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Abstract

Microcavities for atom chips

Michael Trupke

This thesis describes the development and implementation of fibre-coupled, micron-

scale optical resonators for the detection and manipulation of neutral atoms. The

resonators are intended for integration with atom chips. The latter are micro-

fabricated devices which enable the cooling, trapping, guiding and manipulation of

atoms by means of optical, magnetic and electric fields. The fields are generated in

part using micro-fabricated features on the surface of the chips. Optical cavities are

among the most important tools in the study of the interactions between light and

matter. They allow the observation of fundamental processes in quantum optics,

based on the enhanced coupling of atomic transitions to light fields. Our resonators

have mode volumes which are two orders of magnitude smaller than those used

in typical cavity quantum electrodynamics experiments. Together with their high

quality factors, this leads to large enhancement factors, rendering them ideal for

the detection and manipulation of atoms on chips. They are scalable and directly

fibre-coupled, both of which are qualities of interest for their implementation in

quantum information-processing applications. In the thesis, the optical characteris-

tics of the resonators are explained, as well as the basic principles of the interaction

of atoms with their light field. The setup used for the test implementation of the

devices is presented, together with early experimental results. These include the

detection of atoms via their effect on the cavity reflection spectrum, and the detec-

tion of enhanced atomic fluorescence into the cavity mode. The thesis concludes

with an outlook on further experimentation, possible improvements of the devices

themselves, and a view on their integration with existing atom chip technology.
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Chapter 1

Introduction

Three of the defining scientific and technological developments of our times meet on

the stage set for this work: Quantum mechanics, silicon micro-fabrication and fibre-

optic communications each play a lead role in the microcavities described herein.

The bulk of the thesis is dedicated to the description of the optical properties

of these microcavities, and to the interaction of atoms with their light field. This

introduction is aimed at providing a brief overview of the context for the experiment

within the fields of atomic physics and quantum optics. Many of the developments

within these fields were made possible by the advent of laser-cooling, magnetic

guiding and magneto-optical trapping, which are summarised in Section 1.3. It

has since then been possible to miniaturise many experiments in these fields by

performing them on micro-fabricated devices called atom chips (see Section 1.4.1).

Their description leads into a motivation of the principal design choices made for

the devices.

1.1 Context of the experiment

During the last three decades, the study of cold atoms has developed into one of

the most active fields in theoretical and experimental physics. The interaction of

atoms with light is both an indispensable tool and an area of rapid growth of this

study. The most fundamental building block of this interaction is the coupling of

an atomic transition between two quantum levels to a single, quantised mode of the

electromagnetic field. The theoretical development of this interaction was initiated,

as one of his many seminal contributions to modern physics, by Paul Dirac in 1927

[1]. That first seed soon brought one of the major successes of early quantum elec-

trodynamics (QED), namely the correct derivation of the emission rate of an atom

in free space by Wigner and Weisskopf in 1930 [2]. The ”spontaneous” emission

15



Chapter 1. Introduction

rate was in fact shown to be stimulated by the vacuum: Weisskopf and Wigner

derived it from the coupling of the atom to the ‘empty’ vacuum-field modes (i.e.

modes devoid of excitation), thereby underpinning one of the most controversial

aspects of the theory, namely the presence of a minimum energy in the modes of

the electromagnetic field even in the absence of excitation. This energy emerges

from the description of the modes as quantum simple harmonic oscillators and is

proportional to the frequency of a given mode, E(ω) = ~ω/2 (see e.g. [3]).

To study the interaction of light and matter, it is desirable to analyse the simplest

Figure 1.1: (a) an atom in free space will couple to all modes of the vacuum, leading

to a decay γ of the excited-state population over time.(b) In a cavity, the atom can

have a large coupling rate g to the mode of the resonator, and therefore interact

strongly with it. The interaction will still be damped by free-space decay of the

atom and by a decay κ due to losses from the cavity mode via transmission or

scattering at the mirrors.

of all models mentioned above, namely the coupled system of one atom and one

radiation mode. This is known as the Jaynes-Cummings model [4]. However, while

conceptually simple, a number of challenges stand in the path between this ideal

model and its experimental realisation. Firstly, as empty space itself is filled with

vacuum radiation modes, it would be necessary to isolate the atom from these, and

no technically feasible realisation for this approach has yet been found. What has

however been achieved with enormous success is to enhance the coupling to one

mode so strongly that all other modes become weak, even negligible, by compari-

son. This is known as the “strong-coupling”-regime, and has been approached or

reached in many research groups using a variety of approaches. A comparison be-

tween an atom in free space and an atom coupled to a cavity mode is sketched in

Figure 1.1. These include two-mirror (Fabry-Pérot type) resonators to which neu-

tral atoms, Rydberg atoms or ions are coupled, whispering-gallery-mode resonators

coupled to atoms or quantum dots, micropillar cavities with embedded quantum
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dots, and microwave-stripline resonators (see, for example, [5, 6, 7] and references

therein). All of these techniques have in common the confinement of the light mode

to small volumes. This is motivated by the fact that the coupling rate g between an

atom and a mode increases with the energy density in the mode, g ∝
√
E(ω)/V .

A large coupling rate is however only one of the requirements for strong coupling.

The interaction between the atom and the light mode will still be damped, and

therefore decreased, by the coupling of the atom to the modes of the vacuum. This

is quantified by the atom’s amplitude decay rate γ. Furthermore, the light will es-

cape from the region to which it is confined, thereby ending the interaction with the

atom. The light must therefore be confined for as long as possible by at least two

mirrors, or by making it propagate on a closed path, as is done in whispering-gallery

resonators [5]. In the case of two mirrors, the light can be lost by transmission, ab-

sorption or scattering at the mirrors. To achieve long damping times it is therefore

desirable to implement smooth, high-reflectivity mirrors. The damping time 1/κ

of the cavity field is defined as the time within which the amplitude of the field is

expected to reach a fraction 1/e of its initial value.

