked in figure 6.3 in order to prevent such effects.

The measurement of the relative phase φ depends on the reference point of the fit.

A different reference point will deliver a different releative phase. The true relative phase,

however, can only be determined if the position of the fringes is compared with the centre of

the double well potential. Since the position of the trap centre is not accessible, we have to

choose a point which allows a stable phase measurement under shifts in the experiment, i.e.

movements of the imaging beam or the camera. Therefore we reference the relative phase to

the cloud centre x0. The phase measurement is then stable under a spatial transformation

of the interference pattern.

Since the phase obtained from the fitting process is of circular nature, we have to use the

mathematical tools provided by circular statistics to calculate the mean value, the standard

deviation and the variance in repeated experiments [120]. A short overview of the methods

used in this thesis is given in the appendix.
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Figure 6.3: For a quantitative analysis of the interference pattern we cut the interference pattern
perpendicular to the fringes and integrate over the central region marked by the red, dashed lines.
The result is a one dimensional array of data points to which we apply an appropriate fit (blue line).

6.3 Spin States

Before we analyse the coherence of the interferometer we spend some thoughts on the

release from the adiabatic potential. The dressed atom states are a superposition of the

bare magnetic spin states. At the point in time when the rf field vanishes the dressed

atoms are projected onto their bare magnetic spin states. Although initially the atoms are

prepared in the mF = 2 state, this might be no longer true after the projection. Since the

current in the chip wires does not vanish immediately after its control voltage is switched to

0 V, there are magnetic fields near the chip surface lasting for several µs which can affect the

release of the atoms. We mentioned already in section 3.2.6 that to guarantee the overlap of

the two wells a precise balancing between turn off time and offset current in the chip wires

is necessary. Since different spin states experience a different force in a magnetic field, the

goal is to project all atoms onto the same state. A variable force over the two atom clouds

not only influences their overlap but also the phase of the atoms. Both is undesireable for

an atom BEC interferometer.

6.3.1 Projection

The composition of spin states depends on the angle

θ = arctan

(
−Ω

δ

)
(6.2)

which the effective magnetic field encloses with the quantization field. Maximal projection

onto the mF = −2 state is realized for angles θ = π/2 orthogonal to the original state which

happens for rf frequencies resonant with the trap bottom. In the case of a decreasing static

magnetic field the absolute value of δ becomes large with respect to Ω and equation (6.2)

tells us that θ → 0. For θ = 0 we expect a projection onto the initial state. If the detuning
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δ becomes large, however, the rotating wave approximation breaks down and the simple

equations are no longer applicable for a quantitative analysis.

Studies on the spin projection in adiabatic potentials in connection with the ramp down

time of the rf field were made by J. J. P. van Es [118]. However, no complete picture can be

found in the literature. In the past also the role of the phase of the rf field was discussed.

We examine the influence of the relative turn off time between static and rf fields, and hence

the detuning δ in the following.
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Figure 6.4: Stern-Gerlach experiment on the overlapping double well clouds. When the rf field
is turned off, the atoms are projected onto their bare magnetic states. The distribution of the
projection depends on the detuning δ. The single shots show that the process is reproducible. Top:
Without the rf delay atoms we observe atoms in the mF = 0,1 and 2 state. Bottom: Implementing
the rf delay leads to an occupation of around 70% in the mF = 2. No atoms occupy the mF = 0
state.
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6.3.2 Observing Spin States

In order to measure the spin state composition we perform the interference experiment as

described in section 6.2.1. We implement the double well at a splitting distance where the

wave functions still overlap and the interference pattern shows only one pronounced peak.

During the free fall of the atoms we now apply a magnetic field gradient along the y axis

which separates the different spin states during time-of-flight analogue to the Stern-Gerlach

experiment.

The rf current is controlled by a switch with a response time faster than 1µs. The fast

switch effects the rf field to vanish immediately while the chip wire field drops within 80µs.

The projection happens in the environment of the static magnetic trap with δ = 90 kHz.

For comparison we take a second data set using another turn off scheme. We keep the

atoms dressed until the static magnetic fields have completely vanished. The properties

of the control software set a limit to the minimum delay time. The rf switch is therefore

triggered 400µs after the chip wire turn off yielding a projection of the atomic spin states

at a large detuning δ.

In figure 6.4 we show the averaged images each from 14 repeated experiments. If we

turn off the trap at small detuning δ we can see atoms in three different clouds. The weakest

of them is located at the position of the original interference pattern marking the mF = 0

state. We find 37% of the atoms in the mF = 1 state and a pronounced mF = 2 cloud.

Spin states with negative sign are not observed, as they are immediately expelled from the

trap during the turn off. The picture is quite different if the rf delay is implemented. In

this case we find no atoms in the mF = 0 state and a very weak cloud for mF = 1. Most

of the atoms, around 70%, are projected onto the mF = 2 state. We also plot the fraction

of the spin states found in the single shots of each experiment. The distribution is stable

and shows small fluctuations around the averaged values leading to the conclusion that the

projection is repeatable and independent of the phase of the rf current.

6.4 Phase Coherence and Stability

Two coherent BECs have a non-random relative phase. If we prepare two BECs indepen-

dently from each other we end up in a so-called Fock state. The number of atoms in each

cloud is then well defined, but their relative phase is completely random. Since an initial

phase is not defined, it is impossible to extract an applied phase shift from an interference

pattern. Therefore the preparation of coherent BECs is an absolutely necessary requirement

for an atom BEC interferometer.

In this section we study the repeatability of the fringe pattern in our experiment. We

show that the splitting process is coherent and repeatable. We find that the width of the

phase distribution is also governed by the turn off of the adiabatic trap and a comparison

between the two turn off schemes is presented. Furthermore, it turns out that a correction

can be applied to achieve small phase spreads and precise phase measurements.
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6.4.1 Phase Distribution

In order to test if the BEC is split coherently, we ramp up the rf field over 20 ms and release

the atoms immediately, without any hold time after the splitting process has finished.

We take an absorption image after 12 ms time-of-flight and extract numbers by fitting the

function of equation (6.1) to the density modulations. The experiment is repeated 100 times

which allows us not only to compare the relative phase but also to check the stability of

fringe spacing, visibility, centre position, etc..

Synchronized RF Turn Off

0◦0◦

45◦45◦

90◦90◦

135◦135◦

180◦180◦

225◦225◦

270◦270◦

315◦315◦

.4
Figure 6.5: Phase distribution of 100 repeated experiments with fast rf turn off. The radius of
the data points represents the fringe visibility. The contrast is with v = 0.21 ± 0.03 stable. With
a circular standard deviation of around 100◦ the data points are spread over the whole circle. The
von Mises distribution (magenta) is fitted to the counts within small sections of the circle. It shows
qualitatively a characteristic direction representing the mean of the phase.

In a first test of phase coherence we switch off the rf field and the magnetic fields of

the IP trap simultanously. The dressing field vanishes much faster than the static magnetic

fields and we project onto at least three different spin states. Figure 6.5 shows a broad

phase distribution with a circular standard deviation of around σφ = 100◦ or 1.75 rad.

The radial component of the polar plot represents the contrast v which has a mean value of

v̄ = 0.21±0.03. The stability of the fringe pattern concerning the centre positon of the cloud

x0 and the wavelength Λ is presented in figure 6.6. The wavelength is, with the exception

of small fluctuations, constant over the whole data set and has an average of 5.15±0.1 pixel
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corresponding to 18.84 ± 0.3µm. The experiment runs with a constant periodicity taking
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Figure 6.6: (a) The linear fit to the cloud centre positions x0 has a slope of 17.3 × 10−3 pixel
per experiment. The cloud centres x0 are distributed around the fit with a standard deviation of
1.27 pixel. (b) The behaviour of the fringe wavelength Λ is stable from shot to shot and fluctuates
around a mean value of 5.15±0.1 pixel. A constant fringe spacing implies that the splitting distance
is repeatable.

one data point every two minutes. In the data set the centre position x0 of the Gaussian

overlap clearly shifts with a linear drift of 17.3× 10−3 pixels per experimental cycle adding

to a total drift of 6.33µm after 100 repetitions. The linear fit in figure 6.6(a) represents the

average shift in time around which the measured centres are distributed.

