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Abstract

This thesis describes a new measurement of the electron electric dipole moment

(eEDM, de) made using a pulsed beam of ytterbium fluoride (YbF) molecules. YbF

molecules are used as they greatly enhance the eEDM interaction with an applied

electric field. In addition they suppress interactions with magnetic fields in the plane

perpendicular to the applied electric field. This is hugely beneficial for suppressing the

systematic effect that limited previous atomic eEDM searches.

We measure the eEDM by performing a type of separated oscillating field interferometry,

wherein the direction of applied electric and magnetic fields are reversed in between pulses

of the molecular beam. From a dataset of 6194 individual eEDM measurements we find

de = (−2.4 ± 5.7stat ± 1.5syst) × 10−28 e cm. This result is consistent with zero, so we set

a new upper limit of |de| < 10.6 × 10−28 e cm at the 90% confidence level. A complete

analysis of the dataset is given, with a thorough account of all the supplementary tests

that were performed to check for systematic error.

After publishing this world leading result we proceeded to upgrade the experiment to

improve eEDM sensitivity and reduce certain systematic effects. This involved improving

the rf polarisation along the parallel plate transmission line, shortening the rf pulse

length and improving the magnetic shielding. A detailed discussion of the development

and testing of the upgrades is given, including new measurements of the systematic

uncertainties which will limit our next eEDM measurement.
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Chapter 1

Introduction

In this thesis I describe the recent progress of the experiment at the Centre for Cold

Matter, Imperial College London, which measures the electron electric dipole moment

(eEDM) using a pulsed beam of ytterbium fluoride (YbF) molecules.

The motivations for such a measurement are discussed in this chapter. This begins with

a discussion of time reversal asymmetry and the need for symmetry violating physics.

An explanation of how an EDM relates to time and parity symmetry violation is then

presented, followed by a discussion of how an EDM is measured. A brief review of other

EDM experiments around the world is then given.

1.1 Symmetry in Physics

While the subject of time has many aspects, one of its most interesting, and one might

argue intuitively obvious, facets is the distinction between direction of flow. In everyday

life there appears an obvious ‘arrow of time’. Consider, for example, a video recording of

a snooker game, where the triangle of red balls is broken apart due to an initial collision

with the cue ball. It is easy to tell whether the recording is played forward or in reverse.

Mathematically the time reversal operation, T, corresponds to the substitution t → −t,

which has no effect on the classical laws of physics. You cannot tell the direction of

time flow from a video recording of a two balls colliding and yet in a snooker break each

ball simply undergoes classical elastic collisions. This leads to a paradox: since complex,

macroscopic systems are the aggregate of many microscopic systems obeying basic laws

of physics, how can macroscopic systems appear so time asymmetric?

The behaviour of a macroscopic system, however, is not only a result of its microscopic

processes, but also its initial boundary conditions. It is these initial conditions that give

11



Introduction 12

rise to the apparent time asymmetry. Consider again the snooker example above; if the

balls were to begin in the disordered broken apart state, while it is possible that they all

might coalesce and reform a perfect triangle of balls, this situation is highly improbable.

As Boltzmann explained in 1895 [1], a complex system moves towards an equilibrium

corresponding to the most probable macroscopic state, attained by the most number of

microstates.

Nonetheless, it is believed that the behaviour of many physical systems is fundamentally

asymmetric in the direction of time flow. In fact, time symmetry violation is just one

of the three important discrete transformation operations in which symmetry may not

hold. The two other transformations are charge conjugation (C) — the replacement of

all particles with their complementary antiparticle, and parity reversal (P) — a reversal

of all coordinate axes.

Of course these discrete transformations need not be considered independently. A system

which is asymmetric when both charge and parity are reversed is known as CP violating,

for example. Actually, under the simultaneous transformations of C, P and T, it is

believed that symmetry does hold. This is the so called CPT invariance theorem. If, for

example, CP symmetry was violated, via the CPT theorem, this would imply a symmetry

violation of T.

In the 1950s Lüders and Pauli showed that CPT invariance follows from the very basic

assumptions of Lorentz invariance, quantum mechanics, and that particle interactions

are represented by fields [2, 3]. All popular modern quantum field theories abide by

these assumptions. It is worth highlighting, though, that as CPT invariance is based

on assumptions, it is still subject to experimental tests like all other discrete symmetry

transformations. To date no experimental evidence exists for CPT violation; a thorough

review is presented in reference [4].

1.1.1 Baryogenesis

The very nature of our universe requires symmetry violating physics. 13 billion years after

the big bang we observe an imbalance in the amount of matter and antimatter present in

the universe. The evidence for this so called ‘baryon asymmetry problem’ is quite strong.

The absence of γ-radiation from annihilation reactions both locally and in intergalactic

space is the predominant argument. The number density of antiprotons present in cosmic

rays is also consistent with their secondary production in accelerator-like processes such

as p + p → 3p + p̄, so it is unlikely they are primordial. An in depth discussion is given

by Steigman in [5].
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By measuring the spatial fluctuations in the cosmic microwave background, Bennett et

al. [6] have measured the current baryon asymmetry, η0, to be

η0 =
nb − nb̄

nγ
= (6.19 ± 0.14) × 10−10, (1.1)

where nb and nb̄ are the respective number densities of baryons and antibaryons, and

nγ is the number density of photons. This value is in excellent agreement with the

prediction from a theory known as primordial nucleosynthesis, which can estimate the

baryon asymmetry from the known relative abundances of the light elements H, D, He,

Li, Be and B.

A possible explanation for the observed asymmetry is that it was present when the

universe began. But this possibility still leaves many questions unanswered, such as

what caused the preference for matter over antimatter? Creationist arguments aside,

the observed asymmetry is unlikely to be the result of an initial asymmetry due to the

predictions of the widely popular cosmic inflation model. This model predicts that shortly

after the big bang there followed a period of exponential expansion of the early universe

[7]. The rapid inflation provides a solution to many problems in cosmology, however, it

would completely dilute any initial baryon asymmetry. We therefore require symmetry

violating physics from which a baryon asymmetry can be established over time, without

the need to impose an asymmetry in the initial conditions of the universe.

In 1967 Sakharov outlined three requirements that all ‘baryogenesis’ models must obey

to generate the baryon asymmetry that we observe today [8]: 1) baryon number (the

number of baryons minus the number of anti-baryons) cannot be preserved; 2) C and

CP (or T) symmetries must be violated 3) reaction processes must occur out of thermal

equilibrium.

The first condition is obvious, since in the beginning η = 0 and now η 6= 0. We require

the second criterion as if C or CP (or T) are exact symmetries then it can be shown that

the total rate for any process which produces an excess of baryons is equal to the rate of

the complementary process that produces an excess of antibaryons. Even if the baryon

number is not preserved in a reaction, no net baryon number will result unless C and CP

(or T) are violated.

The third condition is a little complicated. In thermal equilibrium, the abundance of

any given baryon (antibaryon), nX (nX̄), is dictated only by its mass, mX (mX̄) and

temperature [9]. Since mX = mX̄ , this implies that, if temperature is held constant,

nX = nX̄ irrespective of the rates of the processes involving X and X̄, so no baryon

asymmetry is possible. Consider now the case that temperature is not constant, indeed

lets assume, as above, that because of expansion the universe temperature is cooling.
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Consider also the baryon number and CP violating abstract decays P → Q + R and

P̄ → Q̄ + R̄. If the cooling is rapid compared to the decay rates, then reactions cannot

respond and the abundances nP and nP̄ do not remain in thermal equilibrium. An excess

of P and P̄ is created above the equilibrium abundance. Over time P and P̄ eventually

decay, but because the decay rates are not equal, and because the decays do not preserve

baryon number, a preference for matter over antimatter may result.

1.1.2 Searches for Symmetry Violating Physics

The first evidence for symmetry violating physics was found in 1957 by Wu et al. [10].

They observed that electrons were preferentially emitted in the opposite direction to the

nuclear spin of the parent cobalt-60 isotope, thus demonstrating the violation of parity

symmetry. Many experiments have since demonstrated P violation in various physical

systems (see for example [11, 12]), but at the time the result was entirely surprising. P

violation led to the assertion of C violation in order to preserve the invariance of C and P

combined. However, in 1964 Christenson et al. demonstrated that the long-lived neutral

kaon, K0
L, occasionally decayed into two charged pions [13] — a decay that is strictly

forbidden by CP symmetry. Like P violation, CP violation is now a well established

phenomenon and has been observed in a few physical systems. A thorough review is

given in reference [14].

Naturally physicists assume that CP violation is an indication of T asymmetry but,

as Purcell and Ramsey pointed out [15, 16], this can only be verified experimentally.

The CPLEAR experiment at CERN [17], and the BaBar detector at SLAC provide

the only known evidence for T asymmetry, without reference to the CPT theorem. The

former experiment looked for a difference in rates between the supposedly time symmetric

K0 → K̄0 transformations and vice versa, whereas the latter experiment studied the

rates at which neutral B mesons change quantum state [18]. Both experiments are

incredibly complex. Clearly the importance of verifying T-reversal asymmetry in other,

preferably simpler, systems with different systematic effects is undeniable. The YbF

eEDM experiment and other experiments aim to do just this by looking for a permanent

electric dipole moment (EDM) in fundamental particles [19].
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1.2 The Electric Dipole Moment

For a simple system of two opposite charges, −q and +q, separated by the vector ~r,

originating at the negative charge, the electric dipole moment (EDM, ~d) is defined by

the product q ~r. However, for a particle with an inhomogeneous charge density, ρ(~r), the

EDM takes the more complex form [20]:

~d =

∫

V
ρ(~r)~r ∂V , (1.2)

where ~r is now measured from the centre of mass, and ∂V is a differential volume

element. For fundamental (point) particles such as the electron, this equation describes

the permanent polarisation of the vacuum field surrounding the particle.

Perhaps the most general definition of ~d is that it is simply a property of a particle

defined through its interaction with an applied electric field, ~E. This interaction can be

described with the Hamiltonian:

Hd = −~d · ~E . (1.3)

For a particle with spin ~s, the orientation of ~d relative to ~s is constrained by the projection

theorem, a specific case of the Wigner-Eckart theorem, which states that [21]:

〈s, ms| ~d |s, ms〉 = 〈s, ms|~s |s, ms〉
〈s, ms| ~d · ~s |s, ms〉

~2s(s + 1)
= cs 〈s, ms|~s |s, ms〉 , (1.4)

where the quantum state |s, ms〉 is specified by the eigenvalues of s2 and sz. Equation

1.4 shows that ~d must lie either parallel or anti-parallel to ~s as the matrix element

〈s, ms| ~d · ~s |s, ms〉 is independent of the spin projection, ms. ~d · ~s is a scalar operator,[
~d · ~s, sz

]
= 0, so has independent eigenvalues to sz.

Throughout this thesis I will often refer to an EDM with the scalar variable d. Unless

otherwise stated this assumes the convention:

~d = d
~s

|~s | . (1.5)
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1.2.1 EDMs and Symmetry Violation

As a particle’s EDM must lie either parallel or anti-parallel to its spin, there are four

possible degenerate states that it may occupy. These are illustrated in figure 1.1. However,

the Pauli exclusion principle1 states that spin-1/2 fermions may only have two degenerate

states. Under the assumption of rotational invariance, this means that ~d may only have

one relative orientation to ~s. The two possibilities are labelled type A and B in the

figure. As illustrated, under a parity transformation the direction of ~d reverses whereas

~s does not. Conversely, under a time-reversal transformation ~s reverses whereas ~d does

not. Both these transformations take the particle into a forbidden state indicating that ~d

must vanish else both P and T symmetries would be violated. Measurement of a non-zero

EDM in spin-1/2 particles, such as the electron, proton or neutron, therefore provides

direct evidence for both P and T symmetry violation.

time

reversal

time

reversal

parity

reversal

type A type B

d�

d� d�

d�

s�

s�

s�

s�

Figure 1.1: A dipole moment, ~d, may lie either parallel or anti-parallel to the particle
spin ~s. Under a parity reversal the direction of ~d reverses and ~s remains unaffected. For

a time reversal the direction of ~s is reversed and ~d remains unchanged.

Put mathematically, for both parity and time symmetries to hold we require that

〈ψ| H |φ〉 = 〈Pψ| H |Pφ〉 (P is unitary) and 〈ψ| H |φ〉 = 〈Tφ| H |Tψ〉 (T is anti-unitary)

for general quantum states |ψ〉 and |φ〉. As usual H is a (Hermitian) Hamiltonian.

Consider the following:

1There is very strong evidence for the Pauli exclusion principle, see for example [22] and references
therein. One such demonstration of the two internal states an electron may occupy is given by the
structure of the periodic table of elements.
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〈ψ| H |φ〉 = 〈ψ| P †P H P †P |φ〉
= 〈Pψ| P H P † |Pφ〉 . (1.6)

〈ψ| H |φ〉 = 〈ψ| T †T H T †T |φ〉
= 〈Tψ| T H T † |Tφ〉∗

= 〈Tφ| T H T † |Tψ〉 . (1.7)

So we require Hd = T Hd T † and Hd = P Hd P †. It is often quoted (see for

example [23]) that an EDM violates time and parity symmetries as the Hamiltonian

Hd = −~d · ~E = −d ~s
|~s | · ~E changes sign under both transformations. This argument,

however, implies that there are no T and P conjugate particles with dipole moment −d ~s
|~s | .

If there were we could write a more complicated Hamiltonian such as Hd = c(~s · ~E)(~s · ~d)

and symmetry would be restored. Here c is some real constant and the scalar product

~s · ~d accounts for the orientation of ~d relative to ~s. But note that we must use the Pauli

exclusion principle (or some other relevant restriction on the number of states) and state

that spin-1/2 fermions have no extra degeneracies, so Hd = 0 else both time and parity

symmetries are violated.

To confuse matters a little, many molecules, such as YbF, have a permanent electric dipole

moment in the reference frame of the molecule. For diatomic heteronuclear molecules, the

dipole moment lies along the internuclear axis. However, in the absence of any fields there

is no dipole moment in any laboratory axis as molecular rotation averages the molecular

dipole moment to zero. An electric dipole moment can be induced in the laboratory

frame by applying an electric field. Naturally this dipole reverses with the applied electric

field. Permanent dipole moments in fundamental particles do not reverse with an applied

electric field because they lie along their internal angular momentum. When an external

electric field is applied to fundamental particles, the electric dipole moment and angular

momentum vectors precess about the axis of the electric field. Reversing the direction

of the applied electric field reverses the handedness of the precession, but the projection

of the dipole moment onto the axis of the electric field remains constant. Crucially,

molecular dipole moments (or indeed induced atomic dipole moments) do not violate

time and parity symmetries as there is no linear Stark shift in the limit of weak applied

electric fields.

1.2.2 EDM Predictions

The standard model of particle physics is a very well established theory that provides a

description of the fundamental constituents of the universe and their interactions. There

is almost no experimental evidence that contradicts the predictions of the standard model,

however, few would argue that the theory is complete. It cannot, for example, incorporate

gravity, nor account for the baryon asymmetry that we observe in the universe today [24].
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In fact the standard model only incorporates a very limited amount of CP (T) violation,

so predicts very small EDM values. It predicts the EDM of the proton, dp, and neutron,

dn, to lie in the range 10−32 – 10−31 e cm [25, 26], and the electron EDM, de, to be

< 10−38 e cm [27]. These values are well below the current experimental upper limit, but

if a non-zero EDM value were to be measured to lie within a few orders of magnitude of

the current upper limit, it would provide new evidence for physics beyond the standard

model.

There are many new theories in particle physics that attempt to address the limitations of

the standard model. Examples include the various forms of supersymmetry. These new

models include extra sources of symmetry violation and therefore predict dipole moments

in the range 10−25 – 10−30 e cm [28]. EDM values in this range are now becoming

measurable with modern experimental techniques. So by improving the measured EDM

limits we can better constrain, or even prove the invalidity of these new models.

1.3 Measuring the Electric Dipole Moment

Fundamentally all EDM experiments attempt to measure the energy shift, U = 〈−~d · ~E 〉,
that is induced by an applied electric field, ~E. This is very difficult because the shift is

extremely small and is easily obscured by the magnetic dipole interaction 〈−~µ · ~B 〉.

Consider, for example, an electron EDM at the current experimental upper limit

de = 10−27 e cm. Even with a large applied electric field of 1 GV/cm, the EDM shift

is only 0.25 mHz. This is the same as the Zeeman shift caused by a magnetic field of

only 17 fT. For comparison, the magnetic field surrounding the Earth is about 50 mT in

amplitude and its fluctuations are certainly larger than a few fT. For this reason EDM

experiments must be extremely well shielded from external magnetic fields and particular

care must be taken to control those which result from changes in the applied electric field.

Most modern EDM searches experiment on neutral matter such as neutrons, atoms or

molecules, as the large applied electric fields would accelerate any charged particles.

Heavy atoms and molecules provide a particularly nice system for measurement of the

electron EDM as they are able to enhance the EDM interaction making it more easily

measurable. This is an amazing result that is completely counterintuitive, as you would

expect the charge within the atom or molecule to rearrange itself to screen the external

electric field. However, in 1963 Schiff showed that under certain circumstances non-zero

proton, neutron or electron EDMs can have an observable impact on the interaction of

an atom/molecule with an applied electric field [29]. This is discussed in the following

sections.
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1.3.1 Schiff’s Theorem and Electron EDM Enhancement

In his famous paper [29] Schiff began by demonstrating that for an electrostatically bound

system of point charges, in the absence of relativistic effects, the energy eigenstates of the

system do not depend upon the EDMs of its constituent particles. However, real atoms

and molecules are not collections of point particles, the nucleus in particular has a finite

size, and relativistic effects are important. Schiff went on to show that when these effects

are taken into account, non-zero proton, neutron and electron EDMs can contribute to

an overall atomic/molecular permanent EDM.

In diamagnetic atoms electron pairing cancels any contribution from de. In these atoms

the finite size of the nucleus permits an atomic EDM, dA, proportional to both dp and

dn, albeit attenuated by ∼ 104 [30]. Conversely, paramagnetic atoms contain at least one

unpaired electron, so dA may result from a non-zero de. In fact, as Sandars discovered in

1965 [31], in particularly heavy atoms the relativistic motion of unpaired electrons can

lead to a proportionality

R =
dA
de

� 1. (1.8)

The ‘enhancement factor’, R, depends upon the polarisation of the electronic wavefunction.

In atoms the polarisation comes from a mixing of opposite parity states. As the interaction

with the electric field is tiny in comparison to the energy level splitting a perturbative

calculation provides an excellent approximation. To lowest order the mixing of opposite

parity states and hence electronic polarisation is linear in applied electric field, ~Eapp. So

we can write the EDM interaction as

Hd = −R ~de · ~Eapp , (1.9)

where it can be shown [32–34] that

R ≈ 10Z3α2. (1.10)

As is usual, Z is the atomic number and α is the fine structure constant.

In polar molecules the wavefunction is naturally mixed, which results in a strong

polarisation along the internuclear axis. The polarisation is particularly large if the

molecule contains a highly electronegative element such as fluorine. So by combining

fluorine with a heavy element such as ytterbium, a heavy polar molecule, such as YbF,

can produce a relativistic enhancement of the electron EDM that is over 1000 times

larger than any atom [35]. Of course molecules rotate in free space so their polarisation

averages to zero. A modest applied electric field is therefore required to align the molecule.

However, the polarisation is not linear in applied field, so the convention is to ascribe the
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enhancement to the electric field. Accordingly we write the EDM interaction as

Hd = −~de · ~Eeff , (1.11)

and define the effective electric field as

~Eeff = Emax
eff η (Eapp) ẑ, (1.12)

where ẑ is a unit vector parallel to the applied field, ~Eapp. Emax
eff is a constant that

depends upon the molecular structure.

η (Eapp) = 〈n̂ · ẑ〉 (1.13)

is a (dimensionless) polarisation factor as defined with the unit vector n̂ pointing along

the molecular dipole moment, i.e. from the negative ion to the positive2. For YbF in its

rotational and vibrational ground state, η (Eapp) is easily calculated by considering the

(DC) Stark shift of a rigid rotor3.

Table 1.1 lists the enhancements for the atoms and molecules discussed in the following

sections. Figure 1.2 demonstrates the variation of Eeff with Eapp for YbF in its rotational

(and vibrational) ground state. As discussed in section 2, we typically operate our

experiment with Eapp = 10 kV/cm. Here η (Eapp) = 0.558 and Eeff = −14.5 GV/cm,

an enhancement of −1.45 × 106 !

Species Enhancement Reference

Hg d(199Hg) = 5.5 × 10−5 dp + 5.3 × 10−4 dn [37]

Tl dT l = −585 de [38, 39]

Cs dCs = 124 de [38]

Gd IV dGd IV ∼ −3.3 de [40]

YbF Emax
eff = −26 GV/cm [41–46]

PbO Emax
eff = 26 GV/cm [47]

ThO Emax
eff = 104 GV/cm [48]

WC Emax
eff = −54 GV/cm [49]

HfF+ Emax
eff = 24 GV/cm [50]

Table 1.1: Enhancement factors for various atoms and molecules.

2Some papers use the convention that n̂ points from the heavy nucleus to the light nucleus. In YbF
this vector would point in the opposite direction to molecular dipole moment.

3This is defined by the Hamiltonian H = B J2 − µEapp cos (θ), where B is a rotational constant
dependent upon the molecular moment of inertia, ~J is the molecular angular momentum and µ is the
molecular dipole moment [36]. η (Eapp) = 〈cos (θ)〉 so is proportional to gradient 〈∂H/∂Eapp〉.
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Figure 1.2: Variation of Eeff with Eapp for YbF in its ro-vibrational ground
state. At our usual operating field, Eapp = 10 kV/cm, η (Eapp) = 0.558 giving

Eeff = −14.5 GV/cm. This is illustrated by the dashed line.

1.3.2 Atoms and Molecules for EDM Measurement

Atoms particularly the alkalis, are a natural choice for experimentation — they are easy

to manipulate, are spectroscopically well understood and precise calculations can predict

their behaviour. Furthermore, as was demonstrated in the last section, they can amplify

the electron EDM interaction.

Many polar molecules also have these benefits and can produce enhancement factors

that are many orders of magnitude larger than atoms. Polar molecules have a further

benefit in that they interact with electric fields much more strongly than they do magnetic

fields. This is in direct contrast to atoms where magnetic field interactions dominate over

electric. As will be shown in section 4.3.3, applying an electric field to polar molecules

drastically suppresses any interaction with magnetic field components perpendicular to

the axis of the electric field. Only magnetic fields in the axis of the applied electric field

are able to cause systematic error.

As shown in table 1.2 there are a number of polar molecules which are suitable for an

electron EDM measurement. However, the size of Emax
eff is not the only requirement for

consideration. We must also consider: how easily η (Eapp) saturates; the difficulty of

producing enough molecules in the required quantum state; the lifetime of the state of

interest; safety concerns such as whether the molecule is toxic or radioactive; as well as

other practical requirements such as the availability of lasers at the required frequencies.
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1.3.3 Common Systematic Effects

Before reviewing the major EDM experiments in turn, it is worth briefly describing

a few common sources of systematic error that are present in many, if not all, EDM

experiments, so that the relative advantages of each may be compared. A comprehensive

discussion of potential systematic errors is given by Lamoreaux and Golub in [51], and

a more thorough discussion of the various systematic errors regarding the YbF electron

EDM experiment is given in section 4.3.

In general there are two main types of EDM experiment, namely confinement type and

beam type experiments. In confinement type experiments particles, be they neutrons or

atoms etc., are contained within a well defined space where their movement is limited. In

beam type experiments, particles pass through a vacuum chamber and are manipululated

and probed at various positions along the machine. Typically they travel at a high velocity

and have a narrow velocity spread.

Of primary concern are magnetic fields which depend on the applied electric field. Energy

shifts due to such fields can masquerade as an EDM induced shift, as the magnetic dipole

interaction, −~µ · ~B, perturbs a particle in exactly the same way as the electric dipole

interaction, −~d · ~E.

Leakage currents that flow between high voltage electrodes can generate a magnetic field.

In the worst case scenario the magnetic field not only aligns in part with the electric

field, but its direction also reverses following polarity changes in ~E. Leakage currents can

be quite troublesome in confinement type experiments as the cell walls are often used to

separate the high voltage electrodes. In beam type experiments the high voltage feeds are

quite far away from the interaction region, furthermore the electrode support structure

is not so conducive to circulating current.

Another troublesome source of systematic error is the ‘motional magnetic field’. As the

particles move through the applied electric field, ~E, with velocity ~v, a magnetic field

~Bv = ~E × ~v/c2 is generated in the rest frame of the particles. This field is in addition to

a static magnetic field, ~B, which is applied, in most cases, to align the particle. If ~B is

slightly misaligned from the applied electric field, ~E, the static magnetic field would gain

a component of ~Bv, thus making the Zeeman energy shift dependent on the direction of

~E. This type of systematic affects beam experiments most because of the low spread in

particle velocities. It can, however, affect confinement experiments in a few subtle ways

despite the random particle motions present therein (see reference [51]).

Another common source of systematic error is geometric phase. This can imitate an EDM

interaction if the particles move through inhomogeneous electric and magnetic fields that
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change when the applied electric field is reversed. Since this systematic depends upon

the motions of individual particles it is particularly hard to track in confinement type

experiments.

1.3.4 Review of EDM Experiments

In this section I give an overview of the three experiments which have set the best limits on

the proton, neutron and electron EDM. These experiments are the most recent generation

in a line EDM experiments stretching back to the late 1950s. For an in depth review of

the history of EDM experiments see references [32, 52].

Ultracold Neutron Storage Experiment

Some of the first attempts to measure a permanent electric dipole moment were performed

on neutron beams [53]. Since then the techniques for the slowing and confinement of

neutrons have improved considerably. The most recent measurement by Baker et al.

used a cell of ultracold neutrons (UCNs) to limit |dn| < 2.9 × 10−26 e cm with a 90%

confidence level [54]. Their method follows Ramsey’s separated oscillating fields technique

[55] which allowed them to measure the change in the Larmor precession frequency as the

relative orientation of static electric and magnetic fields were changed from parallel to

anti-parallel. This technique is similar to the YbF electron EDM experiment technique

described in sections 2.1–2.2.

It was essential that magnetic fields inside the chamber were well characterised, so spin

polarised 199Hg atoms were also contained along with the UCNs. The Hg spin precession

was constantly measured with circularly polarised UV, that was absorbed in proportion

to the x component of its spin vector. As the EDM of 199Hg had been measured to be

much smaller than the experimental sensitivity of this experiment, its EDM interaction

with ~E could be neglected. It, therefore, acted as an excellent in-situ magnetometer (a

‘comagnetometer’) [56].

The neutron velocity was very low, so motional systematic errors were small. Geometric

phase effects contributed the largest uncertainty to the systematic error budget. Despite

being a confinement type experiment, magnetic fields generated by leakage current

constituted � 1% of the total systematic error budget.
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Mercury Vapour Experiment

For a number of years Fortson et al. have been running an EDM experiment on a

cell of mercury atoms at the University of Washington. Their latest measurement:∣∣d(199Hg)
∣∣ < 3.1 × 10−29 e cm (95% CL) is the lowest EDM limit of any kind recorded

yet [57]. Through Schiff moment calculations [37], their result implies a neutron EDM,

|dn| < 5.8 × 10−26 e cm, and a proton EDM, |dp| < 7.9 × 10−25 e cm.

Mercury has a very long spin polarisation lifetime time which permits long probing

periods and hence gives a correspondingly high statistical sensitivity. Fortson et al.

took advantage of this, using a UV laser to both prepare the atomic state and monitor

the spin precession rate about aligned electric and magnetic fields over prolonged periods

of 100–200 s. The (atomic) EDM was measured by comparing the Larmor precession

frequency for aligned and anti-aligned electric and magnetic fields.

Their latest apparatus contained four vapour cells positioned in a common magnetic

field. The two middle cells had oppositely directed electric fields, allowing simultaneous

measurement of the EDM interaction. The outer two cells were enclosed by the electrodes

so experienced no electric field. These cells permitted precise monitoring of magnetic field

fluctuations and cancellation of field gradients. The three main systematic uncertainties

in their latest result were due to leakage currents, dataset cuts when leakage current

sparks exceeded 100 pA, and EDM variations with experimental parameters such as

laser power, frequency, spin lifetimes etc. By tipping the static magnetic field by ±10◦,

motional magnetic field effects were found to be almost completely negligible.

Thallium Beam Experiment

Until very recently, the best limit on the electron EDM was set by Commins et al. at the

University of California using beams of thallium atoms. This experiment was developed

over 15 years, culminating in the final result of |de| < 1.6 × 10−27 e cm, as was published

in 2002 [58]. The experiment had reached its limit in statistical sensitivity and the

systematic uncertainties could not be negated or accounted for to any higher precision.

As the velocity of the thallium atoms was over 400 m/s, the motional magnetic field was

a major source of systematic error. To combat this effect Commins et al. used two pairs

of counter propagating beams. One pair of counter propagating beams would have been

sufficient to control this effect, but the second pair enabled the simultaneous measurement

with both orientations of ~E relative to ~B. This provided common-mode noise rejection

and control of certain systematic effects. Each beam contained thallium and sodium

atoms and Ramsey’s method was simultaneously performed on both elements. Since
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sodium is a relatively light atom it has a negligible EDM enhancement factor so served

as an excellent comagnetometer.

In their final measurement the systematic uncertainty was entirely dominated by motional

magnetic fields despite the Herculean effort to account for this error source with counter

propagating beams. This perhaps best demonstrates the benefit of using polar molecules

over atoms. The effects of motional magnetic fields are almost completely negligible due

to the strong suppression from the (tensor) Stark shift.

1.3.5 Prospects for Measuring an Electron EDM

The YbF electron EDM experiment is not the only remaining experiment that aims

to measure the electron EDM. In this section I will give a brief overview of the other

experiments which have the potential to improve the limit on the electron EDM by at

least an order of magnitude.

Other Polar Molecule Searches

The DeMille, Doyle and Gabrielse research groups are collaborating to build an

experiment at Harvard University to measure de with ThO molecules (the Advanced Cold

Molecule EDM experiment — ACME) [59]. This experiment utilises recent developments

in buffer gas molecular sources to provide a cold slow beam of ThO with a brightness that

far exceeds conventional supersonic beam sources [60]. The ThO molecule can be aligned

to give a huge effective electric field of Eeff ≈ 100 GV/cm for < 100 V/cm of applied

field. In addition the state for EDM measurement has relatively long radiative lifetime

of ≈ 2 ms which permits a long phase evolution period, giving a correspondingly high

experimental sensitivity. The salient feature of ThO is its Ω-doublet4 level structure that

allows the molecules to be aligned parallel or anti-parallel to the applied electric field. This

is advantageous as the EDM and Zeeman shifts are in the same direction for one relative

orientation, and are opposed for the other, so some important systematic effects can be

cancelled out by comparing the shifts in each orientation. One final benefit of ThO is

that its magnetic moment is nearly zero so magnetic interactions are severely suppressed.

The ThO measurement scheme involves comparison of the fluorescence generated by two

perpendicularly polarised lasers. In the first generation experiment the research team

expect to be achieve a statistical sensitivity of 4 × 10−29 e cm
√

day [59].

Leanhardt et al. are currently building an experiment at Michigan University to measure

the electron EDM using a beam of WC molecules [49]. WC only requires a very small

4Ω is the total (spin+orbital) electronic angular momentum projected onto the inter-molecular axis.
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applied electric field of a few mV/cm to become completely polarised, so leakage currents

should be very small. Furthermore, like ThO, WC also possesses an Ω-doublet state

which will help eliminate certain systematics. The molecular source is still in an early

stage of development, but Leanhardt is confident that they can produce enough molecules

to be competitive with other polar molecule EDM experiments.

Cornell et al. at Colorado University are attempting to trap the molecular ion HfF+

in an rf quadrupole [61, 62]. Ramsey’s method will be performed in the presence of

rotating electric and magnetic fields, which are necessary to trap the molecules. HfF+

also benefits from an Ω-doublet state, and because the ion is trapped, motional fields are

small and long spin coherence times of approximately 1 s are attainable. However, the

rapidly changing fields may result in systematic errors which are hard to account for. In

addition, the applied electric field cannot be reversed. Nevertheless, Cornell believes that

the experiment can achieve a sensitivity of 6 × 10−29 e cm
√

day.

Solid State Searches

Hunter el al. [63] and a collaboration between Liu and Lamoreaux [64, 65] are using two

complementary techniques to look for a linear magnetoelectric effect in gadolinium solids.

As the electron EDM must be aligned with its magnetic moment, upon application of a

polarising magnetic (electric) field, the sample must produce a electric (magnetic) field

of its own. Hunter measures the induced electric field with JFET amplifiers whereas

Liu and Lamoreaux measure the induced magnetic field with a SQUID. The Gd crystal

structures were chosen because: they are easily spin polarised; they have a relatively high

enhancement factor (see table 1.1); they are good insulators so do not suffer large leakage

currents; and in the absence of T-violation their symmetry does not permit a linear or

quadratic magnetoelectric effect. These experiments have the potential to improve the

current electron EDM limit by a factor of 103 [64], however the complex crystal structures

do make systematic errors hard to quantify.

Caesium Experiments

There are number of experiments that aim to measure the electron EDM using caesium

atoms. To overcome the motional magnetic field systematic effect that limited the

thallium beam experiment Weiss, Heinzen and Chu plan to experiment on optically

trapped caesium [66–68]. However, optically trapping atoms does create a few additional

problems, such as light shifts, that will need to be overcome. Gould plans to use a caesium

fountain [69] which should also suppress motional systematic effects, as the rise and fall



Introduction 27

of each atom results in zero average velocity. Both approaches have the potential to limit

de to approximately 10−29 e cm [68, 69].

1.3.6 The Ytterbium Fluoride Electron EDM Experiment

The electron EDM experiment at the Centre for Cold Matter, Imperial College London

studies the polar molecule 174YbF, which combines the heavy element ytterbium (Z = 70)

with fluorine. At the normal operating applied electric field of 10 kV/cm, the molecule

gives an effective electric field of −14.5 GV/cm, as shown in figure 1.2. The experiment

has been running for a number of years now, and has reached a certain level of refinement

which places it the current forerunner of electron EDM experiments.