To achieve interaction between atoms and the light field confined to the cavity, it is

necessary in the first place to bring the atoms into the strong part of the resonator

light field. In early experiments, this was achieved by directing a collimated beam

of thermal atoms from an oven between the mirrors (see e.g. [8]). More recently,

transport mechanisms have been successfully implemented which allow the con-

trolled loading of atoms into the cavity using magnetic [9, 10, 11], optical [12] and

electrostatic [13, 14] tools. Once the atoms are in the cavity, a number of astound-

ing effects can be observed. Firstly, since the atomic decay rate depends on the

coupling to the electromagnetic modes, this decay can be enhanced (as proposed

by Purcell in 1947 [15]) or suppressed (as proposed by Kleppner in 1981 [16]) in the

cavity. This is described in more detail in Chapter 5. Furthermore, the absorption

of light by the atoms is also modified compared to free space, so that atoms can

be detected and manipulated with far greater accuracy in a cavity. This has led

to the real-time detection of single atoms [17] and the generation of single photons

on demand [18]. The ability to count atoms is as such a very alluring prospect,

as currently most atomic physics experiments rely on far less precise methods such

as camera images to determine the size of a cloud of trapped atoms, for example.

Single-atom detection is furthermore a prerequisite of many protocols in the much-

hyped field of quantum computing, simulation and communications [19]. Some of

these applications require the internal and motional states of the atoms to remain

undisturbed by the detection process. This is indeed possible with microcavities
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[20]. The possibility of generating single photons on demand is also based, in the

more ubiquitous protocols (such as [18]) on the presence of a single atom in the

cavity. It is possible to produce a non-local superposition of the internal states of

two atoms in two cavities by performing measurements on the single photons they

emit, or by detecting macroscopic signals from two atoms in one cavity [19]. This

“entanglement” forms the basis of quantum computation (QC). Most QC protocols

involving atoms in cavities require the accurate positioning of atoms in the field of

the resonator. On atom chips, this is achieved by acting on the magnetic dipole of

the atoms, as described below in Section 1.3. First though, a brief description of

our atom of choice.

1.2 Rubidium

The discovery of Rubidium is commonly attributed to Robert Bunsen and Gustav

Kirchoff, who encountered the element in 1861 during the course of a spectrographic

study of the mineral lepidolite, from which it is still commercially extracted. It is the

twenty-third most abundant element in the earth’s crust. Rubidium has only one

stable isotope, 85Rb, with a natural abundance of 72.17%. 87Rb is the second most

abundant isotope at 27.17%. While it is radioactive, its half-life of 5 × 1011 years

still gives ample time for atomic physics experiments to be performed. This isotope

is also used in Rubidium-Strontium geological dating. 82Rb is commonly used

in cardiac tumor diagnosis, as its chemical similarity with Potassium guarantees

that it will reach the cardiac muscular tissue rapidly. Its short half-life of 1.3

minutes ensures that long-term radiation exposure is avoided. These applications

notwithstanding, Rubidium has arguably found its greatest prominence with atomic

physics experiments. The reasons for its popularity in this field are easily stated: it

is a hydrogen-like atom with only one free electron, giving it a simple level scheme

(see Fig. 1.2). Its electronic transition frequencies are within reach of inexpensive

diode laser systems. Because of its abundance, 85Rb is often chosen over 87Rb.

However, when the experiment involves Bose-Einstein condensation, the negative

scattering length of 85Rb leads to the undesirable implosion of the cloud. 87Rb,

by contrast, has a positive scattering length and Bose-Einstein condensation was

demonstrated, for the first time ever in a dilute atomic gas, with this isotope in

1995 [21]. A number of optical and magnetic cooling and trapping steps need to be

implemented to achieve the necessary high densities and low temperatures needed

to reach condensation.

18



Chapter 1. Introduction

Figure 1.2: Scheme of the levels relevant for our experiment in Rubidium 85.

1.3 Magnetic and Optical potentials

1.3.1 Light forces

The force which acts upon atoms in the presence of a light field can be divided

into two parts: the scattering force and the dipole force [22]. The dipole force is

a conservative force proportional to the gradient of the intensity of the light field,

and arises from stimulated scattering processes. Practical descriptions of this force

can be found, with increasing depth, in the author’s MSc report, reference [22]

and reference [23]. The scattering force results from the exchange of momentum

between the photons and the atoms during incoherent scattering. The magnitude

of this force acting on a two-level atom is given by

~Fscatt = ~~kγscatt where γscatt = γ
I/Isat

1 + ((ΔAL − ~k.~v)/γ)2 + I/Isat
. (1.1)

Here ~k is the wavevector of the light, and ΔAL = ωL−ωeg is the detuning of the light

from the resonant frequency of the atomic transition. When the intensity I is much

smaller than the saturation intensity Isat, the scattering force increases linearly. In

the limit of infinite intensity, the force saturates at ~Fmax = ~~kγ. The bracketed

term in Eq. 1.1 indicates that the force will depend on the detuning and on the

Doppler shift −~k.~v of the light frequency perceived by a moving atom. This effect

forms the basis of laser cooling. A spectrally narrow, red-detuned beam will appear

resonant to an atom moving opposite to the light wavevector with the appropriate

velocity. The momentum change of the atom during an absorption process in this

setting will always be opposed to its direction of motion, while the emission process

averages to zero. The net momentum change therefore leads to a deceleration of
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the atom. However, once it has slowed down, the atom is no longer resonant with

the light beam and scatters at a decreased rate. The atom is therefore cooled in

that direction. Applying red-detuned laser beams from six directions, i.e. from

both directions on three orthogonal axes in space, leads to cooling in all directions.

This setting is known as ‘3D-optical molasses’. In this configuration, the atoms are

cooled along all three axes. The scattering processes, though rare, do not fully cease:

An atom close to rest will still experience random momentum jolts as it scatters

light from any of the beams. While the atoms in 3D-molasses are cooled, they are

not trapped because the force acting upon them is not a function of position. The

addition of magnetic fields lifts the degeneracy of the Zeeman sub-levels, and can

give rise to the position-dependent force required for a trap.

1.3.2 Magneto-Optical traps

Most experiments in which few or single neutral atoms are to be observed and ma-

nipulated require the atoms to have low kinetic energies. The cold atom source of

choice in most experiments is the magneto-optical trap (MOT), a combination of

inhomogeneous magnetic fields and suitably polarised red-detuned laser beams that

lead to the stable confinement of atoms [22].