The overall drift in centre position suggests that either the imaging beam is slowly

drifting over the course of the experiment, or that the drift of the cloud centre is correlated

with a change in the position of the double well potential. First has no effect on the

phase measurement as the fringe fit is referenced to its Gaussian centre, and second is very

unlikely as the resulting drift would require a change in the lab field of around 1 G which is

larger than everything we measure near the experiment. The phase, however, is affected by

variations in the turn off of the trapping fields. A random kick during the release influences

both the relative phase and the centre position of the interference pattern.

Keeping this considerations in mind we calculate the expected cloud position for each

experimental cycle from the linear drift and subtract the result from the actual centre

position x0. By doing so we obtain a set of the new positions x′0 distributed around the new

mean position x̄′0 = 0µm as presented in figure 6.10(a). Finally, we plot the measured phases

against the corrected cloud centres in figure 6.7(a). The Pearson’s correlation coefficient of

the data has a value of 0.85 suggesting strong correlation between the two parameters space

and phase. The linear fit yields a slope of around 1.2 rad/pixel which allows a correction of

the phase information for its deviation. This procedure delivers the corrected distribution

in phase space shown in figure 6.7(b). The von Mises distribution fitted to the new phase

distribution yields a circular standard deviation of around σφ = 12◦ which is similar to the

results of T. Schumm et al. [13] with an analogous setup. We conclude that the splitting

process is coherent. The correction and our considerations, however, suggest that the release
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from the trap has a random component with a strong impact on the relative phase. Still, a

stable phase measurement can be realised.
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Figure 6.7: (a) Correlation between cloud centre position and relative phase. The relative phase
is spread over the whole range of 2π because the cloud centre has a large variation from shot to
shot. Fitting to the data points, however, yields a function which can be used to correct the phase in
dependence of the cloud position in space. (b) The corrected phase distribution is clearly non-random
and has a circular standard deviation of only around 12◦.

Delayed RF Turn Off

Although the correction delivers a coherent phase measurement, it is not convenient in an

experiment where parameters are varied. The problem is caused by the overall linear drift

of the cloud position on the image. We found that its slope can change across a large data

set and differs from day to day. Another requirement is that the experiment has to run

periodically without longer breaks which is also not guaranteed due to typical problems

such as the loss of the laser lock. In fact it is more practical to operate the interferometer

in a mode delivering a stable and coherent phase measurement directly from the fits to the

cloud. Since we concluded that the correlation between spatial position and relative phase

is due to the turn off of the trap, it stands to reason to compare the previous results with

data taken where the rf switch is triggered with a delay of 400µs with respect to the DC

current turn off. One should notice that the time-of-flight in this experiment is increased

by the delay to 12.4 ms.

The analysis of 100 repetitions shows a circular standard deviation of the phase of around

σφ = 48◦ or 0.83 rad which is half of the width in the previous experiment. The wavelength

and centre position data sets are presented in figure 6.8. Visibility and fringe spacing are

with mean values v̄ = 0.12 ± 0.03 and Λ̄ = 4.81 ± 0.1 pixel or 17.6 ± 0.3µm again stable

during the experiment. As expected the drift of the cloud centre is still observed and has

a slope of 12.2 × 10−3 pixel per experimental cycle. Correcting the cloud centres for the

drift and determining their new positions x′0 we find that the distribution is much smaller

than without the delay. The corrected phase distribution, however, has a width of around

σφ = 23◦.



Chapter 6. Making the Interferometer Work 92

(a)

0 10020 40 60 80

x
0
[p
ix
e
l]

Experiment Number

22

26

30

34

(b)

0 10020 40 60 80

Λ
[p
ix
e
l]

Experiment Number

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

Figure 6.8: (a) In the case of a delayed rf turn off the cloud centre shows also a linear drift. However,
the distribution of the spatial positions around the fit is much narrower. (b) The wavelength has a
mean value of 4.8± 0.1 pixel and is stable over the course of the experiment. This is larger than in
the previous data set due to higher rf power on the oscillator outputs.
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Figure 6.9: (a) The circular standard deviation is 48◦ with a delayed rf turn off. The phase
is clearly not randomly distributed and its mean can be determined from the fit data. (b) The
correction using the correlation between phase and space reduces the phase spread further to 23◦.
The corrected data represents the distribution of the physical state of the system.

Finally, with an uncorrected σφ < 1 rad we found a regime where a non-random relative

phase can be extracted directly from the fit without applying any corrections. Hence the

splitting process is not only coherent, moreover it is also possible to determine a certain

relative phase from a small number of repetitions.

6.4.2 Comparison

In the previous experiments we found that the visibility and the fringe wavelength are stable

in repeated experiments. Especially, a constant wavelength is important as it is a direct

measure for the cloud separation in the double well trap. Reproducibility of the trapping

potential is therefore guaranteed.

The circular standard deviation of the corrected phase distribution differs by around
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10◦ in the two tested schemes. This can be understood by the larger well separations in the

experiment [13] with the delayed rf turn off. Since the splitting time is equal in both data

sets, the two wells lose their connection at different points in time during an experimental

cycle and the phase distribution starts spreading earlier. The analysis of the phase spreading

is discussed in the next section.

In order to explain the discrepancy in the uncorrected phase distribution we have a

closer look at cloud centre positions x′0 corrected for the total linear drift. The standard

deviation of the corrected cloud centre is around 4.3 pixel without the delay and only 1.8

pixel in the second case. The direct comparison is presented in figure 6.10. It is remarkable

that we find an equal correlation between phase and centre position in both cases. It turns

out that a smaller distribution in space results in a smaller distribution in phase. The fit

yields a slope of 1.20± 0.04 rad/pixel which corresponds to a phase shift of nearly 2π over

one wavelength. The origin of such a correlation is that while the Gaussian overlap of the

interference pattern is moving from shot to shot the position of the fringes stays constant.

Still the relative phase seems to change because the measurement is referenced to the cloud

centre. Since no additional phase shift seems to appear, we conclude that the turn off kick

must be acting equally on both wells.

The correlation between phase and space not only broadens the phase uncertainty σφ

but also sets a lower limit to its width. The quantum mechanical uncertainty of the physical

state Ψ (r, t), however, has to be determined from the described correction. Switching off

(a)

0 105−10 −5

x′

0 [µm]

C
o
u
n
ts

0

10

20

30

40

(b)

0 2 4−2−4

x′

0 [pixel]

φ
[r
a
d
]

0

2π

3π

2

π

2

π

Figure 6.10: (a) The distribution in space depends on the turn off of the magnetic fields. Keeping
the atoms dressed until the static magnetic fields have vanished highly decreases the variation of the
cloud centre in the repeated experiment. Blue: rf field is turned off at the same time as the IP trap.
Green: rf field is turned off 400µs after the IP trap. (b) In both cases we find the same relation
between phase and space. A smaller distribution of the cloud centre positions yields a smaller phase
distribution. This correlation limits the phase spread to a minimum width, although the phase
spread of the physical state might be much smaller.

the static magnetic fields has a random component affecting the trapped atoms. Projecting

the atoms onto a single magnetic spin state delivers a more stable interference pattern.

The computer control software limits the delay to a minimum of 400µs. Additional tests
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could not prove a difference for larger delays in agreement to the expectation that the static

magnetic fields vanishes completely within 100µs. In all following experiments we therefore

realise the trap release with an rf switch delay of 400µs with respect to the turn off trigger

of the IP trap and observe all interference patterns after 12.4 ms time-of-flight.

6.5 Limits of the System

So far we have shown that the splitting and recombination processes are coherent. However,

in order to apply a phase shift between the two interferometer arms some interaction time

between splitting the BEC and releasing the clouds from the wells is necessary. Equation

(2.5) tells us that the resulting relative phase is the integral of the potential difference be-

tween the wells over time. In the case of tiny forces acting on the wells the sensitivity to

measure such a force is hence limited by the interaction time. An infinite long movement of

the atoms in the interferometer arms would mean that we are able to measure an infinite

small potential difference. Of course, this is not feasible in practice, since the apparatus is

influenced by quantum physical properties of the atoms and various external factors.