In 2002 the group published their first result, measuring de = (−0.2 ± 3.2) × 10−26 e cm

[70, 71]. While this was not the most precise value at the time, it was limited by counting

statistics rather than systematic errors, demonstrating the advantages of using molecules

rather than atoms for an EDM measurement. In the 10 years that followed, the group

has improved the molecule source, quantum state control and experimental automation,

which has increased the sensitivity that can be achieved per day. The developments are

described in detail in the theses of Condylis (2006) [72], Ashworth (2008) [73] and Kara

(2010) [74].

Unfortunately with improved statistical sensitivity new systematics became apparent.

Characterising and overcoming these limitations has formed a major part of the time

spent in recent years. In 2011 the group published the most precise measurement of the

electron EDM to date: de = (−2.4±5.7stat ±1.5syst)×10−28 e cm (68.3% confidence) [75].

This is a significant result as it is the first time that a new limit on the electron EDM

has been set using molecules rather than atoms.

I joined the YbF eEDM experiment in January 2010. At this time all of the experimental

hardware and software had been built, and the experiment was fully capable of collecting

large datasets consisting of many thousands of individual EDM measurements. During

my PhD I was directly responsible for the setup, maintenance and running of the

experiment. I also analysed the acquired data and presented the results to my supervisors

during our weekly progress meetings.

When I joined the EDM team, the experiment was suffering from a number of systematic

effects that were preventing us from undertaking a full data run. The early months of

my PhD were spent running diagnostic experiments to try and identify the sources of

error. I was heavily involved in deciding upon what experiments were needed to be run

to better understand or constrain the systematic errors. Sometimes the experiments were
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simple functionality tests on specific pieces of apparatus, but more often the experiments

involved taking large datasets with certain experimental parameters detuned from their

ideal settings. Running these tests was a slow process, as it would typically take a few

days to collect enough data just to see an effect.

By September 2010 we were finally ready to start taking data with the experiment

configured for ‘normal running’. The first part of this thesis presents a detailed account

of our 2011 electron EDM measurement as published in [75, 76]. The experiment is

described in chapter 2, and chapter 3 details how we extract measurements from our raw

detector signals. In chapter 4 a thorough analysis of the published dataset is presented.

I discuss the various tests which I performed on the dataset to check for anomalies

and inconsistencies. I also provide details of the supplementary experiments that

were performed to calibrate and constrain the various systematic errors, and explicitly

demonstrate how we associate a systematic uncertainty to each.

In parallel to running the EDM experiment, during the data acquisition phase I spent a

lot of time working on upgrades to the experiment which would both improve EDM

sensitivity and decrease the effects of systematic dependencies. After publishing in

2011, the focus of my PhD switched to the implementation and characterisation of these

upgrades with the aim to make a new measurement at the 2 × 10−28 e cm level. Chapter

5 details the upgrades which were implemented, including new measurements of the

systematic effects which will limit our next electron EDM measurement.

Before discussing the details of the YbF electron EDM experiment, it is worth providing

a brief overview of the YbF molecule itself.

1.4 The YbF Molecule

In essence the 174YbF molecule can be considered an ionically bound core of 174Yb2+

and F−, orbited by a single unpaired (valence) electron (which originated from the 174Yb

6s2 orbital) [77, 78]. The ground electronic, vibrational and rotational molecular state,

labelled X 2Σ+ (v = 0, N = 0), is similar to an alkali atom. This state is split by the

hyperfine interaction between the electron spin (S = 1/2) and the fluorine nuclear spin

(I = 1/2) into a singlet (F = 0) and triplet (F = 1), separated by approximately

170 MHz. The isotope 174Yb has no nuclear spin, so doesn’t contribute to the total

angular momentum (~F ).

The aim of our experiment is to measure the EDM induced energy splitting between two

states of opposite electron spin. We measure this splitting between the F = 1, mF = ±1
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levels (the stretched states where I and S are aligned) using a variant of Ramsey’s

separated oscillating fields interference method, as described in sections 2.1–2.2.

In order to prepare and readout the molecular state we drive Q(0) transitions5 to the

first excited electronic state labelled A 2Π1/2 (v = 0, N = 0) with a 553 nm laser, as

illustrated in figure 1.3. This state is also split into F = 0 and F = 1 levels, but the

separation is so small (∼ 3 MHz [36]) that we normally treat it as a single upper state.

The A state has a lifetime of (28 ± 2) ns and a v′ = 0 → v′′ = 0 Franck-Condon factor

of 0.933 ± 0.003 [79], so it almost instantly decays predominantly to the vibrational and

electronic ground state, branching between the N = 0 and N = 2 rotational levels with

2/3 and 1/3 probabilities respectively6,7. The X 2Σ+ (v = 0, N = 2) state is considered

to be a dark state as it has a lifetime which is much longer than the interferometer free

evolution time period (see section 2.1). All population that falls into this state is lost to

us and plays no role in the experiment.
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Figure 1.3: The YbF energy levels which are relevant to the EDM experiment. Half
of the population in N = 0, F = 1 is pumped into N = 0, F = 0. The other half falls

into N = 2.

5This notation is short hand for a transition from N = 0 to an excited state where total angular
momentum J (excluding the nuclear component I) is conserved, ∆J = 0.

6As calculated from Clebsch-Gordon coefficients. Reference [80] provides an excellent analysis of the
coefficients of the molecule CaF, which apply equally to YbF.

7The laser population cannot decay into the N = 1 level as this state has the opposite parity to N = 0.



Chapter 2

The YbF Interferometer

2.1 Interferometer Overview

φ
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Figure 2.1: An illustration of spin precession, demonstrating the torques due to
external electric and magnetic fields.

The essence of our EDM measurement is quite straightforward to understand. Magnetic

and electric dipoles experience a torque when placed in static magnetic and electric fields

respectively (~µ × ~B & ~d × ~E). In general, these torques rotate the dipoles towards the

field axis. However, if the dipoles are in an atom or molecule with angular momentum, ~F ,

rather than rotating towards the field axis, the angular momentum and dipole moments

actually precess about the field, as illustrated in figure 2.1. The angle of precession, φ, is

directly proportional to the products −~µ · ~B & −~d · ~E. In our experiment we prepare a

cloud of YbF molecules to have their total angular momentum perpendicular to the axis

of aligned electric and magnetic fields. We then allow the molecules to precess about the

fields over a certain period of time and measure the change in precession angle, when we

reverse the orientation of ~E relative to ~B. As the electric field is well defined, the change

in angle provides a direct measure of the electric dipole moment, d.

Another way to view spin precession is as a phase difference that accumulates between

angular momentum quantum states, due to an energy splitting induced by applied electric

30
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and magnetic fields. We prepare YbF molecules into their electronic, vibrational and

rotational ground state, X 2Σ+ (v = 0, N = 0), and measure the phase difference between

the F = 1, mF = ±1 hyperfine states that accumulates as a result of the EDM and

Zeeman interactions with parallel applied electric and magnetic fields. To measure the

phase difference that is solely due to the EDM interaction, we repeatedly reverse the

directions of the electric and magnetic fields. The electron EDM is then calculated by

comparing the accumulated phase difference when the electric magnetic fields are aligned

to when they are opposed.

To precisely measure the phase difference we use a quantum state interferometer that

interferes the spin wave functions of the F = 1, mF = ±1 states. The interferometer

utilises a pulsed beam of cold but fast moving molecules. We call each pulse of the

molecular source a ‘shot’. In principle each shot provides a measure of the phase difference

between the mF = ±1 states. We can divide a shot into seven stages, defined by various

times, t, after an initial trigger signal. The near uniform molecular velocity maps these

times to positions along the beam line. The positions and their associated molecular

state are illustrated in figure 2.2. Figure 2.2 also defines the experimental axes that will

be referred to in the following sections.

molecule
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optical 
pumping

population
readout

split
π-pulse

phase 
evolution

recombination
π-pulse
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target skimmer

electric field
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Figure 2.2: Simplified overview of the EDM experiment annotated with the YbF
molecular state at various positions within the machine.

Stage 1: Parameter Selection

At t = 0 the physical state of all the experimental parameters are set. In the idealised

scenario this is the direction of the applied electric field, and the direction and amplitude

of the applied magnetic field. In reality many more parameters are adjusted.
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Stage 2: Molecule Production

A small molecular packet is then produced with a forward velocity of approximately

600 m/s. At this speed the molecules take only 2 ms to fly the length of the machine.

The source valve is pulsed at 25 Hz, so only one molecular packet is in the machine at

any moment in time.

Stage 3: Optical Pumping

570 µs after production the molecules pass through a 553 nm green laser beam propagating

along x, that has a randomly chosen linear polarisation in the yz plane. This laser beam

prepares the molecules into the F = 0, mF = 0 hyperfine state of X 2Σ+ (v = 0, N = 0)

by driving population in the F = 1 triplet up to the first excited electronic state,

A 2Π1/2 (v = 0, N = 0) (see figure 1.3). As previously stated, this state decays almost

instantly into the N = 0 and N = 2 levels of the vibrational and electronic ground

state. Any population which returns to the N = 0, F = 1 state repeats the cycle, so all

population in this level becomes optically pumped out before the molecules pass through

the full width of the laser beam. As the excited molecules decay they fluoresce with

an intensity that is proportional to the number of molecules in the cloud. We measure

this signal with a photo multiplier tube (PMT) and use it to normalise our probe signal

against fluctuations in molecular flux.

After the molecular packet has passed through the pump laser beam, the molecules can

be described by the quantum state:

|ψ0〉 = |F = 0, mF = 0〉 . (2.1)

Stage 4: Split π-Pulse

The molecules then pass between two parallel metal plates which both apply an electric

field and serve as a TEM transmission line for ≈170MHz rf. The rf (magnetic field) is

polarised along x (figure 2.2), so couples |0, 0〉 to |1, ±1〉, as defined in the z axis, which

is parallel to the applied electric field. We apply an 18 µs pulse of rf with its amplitude

and frequency tuned to place the molecules in an equal superposition of the |1, ±1〉 states

— a π-pulse1.

|ψ0〉 → |ψ1〉 =
i e−i ω τ√

2
(|1, +1〉 − |1, −1〉) . (2.2)

τ and ω are the rf pulse length and angular frequency respectively.

1The significance of the angle π will become apparent in section 2.2 where Rabi flopping theory will
be presented.
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Stage 5: Phase Evolution

The molecules are then left to evolve in the static electric and magnetic fields, (E0, B0) ẑ,

for a period, T = 642 µs. Typically E0 = ±10 kV/cm and B0 = ±13.6 nT. During the

evolution period the |1, ±1〉 states gain a phase difference, ∆φ = 2 φ, as a result of the

Zeeman2 and EDM interactions:

|ψ1〉 → |ψ2〉 =
i e−i (ω11 T+ω τ)

√
2

(
e−iφ |1, −1〉 − e+iφ |1, +1〉

)
, (2.3)

where ω11 is the mean separation between |0, 0〉 and |1, ±1〉, and the ‘interferometer

phase’

φ = (µB B0 − de Eeff) T/~. (2.4)

Stage 6: Recombination π-Pulse

The phase evolution period ends when a second 18 µs π-pulse is applied to the molecular

cloud. This pulse is applied just before the molecules leave the parallel plates. As

before, the rf pulse couples the state ψ1 with ψ0 but, due the rotation of the molecular

angular momentum about the z axis, the molecular state, ψ2, now contains a component,
i√
2

(|1, +1〉 + |1, −1〉), which doesn’t couple to the rf. Therefore, after the second π-pulse,

the molecules reside in a coherent superposition of F = 0 and F = 1 states:

|ψ2〉 → |ψ3〉 = −ei T (ω−ω11) cos φ |0, 0〉 − e−i ω11(T+τ)−i ω τ sin φ√
2

(|1, +1〉 + |1, −1〉) . (2.5)

Stage 7: Population Readout

Approximately 2.2 ms after initial production, the molecules pass through a linearly

polarised probe laser beam propagating along x. As in stage 3, this laser drives the

Q(0) electronic transition, but here the laser is tuned to measure population in the

F = 0 hyperfine level. A second (probe) PMT is positioned to collect the laser induced

fluorescence (LIF) and detects a signal proportional to

|〈0, 0|ψ3〉|2 = cos2 [ (µB B0 − de Eeff) T/~ ] . (2.6)

This PMT signal is recorded, and the experiment returns to stage 1 to make another

measurement with different experimental parameter settings.

2In our system the Landé g-factor, gF = 1.
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2.1.1 Extracting an EDM
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Figure 2.3: An illustration of the sampled points which are used to extract an EDM
value. The two curves represent the two orientations of the electric field relative to the
z axis. An EDM causes a phase shift between these lines, which is vastly exaggerated

here. Four magnetic field values are applied in each electric field switch state.

Figure 2.3 shows the dependence of the probe PMT signal on the applied magnetic field,

B0. As shown, reversing the direction of the applied electric field, E0, shifts the phase of

the fringes by a small amount,

δφEDM = 2 de Eeff T/~ . (2.7)

This shift causes a small change in detector signal δSEDM = (∂S/∂φ) δφEDM that is

correlated with the sign of - ~E · ~B. Note that the change in signal is opposite on either

side of the central fringe. We apply the magnetic field B0 = ±13.6 nT to operate near to

φ = ±π/4 where the interferometer is most sensitive to phase changes, and where signal

changes are linear in phase. For each orientation of the applied electric and magnetic fields

we calibrate the gradient (∂S/∂φ) by making a small phase step, δφCAL = 2π/32, with

the magnetic field, BδB = ±1.7 nT. We measure the corresponding change in detector

signal, δSCAL. As illustrated in figure 2.3, the eEDM phase is measured by combining

the (normalised) probe signal at points (A, B, C, D, A′, B′, C ′, D′) according to:

δφEDM = δφCAL
δSEDM

δSCAL
= δφCAL

(A′ + B′ + C + D) − (A + B + C ′ + D′)
(B + B′ + C + C ′) − (A + A′ + D + D′)

. (2.8)

In addition to reversing the direction of the applied electric and magnetic fields, and

modulating the magnitude of the magnetic field, we also modulate six other experimental

parameters between shots. We modulate: the laser frequency, the amplitude and frequency

of each rf pulse, as well as the phase difference between the two rf pulses. The additional

parameter modulations allow us to measure how the signal correlates with any switched

parameter, or combination thereof. Full details will be given in section 3.1.
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With nine parameter modulations there are 512 unique machine states. An individual

EDM measurement, or ‘block’, is made from 4096 shots over which each unique machine

state is visited eight times. Each block takes approximately six minutes to acquire.

Typically ∼150 blocks are collected before acquisition is interrupted for laser or target

maintenance, or to manually reverse electrical connections. We call an uninterrupted

collection of blocks a ‘cluster’ and we fold all the clusters together to make a complete

‘dataset’. We require ∼5,000 blocks to reduce the EDM uncertainty to the 5×10−28 e cm

level.

2.2 Interferometer Theory

I will now provide a more rigorous mathematical account of the interference signal, so that

we may have a better understanding of how it depends on all the various experimental

parameters. This will allow expressions for physical values to be written in terms of

measured detector signals (see appendix A). It will also give an insight into how some

systematic effects are accounted for in the final result. Note, however, that the model

presented here will still be limited by a number of approximations. In section 3 focus

will switch to a much more empirical approach. To establish systematic dependencies we

exhaustively test how our final result depends on each experimental parameter. There is

a balance between practical empirical tests and simple theoretical models, one in which

we lean more heavily towards the former rather than the latter.

2.2.1 Evolution In Static Fields

0 2 4 6 8 10 12 14
0

2

4

6

8

10

12

0 2 4 6 8 10 12 14

171

172

173

174

〉 (
M

H
z)

0,
0

〉↔
|

1
±,1|

applied electric field (kV/cm) applied electric field (kV/cm)

〉 (
M

H
z)

0,
1

〉↔
|

1
±,1|

Figure 2.4: Relative Stark shifts of the ground state hyperfine levels. Note the very
different vertical scales.

If left unperturbed, the magnetic sub levels of the F = 1 hyperfine state remain degenerate

and sit 170.254 MHz above the F = 0 level. The predominant effect of applying a static

electric field is to polarise the YbF molecule, aligning the internuclear axis to lie along
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the applied field. In effect this alignment mixes the molecular rotational levels, causing

the N = 0 level to shift downward, as was measured by Sauer et al. [36, 78]. On top of

the rotational level shift there is a relatively small shift between the F = 0 and F = 1

hyperfine states, as well as a tensor spitting between the mF = 0 and mF = ±1 states of

the the F = 1 triplet, as shown in figure 2.4.

Fortunately F and mF are still good quantum numbers of the system in an electric

field [78], so we may write a diagonal effective Stark shifted Hamiltonian for the z basis

states {|F = 0, mF = 0〉, |1, −1〉, |1, 0〉, |1, +1〉}, introducing the hyperfine dependent

Stark shifts as phenomenological parameters. We can ignore the higher lying molecular

states as they play no role in the interferometer except during the state preparation and

readout phases, which are incoherent processes driven by laser beams.

The whole aim of the experiment is to measure the energy shift due the permanent

electric dipole moment of the electron. To account for this we add the tiny perturbation

Ĥd = −de Eeff F̂z. Sections 1.2 and 1.3.1 provide a thorough discussion of this interaction

Hamiltonian.

We also apply a magnetic field along the same axis as the electric field which perturbs

the spin states according the Hamiltonian ĤZ = −~µ · ~B = gµBBF̂z. The g-factor is very

nearly 1 and µB is, as usual, the Bohr magneton. Writing this interaction in terms of the

diagonal Pauli matrix F̂z represents the weak field limit where we neglect off diagonal

couplings. We may do this as the shift µBB is a million times smaller than the F = 1 to

F = 0 level separation.

Combining the above three interactions we write the following Hamiltonian for the

rovibrational ground state hyperfine levels |F,mF 〉 in static electric and magnetic fields

(E0, B0)ẑ:

Ĥsf = ω10~ |1, 0〉 〈1, 0| + (ω11 − ∆) ~ |1, −1〉 〈1, −1| + (ω11 + ∆) ~ |1, +1〉 〈1, +1| . (2.9)

ω10 and ω11 are the (quadratic) Stark shifted separations3 as defined in figure 2.5.

∆ = gµBB0 − deEeff represents the Zeeman and EDM energy shift combined.

For the general molecular state |ψ(t)〉z, written in matrix form in the z basis with

increasing F and mF , the static field Hamiltonian produces the following time evolution

operator:

Π̂sf(T, ∆) =




1 0 0 0

0 e−i(ω11−∆)T 0 0

0 0 e−iω10T 0

0 0 0 e−i(ω11+∆)T




, (2.10)

3The ‘tensor Stark shift’ is thus defined as ω11 − ω10.



The YbF Interferometer 37

F=1

F=0
m

F
=0

m
F
=0

m
F
=-1

m
F
=+1

ω
11

ω
10

∆

–∆

Figure 2.5: The ro-vibrational ground state hyperfine level shifts due to static electric
and magnetic fields aligned along z. The states are represented in the z basis.

defined such that |ψ(t + T )〉z = Π̂sf(T, ∆) |ψ(t)〉z, where T is the interaction time.

2.2.2 RF Pulse Theory

The interferometer begins and ends with a carefully tuned pulse of rf. The rf magnetic

field of each pulse is linearly polarised along the x axis, so both pulses drive a ∆mF = 0

transition in the x basis. It is therefore convenient to transform the z basis set into the

mF = 0 states of the x, y and z bases. Using the standard rotation matrix defined by

Weissbluth [81] it can be shown that the mF = 0 component of the x and y bases, labelled

|x〉 and |y〉 respectively, can be related to the z basis states as |x〉 = 1√
2

(|1, +1〉 − |1, −1〉)
and |y〉 = i√

2
(|1, +1〉 + |1, −1〉). In accordance, we define the transformation matrix

Û =




1 0 0 0

0 − 1√
2

0 1√
2

0 0 1 0

0 i√
2

0 i√
2




, (2.11)

which rotates the z basis set, written with increasing F and mF , into the ‘Cartesian’ basis4

{|0, 0〉 , |x〉 , |1, 0〉 , |y〉}, as defined above. Working in this basis effectively reduces the rf

interaction to a coupling between two quantum states, which allows the rf interaction

Hamiltonian to be written as Ĥrf = gµBB
(rf)
x cos (ωt + Φrf) (|0, 0〉 〈x| + |x〉 〈0, 0|) . The

coupling between |1, 0〉 and |x〉 is small enough to ignore.

In this basis we may describe the hyperfine system with the wave function

|ψ(t)〉c = (a00 (t) , ax (t) , a10 (t) , ay (t)) , (2.12)

4This nomenclature was first used in Hudson’s thesis [71].
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where ai(t) define the time dependent amplitudes of each basis state. This molecular

state evolves according to the time dependent Schrödinger equation with the Hamiltonian

Ĥ = ÛĤsfÛ
† + Ĥrf. Ideally the rf is tuned close to resonance so that |ω11 − ω| � ω11.

In this case we may make the standard rotating wave approximation which neglects

exponentials that evolve at the relatively rapid rate ω11 + ω ≈ 2ω11 and essentially

integrate to zero. Explicitly, the Schrödinger equation becomes

i~
d

dt
|ψ(t)〉c =




0 Ω~
2 ei(ωt+Φrf) 0 0

Ω~
2 e−i(ωt+Φrf) ω11~ 0 −i∆ ~

0 0 ω10~ 0

0 i∆ ~ 0 ω11~




|ψ(t)〉c , (2.13)

where the Rabi frequency Ω = gµBB
(rf)
x /~. Under typical running conditions

gµBB
(rf)
x � ∆, so we may make the approximation that ∆ = 0. Substituting equation

2.12 into equation 2.13 leads to the following equations for amplitudes ai(t):

ä00(t) − i δ ȧ00(t) +
1

4
Ω2 a00(t) = 0, (2.14a)

ȧ00(t) +
i

2
Ω ax(t) ei(ω t+Φrf) = 0, (2.14b)

ȧ10(t) + i ω10 a10 = 0, (2.14c)

ȧy(t) + i ω11 ay = 0, (2.14d)

where δ = ω − ω11 is the rf detuning from resonance. Equation 2.14a has solutions of

the form a00(t) = e
1
2
iδt
(
p1 cos

(
Wt
2

)
+ p2 sin

(
Wt
2

))
. p1 and p2 are constants which can be

related to the initial populations a00(0) and ax(0), and W =
√

Ω2 + δ2 is the generalised

Rabi frequency.

With some not-so-trivial algebra, equations 2.14a–2.14d may be integrated to give the

time evolution operator for an rf pulse of length τ and initial phase Φrf:

Π̂rf(τ, Φrf) =




(
c − i δW s

)
e

1
2
iδτ −i Ω

W se
1
2
iδτeiΦrf 0 0

−i Ω
W se−iΦrfeiτ( 1

2
δ−ω)

(
c + i δW s

)
e

1
2
iτδe−iωτ 0 0

0 0 e−iτω10 0

0 0 0 e−iτω0




,

(2.15)

where c = cos
(

1
2τW

)
and s = sin

(
1
2τW

)
, following the nomenclature of Ramsey [55].

This operator acts to give |ψ(τ + t)〉c = Π̂rf(τ, Φrf) |ψ(t)〉c.
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If at t = 0, |ψ(0)〉c = |0, 0〉, it is straightforward to show that the populations |a00(τ)|2

and |ax(τ)|2 oscillate in both pulse length (τ) and effective amplitude (W ):

|a00(τ)|2 = 1 − Ω2

W 2
sin2

(
1

2
τW

)
, (2.16a)

|ax(τ)|2 =
Ω2

W 2
sin2

(
1

2
τW

)
. (2.16b)

This is where the π-pulse nomenclature arises — when δ = 0 and Ω τ = π there is a 100%

coherent population transfer from |0, 0〉 into |x〉. When δ 6= 0, the transfer still peaks

when Wτ = π, but now the transfer is incomplete as Ω2/W 2 6= 1. If we set Ω τ = π,

as a function of detuning the transition lineshape is a sinc2 function with a linewidth of

≈ 1/τ (FWHM). Under usual running conditions τ ≈ 18 µs, so the transition linewidth is

≈ 30 kHz. Given that the 170 MHz rf is far detuned from the ≈ 5 MHz resonance between

|1, 0〉 and |x〉, the relatively narrow linewidth justifies why we may neglect any couplings

between these two states.

2.2.3 Interference Lineshape

By combining the static field and rf time evolution operators, we derive the interferometer

equation as follows:

|ψ(τ2 + T + τ1)〉c = Π̂rf(τ2, ω τ1 + ω T + Φrf) Û Π̂sf(T, ∆) Û † Π̂rf(τ1, 0) |ψ(0)〉c . (2.17)

The second rf pulse begins with the phase ω (τ1 + T ), as in the lab the generated rf is

phase continuous. The additional factor Φrf accounts for an arbitrary phase difference

between the two rf pulses that we are able to introduce. The reason for this phase will

become clear shortly.

Let us assume that the optical pumping stage is perfect so that |ψ(0)〉c = |0, 0〉. The

possibility that F = 1 might remain slightly populated is addressed in section 5.2.5. It

can be shown that the final population in F = 0 is given by

S = |〈0, 0|ψ(τ2 + T + τ1)〉c|2 = SC + SI + SR, (2.18)
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where

SC =

(
c1

2 +
δ1

2

W1
2
s1

2

)(
c2

2 +
δ2

2

W 2
2

s2
2

)
, (2.19a)

SI =

(
Ω1Ω2

W1W2
s1s2 cos (φ)

)2

, (2.19b)

SR = 2
Ω1Ω2

W1W2
s1s2 cos (φ)

[(
δ1

W1
s1c2 +

δ2

W2
s2c1

)
sin (ϑ) +

(
δ1δ2

W1W2
s1s2 − c1c2

)
cos (ϑ)

]
.

(2.19c)

ci = cos
(

1
2τiWi

)
, si = sin

(
1
2τiWi

)
, ϑ = δevoT + Φrf, φ = (gµBB0 − deEeff) T/~.

The subscript, i, refers to each rf pulse (1 or 2), and δevo = 1
T

∫ τ1+T
τ1

(ω(t) − ω11(t)) dt is

the average rf detuning during the free evolution period. The first term, SC , depends

only on the tuning of the rf pulse parameters and not on interferometer phases φ and ϑ.

SI is the part of the signal which we want to measure, containing the combined EDM

and Zeeman phase, φ. Under ideal conditions (Wiτi = Ωiτi = π) the interferometer

signal, S, depends only on cos2(φ). As the rf pulses deviate from ideal tuning (in either

power or frequency) the cos2(φ) term is attenuated and the interferometer signal becomes

dependent on a second term SR which is a function of both ϑ and φ. We call this the

Ramsey interference term as it depends upon the rf phase and measures the splitting

between |0, 0〉 and |x〉, as is usual for a Ramsey interferometer. Ramsey interference is

maximised when Ωτ = π/2, i.e. with π/2-pulses.

The Ramsey term is a potential source of systematic error as it depends upon the applied

electric field through the Stark shift. We ensure this component averages to zero by

adding a phase difference Φrf = Φrf±π/2 between the two rf pulses that switches according

to a shot–shot switch sequence. We also randomise the constant phase offset, Φrf, in

between blocks as a second line of defence.

A number of approximations were made in deriving the expression for the interferometer

signal. All incoherent processes such as spontaneous decay were neglected, as excited

state lifetimes are much longer than the time it takes the molecular cloud to fly through

the beam machine. The rotating wave approximation was also applied as it was assumed

that the rf is tuned close to resonance. We also neglected the influence of magnetic fields

during each rf pulse. It is relatively straightforward to modify this theory so that some or

all of these approximations are not made. We can also extend this model to account for

other imperfections such as rf frequency chirps and polarisation rotations, and introduce

possible perpendicular static field components. We generally run these simulations

numerically rather than derive equations which would no doubt be considerably more

complex than equations 2.19a-2.19c. The details of these simulations will be given in

chapter 4 when relevant.
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2.3 Apparatus

I will now describe the experimental apparatus in more detail as it was during acquisition

of the dataset that was published in May 2011 [75].

2.3.1 Vacuum Chamber
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Figure 2.6: A schematic of the YbF molecular beam machine. Not drawn to scale.

As illustrated in figure 2.6, the interferometer resides in a vertically orientated vacuum

chamber which is approximately 2 m tall and and 25 cm in diameter. The chamber is
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separated into two sections with a gate valve to isolate the upper chamber from the lower

source chamber during maintenance of the molecular source. This isolation is necessary

to keep the upper chamber clean in order to prevent electric field break down.

Inside the upper chamber an ‘inner’ cylindrical magnetic shield surrounds a pair of parallel

plates for applying electric and rf fields as well as a set of coils for producing controlled

magnetic fields. Also within the upper chamber, yet outside the ‘inner’ shield, reside the

optics for collecting laser induced fluorescence onto a pair of photomultiplier tubes (one

for each laser beam). The PMTs themselves sit outside the main vacuum chamber. A

schematic of the upper chamber layout is shown in figure 2.7.
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Figure 2.7: A schematic of the upper vacuum chamber. Not drawn to scale.
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The source chamber houses the pulsed gas inlet valve and the target assembly. Molecules

propagate upwards from here, through a skimmer, into the upper chamber. Two

turbomolecular pumps keep the pressure within this chamber typically below 5×10−5 Pa

as is necessary to limit collisional decoherence [70]. A further two turbo pumps evacuate

gas introduced to the source chamber by the gas inlet valve, maintaining a pressure of

approximately 10−2 Pa whilst the beam machine is running.

2.3.2 YbF Beam Source

A sensitive measurement of the EDM requires a stable source that can produce a large

flux of YbF molecules in their ground state. For this reason we continue to use the pulsed

supersonic source as described extensively in the thesis of Condylis [72].

YbF is produced through the laser ablation of Yb metal in the presence of a supersonically

expanding mixture of 98% Ar and 2% SF6 gas. As the gas isentropicly5 expands into the

vacuum chamber, its thermal energy is converted into forward kinetic energy, resulting

in a fast moving jet with a narrow velocity spread. A focused Nd:YAG laser creates a

hot plume of Yb metal which reacts with the SF6 to form, amongst other things, YbF

radicals. The YbF becomes entrained in the Ar carrier gas and thermalises with it,

cooling the YbF molecules to around 4 K [82]. We measure the YbF molecules to have

a forward (vertical) molecular velocity of 590 ms−1, with a velocity spread of 40 ms−1

(FWHM). A skimmer with a 2 mm aperture placed 8 cm from the target collimates the

YbF beam before it passes into the upper chamber.

A schematic diagram of the source chamber is given in figure 2.8. The molecular beam

is pulsed at 25 Hz via a commercially available solenoid valve with a 4 × 105 Pa carrier

gas backing pressure. Whilst we could run the source at 50 Hz we find that, at the more

rapid rate, the increased gas pressure reduces interference contrast so there is no overall

gain in experimental sensitivity. The valve is typically pulsed with a 180 µs high voltage

(380 V) drive triggered by a digital signal from the computer. After a short 350 µs delay,

1064 nm light from a Q-switched Nd:YAG laser is fired at the Yb target. This is a 1 mm

thick, 3 mm wide ribbon of Yb metal mounted with epoxy on the edge of a rotatable

12 cm diameter stainless steel disc. The focussed laser spot is ∼5 mm in diameter and the

target disc is positioned a few mm above and behind the exit aperture of the gas valve;

we find molecular signal to be critically dependent on this exact positioning6. Laser pulse

length is fixed at 12 ns, however the maximum pulse energy can be controlled by varying

5No heat is added to the system during expansion ∆Q = 0.
6Optimising this position is a painful process as we must break vacuum in the source chamber for

every adjustment.
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Figure 2.8: A schematic of the inlet valve and the rotating ytterbium target assembly.
Not drawn to scale.

the time delay between the flashlamp and Q-switch digital triggers. Typically the flash-

to-Q interval is set to ∼280 µs, but the optimal delay depends upon the age of the laser

flashlamps and the condition of the target surface, which degrades fairly rapidly. After

∼5000 YAG shots the (initially silver) target turns completely black7 and the molecular

signal dies to almost nothing. To rejuvenate the signal a stepper motor rotates the target

disc by a few degrees when the signal drops below a certain value to expose fresh Yb.

This gives the target a lifetime of approximately 100 hours before we must break vacuum

in the lower chamber in order to scrape it clean with wire wool or a razor blade.

Typically molecular pulses contain ∼ 105 molecules, however we find the intensity and

stability of the YbF beam to be quite dependent on a number of tunable parameters

including flash-to-Q time, valve-to-Q time and valve-pulse-length. We optimise the

molecular signal measured by the probe PMT every week by scanning the tunable

parameters as shown in figure 2.9. Each parameter is roughly independent so we can

optimise each individually whilst holding the other parameters constant. As in figure

2.9(a), often the most appropriate value is chosen to be just below the maximum signal.

7We assume the black residue to be a sulphurous compound but its true composition is unknown.
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This is because we find relatively intense molecular signals tend to decay more rapidly

and become noisy which reduces EDM sensitivity in the long run.
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Figure 2.9: Example set of source parameter scans. Note the smooth lines serve only
to guide the eye.

2.3.3 Pump and Probe Laser System

Stabilisation and Control of the Coherent 899 Dye Laser

The pump and probe laser beams are derived from a single Coherent 899 ring cavity dye

laser pumped by an Ar+ laser lasing on all of its visible lines. We pump Rhodamine 110

dye with 2–6 W of power (depending on the age of the dye) to give 120 mW output at

553 nm. The pump light (resonant with the Q(0) transition from F = 1) is generated by

double passing part of the laser output through an acousto-optic modulator (AOM) that

red shifts the light by roughly 170 MHz. We call this the ‘pump AOM’.

Whilst the laser linewidth is less than 1 MHz, its output frequency can drift by up

to 10 MHz/h. It therefore could drift, in one hour, by an amount comparable to the
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(∼20 MHz) natural linewidth of the Q(0) transition. We require the laser to be locked

to within ∼2 MHz for periods of up to 12 hours at a time, so we lock the dye laser

reference cavity to an iodine (I2) spectral feature using saturated absorption spectroscopy

as described in full in the thesis of Hudson [71]. This requires approximately 70 mW of

laser power which is split off from the main laser beam before it is divided to form the

pump and probe beams.