Let us consider a hypothetical atom with ground and excited state quantum num-

bers Jg = 0 and Je = 1. An external magnetic field B in the z-direction B will split

the upper level into three levels Me=0 and Me=1 through the Zeeman shift,

ΔE =MegeμBB (1.2)

Here, ge is the Landé factor, μB is the Bohr Magneton and Me is the projection of

the angular momentum Je onto the z -axis. The lower level does not split in this

imaginary atom. In an absorption or emission process the total angular momentum

of the atom and the photon must be conserved, leading to the following selection

rules:

σ+- polarised light is only allowed for Mg = 0→Me = 1 transitions,

σ−-polarised light is only allowed for Mg = 0→Me = −1 transitions, and

π-polarised light is only allowed for Mg = 0 → Me = 0 transitions. The polarisa-

tions must also be defined with respect to the local magnetic field direction. In a

MOT, atoms are trapped by a clever arrangement of the magnetic field and beam

polarisations. In the toy model above, this can be achieved by setting B = z. For

an atom at a position z > 0, the sub-level with Me = −1 will be shifted to a lower

energy, that is towards the red. Now we apply a red-detuned, σ−-polarised beam
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pointing in the negative z-direction, and a σ+-polarised beam with the same detun-

ing from the other side. The atom will then preferentially be pushed towards the

origin because the Mg = 0 → Me = −1 transition, which is closest to resonance,

can only be driven by the σ−-beam. The laser detuning and Doppler shift still

lead to a slowing effect as above. Therefore the atoms are cooled as in molasses,

but also collected at the origin. With the right configuration of polarisations and a

quadrupole magnetic field, such a trap allows the confinement of atoms in three di-

mensions. The beams can be, for example, six separate beams as in the 3D-molasses

described above. The same effect can be achieved with four beams if two of them

are reflected on a mirror so as to propagate towards each others’ sources. This is

the type of MOT is known as a reflection MOT. It is common to most atom chip

experiments, where the chip itself serves as the mirror, and indeed it is also the

type used in this experiment. An even simpler configuration can be achieved in a

concave-pyramidal mirror. In the simplest case with an opening angle of 90◦, one

incoming circularly-polarised beam is sufficient to produce all required beams for

confinement in the opening.

At this point, a Rubidium MOT generally has already been cooled to a mean tem-

perature of a few hundred μK. Once atoms have been collected in the trap, they can

be cooled further by switching off the magnetic fields and increasing the detuning

of the laser beams. In doing so, the scattering rate of the atoms decreases, but the

main source of cooling is found in effects of the spatial dependence of the polarisa-

tion vector on the population distribution in the Zeeman sub-levels. These effects

are commonly summarised under the term ‘Sisiphus cooling’. These mechanisms

allow the cooling of the atoms to temperatures on the order of tens of μK.

1.4 Chips and microcavities

1.4.1 Magnetic guides on atom chips

Once the atoms have been cooled to these low temperatures, they can be loaded

into magnetic guides and traps, for example on atom chips. These are devices

with micro-structured surfaces designed to produce magnetic and/or electric fields,

which enable the trapping, cooling and manipulation of atomic clouds and single

atoms [24]. Typically atom chips have dimensions of a few cm2. An example of

an atom chip is shown in Figure 1.3 (a). On chips with current-carrying wires, the

wires have typical widths of 1 to 100 μm and thicknesses of 1 to 10 μm, and can

carry currents on the order of 1 to 10A. This makes it possible to form strong and
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Figure 1.3: (a) An atom chip currently in use at the Centre for Cold Matter. The

chip is gold-coated to provide the reflective surface for a reflection MOT. The large

coils at the top and bottom of the photograph are used to create the quadrupole

field for the MOT. The inset shows a magnified image of the central section of the

current-carrying wires. (b) and (c) show a schematic diagram and a photograph of

a microcavity of the type developed in the work for this thesis.

tight traps, with trap frequencies on the order of 10 kHz and trap depths on the or-

der of 1 mK. Similar trap characteristics have been obtained with micro-patterned

permanent-magnetic surfaces [25]. There are a number of motivating factors be-

hind this quest for miniaturisation. From a purely technical point of view, the

high magnetic-field gradients which can be created effortlessly on a chip are hard

to produce using macroscopic coils or other means, because of the small scale of

the features on atom chips. Looking further into the future, being able to perform

high-precision measurements using such a small device means that in principle the

devices could become as ubiquitous as traditional computer chips if they were able

to fulfil a practical need. Furthermore, chips based on silicon offer the possibility

of integrating standard electronic circuits onto the same surface, bringing them a

further step closer to a complete “lab-on-a-chip”. Two very practical applications

of atomic physics which have already been demonstrated on a chip are the reali-

sation of clocks and magnetometers [26]. There are also more futuristic proposals,

for example the realisation of quantum computation schemes using atoms on chips

[27]. The magnetic fields are produced by current-carrying wires or permanently

magnetised surfaces and couple to the magnetic dipole moment of the atoms. The

force acting upon atoms in such a trap derives from the gradient of the potential

from Eq. 1.2. The field of a single wire on the chip, to which a uniform bias field
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is added parallel to the surface of the chip, creates a zero of the magnetic field

above the wire, surrounded by a region of approximately quadrupole asymmetry.

Atoms in a weak-field-seeking state will be attracted and held in this region. At a

zero of the magnetic field, the weak- and strong-field-seeking states of the atom are

degenerate, so a transition may occur which would lead to repulsion of atoms from

the trap. To avoid this, a uniform field can be added parallel to the wire, turning

the zero of the field into a non-zero minimum. Losses can still occur, for example

because of current noise caused by thermal fluctuations, though these can be con-

trolled by a suitable choice of material and film thickness [28]. The lithographic

process involved in creating the wires makes it possible to create complex patterns

in a highly precise, repeatable manner, which in turn guarantees the scalability of

these components. This means that in principle, an array of clocks, magnetometers

or quantum-information-processing units can be produced on the surface of the chip

by virtue of the microfabrication techniques implemented. Wires patterned using

UV-lithography have edges with a feature size of less than 100 nm and with a surface

roughness of less than 10 nm, creating a uniform trap for the atoms. It has been

possible to trap, transport and Bose-condense atoms above the surfaces of atom

chips, both with current-carrying structures and with permanently-magnetised de-

vices [29, 25]. It is possible by these means to control the position of atoms to within

a few nanometers. The regions of highest field strength in microcavities of our type

are on the order of tens of nanometers, as detailed in the following subsection. Atom

chips are therefore ideally suited for the delivery of atoms to microcavities on their

surface.