In general there are two effects which limit the maximum interaction time, phase spread-

ing and a loss in fringe contrast due to phase fluctuations along the length of the clouds.

Especially, phase fluctuations are enhanced by the tight confinement and the elongated ge-

ometry. We have already discussed the basic theory of these effects. In the following we

turn ourselves to the experimental analysis and characterise the limit of our apparatus.

6.5.1 Phase Spreading

In order to measure the phase spreading we determine the distribution of the phase similiar

to the coherence test in section 6.4 in repeated experiments. After the splitting process has

finished, however, we now hold the BECs inside the double well for a certain time before

turning off the trap. We take data sets for different hold times starting with t = 0 ms

defined by the end of the splitting ramp.

To begin with we take 100 data points at 0 ms and 10 ms each, and another 61 repetitions

at 5 ms interaction time. The phase distributions at these points are visualised in figure 6.11

where the contrast is again represented by the radial component. The von Mises distribution

gives an idea of the randomness of the data. The initial, distinctive direction of the phase is

completely lost after 10 ms and the mean fringe contrast drops to around 5.4%. After 5 ms

the circular standard deviation of the phase distribution is already on the order of π/2.

Since we are interested in the behaviour of the physical state and not in technical noise

limiting the distribution to a minimum width of 48◦, we apply the discussed correction of

the systematic error to the data. Additionally, we take 20 repeated experiments at another

three hold times.

We plot the circular standard deviation σφ of the relative phase against hold time in

figure 6.12. We find a linear growth of σφ = 1
~σ∆µt according to equation (2.42) which
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corresponds to an uncertainty in the relative chemical potential σ∆µ. The linear fit yields

an evolution of the phase spread with a rate of 161± 18 rad/s or an uncertainty in chemical

potential difference of 1
hσ∆µ = 26±3 Hz. The initial phase spread at the end of the splitting

process is σφ,0 ≈ 0.4 rad and the dephasing criterion σφ (t) = 1 rad is fulfilled after around

4 ms.
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Figure 6.11: Polar plots for the relative phase. The different hold times inside the double well
are from left to right 0 ms, 5 ms and 10 ms. Along the radial direction we plot the contrast of the
interference pattern. The von Mises distribution visualises the phase spread. Its radial direction is
in arbitrary units. Initially we find high visibility with a distinctive direction of the phase. After
10 ms we find that the von Mises distribution is nearly concentric with the coordinate circles of the
plot suggesting a random phase spread.

Extrapolating the fit back in time shows that it intersects the time axis at 2.4± 0.1 ms

before the splitting process has finished. We estimated before that the double well forms

within the last 5 ms of the rf ramp. Since initially the phase distribution of the wells is

still locked by tunnel coupling, the extrapolation seems a reasonable estimate of the time

at which the wells decouple.

In figure 6.13 we calculate the averaged images for the three data sets with a large

number of repetitions. The visibility decreases with hold time as expected from equation

(2.38). Before averaging the single images were corrected for the linear drift of the cloud

centre. Initially the contrast is around 11.4% which is close to the mean visibility of the

single shots of 11.8±0.1%, whereas it decreases to 3.7% after 5 ms hold time and 0.6% after

10 ms. From equation (2.38) we determine the expression for the phase spread according to

σφ =

√
−2 ln

(
vav

vsingle

)
(6.3)

where vav is the is the visibility of the averaged cloud and vsingle the mean single shot

contrast. Considering the drop in contrast the calculated phase spreads are 15◦, 72◦ and

120◦ in good agreement with the corrected circular standard devitation at hold times of

0 ms, 5 ms and 10 ms as expected.
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Figure 6.12: The phase spread measured against hold time. Each of the data points represents 20
repetitions except for the sets at 0 ms and 10 ms where we take 100 data points, and 61 data points
at 5 ms. We find a linear growth of the circular standard deviation. The blue line is a fit with a
slope of 161± 18 rad/s.

6.5.2 Fringe Contrast

Besides a random phase distribution another factor that prevents a precise measurement is

the loss in contrast of the fringe pattern. As soon as the contrast drops too far, fitting to

the fringe pattern will no longer work reliably. Indeed we observed in the last experiments

a drop in visibility from initially 11.4% down to 5.4% if the clouds linger 10 ms inside the

potential. A loss in visibility can be caused by the two effects we discuss in the following.

Excitation of Dipole Modes

We split the BEC with a rate of 50 Hz whereas the longitudinal trap frequency of the

magnetic trap drops from 28 Hz to around 18 Hz in the double well potential. Although the

rf ramp is not resonant with the longitudinal trap frequency, the excitation of longitudinal

oscillations is possible. A relative motion between the two clouds can lead to a twisting

of the resulting interference pattern as shown by simulations [121]. Since we work with an

elongated cloud, a variation in the twist along its length would yield a reduced contrast.

Indeed an analysis of the movements in the double well potential revealed the existence of

dipole and breathing modes and is therefore an issue.

Longitudinal Phase Fluctuations

Another reason for the interference pattern to blur are phase fluctuations causing the BEC

to break up into domains of local phase. Immediately after the splitting process we find two

identical copies of the BEC. Although the phase is not constant within one single cloud,

their relative phase is equal along the length of the trap. Since the phase distribution
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Figure 6.13: Averaged images of 100 (61 at 5 ms) equal experiments for three different hold times
inside the double well potential. The visibility for (a) 0 ms hold time is with 11.4% nearly equal to
the single shot visibility. It strongly decreases after (b) 5 ms. After 10 ms hold time the phase is
completely random and the visibilty of the ensemble average drops below 1%.

in each quasicondensate is narrow, the fringe contrast is not affected. Phase spreading,

however, enhances the discrepancy of phase measurements between the local domains along

the length of the cloud. Absorption imaging along the z axis integrates over the different

results and decreases therefore the contrast.

A direct observation of longitudinal phase fluctuations for two interfering BECs is not

possible in our setup, but the assumption of its existence can be justified by an aspect ratio

of ≈ 77 [62]. The number of local domains ξ = T/Tφ in which a BEC decays depends

on its actual temperature T . At small chemical potentials the temperature is difficult to

determine due to a lack of thermal background atoms. Hence, we use a different analysis.
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The Thomas-Fermi approximation delivers equation (2.44) for the uncertainty in relative

chemical potential σ∆µ = ~
(

72
125

m
~
)1/5

ω6/5a
2/5
s N−1/10 where as is the s-wave scattering

length. Assuming a total number of atoms N = 15× 103 and a geometric mean frequency

ω = 2π × 360 Hz we calculate a dephasing rate of 1
hσ∆µ = 19 Hz which is clearly smaller

than the measured rate. The Thomas-Fermi theory also yields the relation σ∆µ ∝ µ/
√
N .

But in the vicinity of phase fluctuations N becomes the number of atoms in the local phase

domains while the chemical potential µ remains unaltered. Hence the dephasing time is

enhanced due to phase fluctuations by a factor of
√
ξ. In our case we find a ratio between

experiment and theory of around 1.4 suggesting that the BEC is divided into ξ = 2 local

phase domains.

Phase Uncertainty vs. Contrast

After identifying the existence of longitudinal phase fluctuations we now study the phase

uncertainty and the fringe contrast in dependence of the atom number (or chemical poten-

tial). Therefore we vary the evaporation stop frequency and release the atoms from the

double well without any additional hold time.

The evaporation stop frequency influences not only the atom number but also the tem-

perature of the BEC and the chemical potential which behaves accordingly to µ ∝ N2/5.

These parameters influence the occurance of longitudinal phase fluctuations. We expect to

improve both phase spread and fringe contrast by adjusting our system.

We monitor the circular standard deviation of the phase and the fringe contrast as pre-

sented in figure 6.14. The phase uncertainty is smallest for chemical potentials larger than

8 kHz and increases clearly for smaller number of atoms. At a chemical potential of around

2 kHz the width of the distribution nearly doubled. This behaviour agrees with the obser-

vations of G.-B. Jo et al. [23] who proved that interferometry is still possible in the vicinity

of longitudinal phase fluctuations. Without longitudinal phase fluctuations we expect that

σφ ∝ µ−1/4, a behaviour which is visualised by the fit in figure 6.14(a).