The iodine spectral features lie 120 MHz blue detuned from the Q(0)(F = 0) transition,

so we shift the so called ‘strong pump beam’8 of the I2 lock by double passing it through

an AOM driven at 120 MHz, with a 12 MHz deep frequency modulation superimposed

(which oscillates at 100 kHz). We modulate the frequency to provide an error signal

proportional to the derivative of the I2 spectral features.

We can reliably scan the laser linearly over a narrow ∼20 MHz range by supplying the

voltage controlled oscillator (VCO) that drives the 120 MHz I2 lock AOM with a 0–5 V

analogue offset. We servo this frequency to optimise molecular signal and interference

contrast.

The I2 lock is quite stable but is susceptible to jump spectral features if it is jolted by

other activity in the lab. On a good day the dye laser only needs human attention roughly

every 12 hours as laser power drops with ageing dye. Normally the dye will last 80 hours

before it needs replacing with a fresh mix.

Pump and Probe Beam Optics

y

z x

polarising
beam cube

rotating
polarising
beam cube

quarter
wave plate

vacuum
chamber port

photo-
diode 45°

laser light

Figure 2.10: A schematic of the pump/probe laser optics train for arbitrary
polarisation rotation about the x axis. The red arrows indicate the (green) laser

polarisation.

8Not to be confused with the pump laser beam used to optically pump the YbF molecules out of
F = 1.
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Before the pump and probe laser beams are sent into the vacuum chamber, each beam is

passed through a short optics train which linearly polarises each laser beam and allows

arbitrary, independent polarisation rotation about the x axis. Under ideal circumstances

the molecular signal should not depend on the polarisation angle, but rotating the

polarisation provides us with a valuable test for systematic effects.

The optical setup is shown in figure 2.10. This arrangement is replicated for both the

pump and probe laser beams. First, a polarising beam splitter (PBS) ensures the laser

is, to a good degree, linearly polarised. This component also deflects a small amount of

light onto a photodiode to monitor the power in each beam; its output signal is logged

by the main computer. The laser beam then passes through a quarter wave plate (QWP)

oriented with its fast axis at 45◦ to the initial beam cube axis. This circularly polarises

the beam, ensuring uniform power in all axes about x. The beam is then linearly polarised

again during passage through a second, high quality Thorlabs GT10-A Glan-Taylor cube

mounted on a computer controlled, motorised rotation stage.

Unfortunately as the QWP is not perfect, the light becomes slightly elliptically polarised

before it encounters the Glan-Taylor cube. The Glan-Taylor cube converts this ellipticity

into a power fluctuation which has been measured to be no more than a 5% variation.

This should not pose a problem as we ensure that there is more than enough power in

the pump beam to deplete the F = 1 population. Furthermore, we only rotate laser

polarisation in between blocks; recall from section 2.1.1 that probe PMT signal changes

are calibrated for each individual EDM measurement.

Both laser beams enter the vacuum chamber through a flat anti-reflection coated window.

It is possible that these windows could introduce a certain amount of circular polarisation.

By placing a second Glan-Taylor cube after each window and rotating it through 360◦,

we have determined that, in both cases, the light remains linear to better than 5 parts

in 104.

2.3.4 Laser Induced Fluorescence Detection

Figure 2.7 illustrates the optical setup for the detection of laser induced fluorescence

(LIF). The pump and probe laser beams pass though the vacuum chamber 0.35 m and

1.35 m above the source valve respectively. As previously stated, these beams drive the

Q(0) transition from the F = 1 and F = 0 levels of the rovibrational ground state,

causing the molecules to fluoresce isotropically as they pass through each laser beam.

The signal intensity is proportional to the population in each state being probed.
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The molecular cloud expands slightly as it moves through the vacuum chamber. In the

pump region the cloud is only a few mm wide, so we shape the pump laser beam to have

a 4 mm wide Gaussian profile to ensure it intersects all molecules. At the top of the

chamber the cloud is considerably more spread out. An aperture at the top of the inner

shield limits its dimensions to be 40 mm x 15 mm in the x and z axes respectively. We

shape the probe laser beam into a top hat profile, spanning 5 mm along y and 10 mm

along z, to maximise signal whilst minimising background laser scatter.

In both the pump and probe regions, we collect fluorescence onto a single PMT: a

Hamamatsu R5070A collects pump fluorescence whereas a Hamamatsu R669 PMT collects

the probe fluorescence. The quantum efficiency of these detectors is, at best, 10% and

unfortunately ray tracing simulations have shown that the probe collection optics have

an overall collection efficiency of just under 5% [83]. We, therefore, have much room for

improvement with regards to detection efficiency.

We use the pump signal to normalise the probe signal against variations in molecular flux.

This does not require a particularly large signal from the pump PMT. However, EDM

sensitivity is critically dependent on the probe signal, which not only depends upon probe

laser beam alignment, but also optical pumping efficiency. For this reason the power and

profile of the pump laser beam are chosen to ensure all molecules in F = 1 are pumped

out before they pass through the full width of the laser beam. We also tweak the pump

laser beam alignment and frequency to maximise the probe PMT signal, rather than

pump PMT signal9. Typically, optical pumping increases the probe signal by a factor of

two.

The molecular cloud has a 40 m/s longitudinal velocity spread, so it disperses along the

y axis as it travels up the machine. We operate the PMTs in current mode and connect

their output to an amplifier which converts the photo-current into a voltage. This gives

a temporal resolution of ∼1 µs which enables us to observe near Gaussian shaped time

of fight (TOF) profiles from each PMT as the molecular cloud passes though the laser

beams. An example probe PMT TOF profile is shown in figure 2.11.

We can analyse the TOF profiles in a number of ways. Most often we simply gate out

the central region, as shown, and integrate the sample data to produce a single value for

each molecular pulse. However, we can retain the temporal information should we want

to investigate possible velocity or, more likely, position dependent effects. See sections

3.1–4.6 for a full description of how we analyse the PMT signals.

9In an ideal world the maximum of the pump and probe PMTs would coincide, however the optical
arrangements are not perfect so it is possible to increase pump PMT signal at the cost of probe fluorescence
detected
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Figure 2.11: Fluorescence measured by the probe PMT as a function of arrival time
relative to the YAG Q-switch. We call this a time of flight (TOF) profile. The points
represent the average signal from 100 shots. The red line shows a fit to a Gaussian
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2.3.5 Applied RF Fields

Once the pump laser beam has depleted population in F = 1, we are able to coherently

manipulate the quantum state of the YbF molecules by driving transitions between the

F = 0 and F = 1 hyperfine manifolds with short pulses of ∼ 170 MHz rf.

The parallel plate structure housed within the upper chamber is used both to produce

the static electric field, and to serve as a 37 Ω transmission line to carry rf in a TEM

mode, with the oscillating magnetic field linearly polarised along the x axis. This gives

us the ability to apply rf to the molecules at any position along the plate length. The rf

transmission line is symmetric, which allows us to propagate rf in either direction along

the beam line to test for possible systematic effects.

The parallel plate transmission line is coupled to 50 Ω semi-rigid coaxial cables at either

end through 220 pF DC isolating capacitors which connect to the plates in opposite

corners as shown in figure 2.12. Field mapping studies have shown that this unfortunately

causes the rf polarisation to rotate towards the coupling point at either end (see section

5.1.1 and [74]). We therefore only use the central 40 cm of plate length under normal

running conditions.

The 37 Ω–50 Ω impedance jumps are bridged with a pair of 10 pF trimming capacitors,

which were empirically chosen to improve rf transmission though the coupling points at

170 MHz. Impedance matching is not quite perfect so a small amount of rf is reflected

at either end. Using the molecules as probes (see below), we measure a voltage standing

wave ratio (VSWR) of 1.5. This does not cause a major problem as we can independently

tune the power of each rf pulse to satisfy the π-pulse condition.
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A schematic of the rf generation system is also shown in figure 2.12. We protect this

system from high voltage and discharges with a pair of bias-tees and lightning arrestors.

As shown, both the ‘split’ and ‘recombination’ rf pulses are generated by the same HP

8657A rf synthesizer. The synthesizer is programmed by the computer over GPIB. This

process takes a few milliseconds, which is longer than the 640 µs interferometer phase

evolution time. To create two short pulses (typically 18 µs in length), we pass the rf

through two fast Mini-Circuits ZASWA-2-50DR+ switches which can switch in <1 µs

and give a combined isolation of > 100 dB. When the rf is not being pulsed, these

switches redirect the synthesizer output into a HP 53131A frequency counter and a HP

438A power meter, which are logged once per block by the main computer.

A slight warping of the parallel plates (see sections 2.3.6 and 5.1.2) and the rf standing

wave require that the frequency and amplitude of each pulse be controlled independently.

To address this problem, we use the internal DCFM of the synthesizer to independently

tune the frequency of each pulse. In addition we pass the rf through a Mini-Circuits

ZX73-2500 rf attenuator to tune pulse amplitude. Both of these components can respond

on a 10 µs time scale.

We control the DCFM and the attenuator with analogue voltages which are generated

by the computer before each shot. A set of SPDT switches, triggered by digital signals,

analog voltage digital signal (TTL) rf signal
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Figure 2.12: Schematic of rf system.
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then select the appropriate voltage as the molecules fly through the beam machine. The

DCFM is tuned over 20 kHz with a 0–1.2 V drive (VRFiF), and the attenuator decreases

rf amplitude by up to 40 dB as its control voltage (VRFiA) is decreased from 17 V down

to 0 V. As in the interferometer theory section, the subscript i indexes the two rf pulses.

The first pulse (i = 1) is always the pulse which the molecules experience first. It is

independent of the rf propagation direction.
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Figure 2.13: Example set of rf parameter scans. The red lines are fits to the physical
models presented in section 2.2.

We initially tune the frequency and amplitude of each rf pulse by performing simple

pump-probe experiments with single rf pulses. In these experiments the centre time of

each rf pulse is set to their usual running value, which is 1120 µs and 1780 µs after the

initial value pulse respectively. As shown in figures 2.13(a) and 2.13(b), we scan out each

parameter and choose the point where the integrated probe signal, and hence F = 0

population, is minimised.

Note that the probe signal oscillates in the amplitude scan; this phenomenon is known as

Rabi flopping and is fully described by equation 2.16a. The amplitude minima correspond

to odd integer π-pulses, however population transfer is only truly maximised when the rf

frequency is accurately set on resonance, as rf frequency detunings modify the generalised

Rabi frequency slightly. For this reason the rf frequency scan is always performed before
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the amplitude scan. The rf scan must, however, be performed at relatively low rf power

(below the π-pulse requirement) so that the transition lineshape does not split into more

than one peak.

Both the pitch of the Rabi flopping scan and the transition linewidth are inversely

proportional to pulse length. For our EDM measurement we would like this to be as short

as possible so that the interferometer is less sensitive to rf detuning. Unfortunately the

gain of the ar worldwide KAW1050 rf amplifier limits pulse length to be not much smaller

than 18 µs. This value allows a little room above the π-pulse condition for amplitude

tuning.

It is sometimes useful to run pump-probe experiments with a longer rf pulse length for

a more precise measurement of Zeeman splittings or the tensor Stark shift. Of course

the precision of these measurements is still relatively low in comparison to two pulse

interference measurements. However, we can use these experiments to map the amplitude

of the electric, magnetic and rf fields along the beam line by incrementing the rf pulse time

in between parameter scans to hit the molecules at different positions within the machine.

This technique even allows for a measurement of the rf polarisation, by comparing the

relative heights of the Zeeman split F = 1 magnetic sub levels on various frequency scans.

The details of these field mapping measurements are given in references [74, 84] and are

summarised in the following sections.

When taking EDM data (with two rf pulses) we actively lock rf frequency and amplitude

close to their ideal settings by independently switching the frequency and amplitude of

each pulse by 1.6 kHz and 0.25 dB between shots and measuring the corresponding change

in PMT signal. At the end of each block the computer automatically adjusts these rf

parameters to maximise interference contrast.

Ideally we would like to apply perfect π-pulses for 100% population transfer between

F = 0 and F = 1. If the rf pulse parameters are not perfect we observe Ramsey

interference which contaminates the pure cos2(φ) interference fringes. The Ramsey

component, described by equation 2.19c, is a potential source of systematic error as

it depends upon the applied electric field. To cancel this error we reverse the sign of

the Ramsey component between shots10 so that it averages to zero over a whole block.

We do this by applying a π phase flip to the second rf pulse with a Mini-Circuits PAS-3

bi-phase.

The bi-phase can flip the phase to better than 1% accuracy. We control it with two

computer generated digital signals εflip and επ. As demonstrated in figure 2.19 εflip goes

high in between the two rf pulses to apply the π phase shift to the second rf pulse. This

10Specifically we do this according a shot-shot switch sequence as explained in section 3.1.
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happens on each and every shot but, as shown in figure 2.12, it doesn’t necessarily always

trigger the bi-phase. The second digital signal, επ, must be in the logic state high to allow

the π-flip to actually occur. We switch επ between shots so that the π phase reversal is

applied on alternate shots cancelling the Ramsey component over a block.

As a second line of defence against error originating from the Ramsey component we also

randomise the phase offset between the two rf pulses on a block-by-block basis. This

ensures that it averages to zero over the entire dataset. As the DCFM output is phase

continuous we are able to arbitrarily change the phase difference between the two rf

pulses by driving the DCFM with a voltage Vϑ for a certain amount of time in between

the two rf pulses. This is demonstrated by the blue line labelled with VRF1F, Vϑ and

VRF2F in figure 2.19. When running we scramble the phase offset over (14.00±0.02) π by

driving the DCFM with a voltage, Vϑ, in the range 0–0.7248 V, for 500 µs. The voltage is

randomly chosen by the computer and, like VRFiF, is selected with a SPDT switch as the

molecules fly through the machine . The sequence of switches that control which voltage

is sent to the DCFM at any moment in time is demonstrated in figure 2.12.

We tune the range of Vϑ by running two pulse interference experiments with the rf

amplitudes set to apply π/2-pulses in order to maximise Ramsey interference. We select

a suitable duration over which phase scrambling will occur and scan Vϑ over the range

0–1 V to obtain a Ramsey interference pattern, as shown in figure 2.13(c). We then select

the voltage which corresponds to the maximum possible number of complete fringe cycles.

For a phase scrambling period of 500 µs, the maximum number of cycles is seven.
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Figure 2.14: The Ramsey phase shift across the molecular cloud, taken at 2 kV. The red
points are calculated for various narrow integrated slices of the probe TOF profile. These
points show good agreement with the blue points, which were generated by integrating

an interpolated electric field map for each molecular velocity class.

We have found that Ramsey fringes are only visible when scans are taken with a relatively

low applied electric field (<2 kV)11. The reason for this is because inhomogeneities in the

electric field rapidly scramble the Ramsey phase across the molecular pulse. Since the two

11You could run Ramsey interference scans at high voltage but with a short interfometer length.
However, you would have to reduce the phase scrambler length accordingly, which would not be
appropriate for setting the range of Vϑ. An example where it might be more appropriate to use a
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rf pulses are defined in time not position, the fast molecules integrate a slightly different

electric field to the slow molecules and hence accumulate a difference phase. This effect

is illustrated in figure 2.14, where the red points show the phase of Ramsey fringes, taken

at 2 kV, for various narrow integrated slices of the probe TOF profile. These points show

good agreement with the blue points, which were generated by integrating an interpolated

electric field map for each molecular velocity class. Although not intentional, this effect

provides us with a third method of scrambling the Ramsey phase, further reducing its

impact on our final EDM measurement.

2.3.6 Applied Electric Field

The static electric field applied to the molecules during the phase evolution period is

produced by two parallel plates that are separated by 12 mm and are typically charged

to ±6 kV with respect to ground. We continue to use the gold coated aluminium plates,

as detailed in the thesis of Ashworth [73], which are 750 mm long and 70 mm wide. The

plates are gold coated to prevent a dielectric oxide surface layer forming. This reduces the

possibility for the build up of patch potentials, which improves electric field reversibility.

Field mapping studies have shown that the plates are actually slightly bowed in the

middle, deviating from the mean separation by up to 100 µm [74, 84]. Electrical contact

is made by a pair of spring loaded contacts which push onto the plate edges in the

middle of the vacuum chamber, as shown in figure 2.15(a). It was previously thought

that pressure from these springs caused the plates to warp. Recent tests, which involved

softer springs and improved plate support have since shown this not to be correct. The

true cause of this warping is still as yet unknown.

short machine length would be when measuring the asymmetry of electric field reversals, which would be
preferable to be taken at high voltage. In this case interferometer length is not important.
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Figure 2.15: Schmatic diagrams of the HV coupling and the HV control system. Red
arrows indicate an optical line to the computer.

The high voltage (HV) supplies, that charge the electric field plates, sit 5 m away from

the vacuum chamber to attenuate any generated magnetic fields that switch with the field

polarity. Each plate is connected to a Bertan 602C supply through a Crydom D-series

solid state DPDT relay, which is used to set the electric field polarity, as shown in figure

2.15(b). The state of the relay is set by a digital signal, εE , sent from the computer.

This signal is carried across the lab in an optical fibre to reduce the risk of generating

magnetic fields which switch with the electric field. The HV supplies are controlled and

monitored by a data acquisition (DAQ) card, which is also connected to the computer

via a fibre optic USB link. A 0–5 V control voltage programs the supply over a 15 kV

range and the HV is read out through 1 : 104 potential dividers. For additional isolation

and protection from HV discharges, the individual DAQ I/O terminals are each isolated

with an Analog Devices AD215BY analogue isolation amplifier.

Leakage currents which reverse with the direction of the applied electric field are a

potential source of systematic error, as they could generate an E-state dependent magnetic

field that would split the F = 1 manifold and hence produce an EDM masquerading

signal. We monitor the leakage currents on each plate independently with two home

built floating nanoammeters as described in [85]. Each ammeter outputs a train of optical

pulses down a fibre optic link at a frequency proportional to the measured current. This

frequency is converted to a voltage, at the computer, by a circuit which combines a

monostable chip with a low pass filter. The calibration factor is 5 mV/nA. We monitor

leakage currents in real time to check that the electric field is not discharging and to
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ensure that it actually reverses. We expect <5 nA to flow onto each plate during data

acquisition which, crucially, should reverse polarity following an electric field reversal.

We pause data acquisition during the electric field reversals as charging and discharging

currents become reasonably large and plate voltage is not stable. It is possible that such

large current could magnetise the inner magnetic shield and generate a magnetic field

which depends on the polarity of the electric field. As illustrated in figure 2.15(a), we

minimise this effect by arranging the feedthoughs to pass side-by-side through a single

hole in the inner shield. To keep current below 5 µA and to ensure a stable plate voltage,

we switch the electric field over approximately 14 s, during which time data acquisition

is paused.

The switching procedure was empirically optimised by Kara, as detailed in his thesis [74].

In brief the procedure is as follows: Over 2 s the supplies are ramped down to zero from

high voltage; The plates are then grounded for 2 s, to bleed off any charge remaining

on the plates, and the relay state is given 1 s to switch; The supplies are then ramped

up to 1.15 times their operating voltage over 2 s and are held at this voltage for 5 s

before being reduced to the running voltage. We allow allow a further 2 s delay to allow

transient currents to settle before acquisition is resumed. The overshoot procedure is

implemented to reduce the time required to charge the plates to their operating voltage.

Following a field reversal, the electric field has been shown to be stable to better than

1 V/cm. Without the overshoot, an electric field reversal would take 4 s longer to obtain

this stability.

2.3.7 Ambient Magnetic Fields

As shown in figures 2.6 and 2.7, the interferometer interaction region is enclosed

within two cylindrical mu-metal magnetic shields: one inside the vacuum chamber

with dimensions �0.17 m×0.79 m; and one situated outside the chamber which has the

dimensions �0.6 m×1.4 m. The inner shield is capped at either end with flat mu-metal

lids to maximise the shielding efficiency. The lids have small holes in their centre to allow

the molecular cloud to pass through. The inner and outer shields have a radial shielding

factors of approximately 75 and 50. We find that, together, they reduce the ambient

radial magnetic field within the machine to <2 nT. Unfortunately field maps have shown

that this field does increase to 200 nT at either end of the HV plates, presumably this is

due to poor demagnetisation of the end caps [84]. This is another reason why we can only

use the central 55 cm of the HV plates for phase evolution. The longitudinal shielding is

quite poor, however we are not very sensitive to perturbing magnetic fields along y.
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In general magnetic field noise reduces experimental sensitivity, and components which

switch with the electric field are of particular concern as they can bias the final result.

We monitor magnetic fields within the lab with three Stefan Mayer FLC100 fluxgate

magnetometers: one placed near the computer, another positioned above the optics table

and one mounted on the HV supply rack. We also place a more sensitive Bartington

Mag-03MCL100 magnetometer at a point near the molecular beam (see figure 2.6) to

measure magnetic field along the z axis. We reduce magnetic field noise by phase locking

the (25 Hz) data acquisition cycle to the mains, which ensures the molecular packet always

samples the same part of the 50 Hz lab field.

2.3.8 Applied Magnetic Fields

As explained in section 2.1, we apply a magnetic field along z to operate the interferometer

where it is most sensitive to phase changes. We also have the ability to apply a static

magnetic field along the x axis, which is particularly useful for performing systematic

checks to investigate the sensitivity of our EDM measurements to perpendicular magnetic

fields. Unfortunately we can only apply fields along y with limited precision.

Both the x and z static fields are produced from a pair of rectangular current loops

which are glued with vacuum compatible epoxy onto the inside of the inner shield as

shown in figure 2.7. The loops are 15.5 cm wide, are separated by 7 cm and extend the

full length of the inner magnetic shield (79 cm in length), looping round the outside of

the shielded region through small holes in the end caps. There are no coils inside the

vacuum chamber which are aligned to apply a magnetic field along y. When we would

like to apply a vertical magnetic field, we usually wind coils around the vacuum chamber.

This is not ideal as the applied field is then attenuated by the inner magnetic shield.

The fields along x and z are quite homogeneous — mapping studies have shown that they

vary by <2% over the central section of the interferometer region [84]. Unfortunately,

these fields do rotate slightly at either end of the vacuum chamber to satisfy boundary

conditions with the end caps, which is a further reason why interferometer length is

slightly limited.

We have two current supplies for driving the magnetic field coils: one which

steps the current, and one which can continuously scan the current over 10 mA,

allowing for interference scans such as figure 2.16 to be acquired. The scanning
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Figure 2.16: A typical interference scan taken by ramping the applied magnetic field
over 10 mA. The red line shows a fit to the cosine squared model.

box is particularly important for measuring the magnetic field current coefficient12,13

β = (16.790 ± 0.003) nT/mA. However, it is also useful for general diagnostics which

include checking parameters are well tuned and measuring ambient magnetic fields. The

scanning box is controlled by a 0–5 V drive which is output from the main computer.

Under normal running conditions, the magnetic field coils are connected solely to the

stepping box14. This coil driver produces a magnetic field within the machine of

B = β εB0 |IB0 − εδB IδB| + β Ibias, (2.20)

where the bias current Ibias (usually <0.15 mA) is controlled by an analogue voltage,

Vbias, in the range -5 – +5 V. This ensures the current steps symmetrically about the

central fringe — it cancels the average residual ambient field inside the inner chamber.

IB0 = 0.812 mA and IδB = 0.099 mA are fixed currents that are set manually with two

potentiometers which divide a stable voltage reference. εB, εδB represent the state of two

digital signals (either -1 or +1).

As with the electric field supply, both the digital signals are optical and the bias voltage

is supplied by a DAQ card which is connected to the computer via a USB optical link.

We use optical fibres for electrical isolation and to reduce magnetic fields around the lab.

Figure 2.17 illustrates the essence of the current stepping box circuitry. A low voltage

noise instrumentation amplifier measures the voltage drop across a high stability metal

12This number is actually calculated from the average of two interference scans in which the phase
difference between the two rf pulses differs by π radians. This is to cancel out the Ramsey component of
the interference signal, which has the ability to change the pitch of the interference fringes.

13Note this is the current coefficient which corresponds to the average field experienced by the molecules
during the phase evolution period. Due to minor field inhomogeneities, this value may vary slightly with
pulse timings, as the molecules integrate a slightly different magnetic field.

14There is no switch here. We physically unplug the coils from the scanning box and plug them into
the stepping box.
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film resistor. This voltage is then fed back to the inverting input of a precision op-amp to

ensure a constant current output that is proportional to the voltage on the non-inverting

input, and is independent of the load placed upon it.

By placing a magnetometer at the centre of the inner shield we have observed that the

magnetic field can switch in < 350 µs (the current actually switches in < 100 µs). The

current running through the magnetic field coils is monitored with a HP 34401A six digit

multimeter. When running we log the current output in each of the four magnetic field

switch states once per block to ensure the supply is working correctly and to make sure

the phase calibration step (δφCAL) is calculated correctly.

2.3.9 Computer

Hardware

The central hub of the EDM experiment is a National Instruments PXI computer system,

that drives the experimental apparatus and logs detector signals. A schematic diagram

of the computer–hardware interface is shown in figure 2.18.

Recall that an individual block is made up from 4096 shots in which a series of

experimental parameters15 are switched in between each shot (the so called ‘shot–shot

switch sequence’). Each shot, however, is made up of a complicated sequence of events

that occur as the molecules fly through the beam machine. This relatively rapid sequence

of events that occurs as the molecules travel through the machine is demonstrated in figure

2.19.

15Nine parameters to be precise. See section 3.1.
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The NI PXI 6535 pattern generator (PG) provides both the (fast) sub-shot and (slow)

shot–shot digital signals. It not only drives all the hardware switches but also triggers

the analogue input cards to begin acquisition. Note that this card generates the inverted

triggers (!εE0 , !εB0 , !εδB, !επ) in addition to (εE0 , εB0 , εδB, επ), as were defined in the

previous sections. This is to balance the currents which drive the LEDs used for optical

isolation, in order to reduce any magnetic fields associated with these switches. The

inverted switches drive dummy LEDs which do not trigger anything.
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Figure 2.19: The sequence of events that occur as the molecules fly though the beam
machine. All times are taken relative to the YAG laser Q-switch trigger. The attenuator

and DCFM voltages are set in between each shot.

We provide the PG with a clock reference from a 1 MHz synthesizer to time events with

1 µs resolution. As was mentioned previously, this clock is phase locked to the lab mains

to reduce shot–shot magnetic field noise. We first digitise the mains with a Schmitt

trigger. The digitised mains and the 1 MHz signal is then fed into a NI PXI 6602 rf

counter. The synthesizer is phase locked by actively servoing its frequency to ensure the

counter measures the same number of cycles within a period, which is gated by the lab

mains half cycle. We also feed the digitised mains into the PG to provide a start trigger

for each block. This ensures each EDM measurement is taken on the same part of the

mains cycle. Typically the 1 MHz synth frequency is varied by a few parts in 104.

Many analogue voltages are modulated in addition to the digital modulations produced

by the PG. The DCFM and laser control voltages are examples of such. These analogue

voltages are produced by a selection of USB data acquisition (DAQ) cards. We also use
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the GPIB and RS232 protocols to interface with external hardware, such as the 170 MHz

rf synthesizer16. These protocols are bidirectional so are used to both program hardware

and transfer measurements from the stand alone meters. We update the USB, GPIB and

RS232 devices between shots as their update rate is relatively show.

We use two separate DAQ cards for collecting data: A NI PXI 6220 card is used for single

point voltage measurements that are taken once per shot, whereas a NI PXI 6133 is used

to continuously sample certain detectors as the molecules fly through the beam machine.

These are the detectors which we analyse to look for an EDM signal. The detectors

connected to the NI PXI 6133 are the two PMTs, the Bartington magnetometer and

two dummy inputs: a 9 V battery and a 50 Ω terminator. We use the dummy inputs

as tests for systematic effects, for example if the 9 V battery measures a non-zero EDM

there clearly is something wrong with our experiment.

The NI PXI 6133 DAQ card was carefully chosen to provide isolated inputs, each with a

dedicated analogue to digital converter, that can be read simultaneously at a high sample

rate. This limits the level of cross talk between channels and prevents interference from

ground. When triggered by the PG, the NI PXI 6133 begins sampling each input at

100 kHz, however we bin data from the 50 Ω terminator and magnetometer into blocks of

200 µs which are averaged in order to reduce the memory overhead per shot. The sample

time periods of each detector are shown in table 3.1.

Software

The EDM experiment is almost completely automated. It is fully capable of operating

without human intervention for over 12 hours at a time. The experiment is operated by a

small collection of programs written in C# on the .NET framework. The following items

provide a brief overview of the main function of each program in turn.

HarwareController As the name suggests, this program is used to give the user direct

control of experimental apparatus. All changes to the hardware go through this program.

ScanMaster The fundamental idea of this program is to provide the ability to scan any

one experimental parameter over a number of shots, while holding all other parameters

constant. This software is also used to program the pattern generator.

16We find USB to be the least reliable protocol. It fails at least once a week, requiring acquisition to
be halted and the computer restarted. This doesn’t cause a major problem, but can lead to the loss of a
whole night’s worth of data ∼150 blocks.
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BlockHead This program runs the experiment during the acquisition of EDM data. It

runs the pattern generator and modulates the various experimental parameters in between

shots. It also logs the detectors as specified above. After a full block shot sequence is

completed, BlockHead saves all the raw data to disk in compressed XML format. The

XML format adds tags to the data to make it human readable. This is really important

should anyone like to re-analyse the raw data in the future. BlockHead also runs a simple

analysis for feedback in between blocks and to provide real-time diagnostics — we can

see how far detuned parameters are and monitor the noise on important switch channels.

This real-time analysis report is particularly useful for telling us if the dye laser has

unlocked.

ScriptingConsole This runs an instance of IronPython, which is a version of the

Python computer language that is tightly integrated with Microsoft’s .NET Framework.

We use this program to run scripts to automate the experiment. For example the script

MapLoop is used to control ScanMaster. This script changes the value of one of the fixed

parameters in between individual scans.

PhaseLock Runs constantly in the background, servoing the 1 MHz PG reference clock

as described above.

2.4 EDM Data Acquisition Cycle

The EDM data acquisition cycle is almost completely computer automated by the EDMLoop

script. At the beginning of a block, this script instructs HardwareController to randomise

the laser polarisations and the rf phase scrambler voltage, and measure the various

experimental parameters as listed in table D.2. It then generates a set of switch sequences

(waveforms) for the shot–shot modulation of the experimental parameters and logs these

along with the parameter measurements and the current pattern generator settings. The

script then requests BlockHead begin the pattern and start the shot–shot parameter

modulation sequence. At the end of a full parameter switch sequence (4096 successful

shots), BlockHead runs its quick analysis and saves all the raw block data to disk. Before

beginning a new block, EDMLoop requests the analysis values from BlockHead. It then

uses these values to servo various experimental parameters closer to their ideal settings17

(see section 3.3). If the interference signal drops below a certain value the script rotates

the target to expose fresh Yb. Once the new centre values are set, the script then loops

17The computer is much better at optimising the parameter space than we are using individual
parameter scans.
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round and starts a new block; this procedure continues indefinitely until it is interrupted.

We typically leave the script running for ∼12 hours to collect ∼150 data blocks. We then

manually reverse one or more of the electrical connections between the beam machine

and the electric field, magnetic field and rf supplies. This reverses the direction of each

field providing a valuable handle upon the origin of systematic effects. We try to keep

the order in which ‘manual reversals’ are performed as random as possible, and we ensure

an equal number of blocks are taken in each of the eight possible configurations. Data

acquisition runs 24 hours a day, five days a week and is only interrupted for a manual

reversal, if the dye laser needs maintaining, or if the Yb target wheel needs refreshing.

When everything is running well we obtain approximately 200 data blocks per day.



Chapter 3

Analysing Detector Signals

This chapter covers the details of how we actually make an EDM measurement. To

understand how we extract a value for de from the raw detector signals, I first discuss

the shot–shot modulation of various experimental parameters over the course of a block.

Since the signals from many detectors vary as the molecules pass through the beam

machine we must be especially careful as to how we combine the recorded signal changes

and integrate them to a single value. This is discussed in section 3.2. Section 3.3 then lists

the most important signal changes, or ‘analysis channels’, that we derive from the shot–

shot parameter modulations. In section 3.4 I explain how we use many of these channels

to lock experimental parameters to their ideal values during data acquisition. In section

3.5 I then discuss how we manually reverse the electrical connections between the beam

machine and the E, B and rf supplies. We perform these reversals every ∼ 150 blocks

to verify the origin of the important analysis channels. Section 3.6 brings sections 3.1–

3.5 together to demonstrate in detail how we combine the analysis channels to extract

an EDM value for each block. These values are hidden from us until the analysis is

completed. In section 3.7 I explain that we do this so we do not unintentionally bias

the measured results. Finally sections 3.8–3.9 explain how we average all the individual

block values together and calculate an average value for the electron EDM.

3.1 Switch Channels and Waveforms

In the previous chapter I often stated that, during the data acquisition sequence, various

experimental parameters are modulated (or switched) on a shot–shot basis according to

predefined switch sequences. First and foremost we do this as a means of phase-sensitive

detection — it allows us to measure the small signal changes which corresponds to each

particular parameter modulation in the presence of many sources of noise. However, the

65
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benefits of this technique are more far reaching than this alone: At the end of a block it

provides us with error signals which we use to servo parameters to their optimum values;

It lets us understand how the machine behaves when parameters are not set perfectly,

and enables an EDM measurement to be calculated even when they are not; Finally it

provides us with a simple method to search for systematic errors by allowing correlation

analysis to be performed between any number of switch channels.

Our parameter switching technique is very similar to that published in [86]. This technique

allows us to analyse detector signals that depend upon several experimental parameters.

In essence our technique is just a generalisation of phase sensitive detection to the

concurrent modulation of many experimental parameters. During the acquisition of a

data block each experimental parameter is modulated according to a unique ‘waveform’.

A waveform which is just a list of +1s and -1s which define the state of a parameter

for each shot in the block; it precisely defines the frequencies according to which the

parameter is switched (or modulated). Crucially the waveforms all contain equal numbers

of +1s and -1s (they are balanced), and are orthogonal. This means we may extract a

detector signal change that is unique to each switch waveform.