1.4.2 Microcavities for atom chips

As mentioned earlier, microcavities can be used to detect atoms as well as to ma-

nipulate their internal state, and atom chips can trap, cool and guide atoms with

high accuracy. It is clearly desirable to combine all these features in one device.

Broadly, there are two types of microcavity which are being developed for this

purpose: whispering-gallery-mode (WGM) resonators and Fabry-Pérot-type res-

onators. WGM cavities can provide large coupling values given their minute mode

volume and narrow linewidth [5, 30]. However, because the intense part of the

field is confined within the solid material of the resonator, atoms can only couple

to the field through the weaker evanescent field outside the device. This decreases

exponentially with distance from the resonator surface, with a decay constant of

order λ/2π. For an atom to interact perceptibly with the resonator mode it must
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therefore be placed very accurately, i.e. to within a small fraction of a wavelength,

in close proximity of the resonator surface, where the attractive Van der Waals force

on the atom becomes considerable. A number of WGM devices have been proposed

as candidate systems for the detection and manipulation of atoms. Fused-silica

microspheres are not easily included in the production of atom chips, as they would

have to be positioned on the surface and attached to the atom chip using procedures

separate from the standard etching and coating steps used in the manufacture of

semiconductor chip devices. Microtoroids [5] are more natural candidates for inte-

gration as they can be produced using standard microfabrication techniques, and

still offer very high quality factors. Strong coupling between single atoms and the

field of a microtoroid resonator has in fact been demonstrated [30], albeit with

atoms passing through the evanescent field in free-fall. The challenge of reliably

positioning atoms in the evanescent field with the required accuracy has yet to be

surmounted. By contrast, FP resonators give atoms direct access to the region of

highest field strength of the cavity mode, leading in practice to higher values of g

that are more readily reproducible. Furthermore the requirements on positional ac-

curacy of the atoms within the mode are less stringent because the intensity varies

with a standing wave spacing of λ/2 and a mode waist of 3-10 μm. For these rea-

sons, the efforts of several research groups are currently geared towards including

this type of resonator on atom chips. In the group of J. Reichel, the strong cou-

pling of a magnetically transported, ultracold cloud of Rubidium atoms has recently

been demostrated [31]. The resonators used there are made of two fibres, the tips

of which are laser-machined to a concave shape with a low surface roughness of

∼ 0.2 nm, coated to achieve a finesse of 35000. However, the fibres are fabricated

and incorporated into the chip surface using many manual steps, a clear hindrance

to the scalability of this design.

1.4.3 Our microcavities

The cavities developed during the course of this thesis are shown schematically in

Figure 1.3 (b), and a microscope image of one such device is shown in Figure 1.3

(c). They were designed with the aim of combining the advantages of microfabri-

cation, i.e. inherent scalability and integrability with atom-chip fabrication, with

the advantages of fibre-coupling, namely the collection of photons in a well-defined

mode and the possibilities offered by fibre-optic networks. To this end, a microfab-

rication procedure was sought which would allow the production of concave mirrors.
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Isotropic etching of silicon is a well-developed technology [40], and after some opti-

misation it was possible to produce mirror substrates on silicon chips with sufficient

quality to produce high-finesse microcavities. The silicon surfaces were coated with

multilayer dielectric films. Using these mirrors, we have been able to achieve a

reflectivity of over 99.9% at our wavelength. Using microfabrication furthermore

allows us to produce mirrors with small radii of curvature. As a consequence, the

1/e2-intensity radius of our cavity mode can easily be on the order of 3 − 5μm,

which is an order of magnitude smaller than that of standard Fabry-Pérot cavities

used in atom-cavity experiments. This gives us a smaller mode volume and there-

fore a larger coupling constant g. Currently, our damping rates are still larger than

the coupling rate, but improvements in the microfabrication procedure will amend

this (see Chapter 8). The second mirror of the cavity is the tip of a single-mode

fibre coated using a transfer procedure (see Chapter 3). This enables us to couple

light in and out of the cavity directly via the fibre, without the need for any fur-

ther coupling optics. These features show that the cavities are well-suited for both

scalable integration and networking.

1.4.4 Thesis Outline

The rest of the thesis is dedicated to the development and first experimental results

collected using these devices. Chapters 2 and 3 describe the optical features and the

physical characteristics of the microcavities. Chapters 4 and 5 discuss how atoms

will interact with the mode of such a resonator, and what we expect to see in our

measurements. The results of the latter are shown in Chapter 7. The thesis ends

with an outlook on the future of these devices.
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Optics

The fundamental tools used to describe the microcavities developed for our ex-

periment are given in this chapter.[39, 38] The aim is to supply the definitions of

quantities commonly used in this thesis. In our microcavities, the stable modes can

be described using a complete, orthonormal set of solutions to the paraxial wave

equation, for which the Hermite-Gaussian set is chosen. The mode exiting the fi-

bre which is used to drive and measure the cavity is a Bessel beam, but can also

be approximated with very high accuracy by a Gaussian beam. The operation of

optical resonators will be described in the general case, and in the specific case of a

plano-concave geometry. The equations provided in this chapter allow an in-depth

analysis of the measured characteristics of our fibre-coupled resonators.