We find an opposite behaviour for the fringe contrast which decreases with increasing

chemical potential. A maximum value is achieved for µ ≈ 6 kHz which is stable under

further reduction of the atom number. Decoherence due to longitudinal phase fluctuations

seems to be too small to affect the contrast without hold time inside the double well. The

contrast drop at higher chemical potential is probably caused by a larger fraction of ther-

mal background atoms. The comparison of the two analysed parameters suggests that the

initial BEC should be prepared at chemical potentials between 6 kHz and 8 kHz for best

performance of the interferometer.

6.6 Conclusion

In this chapter we demonstrated how two independent BECs are overlapped in free fall

and a relative phase measurement can be extracted from the resulting interference pattern.
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Figure 6.14: Behaviour of the interference pattern with chemical potential. Each data point
represents 7 repetitions. (a) Circular standard deviation of the phase plotted against the chemical
potential. For decreasing chemical potential the circular standard deviation of the phase increases.
The dashed, blue line visualises the behaviour σφ ∝ µ−1/4 which is expected in the absence of
longitudinal phase fluctuations. (b) For chemical potentials larger than 8 kHz thermal atoms prevent
good contrast. The visibility stays constant for smaller chemical potentials.

From repeating the same experiment over and over again we built up a statistic in order to

prove that the splitting and recombination processes are coherent.

The detailed analysis, however, showed that the release of the atoms is not ideal. The

atoms experience a force during release leading to a correlation between the position of the

interference pattern and the relative phase. The problem can be overcome by manipulating

the projection of the atomic spin while turning off the rf dressing field. This reduces

the variation of the observed correlation and a representative phase measurement without

correction is possible.

The dephasing of the two double wells sets an upper limit for the interaction time of the

interferometer. After a certain hold time the width of the distribution is too large to extract

a precise phase measurement. The growth of the phase spread is caused by an uncertainty in

the difference of the chemical potential σ∆µ. Therefore a single measurement of an external

signal of interest with the interferometer is afflicted with an uncertainty of 26 Hz, regardless

of the interaction time. With p repetitions this limit can be reduced to 26 Hz/
√
p. For

comparison, the gravitational potential of a 87Rb atom increases 2.4 Hz when it is lifted

through a height of 1 nm. In one single shot the interferometer with a height separation of

100 nm should measure the weight of an atom with a precision of around 10%.

Another limit is caused by the loss in contrast which plays, however, a minor role

compared to the dephasing. As one reason for the loss in contrast we identified the presence

of longitudinal phase fluctuations. The crucial point of these fluctuations is not the loss

in contrast but rather the enhancement of the phase spreading rate causing a reduced

sensitivity of the interferometer.

However, we demonstrated that distinctive phase measurements with quasicondensates

are possible. Decoherence sets an upper limit to the time the condensates can spend in
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the interferometer arms. Our apparatus therefore passed a feasibility study for building an

interferometer actually performing a measurement of an applied phase shift.
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Chapter 7

Running the Interferometer

In the last chapters we considered the requirements which are essential for an atom chip

BEC interferometer. We showed that we split the BEC coherently, that it is possible to de-

termine the relative phase and we explored the limits of such a measurement. Furthermore,

we implemented and characterised an asymmetric double well potential. We discussed the

feasibility of each step and are now at the point where we can put everything together neces-

sary for the working apparatus: (1) state preparation, (2) coherent splitting, (3) application

of a phase shift on one interferometer arm, (4) coherent recombination and (5) detection

of the relative phase. What is still missing, however, is the development of a complete

scheme combining the four different steps to a working device. The goal is to implement an

experimental procedure that allows an independent, interferometric measurement of a tiny

external force.

The crucial point in the operation scheme is the application of the phase shift. In general

one can apply an external potential gradient of magnetic or electric origin. This would not

require any movement of the BECs apart from splitting and recombining and the precision

of the measurement would only be limited by the dephasing process.

In this thesis, however, we focus on the measurement of the local gravitational field. In

order to achieve a phase shift we introduce a height difference between the interferometer

arms. Since the movement relative to the chip surface also generates a shift in the magnetic

potential energy, the precision of our device is additionally influenced by the systematic

error in the measurement of this effect.

We present two possible interferometer schemes in section 7.1. Finally, in section 7.2 we

demonstrate the capabilities of our apparatus by making an absolute measurement of the

gravitational acceleration g. The proof that the interferometer works is the main result of

this thesis.

7.1 Schemes for a Gravitational Gradient Interferometer

The basis for an interferometric measurement is the preparation of the input state. If the

input state is not well known and not repeateable, a prediction for the outcome of the
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relative phase is impossible. We have already discussed the necessity of a coherent splitting

process. It is, however, also important to think about the procedure on how the tilting is

implemented in a possible scheme. The tilt induces an energy shift ∆V between the two

wells and hence a relative phase shift according to the integral over the duration t of the

experimental sequence

φ = −1

~

∫ t

0
∆V (γ (τ) , τ) dτ, (7.1)

where the tilt angle γ (τ) is a function in time. The starting point of the integration t = 0

is defined by the point in time where the splitting process is complete and no link is left

between the two clouds.

In principle there are two possibilities to prepare an energy imbalance in the experiment.

One is to split the BEC into a symmetric state and then change the energy difference

afterwards. This scheme has the advantage that we always start with the same, well-defined

initial relative phase. In the second case the BEC is split directly into an asymmetric double

well. But the initial phase state after ramping up the potential barrier is then already

dependent on the chosen asymmetry. In our prediction for a measurement outcome we have

therefore to include the phase evolution during the complicated process of splitting a BEC

into two wells. We will see in the following discussion, however, that this method has the

capability of gaining some extra information on the splitting process itself.

7.1.1 Symmetric Preparation

Procedure

In the case of symmetric preparation the linear rf ramp rises a barrier and splits the initial

BEC into a symmetric double well potential. The complete scheme for symmetric prepara-

tion is presented in figure 7.1. After the splitting process has finished the potential is rotated

linearly to a certain tilt angle γ within an interaction time tint. During the movement the

energy gap ∆V increases linearly. In order to make sure that there is no phase shift due to

the release from the new position, we move the clouds back to their initial position within

the same time tint. No additional hold time is applied between the two movements. The

energy shift ∆V decreases linearly till the potential is symmetric again and the atoms are

released from the trap. Absorption imaging then delivers a fringe pattern after recombining

the clouds in free fall. We mention that it is not essential that the double well is symmetric,

rather than that the initial well state is always the same after the splitting process. If

there is no energy difference, however, we end up with two equal clouds resulting in a high

fringe contrast even after tilting, since the link between the BECs is broken and a particle

exchange is suppressed.
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Figure 7.1: The experimental procedure for an interferom-
eter with an induced height difference using the symmetric
preparation scheme. After preparation of the BEC in the
magnetic trap we split it into a balanced double well po-
tential. The two wells contain equal atom numbers which
cancels the contribution of atom-atom interactions to the
relative phase. In the next step we introduce a potential
difference ∆V between the interferometer arms by moving
the axis of the double well out of the horizontal. The tilting
is performed linearly within an interaction time tint which
moves one cloud closer to the chip, the other further away.
In order to always release from the same position indepen-
dent of the tilt angle γ we reverse the movement within the
same time tint. No additional hold time is applied between
the two steps. Finally, we can observe the fringe pattern
after turning off the trap and recombining the clouds in free
fall. The measured relative phase is the integral over the
tilting process.
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Relative Phase

We calculate the phase evolution for this scheme by solving the integral of equation (7.1).

The potential difference

∆V = ∆Vgrav + ∆Emag (7.2)

consists of the two contributions from gravity and the magnetic potential shift. Since we

assume that the clouds are of equal size, atom-atom interactions do not contribute to ∆V .

Both are linear in the angle γ (t), hence ∆V shows a linear behaviour as well. Furthermore,

∆V has no explicit time dependence, which means ∂∆V/∂t = 0, and γ (t) is linear in time.

These considerations yield for the relative phase the result

φ (γ) = −1

~
∆V (γ) tint. (7.3)

The simple result for the phase shift is linear in both the potential imbalance and the

interaction time tint. Independent of these parameters, the clouds are always prepared in

the same state and fall under equal conditions from the same position. Hence, phase shifts

due to differences in preparation and release position are not expected.