For K switched experimental parameters there are 2K unique experiment states. We

therefore require waveforms of length m 2K , where m is an integer ≥ 1. We generate these

waveforms through element-wise multiplication of simple basis waveforms. The basis

waveforms are taken from a set of waveforms which describe regular square waves of period

2k, where k is an integer in the range 1 ≤ k ≤ K. By combining these waveforms we

generate complex waveforms that contain frequency components at the fundamental and

harmonic1 frequencies of all the constituent basis waveforms. This does not generate all

possible waveforms that are balanced and orthogonal [87], but the number of waveforms

that this procedure can generate far exceeds the requirements that are described below.

This way of generating waveforms also enables them to be precisely specified with a

simple, K-bit ‘wavecode’, which makes recording and comparing waveforms much more

straightforward. For the basis waveforms, the wavecodes are simply their period (2k)

written in binary notation. The wavecodes of the more complex waveforms are the

bitwise OR of the basis component wavecodes.

During data analysis we use the waveforms to extract the signal correlated with each

experimental parameter. We denote a ‘channel’, {X}, as the signal change that

corresponds to the change in parameter or parameter combination (see below), X. This

parameter/parameter combination is associated with the waveform WX . We evaluate the

1The basis waveforms are square not sinusoidal, so each contains many harmonics at integer multiples
of the fundamental frequency.
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value of {X} for each block by applying the formula:

{X}d =
1

m 2K

m 2K∑

i=1

WX(i) Sd(i), (3.1)

where Sd(i) is the signal recorded by detector d on the ith shot of the block, and WX(i)

is the ith element of the waveform WX . In essence equation 3.1 calculates the difference

in signal between two switch states of X, and averages over the states of all other

experimental parameters. A list of detectors to which this equation applies is provided

in the first column of table 3.1. For simplicity we often drop the detector subscript. If

absent, it should be assumed that the channel is as applied to the normalised probe PMT

signal.

Table 3.1: The various detectors which may be analysed using equation 3.1.

Data Source Start Time (µs) Resolution (µs) Sample Points

probe PMT 1800 10 80
pump PMT 400 10 40

Bartington magnetometer 400 200 11
9 V battery 1800 10 80

50 Ω terminator 400 200 11
fluxgate magnetometers ∼2600 – 1
leakage monitors (x2) ∼2600 – 1
laser photodiodes (x2) ∼2600 – 1
phase lock frequency ∼2600 – 1

phase lock error ∼2600 – 1

Modulating multiple switch channels concurrently, as we do, gives a significant benefit

as it allows correlation analysis to be performed. During data acquisition each waveform

specifies the shot–shot modulation of only one experimental parameter. However, the

waveform WX in equation 3.1 need not correspond to the modulation of only one

parameter. It can be formed from any combination of the waveforms that were used

to modulate the experimental parameters over the course of a block. We generate

the combined waveforms via element-wise multiplication of the component waveforms.

Consider, for example, two arbitrary experimental parameters: Y and Z, that are

respectively modulated with the waveforms WY and WZ during data acquisition. We

can substitute WX(i), in equation 3.1, with (WY · WZ)(i) to extract the channel {Y · Z}.

This channel compares the signal when Y and Z are in the same switch state to that when

they are in opposing switch states. It is important to note, however, that the channel

{Y }{Z} is completely different to {Y · Z}. We typically refer to compound channels as

“X dot Y”.

Analysing the data with correlated waveforms is how we extract an EDM measurement.

Let us consider this important example to make the above abstract mathematics more
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W100

W010

W001

W100·W010 = W110

W
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W
B

WδB

W
EDM

1 2 3 4 5 6 7 8

Figure 3.1: The 8 bit switch sequences that make up the simplest EDM measurement.
These switch states are illustrated by the points (A,B,C,D,A’,B’,C’,D’) in figure 2.3.

transparent. As stated in the last chapter, currently a block constitutes 4096 individual

shots which affords the possibility of K = 12 parameter modulations
(
212 = 4096

)
. The

most crude measurement of the EDM, however, requires only three modulations: the

electric field reversal (WE), the magnetic field reversal (WB), and the calibration magnetic

field step (WδB). This requires a block length of (at least) 23 = 8 shots. The basis

waveforms of a block of this length are W100, W010, W001, which are illustrated in figure

3.1. We could assign each of WE , WB, WδB to any combination of these waveforms (so

long as the combinations differ), such as W011 = W010 · W001, and for the noise response

arguments described below it would actually be beneficial to do this, but to keep this

demonstration simple let us assign WE = W100, WB = W010 and WδB = W001.

By itself, the channel {B}, calculated from the waveform WB, measures the average

interferometer phase, as demonstrated in figure 3.2. We aim to measure the change

in phase associated with reversing the electric field, δφE . So the EDM signal is

extracted with the waveform WEDM = WE · WB which, in the case described above, is

W100 · W010 = W110. As shown in figure 3.1, this waveform subtracts the signals recorded

when E and B are opposed from the signals recorded when they are aligned.

The parameter switching technique allows us to extract a small signal change in the

presence of many sources of noise. It has previously been observed [73] that the EDM

experiment suffers from two clear noise components: a 1/f component, mainly from stray

magnetic fields; and a white noise component which dominates above ≈ 4 Hz. There are

also small noise peaks which appear at 5.5 Hz, 10.75 Hz and 11.75 Hz [73]. In reference

[86] Harrison et al decompose noise into two forms: ‘statistically stationary noise’ —

noise whose features are time independent; and drift — signal changes that have no

clear frequency, which are slow in comparison to the block time period (roughly six

minutes). In the first case our switching technique is most effective when experimental

parameters are switched as frequently as possible, to avoid 1/f dominated noise. It is

also advantageous to avoid frequencies which coincide with peaks in the noise spectrum.
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Figure 3.2: The channel {B} that is associated with the modulation of the applied
magnetic field direction measures the average interferometer phase. In (a) there is no
ambient magnetic field so the interference fringes are centred and {B} = 0. In (b) an

ambient magnetic field shifts the fringe pattern and {B} 6= 0.

Drifts are eliminated by adding many component waveforms into the analysis waveform.

In fact with every extra frequency component added, we eliminate one extra derivative

in the signal drift Taylor expansion [86]. In particular, we require an analysis waveform

composed from at least two frequencies to eliminate a linear change in signal.

Table 3.2: Applied experimental parameter modulations.

Experimental Parameter Modulation Step Size

electric field direction WE –
magnetic field direction WB –

magnetic field calibration step WδB ±1.7 nT
laser frequency WLF1 ±340 kHz

rf pulse frequency WRFiF ±1.6 kHz
rf pulse amplitude WRFiA ±0.25 dB

rf phase offset Wπ ±π/2 rads

At the beginning of every block BlockHead generates a set of waveforms for the nine

experimental parameters2 listed in table 3.2, according to the conditions specified in

the paragraph above. With the exception of WE and WLF1, the program generates

these waveforms randomly to prevent specific noise frequencies from leaking into our

experiment. It also checks and ensures that each of the 29 = 512 possible analysis

waveforms are unique. Furthermore, the waveform generator inverts a random selection of

the nine parameter waveforms (including WE and WLF1) to average out systematics due

to repeatable backgrounds that are the same each block. Unfortunately we cannot reverse

the electric field rapidly as this would generate large currents which would magnetise the

inner shield. We must impose 14 s of dead time during an E reversal in order to give

charging/discharging currents time to settle. It is therefore impractical to frequently

reverse the electric field, so we constrain WE to be relatively slow with the wavecode

2There are two rf pulses!
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111100000000, which reverses the field roughly every 20 s, with 10 switches per block.

The magnetic field can, however, switch rapidly, with a settling time that is much faster

than the 40 ms shot–shot interval. By switching the magnetic field rapidly, we ensure that

the EDM waveform, WE·B, satisfies the required conditions. The dye laser also cannot

be modulated rapidly else the the pump and probe beams become frequency unstable.

We therefore assign WLF1 the wavecode 000111111000.

Note that with only nine switch parameters, the machine visits each unique parameter

state m = 212/29 = 4096/512 = 8 times within each block. This replication allows more

parameter modulations to be incorporated into the block as the experiment developments

over time. It also allows a rough estimate of error/uncertainty to be calculated for each

channel at the end of every block. This is particularly useful for checking the experiment

is running properly with no anomalously noisy channels.

When setting the amplitudes of the parameter modulations listed in table 3.2, we

empirically chose values that would not perturb the experiment far from ideal conditions,

yet would be large enough to be seen over experimental noise within a reasonable time

frame. We also chose to keep parameter modulations small so that we may use a second

order Taylor expansion (see appendix A) to easily convert the analysis channel values into

more useful physical units. Our analysis assumes that the probe PMT signal is linear

in phase, so the calibration magnetic field step, ±φδB, must not be too large. We set

±φδB = ±π/32 which is 1/8 th of the larger magnetic field step. We set the laser and rf

frequency modulations δνLF1 and δν
(i)
rf to be 2% and 3% of the respective optical and rf

transition linewidths. We also set the rf amplitude step, δa
(i)
rf , to be 5% of the π-pulse

power requirement.

3.2 Non-linear Channels

As explained in section 2.3.9, we record the temporal variation of many detectors over the

course of each shot, as the molecules fly the length of the beam machine. We therefore

need to modify equation 3.1 to account for a possible temporal variation in the analysis

channels:

{X}d(t) =
1

m 2K

m 2K∑

i=1

WX(i) Sd(i, t). (3.2)

Now Sd(i, t) is the signal from detector d, at time time t after ablation, on the ith shot of

the block. Table 3.1 lists the start time, the resolution, and the number of samples of each

detector. We most often apply equation 3.2 to the normalised probe PMT signal which is

calculated as SPMT (i, t) = S(i, t)/N (i), where S(i, t) is time and shot dependent probe

PMT signal, and N (i) is the integrated pump PMT signal for the ith shot. We normalise
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Figure 3.3: An illustrative example of equation 3.4. The shaded regions indicate a
typical integration gate. Integrating channels (a) {X}(t) and (b) {Y }(t) separately
returns the product 〈{X}〉 〈{Y }〉 = 0 which is incorrect. The two channels must be
multiplied before integrating, as illustrated in (c). The integration of the TOF profile

for {X}(t){Y }(t) returns a non-zero value in this case.

the probe PMT signal to correct for shot–shot variations of the molecular flux. Note that

we do not retain time dependence in the pump PMT signal as this solely measures the

number of molecules produced per shot.

We check the temporal variation of all the important analysis channels for each detector.

Many channels do exhibit a significant variation when calculated using the normalised

probe PMT signal. This is because no field is perfectly homogeneous and the faster

molecules inevitably integrate slightly different electric, magnetic and rf fields to the

slower molecules. For many channels such as the rf frequency modulation channel,

{RFiF}, this is not a major concern so long as the variation is not too large. But

for other channels, such as the electric field switch channel, {E}, any variation over the

TOF profile would indicate a significant problem. If nothing untoward is observed in any

detector we calculate a single average value for each channel by integrating over a some

chosen time interval, or ‘gate’:

〈{X}〉 =

∫ tf

ti

{X}(t)dt. (3.3)

We are often interested in calculating the product or ratio of two or more analysis channels

of the normalised probe PMT. As stated, many of these channels do vary significantly

across the TOF profile, often crossing zero at the centre of the profile, as illustrated

in figures 3.3(a) and 3.3(b). If we blindly multiply and divide the integrated channels

calculated using equation 3.3 we are likely to make a mistake, this is because

∫ {X}(t) {Y }(t)dt

{Z}(t)
6=
∫

{X}(t)dt
∫

{Y }(t)dt∫
{Z}(t)dt

, (3.4)

as demonstrated in figure 3.3. For this reason, when calculating the product or ratios

of channels, we always perform the integration last, i.e. we calculate 〈{X}{Y }/{Z}〉 as

opposed to 〈{X}〉 〈{Y }〉 / 〈{Z}〉.
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In the following analysis I will almost always refer to integrated channels so for simplicity

from here onwards I will drop the angle bracket notation. It should be assumed that

the various channel combinations are integrated over a time window, as detailed above.

Details regarding the range of the interval ti → tf will be given when it is important.

3.3 Important Channels

There are a number of analysis channels which provide an insight into the state of the

experiment during each block. Not only do we use their values during the analysis

process, but we also monitor a number of them in real time to diagnose the experiment

and optimise hardware settings in between each block. The physical meanings of the

most important analysis channels are summarised in table 3.3. Unless otherwise stated, it

should be assumed that the descriptions refer to the application of each analysis waveform

to the normalised probe PMT signal. This is an important point as each detector responds

differently to changes in each experiment parameter, so the meaning of an analysis channel

changes accordingly. As an example, the probe PMT signal varies sinusoidally with

magnetic field, whereas the magnetometer signal varies linearly. An E-switch correlated

magnetic field would therefore be associated with WE·B in the probe PMT and WE in

the magnetometer.

Table 3.3: The physical meaning of the most important analysis channels.

Channel Description

{SIG}
The average detector signal. This channel is associated with the

waveform that contains no switches.

{δB}

A measure of interference contrast. Specifically, it measures the gradient

∂S/∂φ. Recall that the δB switch (εδB) modulates the absolute size of

the applied magnetic field. This channel is, therefore, always positive

and should be linearly related to {SIG}. We use this channel almost

universally to calibrate all other analysis channels, as it is proportional

to the molecular signal and corresponds to a well known step in

interferometer phase.

{X · δB}
A measure of the change in interference contrast that correlates to a

change in parameter X.

Continued on the next page...



Analysing Detector Signals 73

Table 3.3 – continued from previous page

Channel Description

{E}

The change in signal when the electric field is reversed. Ideally no

detector should report a statistically significant value for this channel.

If either of the PMTs or the Bartington magnetometer do return a non-

zero value then something is significantly wrong with the electric field.

It is inevitable that the Stefan Mayer fluxgate magnetometer positioned

close to HV relays will always detect the electric field reversals. This is

not a problem so long as none of the other magnetometers, closer to the

beam machine, also detect the E-switch correlated magnetic field.

{B}

A measure of the average interferometer phase, as demonstrated in figure

3.2. On its own this channel measures the z component of uncancelled

stray magnetic fields. This channel is zero when the interferometer steps

equally either side of the central interference fringe.

{X · B}
The correlation between interferometer phase and a change in parameter

X. The most important example of this is {E · B}, which measures the

change in phase correlated to an electric field reversal, which is an EDM!

{RFiF}
{RFiA}

These channels correspond to the rf frequency and amplitude

modulations. A Taylor expansion of equations 2.19a and 2.19b reveals

that the probe PMT signal is quadratic for small deviations of both rf

parameters about their ideal values (see appendix A). These channels,

therefore, respond linearly to small detunings, and are zero when each

pulse is perfectly tuned to the π-pulse condition. Note the letter ‘F’

stands for frequency and ‘A’ for amplitude. As always, the index i

labels each rf pulse.

{RFiF · E}
The change in rf detuning when the electric field is reversed. If non-zero,

this channel indicates that the magnitude of the electric field changes

upon reversal.

{π} A measure of the size of the Ramsey component. This should be zero.

Continued on the next page...
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Table 3.3 – continued from previous page

Channel Description

{LF1 · δB}

The change in interference contrast when the laser frequency is stepped.

This channel measures the detuning of the probe laser from the

Q(0)(F = 0) transition. The channel is zero when the probe laser is

on resonance. {LF1 · δB} provides a better measure of laser detuning

than {LF1}, as {LF1} is zero when the probe laser is tuned to a peak

in the optical spectrum. The frequency of this peak does not necessarily

correspond to Q(0)(F = 0) as there may be underlying spectral lines.

However, interference contrast is maximised when the probe laser is

tuned to F = 0.

3.4 Lock Channels

In between each block we servo hardware settings in order to optimise experimental

sensitivity. We do this to account for slow drifts and imperfect initial settings. We

wish to maximise interference contrast as EDM uncertainty is proportional to 1/{δB}.

In general we calculate the required adjustment of parameter X by using the channel

ratio {X · δB}/{δB} since this measures the change in interference fringe contrast when

X is stepped. {X · δB} is therefore zero when interference contrast is maximised (the

denominator, {δB}, is essentially a constant that never changes sign). The EDMLoop

script implements an integral type lock, adjusting experimental hardware by an amount

∆X =





+∆Xmax if G {X·δB}
{δB} > ∆Xmax,

+G {X·δB}
{δB} if ∆Xmax < G {X·δB}

{δB} < ∆Xmax,

−∆Xmax if G {X·δB}
{δB} < −∆Xmax,

(3.5)

where ∆Xmax is the maximum permissible change in parameter X between blocks, and

G is an empirically chosen gain value. Table 3.4 lists the lock channel ratios used during

normal running. The values listed for G and ∆Xmax have little meaning outside the lab.

They are quoted only for future reference. Figure 3.4 demonstrates an example of one

particular parameter locking in over approximately 10 blocks.

We monitor the values of {δB}/{SIG} and {δB} whilst the experiment is running.

Typically {δB}/{SIG} should lie in the range 0.11-0.13. A low {δB}/{SIG} value in
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the range ∼ 0.08 − 0.09 is indicative of poor laser beam alignment. If {δB}/{SIG}
suddenly drops below 0.07, this most often implies that the dye laser has unlocked.

Table 3.4: The channels used to optimise experimental hardware settings.

Parameter
Lock

Channel
Gain (V)

Max.

Change

(V)

Comments

Laser

frequency

{LF1·δB}
{δB} -1.25 0.1

Corrects any Doppler shifts

which occur when tweaking

laser beam alignment.

rf frequency {RFiF ·δB}
{δB} -2 0.1

Corrects for drifts in

synthesizer output and

electric field amplitude.

rf

amplitude

{RFiF ·δB}
{δB} -0.73 0.1

Corrects for drifts in

synthesizer output and

amplifier gain.

magnetic

field

current

bias Ibias

M̂B
{B}
{δB} -0.0125 0.05

Corrects for the slow day-to-

day changes in the ambient

magnetic field. It ensures

PMT signal remains linear in

phase.
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Figure 3.4: Demonstration of parameter locking. The cluster began with an offset in
the frequency of the second rf pulse. Error bars indicate variation within each block.

This data was taken from the cluster labelled “02Dec1001”.
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3.5 Manual Reversals

Approximately once a day we manually reverse at least one of the connections between:

the electric field plates and the HV relays; the magnetic field coils and the current supply;

the rf transmission line and the rf amplifier. These reversals provide us with a valuable

tool to test the origin of non-zero analysis channels.

The electric and magnetic field manual reversals change assignment of field direction

to waveform switch state. These reversals allow us to determine whether the channels

derived from WE and WB result from the influence of fields produced inside the machine,

or whether they are the result of some effect associated with the switching hardware. A

real EDM, for example, will generate a signal in {E · B} that will change sign when the

connections to either (but not both) the electric field plates or magnetic field coil are

manually reversed. A non-zero {E · B} would also result if the HV supplies generated

a magnetic field that depended upon the state of the HV relays, for example. However,

this EDM masquerading signal would not change sign following an electric field manual

reversal, as reversing the connections to the HV plates would have no effect on the E-

switch correlated magnetic field. We label the ‘manual state’ of the electric and magnetic

field connections with the boolean values: ME and MB. When both are true the electric

and magnetic fields are aligned along +ẑ, when each are in their waveform switch state −1.

In manual state false, these orientations are reversed. Most often we would like to cancel

the systematic effects due to the field switching hardware3 and measure the influence

of the electric and magnetic fields generated inside the beam machine. Therefore, when

averaging channels that involve WE or WB over a set of blocks, we usually sign each

channel value according to the state of ME and MB (+1 for ‘true’ and -1 for ‘false’) and

average over all manual states.

The rf manual reversal changes the direction of the rf propagation. We label the manual

state of the rf connections with MRF . When MRF is ‘true’ the rf field propagates up the

transmission line, and when MRF is ‘false’ the rf propagates down the transmission line.

Note that changing the rf manual state does not affect any parameter modulations. So,

we only sign the channel values for a collection of blocks by MRF when we would like to

measure the average change in a channel value between the two rf manual states.

3Note that manual reversals do not eliminate the systematic effects generated inside the beam machine
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3.6 EDM Calculation and the Lineshape Correction

Ultimately we must express a value for the EDM in physical units. As was discussed in

section 2.1.1, we take measurements on the interference curve at φ = ±π/4, where the

interferometer is most sensitive to phase changes. Here a small step in phase, δφ, will

cause a linear change in the probe PMT signal, δS|±π/4 = (∂S/∂φ)|±π/4 δφ. We calibrate

the EDM signal change, δSEDM , by measuring the signal change, δSCAL, that results

from making a small, known step in phase, δφCAL, with the magnetic field, BδB. So

long as the ambient background field is perfectly cancelled within in the machine, and

providing that the interference contrast does not depend upon the switch state of the

applied electric field, then:

δφEDM
δφCAL

=
δSEDM
δSCAL

=
{E · B}
{δB} . (3.6)

However, if these conditions are not met then we require two other analysis channels,

namely {B} and {E · δB}, to correctly extract the EDM phase shift, δφEDM .

As demonstrated in [76], to derive an expression for the EDM phase shift that is robust

against experiment imperfections, we approximate the interference curve with a linear

model. We define a state dependent probe PMT signal, S, which is the product of an

amplitude term, A, and a phase term f(φ):

S(Ê, B̂, δ̂B, X̂) = Af(φ). (3.7)

The arguments (Ê, B̂, δ̂B, X̂) ∈ {+1, −1} represent the switch state of the applied electric

and magnetic fields, as well as the state of an arbitrary experimental parameter, X. X

may be any one of the other experimental parameters that are modulated over the course

of a block, for example the frequency of the first rf pulse.

We assume that the PMT signal is linearly dependent on a number of phases, as shown

in figure 3.5:

f(φ) = α
(
φbgB̂ + φEDM ÊB̂ + φXX̂B̂ − φδB δ̂B

)
+ β. (3.8)

φδB = g µB BδB T/~ = π/32 and φbg = g µB Bbg T/~ are the magnetic phases due to the

calibration field step BδB, and an uncancelled background field Bbg. φEDM = −de Eeff T/~
is the EDM phase, and φX is the phase induced4 by parameter X. Note that each

parameter modulation steps the phase by ±φ, so that the total change δφ = 2 φ. Note

also that change in signal depends upon which side of the central interference fringe is

4The origin of φX need not be well understood.
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Figure 3.5: A linear model for the phase dependent part of probe PMT signal, f(φ), as

expressed in equation 3.8. B̂ and Ê denote the states of the E and B fields, δ̂B denotes
the state of the calibration step. φbg is the phase due to an uncancelled background
magnetic field, φδB is the phase due to the calibration field step and φEDM is the EDM
phase. β is average probe PMT signal. The dependency of f(φ) on arbitrary switch

parameter X is exactly analogous to Ê.

being sampled. φδB is the exception to this rule, as WδB modulates the absolute size of

the applied magnetic field. α = (∂S/dφ)|+π/4 = −(∂S/dφ)|−π/4 < 0, and β represents

the average signal.

We allow the amplitude of the interference curve, A, to change by an amount 2 ΛQ for

each switch parameter combination Q, with the exception of the (small) δB step.

A = 1 + ΛEÊ + ΛBB̂ + ΛXX̂ + ΛE·BÊB̂ + ΛE·XÊX̂ + ΛB·XB̂X̂ + ΛE·B·XÊB̂X̂. (3.9)

By comparing the signal when Ê and B̂ are in the same switch state to the signal when

Ê and B̂ are in opposite states, and averaging over all other parameter switch states, we

find that

{E · B} = β ΛE·B + α(φEDM + φback ΛE + φX ΛE·X). (3.10)

The all-important {E ·B} channel is now not only dependent on the EDM phase, but also

a number of other phases and undesirable contrast modulations. Fortunately, however,

we can an derive an exact expression for the EDM phase. By multiplying equation 3.8

with equation 3.9, and collecting terms that multiply φEDM , it can be shown [76] that:

φEDM
φδB

=
−1

C6
(C1 + C2 + C3 − β (C4 + C5)) (3.11)
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where

C1 = {E · B}
(
{δB}2 − {X · δB}2

)
, (3.12a)

C2 = {E · δB} ({X · δB}{X · B} − {B}{δB}) , (3.12b)

C3 = {E · X · δB} ({B}{X · δB} − {δB}{X · B}) , (3.12c)

C4 = {δB}{E · B · δB} − {B · δB}{E · δB} − {X · B · δB}{E · X · δB } (3.12d)

C5 =
{X · δB}

{δB}
(
{E · δB}{X · B · δB}

− {X · δB}{E · B · δB} + {B · δB}{E · X · δB}
)
, (3.12e)

C6 = {δB}3 + 2{X · δB}{E · δB}{E · X · δB}
− {δB}

(
{X · δB}2 + {E · δB}2 + {E · X · δB}2

)
. (3.12f)

We call any term beyond {E · B}/{δB} a ‘lineshape correction’. In practice most of the

terms above are negligible. In fact {B}{E · δB}/{δB}2 is the only term which is actually

significant, so we approximate equation 3.11 with the equation:

φEDM
φδB

=

({E · B}
{δB} − {B}{E · δB}

{δB}2

)
. (3.13)

The correction in equation 3.13 neglects terms of O
(
Λ2
)

as well as the correlated amplitude

modulations ΛE·B and ΛE·X , which are negligible anyhow. As f(φ) was defined to be

linear we neglected all higher order terms in φ. However, for our published result [75],

we found that the {B}{E · δB}/{δB}2 term was four times smaller than the statistical

uncertainty in {E · B}/{δB}. This means that any further correction terms that would

result from a non-linear model for f(φ) would be completely negligible.

We calculate a value for de by averaging equation 3.13 over many blocks. We aim to

take equal numbers of blocks in each of the eight possible manual reversal states. Recall

that the electric and magnetic field manual reversals change the assignment between

field direction and waveform switch state. So these reversals flip the sign of the channels

containing E and B. As both terms in equation 3.13 contain E and B, we must therefore

sign each according to the manual states ME and MB so that the channel values do not

cancel when averaged over an entire dataset. To calculate an EDM value we apply the

equation

de = M̂B M̂E
g µBBδB

Eeff

φEDM
φδB

(3.14)

to the channel values for each block. We define the coefficients (M̂E , M̂B) ∈ {1, −1} to

be positive when their corresponding manual state ME/MB is labelled as true.

During the acquisition and analysis of EDM data we temporarily add an unknown,

constant offset to each value of de in order to blind ourselves from the measured values.
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We do this so that we cannot unintentionally influence the final result. Only after a full

dataset has been acquired and all systematic tests have been completed do we remove the

offset and reveal a final value for de. This will be discussed further in the next section.

Before we continue, it is worth noting that equation 3.11 was derived for a phase that

depended upon the applied electric field, E, which we call an EDM. In order to calculate

the phase that results from some other experimental parameter Y , we simply substitute

E with Y in the equations 3.11–3.13.

3.7 Blind Analysis

Scientists have long known that their preconceived notions as to the outcome of an

experiment can unintentionally influence the final result. The many subtle ways in which

this bias may occur is discussed in references [88] and [89]. The general idea is that if we

are fully aware of our measurements during the data acquisition and analysis processes, we

might modify our experimental technique to amplify or suppress any number of effects. If,

for example, a dataset is filtered, or cut, with full knowledge of what events/measurements

are included or not, the experimenter’s choice may suppress a signal, or add significance

to one which may only be a statistical fluctuation. A bias might also occur when applying

corrections for systematic errors. Without realising we might find only corrections which

would shift the measured value in the desired direction. Furthermore, it is an easy

mistake to stop searching for sources of systematic error only when the value measured

agrees with our preconceptions. If agreement or disagreement is used as justification for

completion of experimentation, it is possible that a number of experimental problems

could go unnoticed. Therefore we must prevent against a potential experimenter bias by

performing our analysis blind to the final result. However, we must not be blind to how

changes in experimental parameters and the data analysis affect the final result, if we are

to quantify potential systematic uncertainties.

Blind analysis is now routine for most nuclear, particle and precision measurement

experiments (see references in [88]). There are several approaches to blind analysis.

We use a ‘hidden offset’ blind, that does not affect parameter fitting or any applied

corrections. We never directly look at the integrated {E ·B} channel, and to all calculated

EDM values the analysis software adds an unknown constant that was randomly chosen

from a Gaussian probability distribution centred on zero, with a standard deviation of

5 × 10−27 e cm.

As discussed in the next section, we collect many thousands of blocks in order to precisely

calculate an average value and uncertainty for de. Only after all the data has been
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collected, and we are satisfied that all possible sources of systematic error have been

thoroughly investigated do we reveal the blind offset. Once the blind is removed, no

further data analysis is permitted.

3.8 Trimmed Mean and Statistical Uncertainty Calculations
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Figure 3.6: The distribution of 6194 de values that make up the 2011 dataset. For the
most part, the distribution is fit well by a Gaussian distribution (red line) with a standard
deviation given by the 68.3% statistical uncertainty of the bootstrapped trimmed mean
multiplied by

√
6194. The distribution does, however, deviate from the Gaussian fit out

in the wings, as demonstrated by the quantile-quantile plot on the right.

Before calculating an average EDM value, we check the distribution of de values measured

by each block. Figure 3.6(a) plots the distribution of the 6194 de values that make up the

2011 published dataset. In general the distribution is fit well by a Gaussian distribution.

However, the distribution does deviate from the Gaussian model in the wings of the

distribution. Figure 3.6(b) shows a quantile-quantile plot5 that compares the measured

EDM distribution to a normal distribution. The departures from the y = x line (the

solid straight red line) show that there are a number of outliers which do not fit the

Gaussian model. The distribution has long wings which might be fitted better by a

mixture distribution formed by adding a small Gaussian component to the predominant

Gaussian model, which is centred on the same mean but has a much larger standard

deviation. Interestingly the rough error bars of these outliers, as calculated from the

variance of {E · B} within each block6, are of a similar size to the error bars of those

points which fit the Gaussian model. This would indicate that there is nothing untoward

5Quantiles are regular points taken from a cumulative distribution function of a random variable.
6Recall that each unique machine switch state is visited eight times within each block, as there are

nine modulated experimental parameters that are each modulated between two states over the course of
4096 shots.
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about these outliers7. One possible explanation is that the noise observed within each

block is different to the noise observed across the whole dataset. This agrees with previous

observations that a significant 1/f component is present in the noise spectrum of stray

magnetic fields around the lab [73].

A common technique to estimate the centre of a distribution is to calculate the sample

mean and apply the central limit theorem (CLT) to calculate an uncertainty on the mean

from the variance of the dataset. Unfortunately outliers present a few problems to this

approach: the first is that a single outlying measurement can shift the sample mean by an

arbitrarily large amount; the second is that the sample variance is particularly sensitive to

outliers, even a small departure from normality can grossly inflate error bar calculations8

[90]; the third problem, which is related to the second, stems from the assumption that

the distribution of means is Gaussian. This approximation is only satisfied in the limit of

large N . Long tails in the sample distribution will slow the convergence of the distribution

of means to a Gaussian.

We can combat the first problem by using an estimator which is more robust to outliers

than the mean. One option would be to use the sample median. However, this

does not make the most efficient use of the data, in fact we would need at least 50%

more measurements to achieve similar uncertainty [91]. We compromise efficiency with

robustness by calculating the trimmed mean, in which the sample mean is calculated on a

truncated dataset, where a small fraction of values is removed from the either end of the

sample distribution. Because the deviation from normality is relatively small, we find that

5% is sufficient for calculated mean values to converge. The second and third problems

are solved by avoiding the CLT all together. We apply the non-parametric bootstrap

method, as was developed by Efron [92], which substitutes complex theoretical analysis

with a considerable amount of numerical computation9. The fundamental principle is

that our sample dataset provides us with the best estimate of the underlying parent

distribution; so we may use it as a surrogate distribution and calculate any statistic of

interest via a simple Monte Carlo simulation.

We implement the non-parametric bootstrap method as follows: (i) Take N samples

with replacement from the measured sample dataset, which contains N independent and

identically distributed random samples. (ii) Calculate the 5% trimmed mean of the

7Reasons for anomalous points may be due to the laser unlocking, electric field discharges, temporarily
blocked laser beams etc. However, these occurrences are normally obvious. Not only would they
dramatically inflate the rough error bar calculated for each block, but also other channels such as
{δB}/{SIG} applied to the probe PMT, and {E} applied the leakage monitors or magnetometer would
show as stark discontinuities.

8If we apply the CLT to the 2011 dataset, 4% more measurements would be required to calculate the
same size uncertainty as that published in [75].

9The amount of processing required nowadays is considered relatively small. We can run our bootstrap
analysis on the whole dataset in under 30 s.
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replicate dataset. (iii) Repeat steps (i) and (ii) a large number of times to generate

a probability distribution for this statistic. We find that 5000 repeats is sufficient for

our calculations of the centre value and uncertainty to converge. From the distribution

of bootstrapped trimmed means we generate a cumulative distribution function. As the

generated cumulative distribution is very nearly symmetric, we calculate an average value

and statistical uncertainty for the EDM according to:

d̄e ± σstat =
de(0.5 − p/2) + de(0.5 + p/2)

2
± de(0.5 + p/2) − de(0.5 − p/2)

2
, (3.15)

where de(x) is the value of de at percentile x, and p is the size of the confidence interval.

Typical values of p are 0.683, 0.90, 0.958 and 0.995, which correspond to the 1–4 σ

deviations of a Gaussian distribution. Note that this method does not depend directly

on the sample variance which is inflated by outlying values.

3.9 Non-zero Channel Finder

Before removing the blind we also inspect all the analysis channels in each of the detectors

to check for unexpected values. With 9 parameter modulations, including {SIG}, there

are 29 = 512 possible analysis channels. We use a Mathematica notebook called ‘Non-

zero channel finder.nb’ to list the bootstrapped trimmed mean with its associated error

for each channel, on each detector, for each manual state. This notebook also combines

the channel averages together, signing the values according to the 8 possible manual state

combinations, to test for the influence of external systematic effects. The program ranks

the channels in order of statistical significance. We typically choose 3 σ as the criterion

for significance. Note that a non-zero value is not necessarily a bad thing. You would,

for example, expect the unsigned averages of {SIG} and {δB} to be non-zero.

In the next chapter this analysis method is applied to the 2011 dataset. The final result

is broken down by source of error and I demonstrate how each error is accounted for in

the final uncertainty calculation.