2.1 Gaussian Beams

Despite their small size, the modes formed in our resonators will in general still have

a transverse extent a few times the wavelength. This is also true for the mode in the

optical fibres used for these devices. The expansion due to diffraction caused by this

transverse confinement is slow enough to allow the use of the paraxial approximation

to the Helmholtz equation. The latter has a complete set of orthonormal solutions

of the form

Eh,v(x, y, z) = E0e
−ikzEr(x, y, z)Hh

[√
2x

w(z)

]

Hv

[√
2y

w(z)

]

Φh,vz Φr . (2.1)

Here, E0 is the electric field strength at the origin. The envelope of the electric field

strength decreases in all directions from the origin with

Er(x, y, z) =

√
2

π

1

w(z)
e
−x
2+y2

w(z)2 , (2.2)
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The radius of the beam, defined as the radial distance from the beam centre at

which the electric field strength has decreased to E0/e, and its intensity to I0/e
2

(see Fig. 2.1 (b)), is given by w0 at the origin, and increases with distance as

w(z) = w0

√

1 +

(
z

zR

)2
(2.3)

with zR =
nπw20
λ
, where n is the refractive index of the material in which the field is

propagating. This is the distance in z at which the 1/e-field radius has increased

to
√
2w0, which is known as the Rayleigh length of the beam. The nature of the

solution allows for higher-order transverse field modulations in the x, y-plane. These

are given by the Hermite polynomials1

Hm(u) = (−1)
meu

2 dn

dun

(
e−u

2
)
, with n ∈ Z+ . (2.4)

For the fundamental mode, in which h, v = 0, Equation 2.1 reduces to the well-

known TEM0,0 mode. The main properties of this simplest solution are shown in

Figure 2.1.

The beam expansion is shown in Figure 2.1 (a) as a dashed line. The divergence

of the beam tends to a maximum of θmax = λ/(πw0), as shown in Figure 2.1. The

phase varies transversely with

Φr = exp

[

−i
k(x2 + y2)

2Rz

]

, (2.5)

giving the beam a spherical wavefront with a radius of curvature of

R(z) = z +
z2R
z

, (2.6)

which reaches its minimum at zR. The evolution of the curvature of the wavefront

is shown on the right side of 2.1 (a).

With higher-order modes, the dependence of the field on the transverse coor-

dinates is additionally determined by the Hermite polynomials of the appropriate

1The Hermite-Gaussian set of beam propagation modes is not the only complete set of or-

thonormal modes. Another set of solutions is given by Laguerre-Gaussian (LG) polynomials,

which possess radial symmetry and can be a more convenient choice for the description of some

systems. Of course these two descriptions are equivalent, and each mode of one basis can be

described as a linear superposition in the other. HG modes have transverse momentum, while LG

modes have orbital angular momentum. They can be seen in analogy to the linear and circular

polarisation bases, which describe the internal oscillations or spin of the field excitation. They are

furthermore identical to the modes of the 2D quantum simple harmonic oscillator.
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Figure 2.1: (a) Main features of the fundamental Gaussian beam (see text). (b)

Intensity distribution in the x, y− plane of the fundamental mode, and the field

(dashed line) and intensity (solid line) along a line through the origin. (c) Intensity

distribution of a TEM3,2 mode at the waist, and field (dashed) and intensity (solid)

along the dashed green and blue lines in the contour plot, shown in the respective

colour.
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order. An example of a higher-order mode is given in figure 2.1 (c). The phase

variation with z for any mode (h, v) is given by

Φh,vz = exp

[

i(1 + h+ v) tan−1
(
z

zR

)]

, (2.7)

These equations give the magnitude of the electric field for all points in space. The

electric field vector is parallel to the wavefront at all points of the field, while its

orientation is given by the polarisation of the light.2

Elliptical beams can also be described by using the set of solutions in Equation

2.1. A field with waists wx0 , w
y
0 is given by the product of the solutions calculated

separately for each axis.

2.2 Resonators

We now consider the propagation of light when it is confined by opposing mirrors.

This leads to repeated propagation and constructive or destructive interference, de-

pending on the boundary conditions of the resonator. For a plane wave of amplitude

E0 impinging upon a resonator, the light circulating inside the resonator results in

a field given by the sum

Ecirc = t1E0

∞∑

m=0

(r1r2e
iφ)m = E0

t1

1− r1r2eiφ
, (2.8)

where φ is the round-trip phase shift of the cavity. For a plane wave in a resonator

with plane mirrors it is given simply by φ = 2nkL, where n is the refractive index.

The resulting circulating intensity is

Icirc = |Ecirc|
2 = I0

T1

|1−
√
ρ1ρ2eiφc |2

. (2.9)

Here L is the length of the resonator, and rj (ρj) and tj (Tj) are the amplitude

(intensity) reflection and transmission coefficients of each mirror. This leads to the

presence of fringes in both the reflection and transmission signals of the resonator

(see Fig. 2.2 (a)). In the overall phase term φc = φ+ φ0, φ0 denotes an additional

phase shift which depends on the properties of the mirror surfaces, and is given

by φ0 = arctan[(Im{r1r2})/(Re{r1r2})]. From this, the transmitted and reflected

2Having their origin in the paraxial approximation, these equations maintain validity only

insofar as w(z) varies slowly with respect to the phase, i.e. negligibly over one wavelength. This

is the case for zR � λ. With light propagating in free space with a wavelength of λ ∼ 780 nm,

it is therefore safe to use this approximation for beam waists w0 > 2μm, such that the Rayleigh

range extends over 20 wavelengths.
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Figure 2.2: (a) The power reflected by a plane-plane optical resonator reaches

minima at resonator lengths of (q + n)λ/2, with a contrast of ϑ and a width δL.

Together with the fringe separation ΔL, here λ/2, this gives the finesse, F = ΔL/δL.