Ideally we find for a balanced double well that ∆V (γ0) = 0 where γ0 defines the tilt angle

at this symmetric configuration. Since it is not clear how good our balancing procedure is

and the absolute gravitational potential cannot be determined from the angle measurement,

the resulting relative phase has an offset of φ0 = −2
~∆V (γ0) tint which is independent of a

variation in γ. Observing the behaviour of the phase with tilt angle therefore corresponds

to a measurement of the change in ∆V which is

∂φ (γ)

∂γ
= −1

~

(
mg

∂d (γ)

∂γ
sin γ +mgd (γ) cos γ +

∂∆Emag (γ)

∂γ

)
tint. (7.4)

In the case of small tilt angles we can assume that cos γ ≈ 1 and sin γ ≈ γ which causes

the first term in the bracket to play a minor role. Since the splitting distance d is not

independent of the tilt angle, the gradient ∂φ (γ) /∂γ is not constant. If the variation in

d is negligible and since we expect a linear behaviour of the magnetic potential part, the

acceleration of free fall can be approximated by

g =
pΛ

2πMttof

(
1

tint

∂φ (γ)

∂γ
− 1

~
∂∆Emag (γ)

∂γ

)
, (7.5)

where Λ is the fringe wavelength in pixel, p the pixel size projected onto the incident imag-

ing beam, ttof the time-of-flight and M the magnification.

Another method is to vary the interaction time while keeping the tilt angle constant.

Writing the phase function of equation (7.3) in dependence of the interaction times a bal-

ancing offset ∆V (γ0) changes the function’s slope and can be determined from the data.

The interferometer is therefore not only able to measure external fields but provides also

an additional method to adjust the performance of the beam splitter.
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7.1.2 Asymmetric Preparation

The previous method involved a lot of movement, which is acceptable as long as it is

adiabatic. In fact it would be much easier to prepare the atoms already in the tilted position

and then wait for an interaction time tint before interfering the clouds. Such a procedure

would yield the same phase evolution as described by equation (7.3). But it is then necessary

to split the BEC directly into the asymmetric double well as sketched in figure 7.2. After a

short hold time thold inside the potential we then observe the interference pattern. Although

for a range of small energy gaps imbalanced splitting yields high enough fringe contrast to

allow the observation of a fringe pattern, the contribution of atom-atom interactions to the

phase due to the different atom number of the clouds has to be considered. Furthermore,

the link between the sites of the potential breaks before the splitting process has finished.

As soon as the clouds become independent their relative phase starts to evolve while ∆V is

still changing. These processes increase the complexity of the scheme influencing both the

initial relative phase after preparation as well as the phase gain during the process.

∆V

thold

t0

Figure 7.2: Interferometry with asymmetric preparation. The input state is directly split into an
asymmetric double well within the time t0. Therefore the relative phase starts evolving during the
splitting process. Further phase evolution is accumulated during the hold stage of the time thold.
The BECs are recombined by release from the asymmetric potential.

The Splitting Process

The potential difference is ramped up linearly during the splitting process to a maximum

value ∆V (γ) within a ramping time t0. ∆V (γ) is well known and linear in γ which we have

already proven experimentally. With this knowledge the resulting phase shift is calculated

from equation (7.1) to

φsplit = −1

~

∫ t0

0

∆V (γ)

t0
t dt = −

[
1

2

∆V (γ)

t0~
t2
]t0

0

. (7.6)

This model has to be extended by the fact that two sufficient close BECs with chemical

potentials µ1 and µ2 adjust each other by tunneling such that µ1 = µ2. Assuming the

Thomas-Fermi approximation we find that

0 = µa − µb = ∆V + g(Na −Nb). (7.7)
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It follows immediately that a phase shift caused by a potential difference is canceled by the

contribution of the mean field energy. Hence in equation (7.6) we have to integrate only

over a time ∆t = t0 − tsplit, where tsplit is the point in time at which the two clouds are

separated by a distance dsplit and the tunnel coupling breaks down. We can then write

φsplit = −1

~

∫ ∆t

0

∆V (γ)

t0
t dt = −1

2

∆V (γ)

t0~
∆t2 (7.8)

⇒ φsplit = −1

2

∆V (γ)

t0~

(
t0 −

dsplit

d
t0

)2

, (7.9)

with d the final splitting distance. We know that according to the implementation of the

asymmetric potential the wavelength Λ depends on γ which we approximate linearly by

Λ (γ) = kγ + Λ0. Using the well known relation between splitting distance and wavelength

according to equation (2.21) we write

φsplit = −1

2

∆V (γ)

~
t0

(
1− dsplit

m

httof
Λ0 − dsplit

m

httof
kγ

)2

, (7.10)

which contains terms of ∝ γ3.

The Hold Time

After the ramp of the potential barrier has finished the atoms are held inside the two

interferometer arms. The phase evolution is now proportional to the hold time thold because

∆V (γ) is not further varied. However, an essential part of ∆V (γ) is still suppressed by

the difference in mean field energy, because the BECs are of unequal size. From equation

(7.1) and the discussion of the previous section follows

φhold = −∆V (γ) ∆t

~t0
thold (7.11)

⇒ φhold = −∆V (γ)

~

(
1− dsplit

m

httof
Λ0 − dsplit

m

httof
kγ

)
thold. (7.12)

We find terms of the phase shift ∝ γ2 with a quadratic behaviour in tilt angle. In order

to determine ∆V , however, either the point in time or the splitting distance at which the

wells lose their tunnel coupling have to be well-known. Both are not directly accessible and

therefore the scheme is not ideal for an interferometric measurement of external fields. On

the other hand, if the energy gap of the asymmetric potential is characterized, this type of

experiment allows us to make a conclusion on the splitting process itself.

One should also notice that our discussion has also impact on our conclusions of the

symmetric preparation scheme. The measurement of the potential offset in an experiment

where the interaction time is varied leads to an underestimated value of ∆V (γ0). The

imbalance generates a difference in mean field energy between the wells during splitting.

According to equation (7.7) the mean field contribution has the opposite sign with respect
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to the potential offset and hence cancels a part of the phase evolution caused by ∆V (γ0).

Although the interferometer with symmetric preparation is sensitive to variations in asym-

metry, the determination of an absolute energy gap requires a complete understanding of

the balancing and splitting process itself.

7.2 The Gravitational Gradient Interferometer

The definition of an operation scheme for the interferometer not only provides a model

to interpret the outcome of a measurement it also enables us to make a comparison with

the characterisation of the double well potential which provides a transformation from tilt

angle to a potential difference between the wells. The direct comparison will lead us to the

measurement of an external field namely the acceleration of free fall g.

Finally, we arrived at the point where we can make a prediction on the phase evolution

of the interferometer based on the equations (7.3), (5.31) and the measured magnetic energy

shift. We now arrive at the final step and run the interferometer.

7.2.1 Measurement of the Balancing

In a first experiment we measure the relative phase against interaction time tint using the

symmetric preparation scheme as described in section 7.1.1. We prepare the double well

initially at an asymmetry of α = 0 V which corresponds to an angle γ0 = −1.05◦ followed

by the tilt up and down. The phase evolution is linear in the interaction time and its slope

depends on the potential difference ∆V (γ) according to equation (7.3). We take data sets

at three different asymmetries, namely α = 3 V, −3 V and −5 V where each data point

represents 20 repetitions. The first two imbalances are of great interest, as the results for

tilts of equal amount in angle but opposite direction are expected to differ only in sign. We

have to mention that the data for α = −3 V were taken with the same parameters but on

a different day which could cause a small change in the trap bottom. The fits presented in

figure 7.3 yield slopes of 3.05± 0.36 rad/ms, −3.63± 0.31 rad/ms and −5.16± 0.71 rad/ms,

respectively. The change from positive to negative slope indicates a change of sign in the

potential difference ∆V (γ) as expected.

The whole purpose of the balancing scheme was to achieve a 50 : 50 beam splitter which

is important in order to prepare two equal input states for the interferometer. Instead of

counting the atoms in the wells or looking for the highest contrast of the fringe pattern the

interferometer offers a method to compare the slopes at different asymmetries. Considering

the results at α = 3 V and −3 V suggests that the double well potential has a small, initial

offset in potential difference ∆V (γ0) 6= 0. A calculation yields a balanced double well for

an asymmetry parameter of α = −0.27 V. Taking all three determined slopes into account

we conclude, however, that the potential is well balanced within the error of the fits.