Chapter 4

The 2011 Dataset

When I joined the team working on the EDM experiment at the end of the 2009, it was

known that the experiment suffered from a major systematic error — namely a variation

of de across the TOF profile. Overcoming this error formed a large part of my work

during the first year of my PhD. Like many subtle processes, this effect would only show

itself after a week’s worth of data acquisition. What was particularly frustrating was

that it didn’t seem to be dependent on any experimental parameter. We would detune

one parameter, take data for a week, then see if the result was statistically different from

the previous week. Eventually we tracked down this effect to be linked to a voltage

offset on the HV plates, which created a correlation between de and {RF1F} (see section

4.3.2). I tell this anecdote to highlight the fact that measuring the EDM is a rather slow

process — not only must we run the machine continually for three months to get enough

data to set a world-leading limit, we must also check that our result is not dependent

on any systematic influences. In fact we spent approximately four times as much time

investigating systematic effects as we did taking ‘normal’ EDM data. To check for a

dependence we cycle through all our experimental parameters, detuning each in turn

from its ideal setting, then take data until we can be sure of the absence (or presence)

of an effect. It is worth emphasising again that our approach to measuring the EDM

is highly empirical. When we observe an effect we must remain pragmatic: How does

it affect the result? Can we correct for it using some combination of analysis channels?

What is the worst case scenario and what systematic uncertainty must we associate with

this effect? If we tried to develop an in depth physical model for every effect, simulating

and measuring the intricacies of each, we would never make any progress.

By September 2010 we felt that all effects were sufficiently under control that we could

begin taking data which would directly contribute to a publishable result. In early

2011 we removed the blind and published our result [75]. In this chapter I present a

84
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thorough analysis of the 2011 result, addressing each systematic in turn before revealing

the final value. I do this partly for dramatic effect, but also to illustrate our process of

blind analysis. Many of the details presented in this chapter were recently published in

reference [76].

We calculate an average value for de from 6194 blocks that were taken under normal

running conditions. As described in section 4.2, we make two ‘empirical corrections’ to

reduce the impact of magnetic field noise and correct for an unexplained, yet well defined

phase that depends upon the frequency of each rf pulse. These corrections are applied

to each individual de value so affect the statistical uncertainty of our measurement. We

account for the possibility of residual effects and other systematic dependencies with a

second systematic uncertainty value. This systematic uncertainty is calculated from a

series of supplementary tests that were performed with experimental parameters detuned

from their ideal settings. The details of each experiment, and the uncertainties assigned

to each potential source of systematic error are discussed, in turn, in section 4.3.

4.1 Defining the PMT Gates

Before we can evaluate any analysis channel, we must first define the interval over which

the PMT signals are integrated. For the probe PMT signal we choose a 130 µs wide

gate centred 2198 µs after the initial YAG laser Q-switch trigger. This gate is illustrated

by the shaded region in figure 2.11. We define the pump PMT gate to be a constant

fraction of the probe PMT gate times. We set this fraction to the ratio of the pump and

probe laser distances from the molecular source (= 3.842). This ensures that both PMTs

sample the same molecules. As will be discussed later in section 4.6, these gate times

maximise the EDM sensitivity. But to fully understand the uncertainty calculation we

must first consider the corrections and systematic errors that affect the final result.

4.2 Empirical Corrections

As stated, we make two empirical corrections to account for E-switch correlated magnetic

fields, and an unexplained, yet well defined phase correlated with frequency modulation

of each rf pulse. These corrections are described in the following two sections.



2011 Dataset 86

4.2.1 Ambient Magnetic Field Correction

Stray magnetic fields that change when the electric field direction is reversed are a major

concern, as both the EDM interaction and the Zeeman effect perturb the F = 1 manifold

in exactly the same way. While random magnetic field fluctuations add noise to our

measurement, a systematic correlation between the stray field and the E switch will

systematically shift our value for de.

We can split E-switch correlated stray magnetic fields into two components: a component

that is changed by a manual reversal of the HV connections, and a component that is

not. The component that does not change can be isolated by averaging {E}mag over

both electric field manual states1. The component that does change with the manual

reversal is isolated by signing the values of {E}mag according to the manual state (i.e.

by M̂E) and then averaging. The detector label ‘mag’, may refer to any one of the four

magnetometers positioned about the lab.

Only the fluxgate magnetometer placed next to the high voltage relays measures a non-

zero magnetic field in {E}. The 5 m separation between the relays and beam machine,

and the magnetic shielding together attenuate this magnetic field considerably. The

Bartington magnetometer, placed in between the two layers of magnetic shields, measures

the average value of M̂E{E}Bart to be (−0.6 ± 3.0) pT and the average value of {E}Bart

to be (−2.3 ± 3.1) pT, which are both consistent with zero2.
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Figure 4.1: The observed correlation between de and E-switch correlated stray
magnetic field as measured by the Bartington magnetometer. The average shift due

to the stray magnetic field is consistent with zero.

1The magnetometers respond linearly to magnetic field (not sinusoidally), so we should consider
{E}mag not {E ·B}mag.

2As the Bartington magnetometer is positioned outside the inner shield you might worry whether
it can detect an E-switch correlated magnetic field generated inside the machine. This is a genuine
concern, but we argue that internally generated stray magnetic fields are most likely to result from shield
magnetisation or leakage currents. We specifically test for these sources (section 4.3.3) and assign each a
systematic error bar.
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Our measurement of de is particularly sensitive to stray magnetic fields that correlate

with E, and change when the electric field connections are manually reversed. While the

average value of M̂E{E}Bart is not statistically significant, we do observe a significant

correlation between de and M̂E{E}Bart, as illustrated in figure 4.1. This is not surprising

as both are sensitive to the component of the magnetic field noise that correlates with

the switching of the electric field direction. A linear fit to the data gives the gradient

(∂de/∂Bmag) = (4.51 ± 0.16) × 10−26 e cm/nT. However, we need to apply a correction

to this gradient as the error bars in the two variables are comparable. When this is the

case ordinary least squares regression underestimates the gradient by constant factor, λ,

known as the ‘reliability ratio’. In [93] Carroll states that the reliability ratio is given by

λ =
σ2
w − σ2

u

σ2
w

, (4.1)

where, in our case, σw is the standard deviation of the M̂E{E}Bart measurements, and

σu is the uncertainty on each individual M̂E{E}Bart value. For the data presented here

λ = 0.83. The straight line fit in the figure illustrates the observed correlation, accounting

for the factor λ.

We correct for the observed correlation by subtracting the value

dmag
e =

1

λ

(
∂de

∂Bmag

)
M̂E {E}Bart (4.2)

from de (equation 3.14), on a block-by-block basis. Overall, this correction reduces

the statistical uncertainty in de by 3.5%. The average size of the correction

is (−0.3 ± 1.7) × 10−28 e cm, which is much smaller than our EDM measurement

uncertainty. This is of course just a restatement of the average value for M̂E{E}Bart

as quoted above, but in units of EDM.

4.2.2 RF Detuning Phase Correction

The second correction that we apply is for an interferometer phase change that occurs

when the frequency of either rf pulse is stepped. This phase dependency is potentially

very dangerous when coupled with an imperfect electric field reversal, as is explained

below.

We calculate the phase change that results from the frequency step of each rf pulse in

exactly the same way that we extract the EDM phase change that results from reversing
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the electric field direction. Explicitly we apply the equation

δφ
(i)
rf = δφδB

({RFiF · B}
{δB} − {B}{RFiF · δB}

{δB}2

)
(4.3)

to the channel values for each block. As before, δφδB = 2π/32 is the phase change that

results from the calibration step with the magnetic field. From equation 4.3 we can

calculate the rate of change of phase with rf detuning, by dividing through by the size of

the rf frequency step, δν
(i)
rf ' 3 kHz:

∂φ

∂ν
(i)
rf

=
δφ

(i)
rf

δν
(i)
rf

. (4.4)

When equation 4.4 is applied to the main dataset we find that the average rate of

change of phase is different for each rf pulse, and depends upon the direction of rf

propagation along the transmission line. We measure the gradients: (316±8) nrad/Hz and

(−139±7) nrad/Hz for the first and second rf pulses respectively when the rf is travelling

up through the machine (Mrf = true); and (260 ± 8) nrad/Hz and (−42 ± 8) nrad/Hz

respectively when the rf is travelling downward (Mrf = false).

Unfortunately we cannot explain the causes of these phase gradients. We have run

numerical simulations which included imperfect settings for the rf amplitudes and

frequencies, and allowed for magnetic fields to be applied during the rf pulses [74].

We have also tried incorporating realistic changes to the rf frequency, amplitude and

polarisation, electric field and magnetic field as the molecules travel through the machine.

No model has been able to provide the answer, although we have not yet tried including

the oscillating rf electric field, nor the possibility that the optical pumping could set up

coherent state. While the rf frequency induced phase is not well understood, it is at least

well defined.

The rf detuning is intimately related to the magnitude of the electric field through the

(quadratic) Stark shift. We now consider a situation where the magnitude of the electric

field changes by an amount, δE, when its direction is reversed. The origin and size of

δE in the experiment will be discussed in section 4.3.1. Through the Stark shift, this

magnitude step will change the rf frequency by an amount

δνδE = δE

(
∂ν

∂E

)∣∣∣∣
E0

, (4.5)

and hence introduce a phase dependence on the electric field orientation. At our operating

electric field the Stark gradient (∂ν/∂E) |10 kV/cm = 285 Hz/(V/cm). This value was
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calculated from studies by Sauer, in which the Stark shift of the hyperfine levels in

YbF were measured to high precision [36] (see also figure 2.4).

The change in rf frequency correlated with the electric field reversal is directly measured

by the channel {E · RFiF}/{δB}. We assume this channel has the linear dependence:

{E · RFiF}
{δB} = ξi δE. (4.6)

As shown in figure 4.2, we calibrate the constants of proportion, ξi, with a separate

experiment where the magnitude of the electric field is intentionally stepped when

the electric field is reversed. For 18 µs rf pulses, δE = ±20 V/cm is more

than adequate to measure ξi. We find ξ1 = (−4.11 ± 0.04) × 10−3 (V/cm)−1 and

ξ2 = (−4.02 ± 0.06) × 10−3 (V/cm)−1, which are consistent with each other within error.
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Figure 4.2: Calibration the constants of proportion, ξi, between {RFiF · E}/{δB}
and electric field asymmetry, δE. The solid red line is for rf1 and the dashed blue line

for rf2.

Substituting equation 4.6 into 4.5 we write the following expression for the frequency

shift of each pulse:

δν
(i)
δE =

1

ξi

{E · RFiF}
{δB}

∂ν

∂E

∣∣∣∣
E0

. (4.7)

Now combining equations 4.7 and 4.4 with the definition δφ
(i)
δE = (∂φ/∂νrfif) δν

(i)
δE we thus

derive an expression for the change in phase between the two electric field switch states:

δφ
(i)
δE

δφδB
=

1

ξi δν
(i)
rf

{E · RFiF}
{δB}

({RFiF · B}
{δB} − {B}{RFiF · δB}

{δB}2

)
∂ν

∂E

∣∣∣∣
E0

. (4.8)

This is, of course, the signature of an EDM. To calculate the false EDM, and apply a

correction, we must account for the electric and magnetic field manual reversals as we did

in section 3.6. Recall that these manual reversals change the assignment between field

direction and waveform switch state. We must, therefore, sign all channels containing E

with M̂E , and channels containing B with M̂B, so that they do not cancel when averaged
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over the entire dataset. Explicitly, we calculate a false EDM for each rf pulse according

to:

drfif
e = M̂E M̂B

g µB BδB

Eeff

δφ
(i)
δE

δφδB
(4.9)

Like the magnetic field correction, this quantity is subtracted from de (equation 3.14) on

a block-by-block basis using the measured channels and the values for BδB, Eeff and δν
(i)
rf

as recorded for each block. When applied to the main dataset we find that, on average,

the rf1 correction is (5.0±0.9)×1028 e cm and the rf2 correction is (0.5±0.7)×1028 e cm.

Both are smaller the statistical uncertainty of our final result.
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Figure 4.3: The observed correlation between the measured (blinded) value of de and
applied electric field asymmetry, δE. The solid red line is before the rf detuning phase
correlation correction is applied, the dashed blue line is after applying the correction.
The solid red line shows a clear dependence on δE whereas the the dashed blue line
is consistent with a flat line. This shows that the correction appears to remove all

dependence on electric field asymmetry.

Figure 4.3 plots measured EDM against δE using data that was taken when the change

in electric field magnitude between E states was made intentionally large. The two lines

shown represent linear fits to the data before and after the correction is applied. It is

apparent that the correction does indeed remove all dependence on δE. However, it is

possible that there are other δE effects that are not corrected by equation 4.9. In the next

section (4.3.1) I discuss the sensitivity of our measurement to any residual δE effects, and

place an upper bound on the systematic shift that would result from the typical value of

δE that is present under normal running conditions.
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4.3 Systematic Uncertainties

In this section I discuss the experiment imperfections that could introduce sources of

systematic error. Where possible, we measured the dependence of de on each imperfection

by taking supplementary EDM measurements for a range of non-ideal experiment

conditions. Combined with conservative estimates of the typical conditions, we use these

measurements to place limits on the possible systematic shifts.

This is a particularly powerful method as we don’t need to know the exact mechanism

for each source of systematic error. By exaggerating an experimental imperfection, we

measure the shift that results from all sources of systematic error that associate with

that particular imperfection.

There are, however, a couple of imperfections that cannot (easily) be exaggerated, namely

leakage currents and electric field rotations that result from bent field plates and patch

potentials. To assign a systematic uncertainty to these imperfections, we formulate a

likely model for how these imperfections could generate a systematic shift, and consider

a worst case scenario. Fortunately neither effect generates a significant systematic shift.

Before considering each imperfection in turn, it should be noted that the EDM

measurements presented in this section have been corrected using the expressions derived

in section 4.2 so that we can look for further sources of systematic error.

4.3.1 Uncancelled Asymmetric Electric Field Reversals

When the electric field reverses, its magnitude may change by a small amount, δE. We

call this an ‘asymmetric electric field reversal’. In section 4.2.2 it was demonstrated that

asymmetric electric field reversals could generate an EDM through an unexplained, yet

well defined phase that depends on rf frequency detuning. We correct for this effect

with equation 4.4, but we must account for the possibility of a residual systematic shift.

There are many other mechanisms, in addition to the rf phase correlation, through which

asymmetric field reversals might generate a false EDM. A straightforward example is

that the detection efficiency of the PMTs could vary with the electric field potentials

inside the vacuum chamber. A more subtle example, that will be discussed in detail in

section 4.3.3, is that the sensitivity of the molecules to stray magnetic fields might depend

upon the magnitude of the applied electric field. By intentionally making δE large, we

measure the EDM dependence on all possible mechanisms associated with asymmetric

electric field reversals.
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Figure 4.4: The observed correlation between measured value of de and applied electric
field asymmetry when the plate voltages are offset from ground by +102.5 V (see section
4.3.2). The dotted red line is a linear fit to the data taken with the rf is propagating
up the machine (MRF=true). The dashed blue is a linear fit to data taken with the
rf propagating downwards (MRF=false). The solid green line is a fit to the aggregated

data from both rf directions.

To measure the dependence of de on δE we made a slight modification to the electric field

control software (HarwareController) to boost the voltages applied to the plates for one

of the electric field switch states. As shown by the dashed blue line in figure 4.3, under

ideal conditions we find no evidence for residual δE shifts. Unfortunately, however, we

do observe a slight dependence on δE if the electric field plate voltages are offset from

ground by a small amount, V̄ . We define V̄ such that the potential on each plate is

±V + V̄ with respect to ground.

For a number of months we accidentally ran the experiment with the HV supplies set

to apply a voltage offset V̄ = 102.5 V. From the supplementary tests on δE that were

performed during this period we measure a gradient of (−8.0 ± 3.6) × 10−28 e cm/(V/cm).

This is shown by the solid green line in figure 4.4. Figure 4.4 also plots the V̄ = 102.5 V

test data separated into each rf manual state. For the data taken with the rf propagating

up through the machine the gradient is (−1.9 ± 4.4) × 10−28 e cm/(V/cm). This value

is entirely consistent with no dependence on δE. However, the data taken with the rf

propagating downward produces a gradient (−21.1 ± 6.5) × 10−28 e cm/(V/cm), which

differs from zero by 3.2 standard deviations.

The final EDM measurement was eventually taken with the voltage offset carefully

zeroed using a high voltage probe. With the offset zeroed we measure the gradient

(−0.5 ± 8.8) × 10−28 e cm/(V/cm). As this value is consistent with no dependence on

δE, we apply no further correction to the dataset. However, it is possible that the slight

dependence observed with V̄ = 102.5 V might also apply to the main dataset taken with

V̄ = 0 V. So to set an upper limit on the systematic shift we use half the non-zero

gradient measured from the V̄ = 102.5 V data taken with the rf propagating downward:
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(−11.0 ± 3.3) × 10−28 e cm/(V/cm). We use half the value because the main dataset

contains approximately equal numbers of blocks taken in each rf manual state3.

To calculate an uncertainty for all uncorrected δE systematic effects, we multiply this

gradient with an estimate of the asymmetry in the main dataset, taken under normal

running conditions. We measure this asymmetry by applying equation 4.6 to the measured

average value of {E · RFiF}/{δB}.

We can divide sources of asymmetry into two categories: those which are internal to

the beam machine, and those which are external. Patch potentials on the electric field

plates are an example of an internal source, whereas a change in HV supply output when

the electric field direction reverses is an example of an external source. For an internal

source of asymmetry, a manual reversal of the HV connections changes the electric field

switch state of the larger electric field4 (the asymmetry, δE, reverses). In contrast, for

an external source, the switch state of the larger electric field does not change with the

electric manual reversal (the asymmetry, δE, remains unchanged).

Recall that the channel {E · RFiF} measures the change in rf detuning between electric

field switch states. The Stark shift is quadratic in E0, so rf detuning depends only upon

the magnitude of the electric field, not direction. As a consequence, for an internal

source of asymmetry, the sign of {E · RFiF} changes when the electric field connections

are manually reversed. For an external source of asymmetry the sign remains unchanged.

We can, therefore, isolate internal and external sources of asymmetry by respectively

choosing whether or not to sign {E · RFiF} according to M̂E , and averaging over both

electric field manual states.

When the blocks are averaged without signing, we find that the external asymmetry

measured in both rf regions are consistent with each other, as would be expected. The

weighted mean of the two values measured gives δEext = (0.463 ± 0.015) V/cm. When

the blocks are signed according to M̂E and averaged, to measure internal sources of

asymmetry, we find δE
(1)
int = (0.21 ± 0.02) V/cm when measured with the first rf pulse

and δE
(2)
int = (−0.21 ± 0.02) V/cm when measured with the second. Note the change in

sign, the two values are not equal. This most likely indicates patch potentials which are

local to each rf pulse region.

The systematic phase shift, measured predominantly by the channel {E · B} (equation

3.13), depends only upon the change in magnitude of the electric field. So, as above, for

an internal source of asymmetry {E · B} will change sign following a manual reversal of

3We could have assumed the average gradient (−8.0± 3.6)× 10−28 e cm/(V/cm), but half
the gradient for the downward propagating rf data produces a more conservative value of
(−11.0± 3.3)× 10−28 e cm/(V/cm).

4Note that we are only interested in changes in magnitude not direction.
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the electric field connections, whereas for an external source of asymmetry the sign will

remain unchanged. Recall that to extract a value for de we sign {E · B} by M̂E and

M̂B to account for the fact that the electric and magnetic field manual reversals change

the assignment between waveform state and field direction (equation 3.14). So when

de ∝ M̂E M̂B {E · B} is averaged over both electric field manual states, the false EDM

due to external sources of asymmetry cancels. However, the false EDM due to internal

sources does not.

Following the above arguments, to limit the possible shift on de, we take the measurements

of δEint as typical values of δE. The regions spanned by the molecular cloud during each

rf pulse make up a significant fraction of the total interaction region (∼ 1/8 and ∼ 1/4

respectively), and the asymmetries measured by each pulse have opposite sign, so it likely

that the effects of these sources will cancel to some extent. We, therefore, estimate that

|δEint| < 0.1 V/cm when averaged over whole interaction region. Combining this value

with the gradient, (−11.0 ± 3.3) × 10−28 e cm/(V/cm), as detailed above, we limit the

total shift due to all δE effects to be:

σδE < 1.1 × 10−28 e cm. (4.10)

4.3.2 Electric Field Voltage Offset From Ground

In the previous section, we accounted for the possibility that the magnitude of the electric

field might change when the electric field is switched. It is also possible that the direction

of the applied field may not reverse perfectly.

The electric field plates are surrounded by a grounded support structure and magnetic

shield. Ideally we would like to charge the electric field plates symmetrically to the

potentials ±V relative to ground. However, if the HV settings are set imperfectly, the

plates become charged to the potentials ±V + V̄ . We call the mean plate voltage, V̄ , the

‘offset voltage’. Near the edges of the HV plates the electric field lines bend towards the

grounded structures. If V̄ is not carefully zeroed, the distribution of these fringe field

lines change when the HV relays change state.

There are a few ways that a change in the field distribution could introduce a systematic

shift. The most obvious mechanism is through the magnetic field. As will be discussed

in the next section, the molecules are only sensitive to the component of the magnetic

field parallel to the local electric field. So if the electric field distribution were to change

between switch states, the Zeeman interaction phase, g µB B T/~, would become E-state

dependent and hence generate a false EDM signal. Similarly, the imparted rf phase

depends upon the projection of the oscillating magnetic field in the plane perpendicular
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to the local electric field. This phase would also masquerade as an EDM phase if the

field distribution were to change with the E-switch. The geometric phase (discussed in

section 4.3.4) also depends upon the exact field distribution.

We make sure that the molecules are well within the parallel plates before subjecting

them to rf. This ensures that the interferometer phase is accrued over a region of the

plates where the electric field is not significantly affected by the surrounding grounded

structures. Consequently, no numerical simulations (which account for imperfections

within the machine) have been able to produce a significant EDM as a result of realistic

changes in the electric field distribution5. However, it must be noted that these simulations

are not complete, as they do not account for the optical pumping stage in the interferometer.

To empirically test for a V̄ dependence we acquired data with the large applied offset

voltages: V̄ = −1000.5 V, V̄ = +102.5 V and V̄ = +1015.0 V. The offset voltages were

generated by biasing the power supply outputs. For example, to set V̄ = +1 kV, we

adjusted the power supplies to give VE+ = +7 kV and VE− = −5 kV. The voltages were

measured at the HV feedthroughs using a sensitive HV probe, with the plates connected.

Unfortunately we observe two distinct effects that result from a non-zero offset voltage:

1) a direct correlation between de and the detuning of the first rf pulse, δ
(1)
rf , 2) an overall

shift in de, that is a function of only V̄ . We model the shift from these two effects with

the equation

dV̄
e = f1(V̄) δ

(1)
rf + f0(V̄). (4.11)

I will consider each term separately, and limit the impact of each on the main dataset,

that was taken with V̄ = 0.0 V.

Incidentally, it was hoped that we could save the data taken with V̄ = 102.5 V by applying

a correction of the form given in equation 4.11. The first term, f1(102.5) δ
(1)
rf , is easily

calculated from the V̄ = 102.5 V dataset itself (see below). However, to calculate the

second term, f0(102.5), we require the exact functional form of f0(V̄ ). There are many

models for f0(V̄ ) which would fit our data, so we cannot reliably apply a V̄ correction

to the V̄ = 102.5 V data. We therefore cannot use the V̄ = 102.5 V data in our final

measurement of de.

Correlation with RF Detuning

When V̄ 6= 0 we see a systematic variation in de over the TOF profile. Figure 4.5

shows the variation we observe when V̄ = 102.5 V. We find that the variation is directly

proportional to the detuning of the first rf pulse, δ
(1)
rf . In section 4.2.2 I discussed an

5The field distributions were taken from simulations in Comsol by Tarbutt.
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interferometer phase that results from an rf detuning. This phase mimics an EDM

induced phase through a change in the rf detuning between electric field switch states.

The correlation drfif
e ∝ {E · RFiF}{B · RFiF} (equation 4.9), results due to a change in

magnitude of the electric field between switch states. The effect discussed in this section

results from an imperfect reversal of the direction of the electric field. This causes a

systematic shift in de that depends only on the average detuning of the first rf pulse.

When V̄ 6= 0 we find that de ∝ {RF1F} but not {E · RF1F}. We find no statistically

significant correlation between de and the detuning of the second rf pulse.
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Figure 4.5: Variation in de across the TOF profile observed when V̄ = +102.5 V. The
range of the horizontal axis is set to the interval of the analysis gate specified in section

4.1.

When the molecules are subjected to the first rf pulse the molecular cloud spans

approximately 10 cm of the HV plate length. Over this region the electric field varies

by approximately 50 V/cm due to a slight bend in the field plates. Through the Stark

shift, the electric field variation results in a 15 kHz rf detuning over the molecular cloud.

As shown in appendix A, the detuning of the first rf pulse, δ
(1)
rf , is linearly proportional

to {RF1F} according to the relation

{RF1F}
{δB} =

−2 δ
(1)
rf δν

(1)
rf τ2

π3

B0

BδB
, (4.12)

where τ and δν
(1)
rf are the pulse length and frequency step respectively. As before, B0 and

BδB are the amplitudes of the two magnetic field steps. As δ
(1)
rf varies over the molecular

cloud we observe a variation in {RF1F} over the probe PMT TOF profile.

By dividing the probe PMT TOF profile into many narrow gates and analysing each

gate individually, we obtain de measurements for a range {RF1F}/{δB} values. We

convert the {RF1F}/{δB} values to rf detunings using equation 4.12. Figure 4.6 shows

the correlations between de and δ
(1)
rf for the four values of V̄ . Fitting the data for each

offset voltage with a straight line provides the gradients, f1(V̄ ), as quoted in the figure

caption.
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(a) V̄ = −1000.5 V.
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(b) V̄ = +1015.0 V.
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(c) V̄ = +102.5 V.
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(d) V̄ = 0.0 V.

Figure 4.6: The direct proportionality between de and the detuning of the first rf
pulse, as calculated via subdivision of the TOF profile. A linear fit to each dataset gives
the gradients: (a) (43.7 ± 1.8), (b) (−43.7 ± 2.0), (c) (−14.3 ± 2.0), (d) (0.3 ± 1.1). Each

are quoted in units of 10−28 e cm/kHz.
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Figure 4.7: Variation in de across TOF profile observed when V̄ = 0.0 V. The range
of the horizontal axis is set to the interval of the analysis gate specified in section 4.1.

For the V̄ = ±1 kV data we measure the values of f1(V̄ ) to be opposite yet equal

in magnitude, but the increase in slope is non-linear. We find no dependence of

f1(V̄ ) on the manual state of the machine. Fortunately, when the offset voltage

is carefully zeroed we find no evidence for a dependence on δ
(1)
rf , as the gradient

f1(0.0) = (0.3 ± 1.1) × 10−28 e cm/kHz is consistent with zero within error. As we expect,

with no clear dependence on δ
(1)
rf , we find no variation in de across the TOF profile, as
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shown in figure 4.7.

As we observe no dependence of de on δ
(1)
rf when V̄ = 0.0 V, we do not apply

a correction for this effect. However, f1(V̄ ) depends quite strongly on V̄ , so we

must place a limit on the systematic shift due to a possible residual correlation.

To calculate this we require the average detuning of the first rf pulse, δ
(1)
rf . We

calculate this by integrating {RF1F}(t)/{δB}(t) over the (wide) analysis quoted in

section 4.1. From the main dataset (taken with V̄ = 0.0 V) we measure δ
(1)
rf to

be6 (1.217 ± 0.025) kHz. Multiplying this value with the measured correlation for the

V̄ = 0.0 V data, f1(0.0) = (0.3 ± 1.1) × 10−28 e cm/kHz, we limit the systematic shift

from the rf detuning correlation to be7:

σf1 < 1.3 × 10−28 e cm. (4.13)

Note that the value for δ
(1)
rf is significantly non-zero. This is because {RF1F}(t)/{δB}(t)

varies quite significantly over the probe PMT TOF profile, and the experimental

parameter locks used a slightly different analysis gate to that quoted in section 4.1.

Overall Shift with V̄

We can correct the data where V̄ 6= 0 for the detuning correlation described above.

This lets us observe the remaining dependence on V̄ , as described by the function f0(V̄ )

in equation 4.11. To correct each dataset we subtract the product f1(V̄ ) δ
(1)
rf from the

measured average value of de. As above, the average detuning of the first pulse, δ
(1)
rf ,

is calculated from {RF1F}/{δB} using the (wide) analysis gate specified in section 4.1.

The measured gradients, f1(V̄ ), are as quoted in the caption of figure 4.6.

Figure 4.8 shows the remaining dependence on V̄ that we observe after applying the

correction for the rf1 detuning correlation. As can be seen, the data is consistent with

a linear dependence on V̄ . A linear fit to the data, shown by the solid red line in the

figure, measures a gradient of (−0.099 ± 0.016) × 10−28 e cm/V.

With the HV probe we are able to zero V̄ to well within 1 V. So for the main dataset we

can limit systematic shift due to the remaining V̄ dependence to be:

σf0 < 0.1 × 10−28 e cm. (4.14)

6The uncertainty here is limited solely by the uncertainty in {RF1F}/{δB}. We ignore the uncertainty

in the conversion factor between {RF1F}/{δB} and δ
(1)
rf as this coefficient cancels in the product

f1(0.0) δ
(1)
rf .

7The value for σf1 quoted here is slightly different to the value published in [75], in which there is a
minor error of no consequence.
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Figure 4.8: Variation in the average value of de in addition to the variation across the
TOF profile. The gradient of the red line is (−0.099 ± 0.016) × 10−28 e cm/V.

Combining this uncertainty with the systematic uncertainty due to the rf1 detuning

correlation, we limit the total systematic uncertainty on all V̄ effects to be:

σV̄ =
√

(σf1)2 + (σf0)2 <
√

1.32 + 0.12 × 10−28 e cm < 1.30... × 10−28 e cm. (4.15)

4.3.3 Magnetic Fields

Magnetic fields that change8 when the electric field is switched are a potential source of

systematic error. Fortunately, the molecules are only sensitive to the z component of such

magnetic fields, because the tensor Stark shift dominates over any Zeeman interactions.

This can be seen from a second order perturbation expansion (see [70]), where the energy

splitting between the |1, ±1〉 states, ∆U±, is given by:

∆U± ' 2 de Eeff + 2 g µB Bz − (g µB B⊥)2 g µB Bz

~2(ω11 − ω10)2
. (4.16)

Note that the third term is suppressed by the square of the Stark splitting between |1, ±1〉
and |1, 0〉, (ω11 −ω10). Recall that an electric field shifts |1, ±1〉 equally; only a magnetic

field and an EDM can break the symmetry. Unfortunately equation 4.16 is not a good

approximation for the typical magnetic fields present inside the machine. In particular

B⊥ ∼ Bz. To accurately calculate the splitting due to perpendicular magnetic fields we

8Note that the magnetic fields do not necessarily need to reverse. In fact, magnetic fields that are
perpendicular to the applied electric field do not change the splitting between the |1,±1〉 states if reversed
perfectly.
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must numerically diagonalise the full Hamiltonian:

~√
2




0 −∆x

√
2 ∆z ∆x

−∆x

√
2 (ω11 − ∆z) ∆x 0

√
2 ∆z ∆x

√
2 ω10 ∆x

∆x 0 ∆x

√
2 (ω11 + ∆z),




(4.17)

as written in the z-basis for a state of increasing F and mF . This Hamiltonian accounts

for the magnetic fields Bx x̂ and Bz ẑ with the the respective shifts ∆x = g µB Bx/~ and

∆z = g µB Bz/~. The matrix is slightly different if Bx x̂ is replaced with By ŷ, but its

overall effect is the same, as there is nothing special about either perpendicular axis.

As illustrated in figure 2.5, ω11 and ω10 are the respective Stark shifted separations of

|1, ±1〉 and |1, 0〉 from |0, 0〉. For a 10 kV/cm field, as normally applied to the molecules,

ω11 = 2π × 172.954 MHz and ω10 = 2π × 164.754 MHz.

The φ = π/4 magnetic field step, B0 = 13.6 nT, induces a |1, +1〉 ↔ |1, −1〉 splitting of

380 Hz. As shown in figure 4.9, adding a 100 nT Bx field only increases this splitting by

a further 0.06 mHz. For comparison, an EDM of 1 × 10−28 e cm, an order of magnitude

smaller than the current experimental upper limit, would induce a splitting of 0.7 mHz.

This demonstrates how insensitive our measurement is to B⊥. As perpendicular magnetic

fields inside the machine are typically <2 nT in magnitude, the splitting that they induce

is completely negligible in comparison to the splitting of even a relatively small EDM. It is

worth emphasising, however, that a Bz of only 25 fT, that reverses with Ê, would imitate

a 1 × 10−28 e cm EDM, furthermore this false EDM would have a linear dependence on

Bz. The splitting due to B⊥ is highly non-linear as can be seen in figure 4.9.
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Figure 4.9: Induced splitting between (F = 1, mF = ±1) due to perpendicular
magnetic fields in addition to the splitting due to a 13.6 nT magnetic field along z.

This plot was generated using a 10 kV/cm electric field along z.
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E-switch Correlated Magnetic Fields Along ẑ

As discussed in section 4.2.1, averaged over the main dataset, the Bartington magnetometer

measures no statistically significant magnetic field correlated with the switching of the

electric field direction. However, we should be cautious of internal sources of E-switch

correlated magnetic, as they are not cancelled by the manual field reversal. Also the

magnetometer does not measure internal fields accurately since they are attenuated by

the inner magnetic shield9. There are two likely internal sources of E-switch correlated

magnetic field: leakage current between the HV plates, and magnetic shield magnetisation.

HV 
feedthrough

y

z

x

HV field
plates

Figure 4.10: An illustration of a conservative model for leakage current flow. The
purple arrows indicate the leakage current path.