(b) Reflection fringe contrast for a resonator with input-mirror reflectivity ρ1 = 99%,

plotted for internal losses of L1 = 0 (black),LS/2 (blue), LS (green) and 3LS/2 (red),

where LS = 1−
√
ρ1. The inset shows the same curves on a logarithmic scale.

amplitudes and intensities can be calculated. While the transmitted intensity is

simply T2Ii, the cavity reflection must be calculated from the addition of the initial

back-reflection from the input mirror and the backward leakage from the resonator,

Er = t1r2e
iφcEcirc−r

∗
1E0, therefore Ir = I0ρ1

∣
∣
∣
∣
∣
∣

−1 +
(
1 + T1

ρ1

)√
ρ1ρ2e

iφc

1−
√
ρ1ρ2eiφc

∣
∣
∣
∣
∣
∣

2

. (2.10)

The depth of the reflection resonance troughs is given by the fringe contrast,

ϑ = 1−
Imin

Imax
= 1−

(
(
√
ρ2(1− L1)−

√
ρ1)/ξ

(
√
ρ2(1− L1) +

√
ρ1)/(2− ξ)

)2
with ξ = 1−

√
ρ1ρ2. (2.11)

The quantity ξ is instantly recognisable as the round-trip field loss of an empty

cavity. Figure 2.2 (b) shows the effects of increasing internal losses L1 in the input

mirror. For an input mirror with internal losses L1 = 0 (black curve), the contrast

reaches 1 for ρ2 ∼= ρ1. For L1 < 1−
√
ρ1, the contrast reaches 1 at increasing values

given by ρ2 = ρ1/(L1 − 1)2. An example is given with L1 = (1−
√
ρ1)/4 (blue). If

L1 < 1−
√
ρ1, the destructive interference can no longer be complete, as shown by

the red curve with L1 = 3(1−
√
ρ1)/2. However, in the special case L1 = 1−

√
ρ1

(green), the fringe contrast improves indefinitely with increasing ρ2.
3 When the

3This may become a useful tool in creating high-contrast resonators in future cavity genera-

tions. However, it will requires some testing and a number of coating trials to achieve the desired

transmittance. It is of course not helpful to decrease the transmittance when the application is

the collection of cavity photons.
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losses in the mirrors are negligible, i.e. when Ti ' 1 − ρi, the maximum reflected

intensity will be

Imax ' 1 for ξ < 0.1. (2.12)

It shall henceforth be assumed that the amplitude reflection coefficients of the

mirrors are real, that the refractive index within our resonators is n = 1, and that

condition (2.12) is valid. The minimum reflected intensity is then

Imin =

(√
ρ1 −

√
ρ2

ξ

)2
so that ϑ = 1− Imin = 1−

(√
ρ1 −

√
ρ2

ξ

)2
. (2.13)

This approximation of ϑ gives a relatively simple measure of the difference between

the reflectivities of the two mirrors. For a fixed cavity length, the periodicity of

the reflection fringes is of the cavity’s free spectral range, FSR = Δω = πc/L for a

plane-mirror resonator, in angular frequency. For sufficiently high reflectivity, the

reflected intensity close to a resonance is excellently approximated by a Lorentzian.

In terms of frequency, the half-width at half maximum κ ≡ ξc/2L results simply

from the round-trip field losses per round-trip time in this approximation. κ is

therefore the amplitude decay rate of the cavity, in units of angular frequency.

Then
Ir(ΔCL)

I0
= 1− ϑ

κ2

κ2 +Δ2CL
, (2.14)

where the detuning of the driving light from the cavity is given by ΔCL=ωlight −

ωcavity. The same is true for the cavity length at a fixed wavelength: the fringes of

a plane-mirror resonator have a periodicity of ΔL = λ/2 in cavity length, and the

reflection around one resonance is

Ir(L)

I0
= 1− ϑ

(δL/2)
2

(δL/2)2 + L2
. (2.15)

It is now possible to characterise the cavity by measuring its finesse

F =
ΔCL
2κ
=
ΔL
δL
=
π 4
√
ρ1ρ2

ξ
≈
π

ξ
, (2.16)

where δL is the full width at half-maximum of the fringe. The final approximation

is sufficiently accurate for our high-reflectivity mirrors and with it, the cavity decay

rate is given by κ ' πc/2LF . The finesse of the cavity can now be measured by

scanning the cavity length through two adjacent resonance fringes. From this value,

the geometric mean of the mirror reflectivities can be calculated. By measuring

finesse and contrast it is therefore possible to determine the reflectivity of each

mirror, by making an assumption as to which mirror has the higher reflectivity.

The plane-plane configuration for which the above is valid is a so-called unstable

geometry. This is to say that, unless the input plane wave and the mirrors are of
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Figure 2.3: (a) A plano-concave resonator has its mode waist wC on the surface

of the plane mirror. The spot size on the curved mirror, w2, increases with cavity

length because of diffraction. (b) Spot radii on the surfaces of a plano-concave

resonator with a mirror curvature of 180 μm.

infinite transverse extent, the light will diffract and part of the energy of the input

beam will be lost as it propagates beyond the edges of the mirrors. To create a

stable resonator, at least one of the mirrors must be concave to re-focus the light

so that the propagation is identical in each round-trip. It is possible to determine

whether or not a cavity geometry is stable with the equations in Section 2.1, simply

by applying the condition that there exists a cavity mode which has exactly the

same beam waist and curvature after one round-trip.

For the case of spherical mirrors, this leads to the stability condition

0 ≤ G1G2 ≤ 1 , where Gi = 1−
L

Ri
(2.17)

and Ri are the radii of curvature of the cavity mirrors. Solutions of the type given

in 2.1 are readily found by straightforward algebra. The G-factors can now be used

to calculate the spot sizes on the cavity mirrors and the cavity waist:

w1 =

√
Lλ

π
4

√
G2

G1(1−G1G2)
, w2 =

√
Lλ

π
4

√
G1

G2(1−G1G2)

and wC =

√
Lλ

π
4

√
G1G2(1−G1G2)
(G1 +G2 − 2G1G2)

(2.18)

The discussion until this point has allowed for a wide range of possible resonator

shapes. For our experiment, the special case of a plano-concave resonator, i.e. a

cavity with a plane mirror and a concave mirror with a radius of curvature R, is

discussed. In this case, G1 = 1 and G2 = 1 − L/R so that the stability condition

2.17 reduces to 0 ≤ L ≤ R. The beam waist in such a resonator is then found on
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the plane mirror, so the spot sizes on the mirrors, indicated in Figure 2.3 (a) are

given by

w1 = wC =

√
λ

π
4
√
RLG2 and w2 =

w1√
G2

. (2.19)

Their length-dependence for cavities of our type is shown in Fig. 2.3 (b). The cavity

field can take the shape of any superposition of the Hermite-Gaussian modes (2.1).