Also presented in figure 7.3 is the expected phase evolution assuming a zero energy gap

at an angle γ0 and the knowledge of the gravitational acceleration g. An initial potential
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offset would change the slope according to equation (7.3) and corresponds basically to a

rotation of the data around the origin at tint = 0. The slopes in the model have values of

4.26 rad/ms, −4.19 rad/ms and −6.95 rad/ms at the considered asymmetries respectively.

We find that the measured phase evolution is smaller than expected and we have to re-

member the discussion on the asymmetric preparation scheme. The small, suggested initial

imbalance could cause a reduced phase evolution due to mean field interaction. Since the

data sets were not taken on the same day, a change in this parameter could further com-

plicate the situation. The deviation of the slopes from the expectation lies between 14%

and 29%. The found imbalance comparing the data at α = −3 V and 3 V would suggest a

correction of the slope of up to 10%. Therefore other effects must contribute to the mea-

surement error. Especially for interaction times longer than 1.5 ms the data points seem to

disagree with the model which could be due to dephasing effects.
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Figure 7.3: Phase evolution with interaction time tint. As the potential changes sign the phase
shift changes its sign. Red: α = 3 V, Green: α = −3 V and Blue: α = −5 V.

7.2.2 Measurement of the Acceleration of Free Fall

In the next step we use again the symmetric preparation scheme as presented in figure 7.1.

But instead of varying the interaction time we measure the phase as a function of the tilt

angle. This method has two advantages compared to the last experiment. First, the gain

in relative phase between two data points is independent of a possible energy gap offset at

α = 0 V. Second, because of the fixed interaction time the phase spread is constant for all

taken data points.

According to the discussion in section 6.5.1 we choose the total time that the atoms

spend in the interferometer arms to a maximum of 4 ms. Hence we repeat the experiment

at three fixed interaction times, 1 ms, 1.6 ms and 2 ms. The results are presented in figure 7.4

which shows a linear change in phase with tilt angle γ. Hence we conclude that the energy

shift between the two wells behaves linearly according to our expectations. The plotted
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lines in figure 7.4 represent the expected relative phase calculated from the gravitational

shift and the determined magnetic energy shift for each interaction time respectively. The

data points agree well with the expectation of the model. Linear fits to the data points yield

slopes of 1.45± 0.04 rad/◦ for tint = 1 ms which is nearly half the value of 2.69± 0.05 rad/◦

at an interaction time of 2 ms.

The slope of the phase evolution is a direct measure of the potential gradient between

the two wells and allows the measurement of an external field. In the following we assume

that we have no knowledge about the external gravitational acceleration field except that

it is orientated along the z axis. The linearity of the data implies immediately that the

force is homogenous over the extension of the double well. In order to determine the value

of g we fit a model according to equation (7.3) to the three data sets. The procedure

delivers values for g which lie within a range of 10% to the expected value of 9.81 m/s2.

The measured values for the three interaction times are 10.59± 0.80 m/s2, 9.98± 0.52 m/s2

and 8.66± 0.57 m/s2, respectively. The error can be reduced by calculating the mean value

yielding the final measurement result for g of 9.7 m/s2 with a statistical error of around

±0.5 m/s2 or 5%.
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Figure 7.4: The figure presents the relative phase versus tilt angle γ. The data sets correspond to
three different interaction times tint, Red: tint = 1 ms, Green: tint = 1.6 ms and Blue: tint = 2 ms.
The plotted lines represent the expected relative phase calculated from the measurements on the
gravitational and magnetic energy shift.

7.3 The Asymmetric Interferometer

Although we have successfully implemented an interferometer by splitting the BEC into a

symmetric double well followed by a rotation of the potential, we continue with the asym-

metric prepartion scheme whose phase evolution is more complicated. The last experiment

gave us information about the potential gradient between the two wells which we verified

by measuring the gravitational acceleration. The gained knowledge reduces the unknown
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parameters in the equations (7.10) and (7.12) on the asymmetric preparation scheme to the

splitting distance dsplit at which the two wells lose their coupling. By implementing this

extended scheme we can therefore obtain additional information about our system.

7.3.1 Influence of the Splitting Process

Tunneling is a well-known phenomenon predicted by quantum mechanics. First studies

predicted the Josephson effect [122] between two superconducters separated by a thin in-

sulator. In recent years the observation of Josephson oscillations was suggested for two

weakly coupled BECs [123]. The first experiment [124] on such a system indeed verfied an

oscillation in population imbalance and phase which is not able to evolve independently.

The splitting of the BEC in our experiment is a dynamic process where the system is

transformed from one single BEC via the Josephson regime into two independent BECs.

The transition is smooth and not well defined but as soon as the link between the BECs

becomes weak enough the phase will start to evolve independently. The raising of a poten-

tial barrier and the behaviour of the system was described theoretically by different models

[70, 71, 125]. In this context a popular method is to divide the ramping of the barrier into

two parts, where the BECs are still coupled and another one where they are uncoupled,

and treat each part independently. An experimental in situ observation of the coupling

loss, however, is difficult, since the process is dynamic. Our method promises to deliver a

number for the coupling distance dsplit. But we remark that our experimental derivation of

g was not a high precision measurement and so will not be the more complicated scheme

which will additionally be influenced by statistical errors of the last experiment. Moreover,

at this point we set value on the order of magnitude of the measurement and the proof of

our theoretical considerations on the preparation scheme.

7.3.2 Measurement of the Coupling Length

In the following we implement the double well with exactly the same parameters as in the

previous measurements but the procedure for the interferometer is different. The BEC is

directly split into an asymmetric double well by ramping the modulation voltages from

0 V to the according values. Afterwards we hold the clouds for a certain time thold and

release from the tilted position. We expect that the release from rotated positions changes

the wavelength of the fringe pattern, however, the phase measurement will not be affected.

Again we calculate the mean phase at each data point from 20 repetitions.

The plot in figure 7.5 presents the results for the hold times thold = 1 ms and 2 ms. The

phase evolves clearly nonlinearly. Neglecting the asymmetric splitting process and consid-

ering only the phase gain from the time the atoms spend inside the interferometer arms, we

would expect a behaviour described by equation (7.3) with tint replaced by thold. A linear

fit, however, shows slopes of around 0.87 rad/◦ and 1.30 rad/◦, respectively, and is strongly

reduced in comparison to the result of the symmetric scheme.
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According to the theory the total phase shift φ = φsplit + φhold is composed of the part

acquired during the splitting process and the one gained during the hold time in the inter-

ferometer arms. We fit a model of φ to the data sets assuming a linear evolution of the

energy shift ∆V according to the interferometer measurements of the last section. As a fit

parameter we use the splitting distance dsplit where the phase starts to evolve independently.

The fits are shown as solid lines in the plot. We find a value of dsplit = 2.66 ± 0.20µm at

thold = 1 ms while the fit for 2 ms hold time yields dsplit = 2.32± 0.50µm.

From the fringe wavelength within the operational range of the interferometer between

tilt angles of around −4◦ and 2◦ we found that the clouds are independent at least down to

a splitting distance of 3.05µm. We expect the phase to be locked at well separations where

only one single fringe is visible in the interference pattern. An exact comparison is not pos-

sible at this point as the simple formula does not hold for large wavelengths and a conversion

between rf current and well separation is not available. However, a rough estimation from

the simple relation between wavelength and well separation yields a splitting distance of

1.9µm. The measurement suggests that the link breaks at slightly larger separations which

is reasonable because also after the wavefunctions lost their overlap tunneling through the

barrier can still be possible. Although the chemical potential of each BEC is smaller than

the barrier, the phase can still be locked at small enough barrier widths.
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Figure 7.5: Relative phase measured against tilt angle using the asymmetric scheme. The range
over which the phase varies is clearly reduced compared to the symmetric procedure. The phase
evolution is non-linear and the solid lines are a fit of our theoretical model. Red: thold = 1 ms, Blue:
thold = 2 ms.