Averaged over the main dataset, the leakage monitors measure a leakage current of

less than 1 nA. We can consider a model where all this current flows along the path

illustrated in figure 4.10. In this model, 1 nA of leakage would generate a 5 fT switching

magnetic field along z, when averaged over the whole interaction region. This model is

very conservative as the z-component of the magnetic field would cancel if current flow

was restricted to the zy-plane. It is also unlikely that all the current would flow all the

way around the edges as shown. However, with this worst case scenario, we limit the

systematic shift due to leakage currents to be:

σleak < 0.2 × 10−28 e cm. (4.18)

To test the extent to which the shields are magnetised by the currents which charge the

HV plates, we used a spare set of magnetic shields with the same radius as the inner

9Recall that the magnetometer is situated in between the two layers of magnetic shields.
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magnetic shield10. A small loop of wire was fed through the aperture in the middle of

the shields in place of the HV plates. For 7 s we drove DC current through the loop then

measured the magnetic field along z, in the centre of the shield, for a subsequent 20 s.

The current driven was alternated between ±500 µA to simulate the switching of the

electric field direction. The change in magnetic field correlated with the current reversal

was measured to be (39 ± 42) pT. Scaling this down to the normal change in current,

which is kept below 5 µA with the 14 s long E-switch period, shield magnetisation would

generate a systematic error:

σshield < 0.25 × 10−28 e cm. (4.19)

Perpendicular Magnetic Fields

It is clear that neither source of magnetic field stated above could change B⊥ enough

to generate a significant systematic shift to the EDM value. There is another source of

magnetic field which is worth considering. As the molecules move through the applied

electric field, E0 ẑ, with a velocity, v ŷ, a magnetic field ~E×~v/c2 = Bv x̂ is generated in the

rest frame of the molecules. When combined with a static stray field, Bs x̂, the molecules

experience a magnetic field Bx = Bs + Bv in x̂ that changes size when the electric field

is reversed. Fortunately the effects of this motional magnetic field are suppressed by the

tensor Stark shift. Even with a 30 nT stray magnetic field aligned perfectly along x the

systematic shift is

σmot < 5 × 10−32 e cm. (4.20)

This was calculated with a molecular velocity of 590 m/s, and the electric and magnetic

fields: E0 = ±10 kV/cm and Bz = B0 = 13.6 nT.

It is possible that a completely static perpendicular magnetic field may generate an EDM

when combined with an asymmetric electric field reversal. This is because the Stark

suppression would change with the magnitude of the applied electric field. However,

even with conservative estimates of δE and B⊥, the effect is completely negligible.

Furthermore, we account for this mechanism with the asymmetric field reversal tests

that were discussed in section 4.3.1. We see no evidence for this effect.

To be sure that perpendicular magnetic fields did not influence our measurements, we

took EDM data with large magnetic fields applied, in turn, along x and y. These tests

were taken with E0 = 2.5 kV/cm, which is four times smaller than the usual running

field, so the Stark suppression was considerably reduced (the |1, ±1〉 ↔ |1, 0〉 splitting

10These shields were purchased in preparation for a machine upgrade to allow a longer interaction
period.
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is eight times smaller at this field). No electric field asymmetry was applied, as we did

not want to stimulate some other systematic effect. We took data with By ∼ ±100 nT

and Bx = ±500 nT. The value for By is only an estimate as it was calculated by

combining a magnetometer measurement with an estimate of the inner shield longitudinal

shielding factor. To estimate Bx we assumed the same current coefficient as for the Bz

coils, which are wound in exactly the same way as the Bx coils. From the Bx test

we obtain the gradient (0.3 ± 0.8) × 10−28 e cm/nT, and from the By test the gradient

(−0.2 ± 0.3) × 10−28 e cm/nT. Neither are statistically significant. From the typical

bias fields required to centre the interference fringes we infer that stray fields within

the machine are < 2 nT in amplitude. We verified this with offline magnetometer

measurements taken inside the upper chamber through the pump PMT vacuum chamber

port. Combining the gradients with the typical offset, we limit the EDM shifts due to

perpendicular magnetic fields to be < 0.6 × 10−28 e cm for Bx and < 0.4 × 10−28 e cm for

By. However, these limits are very conservative as increasing the electric field to 10 kV/cm

should make us at least an order of magnitude less sensitive to perpendicular magnetic

fields. The δE tests already accounted for this systematic, so we do not separately include

these limits in the systematic uncertainty of the final result.

Driving RF Transitions in Magnetic Fields

The equations in section 2.2.3 assume the rf transitions are driven in regions that are

free of static magnetic fields. However, in practice, both rf transitions are driven in the

presence of the applied magnetic field, (B0 + BδB) ẑ, as well as a possible stray magnetic

field, Bs ẑ. In his thesis [74], Kara derived a set of equations that account for this,

which I have verified with numerical simulations. The effects are twofold: 1) Fringe

contrast is reduced, as the applied magnetic field splits the |1, ±1〉 states, causing the rf

to become detuned from each level; 2) The acquired phase is increased fractionally, as the

split |1, ±1〉 states gain a phase difference during each rf pulse in addition to the phase

difference gained over the free evolution period.

Driving rf transitions within the applied magnetic field does not produce a fake EDM

unless the magnitude of the electric field changes upon reversal, and the rf is detuned

from the mean separation between |0, 0〉 and |1, ±1〉. However, even for considerable rf

detunings, the fake EDM is many orders of magnitude smaller than 10−28 e cm. A much

larger fake EDM is generated if an uncancelled stray magnetic field, Bs ẑ, is present. In his

thesis [74], Kara shows that the systematic error is approximately linearly proportional

to the rf detuning, electric field asymmetry, and stray magnetic field. For 20 µs rf pulses:

drf
e = 8 (δ

(1)
rf + δ

(2)
rf ) δν Bs × 10−29 e cm kHz−2 nT−1, (4.21)
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where δν is the change in the mean separation between |1, ±1〉 and |0, 0〉 that results

from an imperfect electric field reversal, and δ
(i)
rf is the detuning of the ith rf pulse. Both

δν and δ
(i)
rf are measured in kHz.

If we take the values δ
(i)
rf = 1 kHz, δν = 0.014 kHz and Bs = 2 nT as are typical for the

experiment, then drf
e = 0.04 × 10−28 e cm. This value is small enough to ignore. As with

other magnetic field effects, this systematic effect is accounted for with the electric field

asymmetry test, so no further uncertainty is added to the final result.

Electric Field Dependence of the Landé g-Factor

Applying a magnetic field, Bz ẑ, breaks the degeneracy of the |1, ±1〉 states, causing them

to acquire a phase difference ∆φB = 2 g µB Bz T/~ over the time interval, T . g is the

Landé g-factor that accounts for the total angular momentum of the molecules. For the

unperturbed F = 1 states, g = 1.001.... Its exact value is not particularly important,

as we adjust the applied magnetic field to apply the 2π/4 and 2π/32 phase steps. It is,

however, important that the g-factor does not change with the electric field, as this also

could generate a fake EDM when coupled with an asymmetric electric field reversal, δE,

and an uncancelled stray magnetic field, Bs ẑ. Electric fields mix angular momentum

states, so it is at least plausible that g might change if the magnitude of the electric

field were to change when its direction is reversed. By considering the difference in phase

acquired in each E-state, it is straightforward to show that the false EDM would be

dg
e =

γg µB Bs δE

Eeff
, (4.22)

where γg = (∂g/∂|E|)|E0 is the gradient of g with respect to electric field asymmetry.

As documented in his thesis [74], Kara measured the variation of g by recording

interference curves similar to figure 2.16 at various applied electric fields in the

range (3–14) kV/cm. He found no systematic dependence of the g-factor on

on E0. The maximum possible variation that is consistent with the data is

γmax
g = 3 × 10−6 (V/cm)−1. We can measure the uncancelled stray magnetic field

with the expression M̂B BδB {B}/{δB}. Averaged over the whole dataset this gives

Bs = (−136 ± 4) pT. Recall from section 4.3.1, δE ∼ 0.1 V/cm. By substituting these

values into equation 4.22 we limit the shift due to g-factor variation to be:

σg < 1.7 × 10−31 e cm, (4.23)

which is small enough to ignore.
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The systematic shift due to perpendicular magnetic fields is a little less straightforward.

If we assume that the g-factor dependence on δE in x̂ and ŷ is no larger than in ẑ, we can

estimate the potential size of the systematic shift by calculating how the eigenvalues

of equation 4.17 change for a small change in the electric field. If we assume that

δE = 0.1 V/cm and E0 = 10 kV/cm, even for a 30 nT perpendicular stray magnetic field

in x̂, the resulting systematic shift is only 8 × 10−35 e cm, which is completely negligible.

4.3.4 Geometric Phase

In section 2.1, it was shown that, during the free evolution period, the |1, ±1〉 states gain

a phase difference

∆φ =
2

~
(g µB Bz − de Eeff) T, (4.24)

due to electric and magnetic fields oriented along ẑ. The magnetic field, Bz ẑ, includes

both the applied magnetic field, (B0 + BδB) ẑ, as well a possible uncanceled stray magnetic

field, Bs ẑ. If the magnitude of the electric and magnetic fields vary over the length

of the interferometer, Bz and Eeff become average amplitudes, as integrated over the

region traversed by the molecules during the free evolution period. As was discussed in

the previous sections, there are many mechanisms which would cause a systematic shift

through a change in the first term, g µB B, when the electric field is reversed.

We are also concerned about field rotations along the beam line, as they can generate a

‘geometric’ phase difference, ∆φ(g), between the |1, ±1〉 states in addition to the ‘dynamic’

phase difference, ∆φ, given in equation 4.24. If the geometric phase changes when the

electric field is reversed, there would be a systematic shift in the measured value of de.

Geometric phase was first demonstrated by Berry in 1984 using a rotating magnetic field

[94]. We need only consider rotations of the electric field, as the molecules are only

sensitive to the component of the magnetic field in the axis of the local electric field

(section 4.3.3). For a spin-one system corresponding to the F = 1 state of the YbF

molecules, Tarbutt et al. show [95] that in the adiabatic limit (where the rate of rotation

of the electric field is small in comparison to the Stark induced |1, ±1〉 ↔ |1, 0〉 splitting)

the |1, ±1〉 states gain a geometric phase difference

∆φ(g) = 2 Ω, (4.25)

where Ω is the solid angle swept out by the electric field vector in the reference frame of

the molecules. This approximation is well satisfied for the electric field present between

the HV plates.
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In section 4.3.2 it was stated that in the fringe fields near the edges of the HV plates

the electric field rotates towards the grounded surrounding structures. As we carefully

balance the potentials on each plate, this rotation is small enough to neglect for the

molecules that participate in the experiment.
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(b) The electric field rotates clockwise about z in both relay
states.

Figure 4.11: Electric field rotations due to: (a) bent HV plates and (b) a patch
potential on one of the field plates. The purple arrows indicate the direction of the
electric field. The large gray arrow shows the path of the molecular beam. These

drawings are purely illustrative and are not drawn to scale.

Warped field plates are another potential source of field rotation. A map of the electric

field along the plate length (along the y-axis) [84] tells us that the HV plates are slightly

bent. From the field map we calculate that the field rotations about the x-axis are less

than ±0.5 mrad. We expect the rotations about the y-axis to be a similar size. These

rotations could generate a significant geometric phase. However, as illustrated in figure

4.11(a), the field rotations in both axes are unaffected by an electric field reversal, so the

geometric phase remains unchanged and produces no systematic error.

We can also consider the field rotations that would result from a small patch of charge,

δQ, on the surface of one of the field plates. By modelling the electric field from a disc of

charge, we find that the field components in the x and y axes are largest along the edges

of the patch. If the patch is positioned to one side of the plates, as illustrated in figure

4.11(b), the x and y field components would cause the electric field between the HV plates

to rotate anticlockwise about the z-axis (as viewed in the xy-plane). Nonetheless, the

patch of charge does not cause a systematic error, because reversing the applied electric

field flips the angles that the electric field vector make with the x and y axes, so the sense

of rotation remains unaffected and the geometric phase remains the same.
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However, if the field rotations due to the bent field plates are combined with the rotations

due to a patch of charge, then the geometric phase can produce a systematic error. This is

because the bent plates generates a tilt that does not reverse with the E-switch, whereas

the patch of charge produces a tilt that does reverse with the E-switch. So together they

generate a field rotation that changes when the electric field is reversed.

To place a limit on the potential systematic shift we consider a worst case scenario, where

a 1 V patch potential is offset from the plate centre, and fills roughly half the plate length,

as shown in figure 4.11(b). By modelling the field from this patch we predict it generates

rotations of approximately 1 µrad, when averaged over the molecular beam. In the worst

case we consider a situation where the bent HV plates generate a 1 mrad rotation about x

that does not reverse with the E-switch, and the patch generates a 1 µrad rotation about

y that does reverse with the E-switch. We consider a situation where, as the molecules

enter the second half of the plate length, the bent plates cause the electric field to rotate

about x. The field then rotates about y as the molecules pass the plate region occupied

by the patch. The rotation about x then reverses as the bend in the plate reverses, and

finally the rotation about y reverses as the molecules leave the patch region. In one

electric field state the rotation is clockwise about z, in the other it is anticlockwise. The

geometric phase, therefore, reverses with the E-switch and hence imitates an EDM. A

numerical simulation which accurately models the electric field inside the machine, and

averages over the volume occupied by the molecules, limits the systematic error for this

scenario to be:

σgeo < 1 × 10−30 e cm. (4.26)

4.4 Non-Zero Channels

As explained in section 3.9 we evaluate all 511 analysis channels11 to check there is nothing

untoward in the dataset. In an ideal experiment only the unsigned averages of {SIG} and

{δB} would be non-zero, but in reality this is never the case. Table 4.1 lists the channels

which are non-zero by more than 3σ. Note that if {X} is non-zero, {X · δB} will also

tend to be non-zero. With the exception of {LF1 · δB}, these dotted channels are not

listed as they contain no extra information. The E, B, and rf manual reversals provide

eight possible ways to sign and average the channel values for each block. We check each

signing for a non-zero value. If a channel is non-zero for more than one signing, the table

gives the value for the most relevant signing. In particular, for the channels containing E

or B, we are most interested in the respective signings with M̂E or M̂B, as these account

for the fact that the electric and magnetic field manual reversals change the assignment

11The {E ·B} channel is blinded!
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between switch state and field direction. The table lists the channel ratios {X}/{δB}
and {X ·δB}/{δB} so that they may be converted into physical units using the equations

derived in appendix A. The conversions of {RFiF ·B}/{δB} and {RFiF ·E}/{δB} into

physical units are as defined in equations 4.4 and 4.6 respectively.

Table 4.1: Non-zero channels for the 2011 dataset.

Channel
Value

(10−3)
Significance

1 {δB}/{SIG} 117 ± 1 δB step changes the signal by 12%

2 {LF1}/{δB} 60.7 ± 0.5

probe laser beam frequency detuned by

-6.5 MHz from the nearest peak in the optical

spectrum (F = 0 and other underlying

spectral lines): 33% of the ∼20 MHz optical

spectrum linewidth

3 {LF1 · δB}/{δB} 2.0 ± 0.1

probe laser beam frequency detuned by

-1.2 MHz from F = 0: 6% of the ∼20 MHz

optical spectrum linewidth

4 {RF1F}/{δB} −31.8 ± 0.2
rf1 frequency detuned by 1.2 kHz: 2.4% of the

∼50 kHz linewidth

5 {RF2F}/{δB} 8.7 ± 0.2
rf2 frequency detuned by -0.3 kHz: 0.6% of

the ∼50 kHz linewidth

6 {RF1A}/{δB} −6.8 ± 0.3
rf1 amplitude detuned by 0.9% from π-pulse

requirement

7 {RF2A}/{δB} −2.5 ± 0.2
rf2 amplitude detuned by 0.3% from π-pulse

requirement

8 {RF1F · RF2F}/{δB} 8.1 ± 0.1

a correlation between rf1 and rf2 frequency

detuning most likely due to a slow drift in the

electric field amplitude, which would shift the

resonant frequency of both rf pulses

9 {RF2A · π}/{δB} −3.9 ± 0.2
π-flipper changes the amplitude of rf2 by

0.5%

10 M̂B {B}/{δB} −80 ± 2
average uncancelled stray magnetic field of

136 pT aligned against the z-axis

Continued on the next page...
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Table 4.1 – continued from previous page

Channel
Value

(10−3)
Significance

11 M̂E {E}/{SIG} 0.52 ± 0.04

electric field reversal changes signal by 0.05%

possibly due to an asymmetric electric field

reversal, which would change the efficiency of

the rf transitions

12 M̂B {RF1F · B}/{δB} 4.69 ± 0.09
phase due to rf1 frequency detuning:

288 nrad/Hz

13 M̂B {RF2F · B}/{δB} −1.47±0.09
phase due to rf2 frequency detuning:

-91 nrad/Hz

14 M̂E {RF1F · E}/{δB} −0.84±0.09
|E0| changes by 0.21 V/cm upon reversal, in

rf1 pulse region

15 M̂E {RF2F · E}/{δB} 0.87 ± 0.09
|E0| changes by -0.21 V/cm upon reversal, in

rf2 pulse region

16 M̂B {RF1A · B}/{δB} −0.7 ± 0.1 phase correlated with rf1 amplitude

17 M̂B {RF2A · B}/{δB} 0.7 ± 0.1 phase correlated with rf2 amplitude

18 M̂B {LF1 · B}/{δB} −1.3 ± 0.1 phase correlated with laser frequency

Rows 3–7 show that the laser and rf parameters were detuned by a small amount. There

are two reasons for this: 1) The analysis gate used here is not the same as that which

was used to lock the experimental parameters during data acquisition. 2) We retain all

acquired data blocks, including the ones at the beginning of each cluster where parameters

are still locking in (see figure 3.4 for example). The same technique was used at the

beginning of each day to manually set each parameter before acquisition was started, so

it is likely that the initial detunings of each parameter were always biased in the same

direction. Fortunately the parameter detunings are small when averaged over the whole

dataset.

Note that for the probe laser frequency detuning we consider {LF1 · δB} not {LF1}
(which is slightly larger). This is because {LF1 · δB} measures the frequency detuning

of the probe laser from the F = 0 state. {LF1} measures only the detuning from the

nearest peak in the optical spectrum. This is evidently skewed from the F = 0 peak
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as a result of underlying spectral lines. These channels, evaluated using the normalised

probe PMT signal, only measure the detuning of the probe laser beam. This is because

normalising the probe PMT signal with the pump PMT signal almost perfectly removes

all dependence on the pump laser detuning.

In section 4.3.2 it was shown that when V̄ 6= 0 V, de ∝ {RF1F}. We find no other

such correlations (except those described in the previous sections). The systematic

error contribution due to a non-zero {RF1F} is small in comparison to the statistical

uncertainty of the dataset.

Row 8 shows a positive correlation between the frequency detuning of the first and second

rf pulses (rf1 and rf2). The non-zero value is most likely the result of a slow drift in the

supply voltages, as this would shift the resonant frequency equally for both rf pulses.

This is not a major concern, as the polarisation factor (equation 1.13) is insensitive to

small changes in electric field around 10 kV/cm.

Row 9 shows that the π-flipper modulated the amplitude of the second rf pulse in addition

to modulating the relative phase difference between the two pulses. This is not a large

effect and should not have introduced any Ramsey type effects.

Row 10 gives the average uncancelled stray magnetic field along ẑ. In section 4.3.3 it was

shown that this would not cause a significant systematic shift.

Row 11 shows that the electric field reversal caused the molecular signal to change

slightly. This could result from an imperfect electric field reversal, which would change the

efficiency of the rf transitions. When combined with an uncancelled stray magnetic field

(row 10), the channel combination M̂E M̂B {B}{E · δB}/{δB}2 contributes a non-zero

‘lineshape correction’ to the crude EDM channel M̂E M̂B {E · B} as shown in equations

3.13 and 3.14. Overall the lineshape correction is four times smaller than the statistical

uncertainty in de.

Rows 12–15 are discussed thoroughly in section 4.3.1.

The final three rows (16–18) measure interferometer phases correlated to the rf pulse

amplitude modulations and the laser frequency modulation. We have no physical model

for these channels and, like the rf frequency phase correlation, any one of these channels

could generate a fake EDM signal if the corresponding E-switch correlated channel(
M̂E {X · E}

)
is non-zero. Fortunately none of the E-switch correlated channels (other

than rows 14 and 15) are non-zero so we have not investigated these phases any further.

Note that the channels {π} and {π·E} do not feature in the table. A non-zero {π} channel

would indicate that the Ramsey component is non-zero and the π-flipper is actively

cancelling this out over the course of each block. The rf parameters are sufficiently
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locked in to ensure that the Ramsey component is very small. Furthermore, the phase

scrambler suppresses any residual effect by 1/
√

N , where N is the number of blocks in

the dataset. It is not surprising, therefore, that when averaged over the whole dataset,

these channels are consistent with zero. In his thesis [74], Kara conservatively estimated

that, when averaged over the whole dataset, the size of the fake EDM due to the Ramsey

component12 would be no larger than 9 × 10−31 e cm, which is small enough to neglect.

In addition to looking for non-zero channels in the normalised probe PMT, we also

evaluate all 511 channels, with each of the eight possible manual state signings, using

the signals measured by: the pump PMT, the three mini-fluxgate magnetometers, the

Bartington magnetometer, the two leakage current monitors and the two dummy inputs.

In general all these detectors give the expected results, but there are a few exceptions

where certain channel values are non-zero.

The pump PMT does return a significantly non-zero value in {LF1}. This is because

we lock the laser frequency to ensure the probe laser beam is on resonance with the

Q(0)(F = 0) transition, and there is inevitably a small Doppler shift of a few MHz

between the pump and probe laser beams due to slight beam misalignments.

The mini-fluxgate magnetometer positioned right next to HV supplies measures a non-

zero {E}, which indicates that the HV relays generate a magnetic field that changes

when they switch state. However, the 5 m separation between the supplies and the

beam machine sufficiently attenuate this field so that no other magnetometer measures

a significant value for this channel. We are therefore confident that this field has no

significant effect on the molecules.

The Bartington magnetometer does detect both applied magnetic field steps, which is

no surprise. However, this detector does also detect the non-zero channels: {π} and

{RFiA}, which shows that the rf system generates different magnetic fields for each of

the rf amplitude and π-flipper states. These fields are very small and they do not correlate

with the E-switch so are of no concern.

The leakage monitors register E-switch correlated currents of less than 1 nA, which is

tolerable (see section 4.3.3). Weirdly these detectors do return a non-zero M̂B {B},

which cannot easily be explained. Nonetheless these fields are too small to be of any

concern.

12I have scaled his quoted value according the number of measurements in the 2011 dataset.
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4.5 Other Correlations

Further to evaluating each of the non-zero analysis channels, we investigate whether de

depends upon the pump and probe laser polarisation angles, the machine manual state,

or the analysis gate position.

4.5.1 Pump/Probe Laser Polarisation Dependence

Recall that at the beginning of each block the laser polarisations are independently

rotated to randomly chosen angles about the x axis (see section 2.3.3). We can bin

the EDM data by polariser angle and analyse each bin individually, albeit at lower

experimental sensitivity.
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Figure 4.12: The dependence of the measured EDM value upon the angle of the
pump/probe laser linear polarisation. 0◦ was arbitrarily chosen and does not lie along

any particular lab axis.

As shown in figure 4.12, we find no clear dependence on the polarisation angle of either

laser beam, and all fluctuations appear to be purely statistical. A χ2 test that assumes

a constant expected value returns a p-value13 of 73% for the pump polariser binned data

and 13% for the probe polariser data. The relatively small p-value for the probe data is

entirely due to the two outliers at 200◦ and 320◦. However, the distribution of de values

(figure 3.6) has long wings, so occasional outliers are to be expected.

The most likely alternative model for either set of binned data would be a sinusoidal

variation with a period of either 180◦ or 360◦. If we fit the amplitude and phase of such

models, we measure no significant variation for either set of binned data.

13This is defined as the probability of obtaining a χ2 value at least as small as the one measured for
the assumed model, with the given number of degrees of freedom.
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As the binned data is consistent with a constant EDM value, and because we find no

clear evidence for a sinusoidal variation, we assert that the EDM value does not depend

upon the polarisation angle of either the pump or probe laser beam.

4.5.2 Manual State Dependence

As shown in figure 4.13, if the EDM data is binned and analysed by manual state, we see

no statistically significant dependence on the manual state of the machine. This is shown

more quantitatively in table 4.2, where each row quotes the difference in the measured

EDM, ∆de, between states of opposite manual configuration; there are seven pairs in

total. For example the row labelled ME compares the weighted average of the second

four points in figure 4.13, where ME = true, to the weighted average of the first four

points, where ME = false. As each difference in table 4.2 is consistent with zero we can

be confident that the E, B and rf field producing hardware were working properly during

acquisition; the measured EDM value did not change when any electrical connections

were reversed.
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Figure 4.13: Corrected (blinded) EDM value filtered by manual state (ME , MB , MRF ).
Each point contains only ∼750 data blocks, so the error bars are roughly three times
larger than the statical uncertainty on the final result. The solid and dashed horizontal
lines represent the final (blinded) EDM measurement and its statistical uncertainty

respectively.

4.5.3 Molecular Arrival Time Dependence

During acquisition of the main dataset V̄ was carefully zeroed to minimise the voltage

offset systematic effect (section 4.3.2). As was shown in figure 4.7, when V̄ = 0.0 V

we observe no temporal variation of de across the normed PMT time of flight profile.

However, the analysis gates used to generate that figure are quite narrow, so the molecular

signal in each gate is quite low. This makes the uncertainty for each point relatively high
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Table 4.2: Differences in measured EDM values between states of opposite manual
configuration.

Manual State Signing ∆de (10−28 e cm)

ME −6 ± 12

MB −11 ± 12

MRF 3 ± 12

ME MB 1 ± 12

ME MRF 8 ± 12

MB MRF −3 ± 12

ME MB MRF 17 ± 12

compared to the uncertainty that can be achieved by integrating the whole TOF profile

(the statistical uncertainty on de will be discussed in more detail in the next section).

In order to verify the absence of a temporal dependence with higher precision we can

split the main analysis gate into two halves and compare measurements made with the

relatively fast molecules to those made with the slow.

A full analysis of the main dataset using these two gates returns nothing unexpected —

all channel values are consistent with those quoted in the previous sections and we find

no manual state dependence. For the fast gate, defined over the period (2132 − 2198) µs

(see figure 2.11), the blinded EDM value is (86.6 ± 7.0) × 10−28 e cm. This agrees very

well with the EDM value of (91.4±6.7)×10−28 e cm, which was measured using the slow

gate, defined over the period (2198 − 2264) µs. It must be pointed out that the two error

bars are correlated by almost all sources of noise except shot noise, so saying they agree

within error is somewhat dubious. But it is at least clear that the choice of analysis

gate does not affect the final result significantly. The difference is within the statistical

uncertainty of the final result, discussed in the next section.

4.6 EDM Sensitivity Variation with PMT Gates

In section 4.1 it was stated that the PMT analysis gates were chosen to minimise the

statistical uncertainty in de. The joined blue points in figure 4.14 show the variation in

EDM sensitivity with probe PMT analysis gate centre time and width14. The sensitivities

14Recall that the pump PMT gates are defined by dividing the probe PMT gates by the ratio of the
pump and probe laser distances from the molecular source (=3.842). This ensures both PMTs sample
the same molecules.
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shown were calculated using the 6194 blocks that were taken under normal running

conditions. As can be seen, EDM sensitivity is optimised with a 130 µs wide probe PMT

gate centred 2198 µs after the initial YAG laser Q-switch trigger signal. With this gate,

the uncertainty on de, at the 68.3% confidence level, is 5.7 × 10−28 e cm.
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Figure 4.14: Demonstration of how the EDM sensitivity varies with analysis gates.
The joined blue points represent the statistical uncertainty at the 68.3% confidence level,
as measured by bootstrapping the 5% trimmed mean (see section 3.8). The dashed red
line indicates the shot noise limit as predicted by equations 4.27 and 4.28. In (b) the
analysis gate is centred 2198 µs after the initial YAG laser Q-switch. We choose to
analyse the dataset with a 130 µs wide probe PMT gate centred 2198 µs after the initial
YAG laser Q-switch. The pump gate is defined by dividing the probe PMT gate times

by 3.842. These gates minimise the statistical uncertainty in de.

It is interesting to compare the minimum statistical uncertainty with the shot noise

limit. We can estimate this from the PMT signals that we observe under normal running

conditions. It can be shown (see appendix B) that

σshot =
µB BδB

Eeff

√
κprobe {SIG}probe

4096 N {δB}2
probe

=
φδB ~
T Eeff

√
κprobe {SIG}probe

4096 N {δB}2
probe

=
3.9 × 10−26

√
N

e cm,

(4.27)

where κprobe = 0.1 V/MHz is the probe PMT calibration factor, BδB = 1.7 nT,

Eeff = 14.5 GV/cm, {SIG}probe = 49.6 Vµs and {δB}probe = 6.09 Vµs. N is the number

of blocks measured. Setting N = 6194, in equation 4.27 gives an uncertainty of

4.9 × 10−28 e cm. However, normalisation of the probe PMT signal with the pump PMT

signal increases this value by the ratio

√
κprobe

{SIG}probe
+

κpump

{SIG}pump

/√
κprobe

{SIG}probe
= 1.12, (4.28)

where κpump = 0.02 V/MHz is the pump PMT calibration factor and

{SIG}pump = 39.7 Vµs. Multiplication of equations 4.27 and 4.28 gives a shot

noise limited uncertainty of 5.5 × 10−28 e cm, which is 4% smaller than the optimum

measured uncertainty. The difference is likely due to ambient magnetic field noise

(section 4.2.1) and slightly detuned experimental parameters (see below). The long tails
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in the distribution of de (section 3.8) is also likely to add to the discrepancy. With this

in mind a 4% difference does not cause us major concern.

Consider figure 4.14(a) again. The dashed red line shows the shot noise limit as calculated

using the average values of {SIG} and {δB} for a 130 µs wide gate centred at various

times over the probe PMT TOF profile. The minimum shot noise is achieved with a gate

centred at 2213 µs. This gate maximises the molecular signal. Interestingly the minimum

in the shot noise limit does not coincide with the centre time of 2198 µs, which we find

minimises the overall statistical uncertainty in de. We have no conclusive explanation

for this, but it is very likely that the bias towards early times is linked to the fact that,

during data acquisition, the active parameter locks used an analysis gate centred at

2156 µs. This was a mistake. The locks ensure that parameter detuning averages to zero

over the lock analysis gate. Since the lock gate was biased towards the faster molecules

(that arrived at earlier times), we find that some parameters, such as the rf amplitude

and frequency, are detuned for the slower molecules (that arrived at later times). It

is possible that parameter detuning could add noise to the EDM signal through some

non-linear mechanism, although we have not investigated this at all in any detail.

If we had acquired EDM data with the lock analysis gate centred at 2213 µs rather

than 2156 µs, it is likely that the measured uncertainty would have coincided with the

minimum in the shot noise limit. However, the associated reduction in uncertainty would

be relatively small (∼ 0.1 × 10−28 e cm). Regardless, the statistical uncertainty that we

do measure, 5.7 × 10−28 e cm, is more than sufficient to set a now world leading limit on

the electron EDM.

4.7 EDM Value

With the blind offset removed the final result, at the 68.3% confidence level, is

de = (−2.4 ± 5.7stat ± 1.7syst) × 10−28 e cm. (4.29)

The two error bars correspond to the statistical and systematic uncertainties respectively.

The systematic error is calculated by adding in quadrature the uncertainties summarised

in table 4.3.

We can set an upper limit on our measurement by bootstrapping the measured values

of |de| instead of de. The statistical confidence bounds, σstat, p%, are then calculated by

integrating the one-sided probability distribution from zero, and extracting the values of

|de| where the integral contains p% of the distribution. Systematic uncertainty bounds

σsyst, p% are calculated by assuming a Gaussian distribution with a mean of zero and a
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Table 4.3: Summary of the uncertainties which limit our measurement of de.

Source Uncertainty (10−28 e cm)

δE effects 1.1

V̄ effects
√

1.32 + 0.12

leakage currents 0.2

shield magnetisation 0.25

geometric phase 0.01

total systematic uncertainty 1.7

total statistical uncertainty (68.3% CL) 5.7

standard deviation of 1.7 × 10−28 e cm. The total bound on |de| is then calculated by

combining these two uncertainties according to
√

σ2
stat, p% + σ2

syst, p%. Table 4.4 lists the

upper limit on |de| at various confidence levels.

Table 4.4: Bootstrap calculated bounds on |de|.

Confidence Interval (%) Bound on |de| (10−28 e cm)

68.3 6.5

90.0 10.6

95.8 13.1

99.5 18.4

Comparing our 90% confidence limit of 10.6 × 10−28 e cm to the comparable previous

best limit of 16 × 10−28 e cm, made using beams of thallium atoms in 2002 [58], it can be

seen that our value reduces the upper limit by a factor of 1.5. Admittedly this is only

a modest improvement which does not significantly affect the EDM limitations on new

physics beyond the standard model, but our experiment is subject to different sources of

systematic error to the thallium beam electron EDM experiment, so the two results can

be seen as complementary. It is pleasing, therefore, that the two measurements agree

within error.

It is worth emphasising that our new measurement is significant, as it is the first

time that a new improved limit on the electron EDM has been set using molecules

rather than atoms. Comparing the relative size of the statistical uncertainty to each

systematic uncertainty value quoted in table 4.3, it is clear that there is still potential for

a more sensitive EDM measurement. The large enhancement factor, and insensitivity

to perpendicular magnetic fields make YbF molecules great candidates for marked

improvement on the electron EDM limit. This measurement is the first step down that

research avenue.
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Note that the physical mechanism of the enhancement factor is rather complex and is

subject to theoretical calculation. There are a number of calculations of Emax
eff for YbF

[41–46], and most values agree to within 10%. However, our result can be interpreted

as a measurement of the P,T-violating EDM of the YbF molecule at 10 kV/cm. In

order to calculate appropriate values for this, multiply the values in table 4.4 by

Eeff/E = −1.45 × 106.



Chapter 5

Upgrading the YbF

Interferometer

After publishing our EDM measurement we decided that we should upgrade the

experimental setup to eliminate certain systematic effects and improve the statistical

uncertainty.

The most significant upgrade to the apparatus was to improve the uniformity of the rf

polarisation over the length of the HV plates. We did this to enable their full length to

be used for EDM measurement, which should improve EDM sensitivity by approximately

75%. We also took the opportunity to upgrade the rf amplifier so that shorter rf pulses

could be applied to reduce the dependence of the molecular signal on rf detuning, and

hopefully reduce the associated systematic effects. Other upgrades included adding a

third layer of magnetic shielding to reduce the magnetic field noise, as well as increasing

the applied electric field to increase the EDM sensitivity. A full account of all the upgrades

is given in section 5.1.