However a round-trip of the cavity will, in general, cause a different phase shift for

modes of different order, as given by Eq. 2.7. A mode of order (h, v) will therefore

only be resonant when the cavity length satisfies

Lq,h,v =
λ

2

[

q +
h+ v + 1

π
arccos

(√
G2

)]

(2.20)

Armed with the formulae and definitions given in this chapter, it is possible to

examine the behaviour of a plano-concave resonator coupled to a single-mode fibre.

In the following chapter, the development of high-finesse resonators at the Centre

for Cold Matter will be described, and the results from the measurements performed

on these devices are analysed using the framework given in this Section.
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Devices

In this Chapter, the development of the fibre-coupled microcavities used in the ex-

periment is described. Both mirrors used in our devices are custom-made, and their

features are described in Section 3.1. The particular characteristics of our devices

require the simple theory in Chapter 2 to be extended to allow for the discontinuity

in mode structure at the interface between the cavity and the coupling fibre. While

a complete description of these systems can only be achieved by numerical means,

most of their features are encompassed by two limits, which are described in Section

3.3. With this type of microcavity, finesse values in excess of 5000 were achieved

by increasing the reflectivities of the mirror coatings. These results are shown in

Section 3.4.

3.1 Building the microcavities

The microcavities in use at CCM are intended for integration with atom chips

(see Chapter 1). They have a plano-concave geometry, the plane mirror being a

dielectric coating attached to the tip of a single-mode fibre, while the concave mirror

is formed by coating an isotropically etched silicon surface. The latter renders the

integration with existing atom chip technology particularly simple, as the necessary

etching steps can be included without difficulty in the standard silicon fabrication

procedure. The plane mirror is attached to the fibre tip using a so-called transfer

procedure.1 Initially, the mirror is formed by multilayer evaporation onto a specially

prepared glass substrate. The preparation consists in coating the glass surface

with a saline solution, to which the multilayer film adheres with variable strength

depending on the concentration of the solution. The adhesion furthermore depends

on the number of layers in the coating, because the internal tension in the dielectric

1manufacturer: O. I. B. Jena GmbH, Göschwitzer Str 22 Jena D-07745, Germany.
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Figure 3.1: (a) SEM image of a silicon mirror template cleaved close to its centre.

(b) Microscope image of a dielectric coating glued to the tip of a single-mode fibre.

multilayer structure increases with the number of layers. This is important in

practice because the reflectivity of the multilayer film depends on the number,

thickness and material of the dielectric layers, so that for each desired reflectivity,

the correct concentration of the solution must be found empirically. The goal is to

find a concentration which will hold the film firmly enough to the glass substrate, but

weakly enough to be detached using the transfer procedure. The transfer procedure

is performed as follows:

The single-mode fibre is cleaved with a 90◦ cut using a precision cleaver. The

resulting surface is smooth enough to be used as a weak mirror. The fibre is then

angularly aligned to the coated glass surface by maximising the fringe contrast at

a large distance (in our case ∼ 300μm), where the precision in angular alignment

has a much greater effect on the contrast than a small change in position. This

is measured by scanning the position of the fibre tip over a small range, i.e. a

few wavelengths. It is possible to both move the fibre over a large distance and to

scan it over a small range, using a micro-positioning stage onto which the fibre is

mounted with a piezo actuator. Once satisfactory alignment has been achieved, the

actuator is switched off and a small drop of UV-curing, refractive-index-matched

glue2 is placed on the multilayer film, close to where the fibre tip will make contact.

The fibre tip is then dipped into the glue. The quantity of glue now present on the

tip is still too large to achieve a strong and precise adhesion in the curing step. The

excess glue is removed by making the drop of glue adhering to the fibre touch the

multilayer surface gently a number of times. From experience, it appears that the

2NOA 88, manufacturer: Norland Products Inc.

35



Chapter 3. Devices

ideal quantity of adhesive is present on the tip when the last contact leaves a drop

of the same diameter of the fibre on the mirror surface. At this point, the fibre is

”pushed” towards the mirror until a maximum is found in the reflected power. The

UV-curing lamp is then switched on for 3× 300 s, each from a different direction so

as to cure the glue all around the fibre tip, and between the tip and the coating.

The fibre is then pulled away slowly from the glass plate. This causes the multilayer

film to tear around the fibre tip, with a portion of film remaining attached to the

tip. The coated tip is then cleaned by dousing with distilled water, so as to remove

any remaining saline solution, and blow-dried immediately to avoid the deposition

of dust or other airborne particles. A fibre tip coated using this procedure is shown

in Figure 3.1 (b).

The concave mirror of the microcavity is formed on a silicon wafer (see Fig. 3.1

(a)). The procedure used to create the mirror templates used for the experiments

described in this thesis is the result of an empirical optimisation of the many param-

eters involved in the etching process. The wafer is wet-etched isotropically through

circular apertures in a lithographic mask using a mixture of HF and HNO3 in acetic

acid. The etch bath in which the wafer is immersed undergoes continuous agitation

during the etching process, resulting in an approximately spherical surface profile.

The temperature, agitation speed, etch time, and etchant concentrations had to be

optimised to approach an ideal surface profile. The concave mirror templates used

in our experiments were profiled with an atomic-force microscope, displaying a sur-

face roughness of approximately 6 nm RMS. Once the etching process is complete,

the entire wafer can be coated with the desired reflective surface to give a concave

mirror with the right reflective properties for the application envisioned.

3.2 Experimental setup and first results

The first coating used for the silicon mirrors was gold over chrome. Gold was

chosen for its high reflectivity in the near-infrared part of the spectrum (98.6% at

780 nm), and because it is a readily available coating material. The chrome layer

provides the necessary adhesion between the silicon surface and the gold coating.