7.4 Conclusion and Error Discussion

We discussed two possible schemes for running the interferometer and derived the corre-

sponding equations for the evolution of the relative phase. Concerning the measurement
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of the acceleration of free fall the symmetric preparation scheme yields simple equations

and has the advantage that the atoms are always released from the same position. In the

case that we monitor the relative phase with fixed interaction time and the tilt angle as a

variable, the measurement is even independent of an initial imbalance.

Error of the g Measurement

The experiment delivered a value for g close to the expected value of 9.81 m/s2 with a

statistical error of around 5%. We identify the origin of this statistical error with the

uncertainty in the phase from shot-to-shot.

The question about the absolute precision with which we can determine the acceleration

of free fall, however, is also based on the systematic error introduced in the characterisation

of the double well potential which was presented in chapter (5). Hence, to cover the question

on how precise this result really is we have to make a rigorous error treatment.

We derive g from equation (7.4). The errors propagating the measurement consist of the

uncertainties on the magnification, the wavelength, the tilt angle, the slope of the magnetic

potential shift and the phase measurement. An overview of the errors on these parameters

which we found in earlier sections is given in table (7.6). Taking all uncertainties into

Parameter Uncertainty [%] Relative Error in g [%]

Magnification M 2 2
Fringe Wavelength Λ 1 1
Tilt Angle ∂γ/∂α 6 6
Magnetic Potential Shift ∂∆Emag/∂γ 9 13
Phase Shift ∂φ/∂γ 4 8

Total Uncertainty on g 16

Figure 7.6: Uncertainties on the different parameters of the g measurement. The uncertainty on
the acceleration of free fall is derived from Gaussian error calculation. We identify that the largest
fraction on this error is caused by the uncertainty on the phase measurement and on the magnetic
potential difference.

account we expect to find a value for g to within 16%. The main contributions come from

the dephasing and the large systematic error in the magnetic energy shift. The latter is

especially important, since we expect the magnetic energy shift to be around double the

amount of the gravitational potential difference. The error due to magnetic coupling sets

therefore a limit to the precision of this type of interferometer where the orientation of

the double well is tilted with respect to the chip surface. Although a phase measurement

with the interferometer might be precise, the analysis of an external field is limited by

the characterisation of the double well potential. As already mentioned, the single values

of g found for the three different interaction times lie all within a 10% range around the

expectation. This observation is consistent with our error estimation.

Regarding the three major contributions to the error, a larger amount of taken data
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points would significantly decrease the uncertainty. Especially a more precise measurement

of the shift in magnetic energy could drop the total error below 10%.

Our error estimation, however, does not take long term fluctuations into account. The

data needed in order to arrive at a g measurement was taken over several weeks. We

mentioned already, for example, that the trap bottom showed some fluctuations which

would also influence the splitting distance. We estimated that the contribution of the

known day to day fluctuations are neglegible compared to the uncertainties on the various

parameters. Such variations, however, will be of interest as soon as the interferometer will

achieve precision measurements on the basis of only a few percent.

Conclusion on Splitting Dynamics

Using the asymmetric scheme we could gain additional information about the splitting pro-

cess and its phase dynamics. The experiment showed qualitative agreement with theoretical

considerations. During the rise of the barrier in the middle of the trap, the two wells lose

their coupling and the relative phase starts to evolve while the potential difference still in-

creases and the phase has no longer a linear behaviour. This behaviour was also studied by

Schumm et al. [13] who monitored the phase while varying the correlated parameters split-

ting distance and time. We, however, study the relative phase with a change in asymmetry

and splitting distance but constant splitting time. The crucial point is that atom-atom

interactions counteract the asymmetry in the potential and are responsible for a reduced

phase evolution. Although we could extract numbers for the splitting distance where the

coupling is lost, we expect an uncertainty of more than 16%. We believe, however, that by

improving the interferometer precision we could make exact measurements to examine the

splitting process and deliver a useful, experimental comparison for the intensive, theoretical

studies.
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Chapter 8

Conclusions and Outlook

8.1 Summary

In this thesis we described in detail how an atom BEC interferometer can be implemented

on an atom chip. The starting point is an atom chip with four simple Z-wires. Together

with an external bias field the atom chip creates an IP trap near its surface in which a BEC

is prepared.

In order to implement the interferometer we need to split the BECs representing the

input state into two independent arms. Therefore we make use of a very popular and

widespread technique which uses rf fields to dress Zeeman states of the atoms. The dressed

atoms then experience a new potential environement having the shape of a double well. We

successfully implement rf adiabatic potentials in our system by overlapping the two dc chip

wire currents with two independent rf signals.

After separating the atoms in two wells we recombine them in free fall and we determine

their relative phase from the resulting interference pattern. We conduct a detailed analysis

on the coherence of the wells and identify a main limitation due to phase spreading. The

precision of an interferometric measurement depends on the interaction time the atoms

spend in the interferometer arms which is set to a maximum of 5 ms in our setup.

The feasibility of a phase measurment and hence the measurement of an external field

by just splitting a BEC and recombining the two parts was demonstrated by several groups

in the past. The point which makes our interferometer distinctive, however, is its operation

scheme and the way we introduce a potential difference between its two arms.

The independent control of the rf currents allows us to dynamically change the orien-

tation of the rf field vector while keeping the rf field strength nearly constant. Theoretical

predictions expect the tilt of the double well with respect to the horizontal at the same

time which we confirm experimentally. The consequence of the tilt is that one BEC cloud

is closer to the chip surface than the other introducing a relative potential difference due

to gravity and rf coupling strength. Using this technique we create a double well potential

whose asymmetry in energy can be tuned over a certain range. In order to make predictions
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for the interferometer we conduct a detailed analysis of the energy gap. We determine the

gravitational contribution by mapping the splitting distance and the tilt angle for a cer-

tain set of rf current configurations. By a spectroscopic analysis we obtain the difference

in magnetic coupling between the two wells. Here we find that the shift due to magnetic

coupling is around twice the shift due to the gravitational difference.

Finally, we implement an interferometer by putting the preparation of the BEC, split-

ting the BEC, tilting the double well potential and recombining the two wells into one

experimental scheme. Theoretical considerations predict that the acceleration of free fall

can be calculated from the slope of the relative phase with the tilt angle ∂φ/∂γ. An error

analysis of the various parameters yields an uncerainty on such a measurement of around

16%. Indeed we derive values for g from the experiment within this interval and an sta-

tistical error of 5%. Especially, for this type of interferometer the main contribution to

the uncertainty is given by the systematic error on the outcome of the rf spectroscopy and

the phase spreading. First propagates the calculation of g from the measured phase while

second is mainly responsible for the statistical error.

We successfully built an atom chip BEC interferometer using a completely new scheme

to introduce a relative phase shift. We demonstrated that our apparatus is capable of mak-

ing an absolute measurement of the acceleration of free fall and identified the limits of the

system.

8.2 Outlook

By proving the principle of operation and the feasibility of measuring independent, external

fields the goal is now to improve the precision and capability of the interferometer. This

can only be achieved with strategies for reducing the three main uncertainties in the exper-

iment.

One systematic error we make is the measurement of the angle during free fall. A more

precise result would be achieved by observing the orientation of the double well in situ.

Therefore, we currently increased the magnification of our imaging system by a factor of

three. Since this might still not be enough to resolve the double well, we also want to switch

to rf oscillators with the capability of a phase locked frequency sweep which is currently

not possible. Splitting a BEC by sweeping the rf frequency instead of using high rf field

strengths allows the implementation of much larger well separations.

We emphasised already the role of the error on the rf spectroscopy results. This does

not pose a problem in the measurement of external fields, i.e. magnetic or electric field

gradients, which do not require tilting of the double well potential. In the case of the grav-

ity measurement a symmetrical geometry, for example mounting the chip vertically and

splitting parallel to the surface, has the same effect. In the current setup, however, a much

more careful measurement of the magnetic coupling and the collection of more data points

is necessary. Especially, the amount of experiments for deriving some numbers is immense
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for spectroscopy. The data set presented in this thesis already consists of around 300 single

measurements which should be taken within one single day. Therefore, also the reduction

of the experimental cycle time is an issue.