After making changes to the experimental apparatus we ran a series tests to measure

the gain in sensitivity and check that none of the changes introduced any new sources of

systematic error. Section 5.2 discusses each test in turn. A summary of the systematic

uncertainties and a measurement of the EDM sensitivity is given in section 5.3.

119
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5.1 Upgraded Apparatus Setup

5.1.1 RF Transmission Line

The model presented in section 2.2.2 assumes that the magnetic component of the rf field

is linearly polarised along the x-axis. As the electric field is also assumed to be along z,

the model predicts that equal populations are driven from |0, 0〉 into the |1, ±1〉 states.

However, if the rf is not perfectly linearly polarised, one of the states |1, 1〉 or |1, −1〉
will couple more strongly to the rf. This is because the transitions between |0, 0〉 and

|1, ±1〉 are driven by circularly polarised rf with opposite handedness. When the rf is

linearly polarised along x the amplitudes of the two circular components equal, but if the

rf polarisation is not perfectly linear the amplitudes become unequal.

An unequal coupling to the rf can create a population difference between the |1, ±1〉
states. In addition it can affect the phase difference that is accumulated during each rf

pulse, if the |1, ±1〉 states are split by a magnetic field and the rf frequency is detuned

from the mean separation between |0, 0〉 and |1, ±1〉. A phase difference between the

|1, ±1〉 states can also be generated if the rf polarisation ellipse rotates about the axis of

the applied electric field during each rf pulse [55, 96].

A difference in population between the |1, ±1〉 states should only reduce fringe contrast

and hence limit the experimental sensitivity. But changes in fringe contrast that correlate

with the E-switch inflate the ‘lineshape correction’
(
M̂E M̂B {B}{E · δB}/{δB}2

)
, which

is undesirable.

The phase difference between the |1, ±1〉 states that is acquired during each rf pulse is

a major source of concern, as it might somehow depend upon the E-switch and hence

mimic an EDM. One possible mechanism is through a non-zero voltage offset. Recall

from section 4.3.2 that this effect causes the electric field distribution to change when the

direction of the electric field is reversed. As the molecules are only sensitive to rf in the

plane perpendicular to the local electric field, a change in field distribution could change

the phase acquired during each pulse.

We attempt to minimise the effects of polarisation rotations and elliptically polarised rf

by driving transitions between |0, 0〉 and |1, ±1〉 in plate regions where the rf polarisation

is known to be highly uniform. As Kara demonstrated [74] (see also below), with the

original transmission line setup, the rf becomes slightly elliptically polarised towards

either end of the parallel plates. So for the 2011 measurement only the central 40 cm

region of the 70 cm long plates was used for free evolution of the molecular state in static

electric and magnetic fields.
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In the shot noise limit, the EDM uncertainty is inversely proportional to the phase

evolution period. This is easily understood, as the EDM phase is linearly proportional

to the free evolution period. A larger phase produces a bigger change in signal between

electric field switch states, and hence a larger signal to noise ratio. It was decided that

we should attempt to increase the polarisation uniformity so that the whole length of the

HV plates could be used, potentially increasing experimental sensitivity by up to 75%.

parallel plate
transmission
line

trimming
capacitor

DC isolating
capacitor

semi-rigid
coaxial

Figure 5.1: Original scheme for coupling rf onto the parallel plate structure. Only
one end of the plates is shown — rf is coupled out at the far end with an equivalent
setup. The trimming capacitors help with impedance matching between the coaxial and
parallel plate transmission lines. The isolating capacitors protect the rf electronics from
the DC high voltage required for the EDM interaction. Note the asymmetric setup and

the exposed capacitor legs which may act as rf antennae.

In the original apparatus setup the rf is coupled onto the parallel plate structure through

DC isolating capacitors, as illustrated in figures 2.12 and 5.1. The coupling is off centre

and there are many exposed capacitor legs which might act as antennae — radiating

rf into the parallel plate region. Both artefacts could distort the rf polarisation, so we

decided to improve the rf coupling to minimise polarisation rotations and any ellipticity

generated at each end of the parallel plate transmission line.

Before describing the upgrades to the rf system, it is worth describing the technique used

to map the rf polarisation along the beam line. In general a field map is generated from

many single rf pulse parameter scans, where the rf pulse time is incremented in between

each scan so that molecules interact with the rf field at different positions within the

machine. The parameter scans are then converted to field measurements by fitting each

to an appropriate physical model, as described in section 2.3.5 and [84].

In order to map the rf polarisation, the rf pulse frequency is continuously scanned over

the ∼ 170 MHz resonance. Relatively large electric and magnetic fields of 2 kV/cm and

2 µT are applied along z to polarise the molecules and split the F = 1 manifold so that

the |0, 0〉 → |1, ±1〉 transitions are resolved. As each transition is driven by a different

rf polarisation1, a comparison of the rf spectral peak amplitudes provides a measure of

1∆mF = 0 from linearly polarised rf along z, ∆mF = ±1 from left and right handed circularly
polarised rf about z.
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the relative amplitude of each polarisation. We set the rf pulse power to the π/2-pulse

requirement so that the difference in peak height is linear in transition amplitude. The

rf pulse length is set to be 50 µs, which is small enough to ensure the molecules do not

move far during each pulse, yet large enough to easily resolve each spectral peak.

Figure 5.2 shows an example of a frequency scan over the |0, 0〉 → |1, ±1〉 resonances,

which clearly demonstrates differing amounts of left and right handed circular polarisations.

The amplitudes are determined by fitting each peak to equation 2.16a, with the addition

of an overall amplitude scaling and background offset. The solid red line in figure 5.2

demonstrates the best fit in this instance.
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Figure 5.2: The rf lineshape observed by scanning the rf frequency over the 170 MHz
resonance. The red line represents the best fit to a double lineshape function of the form
given in equation 2.16a. The central frequency provides a measure of E0, the splitting
between the peaks measures B0, and the difference in heights measures the ellipticity of

the rf pulse.

Unfortunately the field mapping technique described above can only measure changes

in ellipticity — it cannot measure general rotations of the polarisation ellipse about the

z-axis. This is because |0, 0〉 couples equally to both x and y polarised rf. However,

a polarisation rotation and change in ellipticity will most likely result from the same

apparatus imperfection, since the parallel plate transmission line should generate a perfect

TEM mode, with the oscillating magnetic field polarisation along x. We can therefore

argue that a uniform linear polarisation along the length of the beam line is a good

indication that there are no large polarisation rotations between the parallel plates.

To gain a better insight into the nature and homogeneity of the rf polarisation along the

plate length the field maps were supplemented with loop antenna probe measurements,

which can detect rotations of the polarisation ellipse, albeit rather crudely, being subject

to errors such as capacitive pick-up and the electrical properties of the local environment2.

These probe measurements were performed out of vacuum, on an optical bench.

2Namely where I stood and how the plates were positioned in lab.
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Figure 5.3: A map of the rf polarisation as measured by the molecules. Circular blue
points represent measurements that were taken before the transmission line upgrade.
The square red points are for the coupling scheme illustrated in figure 5.4(a), the diamond

green points are for the final transmission line design, as illustrated in figure 5.4(b).

Figure 5.3 shows the molecular field mapping measurements made on the original rf

transmission line and the subsequent upgraded setups that are detailed below. The

ellipticity, e, is a measure of the relative amplitude of the left and right handed circular

components of the rf about the z-axis. It is defined according to

e =
a+ − a−
a− + a+

, (5.1)

where a± are the measured heights of the two peaks shown in figure 5.2, that correspond

respectively to the transitions between |0, 0〉 and |1, ±1〉. e = −1 corresponds to full

left hand circularly polarised rf about the z axis, e = +1 to right hand circular. e = 0

represents an equal superposition of left and right handed polarisations, i.e. linear

polarisation.

Consider the molecular field mapping measurements made on the original rf transmission

line setup. As shown by the circular blue points in figure 5.3, the polarisation is linear

along x over the central region, however, some ellipticity is generated towards either end

of the plates. This is not surprising considering the highly asymmetric setup illustrated

in figure 5.1. As stated, the coupling point is off centre and there are many exposed

capacitor legs which might radiate rf between the parallel plates. Probe measurements

on a replica set of parallel plates have confirmed that this setup does indeed generate

some ellipticity at each end, but the predominant effect is to rotate the polarisation

ellipse about z towards the coupling point. Both effects are undesirable and result from

a non-ideal rf field component in the y-axis, B
(rf)
y .

To minimise the B
(rf)
y component the setup illustrated in figure 5.4(a) was developed on

the spare set of parallel plates. This setup is designed to be highly symmetric, with all
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(a) Upgraded coupling scheme. The conducting
loop passes the current flowing along the shield of
the coaxial cable onto the lower HV plate.

parallel plate
transmission
line

trimming
capacitor

low 
impedance
conductor

λ/2 semi-rigid
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un-balanced
semi-rigid
rf feed

HV plates

(b) Upgraded rf transmission line. The rf is transported
along a second set of parallel plates which stradle the
HV plates and extend 5 cm at either end to allow
transient field components to die away. The low
impedance conductor ensures a constant voltage on the
coaxial shield at either end of λ/2 balun. The balun is
matched to 172 MHz rf.

Figure 5.4: The two designs for the upgraded rf coupling schemes. Only one end of
the plates is shown — rf is coupled out at the far end with an equivalent setup. The
trimming capacitors help with impedance matching between the coaxial and parallel
plate transmission lines. The isolating capacitors protect the rf electronics from the DC

high voltage required for the EDM interaction.

exposed wire kept to a minimum, or hidden above and below the plates to prevent them

from radiating between the plates. Currents flowing around the conducting loop and out

from the coupling point act to cancel B
(rf)
y in the region of the molecular beam (along

the centre line of the plates).

Figure 5.5 shows a comparison of the loop antenna measurements along the beam line

for the original and new coupling schemes. The ‘relative normalised amplitude’ is the

amplitude of the x, y and z components of the rf normalised such that when added in

quadrature, their sum is always one. Comparing figures 5.5(a) and 5.5(b), it is apparent

that the new coupling scheme notably improves the rf polarisation. B
(rf)
y is consistent with

zero right up to the coupling point. Unfortunately negation of B
(rf)
y is incomplete away

from the centre line, however this component is antisymmetric about the coupling point

so should cancel when averaged over the full width of the molecular beam. Furthermore,

probe measurements suggest that, near the coupling point where the polarisation is worst,

for small departures from the centre line (< 1 cm — the maximum width of the molecular

beam), the amplitude ratio B
(rf)
y /B

(rf)
x is ∼20 times smaller with upgraded setup than

the original.

Despite the encouraging predictions of the loop antenna measurements, when the coupling

scheme illustrated in figure 5.4(a) was installed within the vacuum chamber, we found

that a significant B
(rf)
y persisted. As shown by the red square points in figure 5.3, the

molecular field map exhibits significant deviations from linear near the coupling points

at both ends, but particularly over the first 0.2 m of plate length. The results of this field

map are inconsistent with the probe measurements shown in figure 5.5(b). We don’t fully
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(a) Original coupling scheme as illustrated in figure
5.1.
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(b) Upgraded coupling scheme as illustrated in figure
5.4(a).

Figure 5.5: Normalised (x, y, z) rf field amplitudes mapped down the centre line of
the plates, over the first 20 cm of the transmission line using the loop antenna probe.
Note the marked improvement of the upgraded coupling scheme shown in (b): the field

is almost entirely polarised along x.

understand this, but it should be noted that the probe and molecular measurements where

made on two different setups. The probe measurements were made on the spare plates

during development of the new scheme, whereas the molecular field map was made after

the new scheme had been replicated on the plates used for our last EDM measurement.

It is likely that a difference between the two builds caused the conflict between the two

polarisation measurements.

One possible explanation for the significant ellipticity observed near the coupling points

is that the conducting loops did not radiate symmetrically. Another possibility is that

the coupling points were displaced sightly from the beam line. Regardless of the cause for

the non-zero ellipticity, the upgraded setup presents no advantage over the original. We

would have to set the rf pulses to be at 0.2 m and 0.6 m, giving a 0.4 m phase evolution

length which is exactly the same as it was before.

To allow the whole length of the HV plates to be used for phase evolutions a third setup

was developed wherein the rf is propagated along a second set of parallel plates that

straddle the HV plates and extend beyond them by 5 cm at either end. This setup is

illustrated in figure 5.4(b). The new rf transmission line plates are 5.6 cm wide, 85 cm

long sheets of 2 mm aluminium that are separated by 5.2 cm. As shown in the photos

and schematics presented in appendix C, these plates are held in place with PEEK feet

which attach to new support extensions that screw into the existing HV plate support

structure. Teflon clamps in the centre prevent the plates from bowing.

Like the previous setup, this upgrade continues to couple rf to the centre of the plates to

avoid large polarisation rotations and cancel B
(rf)
y along the molecular beam. However,

the conducting loops, used to pass rf onto the lower plate of the transmission line, have

now been replaced with semi-rigid coaxial cables which should contain the rf within their
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outer shield and not radiate into the HV plates. The coaxial loops are quite long, so we

routed them around the grounded HV plate support structure to further separate/isolate

them from phase evolution region3. The low impedance conductor ensures an equal

voltage reference on the coaxial shield at either end of the loops. This is important

for impedance matching, as described below. The 5 cm extensions at either end of the

HV plates provide a final measure to help improve rf polarisation within the HV plate

region. This extra length should allow transient rf field components to die away before

the electric field plate region.

5 pF 5 pF

5 pF5 pF

λ/2 semi-rigid
coaxial balun

λ/2 semi-rigid
coaxial 
balun

trimming capacitorun-balanced
coaxial rf feed

un-balanced
coaxial rf feed

balanced parallel plate
rf transmission line

HV plates

Figure 5.6: A schematic diagram of the new rf transmission line.

A complication of increasing the rf plate spacing is that it increases the transmission

line characteristic impedance, Z0. For a parallel plate transmission line, Z0 ∝ s/w,

where s is the plate spacing and w is the plate width [97]. For all practically feasible

combinations of plate width and spacing, the predicted impedance is roughly four times

that of the 50 Ω coaxial rf feeds. This poses a problem as the power transmitted from

one transmission line to another is only maximised when their impedances are matched

[98]. Large impedance jumps at both coupling points would cause reflections and hence

a large standing wave within the plate region, which we may not be able to compensate

for with the rf attenuators (see section 2.3.5).

To maximise the transmitted rf power, we smoothly transition the impedance from the

50 Ω semi-rigid coaxial up to 200 Ω with a 4:1 balun, made from a λ/2 = 0.606 m length of

coaxial cable, as designed to work with 172 MHz rf [99]. As shown more clearly in figure

5.6, the balun adds a 180◦ phase delay to the signal going to the second plate. This

arrangement couples the unbalanced coaxial transmission line to the balanced parallel

plate line4.

The 5.2 cm plate spacing as quoted above was empirically chosen to match the line

impedance to the required 200 Ω. We varied the plate spacing with a custom jig until

the transmitted rf power was maximised, and the standing wave (as sampled with the

loop antenna) was minimised. The 5 pF trimming capacitors soldered at either end

3Unlike in the illustration in figure 5.4(b), where the cables pass next to the HV plates.
4In a balanced transmission line, each of the conductors has equal impedance to ground.
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attempt to make up for any residual impedance mismatch that occurred when the new

transmission line was added to the HV plate support structure used within the machine.

Unfortunately impedance matching is now frequency dependent, however we have found

that rf transmission does not change significantly over a 10 MHz band about the 172 MHz

operating frequency.

As shown by the green diamond points in figure 5.3, the third rf setup successfully

ensures a linear rf polarisation along x over the whole length of the HV plates. After

careful consideration of the plate geometry we decided to set the rf pulse centre times

to be 820 µs and 1800 µs after the initial valve pulse. These timings increase the phase

evolution period from 642 µs to 976 µs, which should reduce the uncertainty in de by 34%.

The pulse timings were chosen to ensure that all molecules within the gated region of

the TOF profile are at least 1 cm from the HV plate edges during the rf transitions.

With these settings approximately 60 cm of the 70 cm plate length is utilised for phase

evolution. Unfortunately the timing of second rf pulse is constrained by a small amount of

rf pick-up on the probe PMT amplifier. If the second rf pulse is left too late, the trailing

edge of the pick-up coincides with the molecular signal on the probe PMT. Setting the

centre time of the second rf pulse to 1800 µs conservatively prevents this from occurring.
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Figure 5.7: A typical TOF profile observed on the probe PMT. The blue line
demonstrates the molecular signal with no rf2 pulse. The red line shows the signal
with an rf2 pulse but no molecular beam. The negative (red) dip shows the unwanted
rf pick-up by the PMT amplifier, this dies away before the gated interval illustrated by

the shaded blue region.

Figure 5.7 demonstrates the pick-up on the probe PMT. Note that the pick-up appears

to die away long before the gated region. To be sure that the pick-up does not generate

a systematic error we can gate the interval containing the rf pick-up and analyse this for

an EDM signal. When we do this we find no evidence that the rf pick-up generates a

systematic shift.

By increasing the pulse separation we decrease the pitch of the cos2 (φ) interference fringes

(equation 2.19b). We therefore need to reduce B0 and BδB to maintain the respective
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phase steps of 2 π/4 and 2 π/32. We scale these fields to be B0 = 642
976 × 13.6 nT = 8.9 nT

and BδB = 642
976 × 1.7 nT = 1.1 nT by adjusting the magnetic field stepping currents to

IB0 = 0.530 mA and IδB = 0.065 mA.

5.1.2 High Voltage Plate Flattening

During the installation of the first rf system upgrade, we took the opportunity to attempt

to reduce the electric field variation along the HV plate length. This would be beneficial

to reduce the detuning across the molecular pulse and reduce certain systematics such as

the geometric phase.
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Figure 5.8: A map of the variation in HV plate separation. This was calculated by
mapping the applied electric field and assuming uniform plate voltages. The blue points
are before the apparatus upgrade. The red points are for softer springs on the HV
feedthroughs. The green points are for softer springs and a reduced number of ceramic
dowels supporting the plates. Evidently neither modification had a significant effect on

the bending of the plates.

The field variation was first discovered in 2007 [73, 74, 84], and was thought be due to

a bend in the plates caused by the spring loaded HV feedthroughs pushing on the plates

in between the two pairs of ceramic dowels that hold each field plate in position at either

end (see figure 2.15(a)). Assuming a uniform plate voltage, a variation in plate spacing

of up to 100 µs was observed. This is demonstrated by the blue points in figure 5.8. The

dowel pairs are located at roughly 0.1 m and 0.6 m, and the feedthroughs make contact

at ∼0.35 m. This electric field map was obtained by applying a known voltage to the

plates and determining the resonant rf frequency for different molecular cloud positions

within the machine. As the quadratic Stark interaction has been well calibrated [36],

these frequency measurements were easily converted to applied electric fields and hence

plate spacing measurements.

In our first attempt to fix the bend, we used much softer springs on the feedthroughs to

reduce their pressure on the plates. When the plates were reinstalled within the chamber,

a new field map revealed that this had no effect on the observed plate spacing. This is
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shown by the red points in figure 5.8. It appears that the springs were not responsible

for the plate bowing.

As explained previously, the plates were removed a second time to install the new

rf transmission line. In a second attempt to fix the bending, the number of dowels

suspending the HV plates was reduced to one at either end. We found that certain

dowels would not freely slide through the plates and the surrounding support structure.

It was believed that these dowels might be bending the plates rather than simply holding

them in position. Once the plates were replaced, a repeat electric field map revealed that

removing these dowels also had no major effect on the observed field. This is shown by

the green points in figure 5.8.

The origin of the observed field variation still remains unresolved. However the slight

variation is not a major concern to us, as the geometric phase systematic is negligible,

and we should be able to reduce the systematic effects that depend upon rf detuning by

broadening the transition linewidth with shorter rf pulses.

5.1.3 Shorter RF Pulses and a More Powerful RF Amplifier

Both the rf detuning phase correction and the electric field voltage offset systematic

depend upon rf frequency detuning. While we have no physical model for these effects, it

is certainly true (in the RWA) that the dominant molecular interaction with the rf field

does depend upon the product of the detuning, δ, with the rf pulse length, τ . We might

therefore hope that any spurious effects induced by the rf will also depend upon the δ τ

product. If this is the case we should be able to make these systematic effects smaller by

shortening the rf pulse length. This is indeed the case, as will be shown in section 5.2.

From equation 2.19b it can be shown that interference contrast also decreases as a function

of δ τ . Reducing the pulse length would make the experiment run closer to its optimum

sensitivity more often. It would also reduce the attenuation in EDM sensitivity that

results from a variation in detuning across the molecular pulse.

To allow the application of shorter rf pulses, we purchased a CPC MRI plus 7T1000M

rf amplifier to replace the ar worldwide KAW1050 amplifier used previously. Tests have

shown that the upgraded rf system is capable of applying 2 µs long π-pulses to the

molecules, over the whole length of the HV field plates. This is roughly a factor of

10 reduction from the 18 µs pulse length used previously, which is excellent considering

the fact that increasing the plate spacing reduced the rf field strength. Furthermore, the
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new rf setup increased the reflectance5 at either end of the transmission line from 20%

to approximately 45%. A large standing wave does not change the physics presented

in section 2.2.2 and above, but it does mean certain pulse times/positions require more

injected rf power than others to apply π-pulses to the molecules.

With shorter rf pulses we should require correspondingly larger rf amplitude and

frequency steps to ensure the locks continue to work efficiently. As the amplitude steps

are multiplicative, these scale naturally with rf power, so the attenuator control voltages

need not be changed. For the 2011 dataset, the signal to noise ratio on the rf frequency

channels far exceeded requirement. We therefore do not need to scale the frequency steps

in proportion to the decrease in pulse length. We have found that 2 kHz frequency steps

are more than sufficient for our needs even with short 2 µs pulses. This is beneficial, as

the experiment will run closer to zero rf detuning.

5.1.4 New Magnetic Shields

Replacement Inner Magnetic Shield

pump PMT

inner magnetic
shield

pump 
collection 
optics

pump laser 
beam

high voltage
plates

magnetic
�eld coils

y

z x

rf transmission
line

extended legssuspended 
baseplate

vacuum
chamber

E-�eld
shielding
table

Figure 5.9: Lower half of science chamber following rf transmission line upgrade. Note
the pump PMT optics now reside inside the inner magnetic shield. Not drawn to scale.

In order to accommodate the longer rf transmission line, a new ‘inner’ magnetic shield

was installed in the upper vacuum chamber. This shield has the same diameter as the

previous (170 mm), but is slightly longer at 985 mm in length. In this setup, the pump

PMT optics now reside inside the shielded region rather than below it, as shown in figure

5.9 (see also figure 2.7). To protect the optical pumping region from fringe electric fields,

which might cause some systematic effect, we placed an earthed aluminium table over

5We calculate the transmittance and reflectance from the voltage standing wave ratio (VSWR) of an
rf amplitude field map. These are generated from many Rabi flopping curves which are scanned out at
various rf pulse times, see [84] and previous theses for full details.
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the pump collection optics; a small 12 mm hole in the middle allows the molecular cloud

to pass through.

In the new setup the HV plates sit 5 cm lower than they used to. This is advantageous

as it moves the parallel plates away from the inner shield end caps, where stray magnetic

fields are known to rapidly increase to 200 nT (see [74, 84]). After installing the new

field plate assembly, we mapped the ambient magnetic field (in z) along the beam line.

This was done by comparing the |1, −1〉 ↔ |1, +1〉 splitting for opposite orientations

of a large applied Bz field, at different rf pulse times. As before, all the details of the

mapping technique are given in references [74, 84]. With the new HV plate position, the

ambient field remains uniform over the whole plate length. All fluctuations are within

the statistical uncertainty of the measurement technique, and we observe no deviations

towards either end of the HV plates. This is excellent as it means we may use the full

length of the plates for EDM measurement6.

A Second Outer Magnetic Shield

To reduce the size of ambient magnetic field noise, we purchased a third layer of magnetic

shielding to surround the old ‘outer’ magnetic shield. This new shield is made from

1.0 mm µ-metal, and has the dimensions �0.8 m×1.6 m.

We measured the impact that this additional shield has on the magnetic field noise

by collecting a small dataset containing 2579 blocks, and comparing the Bartington

magnetometer readings to those from the 2011 dataset. Recall that this magnetometer

is located on the vacuum chamber, within all ‘outer’ layers of magnetic shielding.

From the test dataset, we find that the third layer of magnetic shielding has little effect

on the size of the ambient magnetic field between the hours of 7pm and 7am. During the

day, however, the shields have a much larger effect. This can be seen in figure 5.10 and

table 5.1, which compare the width of the M̂E {E}Bart distribution for the test dataset

to that obtained from the 2011 dataset.

It is not surprising that the distributions are similar during the night, as the experiment

previously ran very close to the shot noise limit during this period. However, during the

day, there is much more magnetic field noise in the physics department, so the reduction

in ambient field is much larger. Consider the values presented in table 5.1. Interestingly

the ratio of the distribution widths is less than one, in both columns, for the 90.0 and

95.8 percentiles. This likely indicates that the new outer shield removes the outliers in

the distribution both day and night.

6Ignoring the technicality introduced by the rf pick-up on the PMT amplifiers.
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Figure 5.10: Distributions of the E-switch correlated ambient magnetic field as
measured by the Bartington magnetometer. The blue bars in the histograms, and dashed
lines in the cumulative distribution plots are measurements taken with only one layer of
outer magnetic shielding. The red bars and solid lines represent measurements with two
layers of magnetic shielding. Overnight the distributions appear very similar as there is
very little activity in the physics department, so in both cases the experiment runs very
close to the shot noise limit during this period. During the day, however, there is much
more magnetic field noise in the physics department, so the second outer shield has a

much larger influence.

Table 5.1: Reduction in width of M̂E {E}Bart distribution due to a third layer of
magnetic shielding.

Percentile Ratio of distribution widths

7am–7pm 7pm–7am

68.3 0.55 1.1

90.0 0.61 0.91

95.8 0.74 0.76

Averaged over the whole test dataset the Bartington magnetometer measures a magnetic

field noise of 0.17 nT
√

block. We can use the measured correlation between de and

M̂E {E}Bart (as in section 4.2.1) to estimate the magnetic field noise as seen by the

molecules in EDM units. We estimate a value of 9.2 × 10−27 e cm
√

block, which is 30%

smaller than the value averaged over the 2011 dataset (1.3 × 10−26 e cm
√

block). As

expected, this improvement is roughly half way between the day and night predicted

reductions quoted in table 5.1 for the 68.3% percentile. Of course this 30% reduction in
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magnetic field noise does not directly translate to a 30% reduction in the uncertainty in

de, as the measurement of de is predominantly limited by shot noise. However, we expect

the shot noise limit to decrease significantly as a result of the upgrades detailed in the

following sections, so it is important that we reduce the magnetic field noise so that its

fractional contribution to the de uncertainty does not increase in the next measurement.

5.1.5 Increased Electric Field

In the old apparatus setup, with the rf system coupling directly onto the HV plates,

the maximum voltage that we could be reliably charge the plates to was only ±6 kV.

Above this voltage, the plates would often discharge7. This is undesirable as we have

to recondition the plates after each discharge, which can take many days. This process

involves very slowly increasing the plate voltage to the operating value, whilst switching

the HV relays once every ∼ 20s.

When building the new rf setup, we carefully smoothed all sharp edges and corners on

both the support structure and the transmission line plates to reduce the chances of a

discharge. We also ensured that all low voltage components, such as capacitors and semi-

rigid coaxial, were positioned as far away from the HV plates as possible — preferably

behind the rf transmission line plates.

Following the apparatus upgrade, we have found that the experiment is now capable of

reliably charging the HV plates to ±7.5 kV, which has increased the applied electric field

from 10 kV/cm to 12.5 kV/cm. The increased field translates to an effective electric field

of 15.8 GV/cm, giving a 8% reduction in the statistical uncertainty in de.

5.1.6 Independent Pump and Probe Laser Frequency Modulations

During acquisition of the 2011 dataset, the LF1 waveform, WLF1, was set to modulate the

overall dye laser frequency — stepping the frequency of both the pump and probe laser

beams together. We would like the frequency of these beams to be stepped independently

so that each can be better locked to its ideal frequency, and to enable correlation analysis

to be performed on each.

As described in section 2.3.3 the pump laser beam is split from the main beam after the

I2 frequency lock system, which is used for the stabilisation and modulation of the laser

frequency. Recall that we pass the pump beam (twice) through a second AOM, to blue

shift its frequency by ∼172 MHz to become resonant with the Q(0)(F = 1) transition. We

7HV discharges are easily diagnosed by off the scale readings from leakage monitors.
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added an external signal input to the VCO controlling this AOM, so that its frequency

could be computer controlled.

The independent control of the pump and probe beam frequencies is somewhat complex:

We modulate the probe laser frequency as we did before, by stepping the overall laser

frequency with the I2 AOM VCO drive. This modulation remains assigned to WLF1. We

assign the pump beam frequency modulation to a new waveform, WLF2. On each shot

we adjust the voltage to the pump AOM VCO to cancel the frequency steps of the laser

(due to WLF1) as well as step the frequency of the pump beam according to WLF2. The

pump AOM must also cancel the block-to-block frequency shifts of the laser which result

from the {LF1 · δB}/{δB} parameter lock. The four voltages sent to the pump AOM

during a block are automatically calculated at the beginning of each block, when the I2

and pump AOM frequencies are measured.

As both the pump and probe lasers drive Q(0) transitions, their linewidths should be

roughly the same. We therefore modulate the pump laser by the same amount as the

probe laser, which we set to 0.33 MHz. Like the probe beam frequency lock, we lock

the pump laser frequency to {LF2 · δB}/{δB}. However, unlike the probe laser lock,

this channel ratio is measured by the un-normalised probe PMT. This is because the

dependence of the probe PMT signal on the pump laser frequency cancels out when the

probe PMT signal is normalised by the pump PMT signal — the pump PMT signal is

also dependent on the pump laser frequency so {LF2 · δB}/{δB} just returns noise when

measured with the normalised probe PMT.

5.1.7 Third Turbo Pump on the Source Chamber

To improve the vacuum within the source chamber, we purchased a new turbomolecular

pump. This pump replaces the flange that the stepper motor drive and Penning gauge

used to be mounted on (see figure 2.6). The motor drive and gauge were moved onto the

side of a new 8” ‘full nipple’, which was inserted between the source chamber and the

rear turbo pump. The stepper motor drive was re-routed to the Yb target assembly with

a long flexible drive shaft.

We have found that increasing the number of turbos pumping on the source chamber

from two to three increases the YbF signal by (21 ± 3)%. The uncertainty is fairly high

as target spot degradation is quite hard to account for if the pattern is continually started

and stopped. Using equation 4.27, we predict that the signal increase should give a 9%

reduction in the statistical uncertainty in de.
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5.1.8 Updated Lock Channel Analysis Gates

During the acquisition of the 2011 dataset, the analysis gate used to lock experimental

parameters in real time was not the same as that which minimised the statistical

uncertainty in de. As a result, in the final analysis, certain channels reported non-zero

laser and rf parameter detunings. In general this was not a problem, however the largest

contribution to the V̄ systematic uncertainty (section 4.3.2) came from the product of

the average frequency detuning of the first rf pulse, δ̄
(1)
rf , with the uncertainty in the

correlation between de and δ
(1)
rf . It is unlikely that we can better constrain this gradient,

short of acquiring significantly more data blocks or intentionally detuning the rf. However,

by updating the lock analysis gate to that which maximises sensitivity we should be able

to reduce the average rf detuning and hence the V̄ systematic uncertainty.

To get an idea of the level to which we should be able to lock δ
(1)
rf , we can re-analyse

the 2011 dataset using the same analysis gate as that which the locks used. From this

analysis we find that {RF1F}/{δB} = (2.13 ± 0.21) × 10−3, giving an average detuning:

δ̄
(1)
rf = (80.9±8.0) Hz (ignoring the uncertainty in the conversion factor). Combining this

with the gradient (0.3 ± 1.1) × 10−28 e cm/kHz, as was measured with V̄ = 0.0 V, this

average detuning would limit the V̄ uncertainty to be less than 0.15 × 10−28 e cm. This

is almost an order of magnitude improvement over the published value: 1.3 × 10−28 e cm.

We have now updated the lock gate timings to those which minimise the experimental

uncertainty. We have also adjusted the code so that real time lock channel analysis uses

the channel ratios 〈{X · δB}/{δB}〉, as calculated using the non-linear analysis.

5.2 Systematic Limitations of the Upgraded Interferometer

Following the systems upgrade as described in the previous section, we proceeded to test

the experiment for systematic error using the same methods as before (section 4.3). After

running the experiment for a short while with 2 µs rf pulses, we noticed that the high

power rf pulses would cause the leakage monitors to register large ∼ 100 nA currents when

no voltage was applied to the HV plates. Once the plates were charged, these currents

would completely disappear. Furthermore, the leakage would only trigger above a certain

rf power threshold. As this process was not well understood, we decided to adjust the

rf pulse parameters such that the rf induced leakage would never occur. We reduced the

required rf power by increasing rf pulse length. The systematic tests presented here are

those that were taken with 4 µs long rf pulses.
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5.2.1 Detuning Phase Correlation

In section 4.2.2 I discussed an empirical correction that we apply for an interferometer

phase correlated to the frequency of both rf pulses. This dependency causes a systematic

shift if the magnitude of the electric field changes by a small amount, δE, when its

direction is reversed.

By applying equation 4.4 to a small test dataset containing 2579 blocks, we measure

the average rate of change of phase with rf detuning to be (19.4 ± 5.4) nrad/Hz and

(−10.1 ± 5.2) nrad/Hz for the first and second rf pulses respectively.

Before upgrading the apparatus we observed that these gradients depended upon the

direction of rf propagation. This difference is no longer so significant. When the data is

subdivided by rf manual state, measurements from both states agree within error: For

rf1, from MRF = true data we measure the gradient (24 ± 16) nrad/Hz, and MRF = false

data gives (18.1 ± 5.9) nrad/Hz; For rf2, MRF = true data gives (2 ± 16) nrad/Hz, and

MRF = false data gives (−13.8 ± 5.9) nrad/Hz.

Whilst the overall average gradients do have reasonably significant non-zero values, they

are roughly an order of magnitude smaller than those observed before the upgrade. This

reduction is more than adequate to reduce the EDM shift (equation 4.9) well below

1 × 10−28 e cm. We therefore no longer need to apply this empirical correction.

Interestingly the reductions in the rf phase gradients are more than the factor of 4.5

reduction in rf pulse length. This may indicate that the mechanism does not have a

linear dependence upon δ τ . The reduction may also be a result of the improved rf

polarisation. One other option, somewhat related to the rf polarisation, is that the rf

detuning phase correlation might depend upon the conditions local to the rf pulse region;

recall that the pulses are now at different positions within the machine. However, since

the EDM shift is now well below our statistical uncertainty, the mechanism isn’t worth

investigating.

5.2.2 Asymmetric Electric Field Reversal

As before, we tested for residual δE effects by applying a large external asymmetry with

a modification to the hardware controller software to boost the supply voltages in one

electric field relay state. The asymmetries ±4.17 V/cm were each applied in turn8, and

data was collected in the manual states: (ME , MB, MRF ) =(T,T,T), (F,T,T), (T,F,T)

and (T,T,F).

8The error bars on the measured asymmetries are completely negligible.
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Figure 5.11: Gradient in de with respect to δE as divided by machine manual
state. The measurements are consistent with no dependence on electric field
asymmetry. Averaged over all sampled manual states we measure the gradient:

(2.1 ± 2.9) × 10−28 e cm /(V/cm).

As shown in figure 5.11 we find no evidence for a dependence on δE in any machine

manual state. Averaging all manual state data together, we measure a gradient

of (2.1 ± 2.9) × 10−28 e cm/(V/cm), which is consistent with no dependence. If we

estimate, as we did in section 4.3.1, that the typical size of internally generated δE

is (0.1 ± 0.1) V/cm, this limits the EDM shift due to all δE induced effects to be

< 0.6 × 10−28 e cm.

5.2.3 Electric Field Voltage Offset

To test for a voltage offset systematic effect, we acquired EDM data with the large applied

offsets9: V̄ = −500 V and V̄ = +500 V, each in the manual states: (T,T,T), (F,T,T),

(T,F,T) and (T,T,F). As in section 4.3.2, we observe two distinct effects: 1) a variation

in de across the time of flight in direct proportion to the detuning of the first rf pulse

(which also varies across the time of flight), de(t) ∝ δ
(1)
rf (t) ∝ {RF1F}(t); 2) an overall

shift in de, which is a function of only V̄. As before, we model these two components

with the equation dV̄
e = f1(V̄) δ

(1)
rf + f0(V̄).

We find that the correlation between de and δ
(1)
rf , f1(V̄), is machine state independent.

As shown in figure 5.12, we find the correlation reverses with V̄, and becomes consistent

with zero when V̄ is carefully nulled. Note, however, that the errors in each point are

correlated by almost all sources of noise (except shot noise), so the error bars are not

representative. The uncertainties on the measured values of f1(V̄) are therefore somewhat

9With the plates charged to apply a 12.5 kV/cm electric field, we were unable to achieve the ±1 kV
offsets, as we did before. This is because the plates would discharge too often to allow a substantial
amount of data to be taken, when charged above ±8 kV. The 500 V offsets were more than sufficient to
limit the potential size of this systematic error.
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Figure 5.12: The direct proportionality between de and the detuning of the first rf
pulse, as calculated via subdivision of the TOF profile. A linear fit to each dataset gives
the gradients: (a) (13.2 ± 2.9), (b) (−17.9 ± 3.1), (c) (2.4 ± 2.8). Each are quoted in

units of 10−28 e cm/kHz.

inflated because of this correlation. This is not a major concern as the larger uncertainties

will just result in a more conservative estimate of the f1(0.0) δ̄
(1)
rf shift.

Interestingly the V̄ = ±500 V gradients, as quoted in the figure caption, are a similar size

to the 102.5 V offset data gradient (−14.3 ± 2.0) × 10−28 e cm/kHz, which was obtained

with the ‘old’ experimental setup using 18 µs long rf pulses. This attenuation in V̄

dependence is possibly a result of the reduced pulse length and broadened rf linewidth.

However, it is hard to give a quantitative comparison here, as we don’t know how f1(V̄)

depends on V̄.

The analysis of 1073 blocks taken recently with V̄ = 0.0 V is shown in figure 5.12(c). From

this data we measure a gradient of (2.3 ± 2.8) × 10−28 e cm/kHz, which is consistent with

zero. We also measure the average rf1 detuning: δ̄
(1)
rf = (−0.107 ± 0.094) kHz. This limits

the EDM shift due to the f1(0.0) δ̄
(1)
rf product to be < 0.6 × 10−28, which is encouraging.

After correcting the V̄ = ±500 V data for the detuning correlated shifts, we observe the

overall f0(V̄) EDM shift. As demonstrated in figure 5.13, if we subdivide the data by

machine manual state, we find the shift is independent of manual state. This is to be



Upgrading the YbF Interferometer 139

( 1
0-2

9  e
 c

m
/ V

 )
0.0

0.5

1.0

1.5

2.0

V̄
∂

e
∂
d

(T
,T

,T
)

(F
,T

,T
)

(T
,F,

T)

(T
,T

,F
)

Figure 5.13: Gradient in de with respect to V̄ as filtered by machine manual state.
This overall shift is in addition to the variation across the TOF profile. All gradients
are consistent within error. Averaged over all sampled manual states, we measure the

gradient: (6.3 ± 2.0) × 10−30 e cm/V.

expected of an internally induced EDM masquerading interferometer phase. Averaging

all the data together we measure the gradient (6.3 ± 2.0) × 10−30 e cm/V. Curiously

this has the opposite sign to that observed with the original setup (figure 4.7). The rf

pulses timings have been changed, however, so this is perhaps not entirely surprising.

Nonetheless, the measured gradient is not dangerously large.

Using a HV probe we are able to zero the offset to within 1 V. With this maximum

offset we find that the f0(V̄) shift is < 0.063 × 10−28 e cm. Combining this with the

limit on the f1(0.0) δ̄
(1)
rf product, we can limit the total shift due to both V̄ effects to be

<
√

0.62 + 0.082 × 10−28 e cm < 0.6 × 10−28 e cm. This is half the previous uncertainty,

what’s more its size should decrease with the acquisition of more data blocks, as the

uncertainties in f1(0.0) and δ̄
(1)
rf will decrease.

5.2.4 Perpendicular Magnetic Field Test

As was discussed in section 4.3.3, the motional magnetic field can generate a systematic

shift when coupled with a stray magnetic field, Bs x̂. This shift is easily calculated

by substituting the static perpendicular magnetic field, Bx = Bs + v × E0/c2, into the

Hamiltonian quoted in equation 4.17, and comparing the |1, +1〉 ↔ |1, −1〉 splitting in

each of the four applied electric and magnetic field switch states. The dashed green line

in figure 5.14 represents the calculated EDM shift for the applied electric and magnetic

fields: E0 = ±15 kV/cm and Bz = B0 = ±8.9 nT, and a molecular velocity, v, of 590 m/s.

As our measured values are blinded, an offset has been added to the theoretical calculation

to minimise the mean square deviation from the experimentally measured values, which

are discussed below.
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Figure 5.14: Variation in de with applied perpendicular magnetic field, Bs x̂. The
points are measured values. The dashed green line is a theoretical prediction which
assumes a perpendicular field Bx = Bs + v × E0/c2. The solid red line is a straight line

fit to the data points. This line has a gradient (7.9 ± 1.2) × 10−30 e cm/nT.

The calculated shift is completely negligible (< 5 × 10−30 e cm) even for a 100 nT stray

magnetic field. But to be sure that perpendicular magnetic fields do not affect our EDM

measurements, we acquired a small amount of data with a large static magnetic field

applied along x. The points in figure 5.14 represent the measured EDM values.

For fields < 100 nT we see no significant shift in de. This agrees well with the theoretical

prediction. But for large perpendicular magnetic fields, it is clear that the measured

values do not fit the prediction. In fact the p-value for the χ2 value that compares the

theoretical model to all the measured data points, is only 0.1%. However, 1000 nT is a

very large magnetic field, it is roughly 100 times the v × E/c2 = 8 nT motional magnetic

field. Applying this field would cause the the machine to operate very far from its ideal

conditions.

Regardless of the unexpected deviations from theory, a linear model is a good fit to

the measured points (we calculate a p-value of 33%), and it certainly provides a more

conservative estimate of the shift due to stray perpendicular magnetic fields. Using

the linear model fit shown by the solid red line in the figure, we measure the gradient

(7.9 ± 1.2) × 10−30 e cm/nT. Stray fields within the machine are typically < 2 nT in

magnitude, so we can limit the possible shift to be < 0.2 × 10−28 e cm.
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5.2.5 Laser Tests

With the aim of making a new improved measurement of de, we asked ourselves if there

were any further systematic tests that we could perform on the experiment. Whilst the

correlations {X · LF1} do provide a wealth of information about how the experiment

depends upon laser frequency, we decided there was a number of additional tests that we

could perform on the laser system to further support our next measurement.

Probe Laser Tuned to Q(0)(F=1)

In principle we could measure de with the probe laser frequency tuned to the Q(0)(F = 1)

transition. This should just invert the interference fringes, giving a signal proportional

to sin2 φ instead of cos2 φ. In fact probing on F = 1 would be beneficial as Q(0)(F = 1)

scatters more photons than Q(0)(F = 0), so the LIF signal would be larger (see [80]).

We don’t probe on F = 1 as it was previously observed that, when measured this way,

de becomes dependent on molecular velocity and the probe laser polarisation angle [74].

We believe this dependence to be related to magnetic substructure of the F = 1 state,

that can interact anisotropically with all fields present after the second rf pulse.

When we probe on F = 0, we inevitably detect a small fraction of the F = 1 population, as

the Q(0)(F = 1) transition has a fairly significant (30 MHz) power broadened linewidth.

To measure this fraction we blocked the pump laser beam and scanned the probe laser

frequency over the Q(0) transition. Figure 5.15 shows the spectrum that was obtained

with the laser power set to its usual running value (∼ 0.55 mW).
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Figure 5.15: Optical spectrum showing the two hyperfine components of the Q(0)
transition in 174YbF. The red line shows a double Lorenzian fit to the fluorescence
signal (blue points). The green points show the transmission through a 150 MHz cavity.

The green line is an Airy function fit to the cavity data.
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Scans were taken for a range of laser powers about the typical running value. This enabled

us to calibrate the dependence in both laser power and frequency, which is necessary as the

transition linewidth depends upon laser intensity. During each scan, we simultaneously

recorded the transmission signal through a 150 MHz reference cavity. This signal was

then used to linearise the spectral data and calibrate the frequency axis. To each scan we

fitted a double Lorentzian lineshape. From this we were able to calculate the probability

of detecting a molecule in F = 1, as a function of probe laser detuning, δL, using the

equation:

ε(δL) =
L1(δL)/3

L1(δL)/3 + L0(δL)
, (5.2)

where L1(δL) and L0(δL) are the Lorentzian functions fit respectively to the Q(0)(F = 1)

and Q(0)(F = 0) spectral peaks. Note that L1(δL) is divided by three. This is because,

when taking EDM data under normal running conditions, we operate the interferometer

at φ = π/4; following the second rf pulse, the population in F = 1 almost exactly equals

the population in F = 0.

With the probe tuned to F = 0, we calculate that ε(0 MHz) = 0.021 ± 0.003. Conversely,

when the probe laser is tuned to F = 1, ε(−172 MHz) = 0.985 ± 0.002. To estimate the

uncertainties it was assumed that the laser power drifts by ≈ 20%. We also accounted for

the possibility that the F = 0 and F = 1 features may be detuned from the spectral peaks

by ≈ 5 MHz. The spectral fit parameter errors were also included in this calculation.

Following suit with all other systematic tests, we took EDM data with the probe laser

beam tuned to Q(0)(F = 1), then with the laser tuned to Q(0)(F = 0). By comparing

the two values of de, and using the two calculated values of ε, we were able to measure the

gradient ∂de/∂ε = (−1.3 ± 2.6) × 10−27 e cm. Combining this gradient with the typical

running value ε(0 MHz) = 0.021±0.003, we limit the EDM shift to be < 0.8×10−28 e cm.

Admittedly this value is relatively large (approaching 1 × 10−28 e cm), but it is entirely

limited by the uncertainty in the difference between the two EDM values. With the

acquisition of more data we should be able to reduce this limit below the 0.5×10−28 e cm

level should we need to.

Pump Laser Frequency Detuning

The pump laser is tuned to the Q(0)(F = 1) transition. Detuning the pump laser

frequency should, in theory, only reduce the optical pumping efficiency. This would

decrease the pump PMT signal and reduce interference contrast. As the optical pumping

process is incoherent, even if there is some population still in F = 1 after the molecules

leave the pump laser beam this should not cause a problem as there should be no fixed

coherence between the |1, ±1〉 states (assuming the laser is linearly polarised). We should,
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however, place a limit on the possible EDM shift, assuming this assertion is indeed untrue,

like all other subtle effects that we don’t fully understand. EDM data was taken with the

pump laser frequency lock offset, in turn, by -20 MHz, 0 MHz and +20 MHz. From this

data we measured the gradient (−0.2 ± 1.9) × 10−28 e cm/MHz. With the addition of the

{LF2 · δB}/{δB} and the new lock gates we are confident that the pump laser can be

locked, on average, to within 0.5 MHz. In fact the analysis of some recent data taken under

normal running conditions gives the channel value {LF2·δB}/{δB} = (0.91±0.15)×10−3.

This gives a detuning of ≈ 0.3 MHz. If we assume this value is typical, we limit the EDM

shift to be < 0.6 × 10−28 e cm.

Laser Polarisation Tests

A simple way in which a coherence between the |1, ±1〉 states could be introduced

by optical pumping is through a predominantly circularly polarised laser10. Consider,

for example, a σ+ polarised pump laser which is aligned along the x axis. For

simplicity, also assume that there are no static electric and magnetic fields in the

optical pumping region. As shown in figure 5.16, after passing through the laser beam,

all population in F = 1 would be transferred into |0, 0〉x and |1, +1〉x, as written

in the x-basis (ignoring any population lost to dark states). Written in the z basis

|1, +1〉x = 1
2

(
|1, −1〉 + |1, +1〉 − 2√

2
|1, 0〉

)
, which has a well defined coherence between

the |1, ±1〉 states. These states would acquire a phase difference as the molecules move

into the electric field region. If the fringe fields at the bottom of the HV plates change

when the electric field is reversed, then it is possible that we would observe a systematic

shift in de.

F=1
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A

Figure 5.16: Optical pumping of F = 1 by a right hand circularly polarised pump
laser. As the laser is oriented along x̂, the levels are drawn in the x-basis.

It is hard to think of a mechanism in which a circularly polarised probe laser could

generate an EDM masquerading signal, without allowing the detection of a small fraction

of F = 1 population. Nevertheless, we can empirically measure the possible shift from

10Note that if the pump laser is more linear than circular all F = 1 sublevels would be pumped, so no
coherence would be established.
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either beam by intentionally making the polarisations highly elliptical. For both beams

this simply requires removing the polarising beam cube placed immediately before the

vacuum chamber laser port. Since the laser beams are largely linearly polarised before

passing through the quarter wave plates, we can access a wide range of ellipticities by

rotating the quarter wave plate through 90◦.

Measurement of the laser ellipticity is relatively straight forward. As shown in figure

2.6, after intersecting the molecular beam, both the pump and probe laser beams pass

out the back of the vacuum chamber through a second laser port. We place a polarising

beam cube in a rotating mount after this window, and measure the transmitted intensity

on a photodiode as the beam cube is rotated through 360◦. Through consideration of

the polarisation ellipse shown in figure 5.17, we can relate the maximum and minimum

photodiode signals (Smax and Smin) to the ratio, ρ, of the circular component, σ, to the

linear component, π, of the laser polarisation with the equation:

ρ =
σ

π
=

(√
Smax

Smin
− 1

)−1

. (5.3)

π
+

σ
σ

Figure 5.17: Decomposition of the laser polarisation ellipse into a linear component
(π) and a circular component (σ).

EDM data was taken for at least three values of σ/π in the range -1

to +1, for both the pump and probe laser beams. From this data we

measured the gradient ∂de/∂ρpump = (−0.2 ± 2.2) × 10−27 e cm for the pump beam, and

∂de/∂ρprobe = (−0.6 ± 2.0) × 10−27 e cm for the probe beam.

With the optics setup for normal running conditions, we measure ρpump = (19±3)×10−3

and ρprobe = (13 ± 3) × 10−3. These values are not consistent with zero but they are

very small. Combining these offsets with the measured gradients we limit the possible

shift due to imperfect laser polarisation to be < 0.5 × 10−28 e cm for the pump laser and

< 0.3 × 10−28 e cm for the probe laser beam.
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5.3 EDM sensitivity

Table 5.2 presents a summary of the systematic tests that were discussed in the

previous sections. All uncertainties are below the 10−28 e cm level and are constrained

to ∼ 6 × 10−29 e cm. This is excellent news for our next EDM measurement, which will

require only the ambient magnetic field correction. The table also provides reassuring

verification that none of the upgrades have resulted in any new systematic dependencies.

Table 5.2: Summary of systematic uncertainties as measured on the upgraded
experimental apparatus.

Source Uncertainty (10−28 e cm)

δE effects (inc. the δ
(i)
rf phase correlation) 0.6

V̄ effects 0.6

B⊥ effects 0.2

F = 1 population in probe LIF 0.8

pump laser detuning 0.6

non-linear probe laser polarisation 0.3

non-linear pump laser polarisation 0.5

In section 5.1.7 it was stated that the new turbo pump increased molecular signal by

20%. However, with the reduced dependence on rf detuning and following a certain

amount of source parameter optimisation, we now reliably obtain probe PMT signals

of {SIG}probe = 85 V µs. Incredibly, this is a 70% increase on the average value

for the 2011 dataset. In accordance with this we also measure {δB}probe = 11 V µs

and {SIG}pump = 45 V µs. The signal increase alone should reduce the shot noise

limit on de by 28%, but when combined with the increased machine length and the

larger applied electric field, we predict the shot noise limit to be 57% smaller than

the value predicted for the 2011 dataset measurement. To be explicit, we measure a

shot noise limit of 1.9 × 10−26 e cm
√

block. If we combine this value with the magnetic

field noise quoted in section 5.1.4 (9.2 × 10−27 e cm
√

block), we predict a noise limit of

2.1 × 10−26 e cm
√

block.

From a small test dataset containing 1074 blocks, that were taken under normal

running conditions, we measure the statistical uncertainty on de to be 7.4 × 10−28 e cm,

at the 68.3% confidence level. Interestingly this value is 14% larger than the

uncertainty predicted by the shot noise and magnetic field noise measurements combined.

Unfortunately this disparity cannot be easily explained.

One possible cause of the difference might be that, with the new source experimental

parameters, source noise has grown in comparison to the shot noise limit. Another
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possibility might be that the departure from a Gaussian distribution in the measured

values of de has also become larger in comparison to the shot noise limit. The current

experimental sensitivity is still an active subject of investigation.

Regardless of the small discrepancy between the predicted noise limit and the measured

uncertainty, the experiment is now capable of measuring de with a sensitivity of

2.4 × 10−26 e cm
√

block, which is excellent. With the acquisition of 10,000 blocks

(roughly three months running) we should be able to set a new limit on the electron

EDM with a statistical uncertainty of ' 2.4 × 10−28 e cm, at the 68.3% confidence level.

This is more than a factor of two smaller than the current published limit.



Chapter 6

Conclusions and Outlook

In this thesis I have presented a detailed account of our latest measurement of the electron

electric dipole moment using YbF molecules. From a dataset of 6194 blocks, and a series

of supplementary measurements that were taken under exaggerated non-ideal conditions,

we measured de = (−2.4 ± 5.7stat ± 1.5syst) × 10−28 e cm. This result is consistent with

zero, so we set an upper bound of |de| < 10.6 × 10−28 e cm at the 90% confidence level.

At present this is the tightest limit on the de. Furthermore, it is the first time that a

molecular measurement of the electron EDM has surpassed the best limit set using atoms.

Their large enhancement factors and insensitivity to many systematic effects make polar

molecules, such as YbF, great candidates for a new improved measurement.

We have made a number of upgrades to the experimental apparatus that increase EDM

sensitivity and reduce systematic effects. By shortening the rf pulse length the systematic

dependencies on rf detuning have been reduced to a negligible level. By separating the

rf transmission line from the electric field plates, we are able to use the full length

of the electric field plates for EDM measurement. A new layer of magnetic shielding

has significantly reduced the magnetic field noise inside the machine during the day,

when there is much activity in the physics department. Combined with improvements

to the molecular source parameters, an increased applied electric field, and better

gating of PMT TOF profiles, these improvements have reduced the uncertainty in de

to 2.4 × 10−26 e cm
√

block. This is almost a factor of two increase in the sensitivity

of the experiment compared to the sensitivity during the acquisition of the published

dataset
(

4.5 × 10−26 e cm
√

block
)

. With the acquisition of 10,000 bocks (roughly three

months continuous running), we should be able to set a new limit on de with a statistical

uncertainty of approximately 2.4 × 10−28 e cm — almost a factor of three improvement

on the current published upper limit.

147
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In the longer term, after making the next measurement at the 2×10−28 e cm level, further

improvement in the statistical sensitivity could be gained by installing a cryogenic buffer

gas molecular source, which would reduce the molecular velocity by approximately a

factor of three, and increase the source flux by an order of magnitude [60, 82, 100, 101].

A significant improvement would also be gained by increasing the efficiency that we detect

molecules stimulated by the probe laser beam. Currently we detect less than 0.5% of the

fluorescence emitted by the molecules [83]. We could potentially improve this fraction by

removing elements in the light collection optics and placing the probe PMT as close to

the molecular beam as possible. Adding more probe PMTs, or even an array of highly

sensitive photo-diodes are also viable options. With the buffer gas source and improved

detection efficiency we should be able to reach a sensitivity of the order of 10−29 e cm.

Just recently, we have begun building a new experiment to measure the electron EDM

using a fountain of YbF molecules [102]. This is an ambitious project that will

be developed in parallel to the current YbF electron EDM experiment. While the

sensitivity of the current EDM experiment should be competitive with other electron

EDM experiments around the world for many years to come, we are inspired to develop

a new highly sensitive experiment that will lead the way in the next generation of EDM

experiments.

The development of this experiment will be technically very challenging as many aspects

of the experiment are still in their infancy. In the proposed new EDM experiment, we

plan to laser cool molecules produced in a cryogenic buffer gas cell. Once cooled, the

molecules will be launched up between two parallel plates and an EDM measurement will

be made in much the same way as described in this thesis. Development of a cryogenic

source of YbF molecules is ongoing, but recent results from the buffer gas team within

the research group suggest that we can reliably produce a stable effusive beam of YbF

molecules with a speed that is slow enough to be laser cooled [103]. The laser cooling

and slowing of molecules has only recently been demonstrated on a very limit number of

species, namely: SrF, CaF and YO [104–106]. For YbF, we have measured the Franck-

Condon factors, the ratios that characterise the change of vibrational state during the

transitions between ground and excited electronic states, and find them suitable for laser

cooling [79, 107]. We are currently in the process of building the laser systems that will

be required for laser cooling. A molecular fountain of diatomic molecules has yet to

be demonstrated. No doubt this aspect of the experiment will be equally complex, and

a number of unforeseeable hurdles will need to be overcome before we can even begin

making an EDM measurement with it.

Assuming all goes to plan, we expect that the new fountain EDM experiment should be

able to run with a repetition rate of 2 Hz, and we expect that we should be able to detect
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4.4×106 molecules per shot. As the interaction period within the fountain will be ∼ 0.5 s

— three orders of magnitude larger than the current YbF electron EDM experiment —

the new EDM experiment will have the potential to achieve a statistical sensitivity of

6 × 10−31 e cm in eight hours [102]. This level is deep within the region where a non-zero

EDM is predicted by extensions to the standard model of particle physics.
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Appendix A

Expansion of PMT Signal

In this section I derive expressions for the detuning of experimental parameters in terms

of the analysis channel values.

The interferometer signal can be modelled with the equation

S = A(δ1, δ2, δ3...) cos2(φ) + β , (A.1)

where β is a constant background and A(δ1, δ2, δ3...) is an amplitude term that accounts

for the detuning, δi, of the laser and rf parameters from their ideal settings.

To a good approximation the amplitude term can be separated into a product of many

terms, each of which is a function of only one parameter detuning.

A(δ1, δ2, δ3...) ≈ A1(δ1) A2(δ2) A3(δ3)... (A.2)

This is an approximation as the rf frequency and amplitude settings are correlated, as

can be seen in equation 2.19b. But for small detunings this approximation holds well.

Provided that the parameter detunings are small, each term, Ai(δi), is quadratic in δi.

Ai(δi) ≈ ai

(
1 −

(
δi
γi

)2
)

. (A.3)

γi specifies the width of the amplitude function and ai is a scaling coefficient. For the

detuning of the laser frequency, δL, γi = γL and αi = αL for Gaussian and Lorentzian

lineshapes of the form:
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AL(δL) = aL e−(δL/γL)2

, (A.4) AL(δL) =
aL

1 + (δL/γL)2 , (A.5)

where γL specifies the width of the optical resonance.

From equation 2.19b it can be shown that for rf frequency detuning γi = π/τ , where

τ is the rf pulse length, and for rf amplitude detuning γi = 2/π. As stated above, the

detuning of the rf frequency and amplitude are correlated. As a result, the widths, γi,

of the frequency and amplitude curves are also correlated. The quoted width of the rf

frequency (amplitude) detuning curve is only as quoted when the amplitude (frequency)

is perfectly set to its ideal setting. However, the definitions of γi are quite resilient to

small rf parameter detunings, so the quoted values are good approximations.

Consider experimental parameter X, which may refer to any one of the laser and rf

parameters. Let us assume that the PMT signal, S, depends quadratically upon the

detuning of X, δx, as in equation A.3. During the acquisition of a data block, parameter

X is centred on the detuning δ0, and is modulated between shots by an amount 2 ∆x.

The channel value {X} measures the change in signal between both switch states of X.

So long as the step size (2 ∆x) is small in comparison to the width, γx, then:

{X} = 2 ∆x
∂S

∂δx

∣∣∣∣
δx=δ0

(A.6a)

=
−2 αx δ0 ∆x

γ 2
x

. (A.6b)

Here αx is some factor that accounts for the average value of the other amplitude terms
∏
i 6=x Ai. We have also used the fact that the average value of cos2(φ) is 1/2 when equally

sampled on both sides of the central interference fringe.

Another channel which is often of interest, particularly in the case of the laser frequency

detuning, is {X · δB}. This channel compares the signal when X and the calibration

magnetic field (BδB) are in the same switch state, to when they are in opposite switch

states. Recall that the calibration magnetic field step 2 BδB modulates the interferometer

phase, φ, by an amount 2 φδB. We can calculate {X · δB} according to:

{X · δB} =
1

2

(
(2 ∆x) (2 φδB)

∂2S

∂δx ∂φ

∣∣∣∣
δx=δ0, φ=φbg−φB0

+ (2 ∆x) (−2 φδB)
∂2S

∂δx ∂φ

∣∣∣∣
δx=δ0, φ=φbg+φB0

)
(A.7a)

=
−8 αx δ0 ∆x φδB

γ 2
x

, (A.7b)
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where we have taken the average value of the signal change on both sides of the central

interference fringe, as specified by the phases ±φB0 and φbg. ±φB0 is the phase associated

with the large magnetic field step, and φbg is a phase offset due to any uncancelled stray

magnetic fields. We assume that this offset is small so that the PMT signal is linear in

phase. Note that on one side of the curve the phase calibration step is negative. This is

because the calibration step modulates the magnitude of the applied magnetic field. In

effect it always steps outward from the centre of the interference fringes. As above αx is

some factor that accounts for the average value of the other amplitude terms
∏
i 6=x Ai.

To normalise out the scaling factor, αx, we divide {X} and {X · δB} by {δB}. {δB}
measures the change in signal due to the calibration step 2 φδB, and averages over other

parameter switch states. This channel is calculated according to:

{δB} =
1

2

(
(2 φδB)

∂S

∂φ

∣∣∣∣
φ=φbg−φB0

+ (−2 φδB)
∂S

∂φ

∣∣∣∣
φ=φbg+φB0

)
(A.8a)

= 2 αx φδB

(
1 −

(
δ0

γx

)2
)

, (A.8b)

where, as above, we average the signal change for both sides of the interference curve. We

also assume the step ∆x is small in comparison to γx. Taking the ratio of these equations

to cancel the coefficient αx:

{X}
{δB} =

−δ0 ∆x

φδB γ 2
x

(
1 − (δ0/γx)2

) ≈ −δ0 ∆x

φδB γ 2
x

, (A.9)

and
{X · δB}

{δB} =
−4 δ0 ∆x

γ 2
x

(
1 − (δ0/γx)2

) ≈ −4 δ0 ∆x

γ 2
x

, (A.10)
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The Shot Noise Limit

In this section I present a derivation of the shot noise limit as expressed in equation 4.27.

For a dataset containing N blocks, we can write the total number of photons detected as

ntot =
{SIG}

κ
Ns N, (B.1)

where {SIG} is the average integrated probe PMT signal and κ is the coefficient of

proportionality between the PMT signal and the photon count rate. {SIG}/κ is the

number of photons per shot and Ns is the number of shots per block. Using these photons

we measure the correlation between interferometer phase and the various experimental

parameters. We can use the calibration phase step to calculate the number of photons

per radian of interferometer phase. The calibration phase step, δφδB = 2 g µB BδB T/~,

changes the number of detected photons by an amount,

δnδB =
2 {δB}

κ
Ns N. (B.2)

Note the extra factor of two. This is because of how the channel is defined in equation

3.1 — the summation is divided by Ns not Ns/2, so {δB} measures half the change in

signal due to the phase step, δφδB. Combining these two expressions, we can write the

number of photons per radian of phase as

η =
δnδB
δφδB

=
2 {δB}

κ
Ns N

/
2 g µB BδB T

~
. (B.3)

In the shot noise limit, the uncertainty on the total photon count is
√

ntot. To convert

this to an interferometer phase uncertainty, σφ, we simply divide
√

ntot by the number
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of photons per radian of phase:

σφ =

√
ntot

η
=

g µB BδB T

~ {δB}

√
κ {SIG}

Ns N
. (B.4)

The EDM phase φEDM = de Eeff T/~, so we can write the uncertainty in de as

σde =
σφ

Eeff T/~
=

g µB BδB

Eeff

√
κ {SIG}

Ns N {δB}2
. (B.5)

which is quoted in equation 4.27. Written in this form, equation B.5 is very useful for

converting measured channel values into a shot noise limit. However, this form is not

very useful for gaining a physical insight. We can, of course, rewrite equation B.5 in

terms of the photon counts, ntot and δnδB:

σde =

(
g µB BδB

Eeff

)(
ntot

δnδB/2

)(
1√
ntot

)
. (B.6)

The first term is factor that converts phase into units of EDM. The second term, 2 ntot/δnδB,

shows that the uncertainty depends upon the sensitivity of our experiment to phase. The

third term shows the well known fact that the uncertainty decreases as 1/
√

ntot.



Appendix C

The Upgraded RF Transmission

Line

This section contains technical scale drawings and photos of the new rf transmission line

assembly. All marked dimensions are in millimetres.

Figure C.1: The electric and rf field plate assembly.
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(a)

(b)

(c)

(d)

Figure C.8: Images of the rf transmission line and electric field plate assembly before
being wired up.
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Figure C.9: The coupling between the coaxial rf feed and the parallel plate
transmission line at the top of the plate assembly. Note that the λ/2-balun is fed

around the grounded support structure to keep it away from the plate region.
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Figure C.10: The coupling between the coaxial rf feed and the parallel plate
transmission line at the bottom of the plate assembly.



Appendix D

Parameter Timings and Saved

Values

Table D.1: Pattern Generator timing values.

Parameter Typical value

clock frequency 1 MHz
pad shots 1

points (shots) 4096
flash-to-Q 255 µs
valve-to-Q 355 µs

scrambler length 500 µs
valve pulse length 195 µs

scrambler centre time 1400 µs
rf centre times (1120,1780) µs
rf pulse lengths (18,18) µs

attenuator centre time 900 µs
attenuator length 1200 µs

fm centre time 900 µs
fm length 1200 µs

171



Appendix D. Parameter Timings and Saved Values 172

Table D.2: Data acquired per block. We also save the PG timings and switch
waveforms.

Data source Symbol Description Typical Value

laser system

νLF1 I2 centre frequency 120 MHz

δνLF1/2 I2 frequency step 340 kHz

VI2 I2 voltage centre 1.2 V

δVI2/2 I2 voltage step 0.05 V

pump AOM frequency 87 MHz

pump polariser angle 0–360 ◦

probe polariser angle 0–360 ◦

rf system

synth amplitude 2.4 dBm

DCFM range 20 kHz

ν
(i)
rf centre frequencies 173 MHz

δν
(i)
rf /2 frequency steps 1.6 kHz

a
(i)
rf amplitude centres (-0.9, 1.2) dBm

δa
(i)
rf /2 amplitude steps 0.2 dBm

VRFiA attenuator voltage centres (2.9, 3.7) V

δVRFiA/2 attenuator voltage steps 0.1 V

VRFiF DCFM voltage centres (0.7, 0.6) V

δVRFiF/2 DCFM voltage steps 0.1 V

Vϑ phase scrambler voltage 0–1.2 V

MRF manual state true/false

electric field system

bleed time 1 s

charge time 4 s

ramp up time 2 s

ramp down time 2 s

ramp up delay 2 s

ramp down delay 1 s

switch time 1 s

discharge time 3 s

VE+ +ve supply voltage +6 kV

VE- -ve supply voltage -6 kV

ME manual state true/false

magnetic field system

Vbias bias voltage centre ∼2.5 V

Ibias bias current centre ∼0 mA

IB0 field reversal current step 0.812 mA

IδB calibration current step 0.097 mA

MB manual state true/false
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