The most promising strategy to reduce the phase spreading is the implementation of

number squeezing. We hope to achieve new atomic double well states by adjusting the

shape and the speed of the rf ramp. We did not analyse the influence of the rf ramp on

the phase states throughout this thesis but we believe that a detailed examination will be

worth the effort. In the past a dramatic reduction of the dephasing rate by squeezing the

number difference was observed in sodium [15]. It was shown that the uncertainty in relative

chemical potential σ∆µ was reduced by a factor of 10. Alternatively, we could implement a

less extreme trap geometry or lower temperatures of the BEC to avoid longitudinal phase

fluctuations. This would slow down dephasing by a factor of
√

2 in our case. Furthermore,

it is possible to reduce interactions by a Feshbach resonance, as demonstrated, for example

in [126] using 39K. With some combination of these measures one can expect a fundamental

noise level of σ∆µ ≈ 1 Hz.

With exception of mounting the chip vertically all other improvements on the system-

atic errors can be implemented by changing the control on external magnetic fields. Such

extensions should be easily made to an existing experiment and should already improve the

absolute measurement precision by several percent. By cancelling the spatial variation of

the rf field strength, the most troublesome systematic error, we expect the absolute preci-

sion of our device to improve down to 1%.

The small size of the atom cloud and its proximity to a surface make trapped BEC

interferometry attractive for mapping atom-surface interactions. For example, a Rb atom

1µm from a plane conductor has a Casimir-Polder interaction energy of 270 Hz [127], de-

creasing to 3.3 Hz at a distance of 3µm. Over this range, it should be possible to make

measurements with a few per cent accuracy, limited at large distance by the noise level and

at short distance by uncertainty in the spatial distribution of the atoms. This offers the

possibility of improving over the existing measurements of the Casimir-Polder interaction

[128, 129] and of its temperature dependence [130]. The related phenomenon of Casimir at-

traction between two macroscopic bodies has been measured with 15% accuracy for parallel

plates [131] and with precision in the range 1%-5% between plane and curved surfaces [132].

Therefore our type of interferometer is suitable for accurate measurements of atom-suface

interactions.

Currently we made some major changes to the experiment including an exchange of the

atom chip. But we are looking forward to the results that will be achieved with these new

improvements.
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Appendix A

Rubidium

Rubidium is an alkali metal with only one valence electron in the 5S shell. We consider

exclusively the isotope 87Rb in this thesis with an atomic mass m = 1.443× 10−25 kg. 87Rb

is slightly radioacitve and decays with emission of β radiation into 87Sr. The lifetime of this

decay, however, is 49 billion years making it effectively stable and suitable for experiments

with a cycle time in the order of a minute.

The transition of the D2 line from the 5S1/2 ground state to the 5P3/2 has a wavelength

of 780 nm. The availability of diode lasers at this wavelength makes rubidium convenient

for laser cooling. The different hyperfine transitions of the D2 line are presented in figure

A.1. For cooling we use the |F = 2〉 −→ |F ′ = 3〉 transition. After the spontanous emission

of a photon the atom either ends up in the |F = 1〉 or the |F = 2〉 state. In order to achieve

a closed cooling cycle a repump laser beam is at the |F = 1〉 −→ |F ′ = 2〉 transition is

overlapped with the cooling beam.
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Figure A.1: Schematic diagram of the D2 line of 87Rb. The 5S1/2 ground state and the 5P3/2

excited state split up into the hyperfine states with the F-numbers F and F ′ respectively. The
transitions between the hyperfine levels are used for optical pumping (1), the cooling beam (2),
absorption imaging (2) and the repump laser beam (3).
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Appendix B

Directional Statistics

B.1 The Mean Direction

A certain set of angles θk with k = 1,2,...,n can always be interpreted as a set of directions.

In the complex plane we refer to a direction as a unit vector xk on a unit circle. In this

picture the angles θ and θ+2π reproduce the same point on the circle. A small distribution

of angles around an angle θ0 = 0 (radians) might clearly have a distinctive direction along

θ0. Defining a sample mean analogue for data on a line would yield a mean angle of

(θ1 + ... + θn) /n. Considering, however, angles of π/4 and 3π/4, we calculate a sample

mean of π/2 which points in the opposite direction of θ0. Intuitively we say that the usual

sample mean cannot work for data on a circle and a modified concept is needed. Instead

we have to define the mean direction θ̄ as a summation of all unit vectors xk

r̄eiθ̄ =
1

n

n∑
k=1

eiθk . (B.1)

Since the Cartesian coordinates of the vectors xk are (cos θk, sin θk), the coordinates
(
C̄, S̄

)
of the vector in equation (B.1) are calculated according to

C̄ =
1

n

n∑
k=1

cos θk and S̄ =
1

n

n∑
k=1

sin θk. (B.2)

The mean resultant length r̄ length is then nothing else than

r̄ =
(
C̄2 + S̄2

)1/2
(B.3)

and in the case that r̄ > 0 we find the mean angle

θ̄ =


arctan

(
S̄
C̄

)
, if C̄ ≥ 0,

arctan
(
S̄
C̄

)
+ π, if C̄ < 0.

(B.4)
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For r̄ = 0 an angle θ̄ is not defined. This happens, for example, in a set of two unit

vectors with angles 0 and π/2. The two directions are completely opposite and hence a

certain direction of the data is not distinctive. A vanishing mean resultant can therefore be

interpreted as completely random distribution of vectors on the unit circle.

B.2 Circular Variance and Standard Deviation

For data on the line we have measures like the variance and the standard deviation to

compare the spread of a certain data set. For the circular data we found that the mean

resultant length describes the concentration of the data. Since the xi are unit vectors, it is

0 ≤ r̄ ≤ 1 where a mean resultant length close to 1 means that the direction of the data is

very concentrated. In the literature the circular variance is therefore defined as

v = 1− r̄ (B.5)

with values in a range of 0 ≤ v ≤ 1. It is also useful to define a standard deviation for

circular data. The circular standard deviation is written in terms of the variance as

σ =
√
−2 log (1− v) (B.6)

which takes, analogous to the usual standard deviation, values in the interval [0,∞]. The

closer the value of σ is to 0, the smaller is the spread of the data.

B.3 Distribution Functions

Considering distribution functions on a circle we have especially to regard its boundary

conditions. Let F (x) be a distribution function which gives the probability that we find an

angle θ in the interval between 0 and x then the function F has to match the condition

F (x+ 2π)− F (x) = 1, −∞ < x <∞. (B.7)

Hence the probability to measure a data point within an arc of length 2π on the unit circle is

1. In the case that the function F (x) is absolutely continous, there is a probability density

function f (x) = F ′ (x) with the properties

(i) f (x) ≥ 0 almost everywhere on (−∞,∞) ,

(ii) f (x+ 2π) = f (x) almost everywhere on (−∞,∞) ,

(iii)

∫ 2π

0
f (x) dx = 1.

The simplest distribution on a circle is the uniform distribution with a probability density

f (x) = 1
2π . But it is inadequate to describe data concentrated around a certain direction.



Appendix B. Directional Statistics 121

Therefore one could wrap a Gaussian distribution around the circle. A key role for circular

data, however, plays the von Mises distribution M
(
θ̄, κ
)

[120] with a probability density

function

g
(
x, θ̄, κ

)
=

1

2πI0 (κ)
eκ cos(x−θ̄). (B.8)

The distribution is symmetrical around the mean direction θ̄. The modified Bessel function

of order 0 is defined by the integral

I0 (κ) =
1

2π

∫ 2π

0
eκ cos θ dθ. (B.9)

The spread of the data is described by the concentration parameter κ which is connected

to the mean resultant length via the relation

r̄ =
I1 (κ)

I0 (κ)
(B.10)

with I1 (κ) the modified Bessel function of order 1. By fitting the von Mises distribution

to a data set we can easily determine the parameters θ̄, κ and hence r̄. For κ = 0 equation

(B.8) reproduces the uniform distribution and the measured data is completely random.
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[38] M. Drndić, K. S. Johnson, J. H. Thywissen, M. Prentiss, and R. M. Westervelt,

“Micro-electromagnets for atom manipulation,” Appl. Phys. Lett. 72, 22 (1998)
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