An AFM scan of the gold-coated mirror surface showed that the coated surface

was rougher than the bare silicon, with an RMS roughness of σRMS = 9nm. The

decrease in reflectivity due to scattering caused by this roughness can be calculated

by multiplying with a Debye-Waller loss factor so that

ρDW2 = ρ2e
−(4πσRMS/λ)2 , (3.1)
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Figure 3.2: (a) Example of a reflection trace, showing two lowest-order fringes and

a variety of higher-order fringes. (c)Detail of the first lowest-order fringe with a

Lorentzian fit.

leading us to expect a mirror reflectivity of ρeff2 = 96.5%. The radius of curva-

ture of the mirror surface was also measured using the AFM, resulting in values of

R(a) = 177μm and R(b) = 168μm along the two perpendicular axes of the mea-

surement. From the SEM scan, the mirror template is known to have a diameter

of approximately D = 100μm. For large spot sizes on this mirror, this will cause

an aperture loss, leading to a spot-size dependent reflectivity. By inclusion of the

Debye-Waller loss factor, the effective reflectivity of the concave mirror can now be

approximated by

ρeff2 = ρ2e
−(4πσRMS/λ)2

(
1− e−2(

D
w2
)2
)
, (3.2)

The dielectric mirror transferred to the fibre tip for these measurements was spec-

ified by the manufacturer to have a reflectivity of 98% ≤ ρ ≤ 99%. The optical

fibre used for these experiments3 was a single-mode, non-polarisation-preserving

fibre. The typical 1/e2-intensity radius for this model is wF = 2.65μm. Cavities

consisting of these elements were analysed in detail to measure their performance

and discover their peculiarities. The cavity characteristics could now be ascertained

by measuring the power of light reflected back from the cavity through the input

fibre (see Figure 3.2). A grating-stabilised diode laser tuned to 780 nm, passing

through a beam splitter, is coupled into the input fibre using a microscope objec-

tive. To avoid back-reflection from the cleaved input surface of the fibre, the fibre is

set at a small angle to the input beam, excluding etalon effects at the cost of a slight

3SM750. Manufacturer: Fibercore Limited, Fibercore House, University Parkway, Chilworth

Science Park, Southampton, Hampshire, SO16 7QQ, United Kingdom
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Figure 3.3: (a) Finesse of the cavity as a function of length. Each point shown is

the average of 5 measurements. Each error bar is calculated from the statistical

uncertainties of the fringe widths and separations. (b) Fringe contrast of the cavity

as a function of cavity length. The error bar is given by the statistical spread of

the measured values.

reduction in coupling efficiency. Part of the light returning from the cavity through

the fibre exits the beamsplitter through the transverse arm, reaching the detector.

The chrome+gold-coated silicon chip with the concave mirrors is attached to a piezo

stack. The stack is driven through a power supply with a triangle waveform so as

to move the mirror periodically with an amplitude of 2 μm, i.e. through at least

four resonances. These are visible as dips in the power reflected from the cavity.

The two central dips, shown in Figure 3.2 (a), are then used to measure the fringe

visibility and finesse. These fringes are chosen because the piezo acceleration in this

region of the scan is small and can be assumed constant. As described in Chapter

2, the finesse is calculated from the measured values as the fraction of the fringe

separation divided by the fringe FWHM, ΔL/δL. The values for δL are calculated

using a Lorentzian fit to each lowest-order fringe, as shown in Fig. 3.2 (b). To

average out the acceleration, the mean of the fringe widths of the first and second

fringe is taken. To average out the effects of additional noise, five fringe traces are

recorded. The contrast in terms of measured voltage is simply (Vmax− Vmin)/Vmax,

as the detector used has a linear response to power in the range of the measurement.

Finesse and contrast are measured in this way at multiples of 10 μm, starting with

the two mirrors almost in contact, and ending where the cavity becomes unstable

and the fringes disappear. The average of the measured finesse and contrast values

are plotted, together with their statistical uncertainties, in Figure 3.3 (a) and (b).

To determine the radius of curvature, the distance between the resonant lengths

of the lowest-order modes and the first set of even radial modes (see Figure 3.2

(b)) is determined, after converting the time-voltage data from the oscilloscope into
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Figure 3.4: (a) Splitting of the second-order radial fringes, TEMq,0,2 and TEMq,2,0,

due to astigmatism. The plots show the voltage detected as a function of distance in

terms of the fraction (Lq,h,v − Lq,0,0)/(Lq+1,0,0 − Lq,0,0), for cavity lengths of 32 μm

(grey dots, red fit curve, lower tick marks) and 112 μm (black dots, upper tick

marks, blue fit curve). (b) Separation between the second-order radial fringes and

the TEMq,0,0 fringe, as a function of cavity length. A least-squares fit gives values

of Ra = (183 ± 4)μm and Rb = (172 ± 4)μm, and an initial mirror separation of

(12± 3)μm.

length-voltage data to take into account the acceleration calculated in the finesse

measurement. The resulting fractional displacement is plotted in Figure 3.4 (b).

The plot shows a non-degeneracy of the TEMq,0,2 and TEMq,2,0 fringes, which

grows as a function of cavity length. Two examples of the fringe splitting, at cavity

lengths of 32μm 112μm, are shown in Fig. 3.4 (a). This is caused by astigmatism

in the concave mirror. The red line shows a double-Lorentzian fit to the fringes at a

cavity length of 32 μm (grey dots, lower tick marks), where the non-degeneracy first

becomes evident. The blue line is a fit to the doublet at L = 112μm (black dots,

upper tick marks), where the fringes are almost entirely distinct. The fringe traces

allow us to deduce radii of curvature of Ra = (183± 4)μm and Rb = (172± 4)μm,

and an initial mirror separation of (12± 3)μm. The radii measured in this way are

in reasonable agreement with the aforementioned AFM results.

3.3 Interpretation of Results

In the following, a number of approximations will be made to simplify the treatment

of the results. The concave mirror will be treated as perfectly spherical, while the

fibre mirror will be treated as perfectly flat, infinitely thin and in immediate contact

with the fibre output. The repercussions of these simplifications will be taken into
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account when discussing the measurements.

As mentioned in Chapter 2, the light exiting the tip of a single-mode fibre is well-

described by a Gaussian beam with an electric field function of

ψF =

√
2

π

1

wF
e
−x
2+y2

w2
F , (3.3)

where the normalisation factors have been chosen so that the power in the beam,
∫∞
−∞

∫∞
−∞ |ψF |

2 dx dy = 1. The excitation of any given cavity mode ψN,h,vC , where N

denotes the longitudinal mode number and h, v denote the horizontal and vertical

transverse mode numbers, is then given by the mode overlap

ηN,h,v =

∫ ∞

−∞

∫ ∞

−∞
ψ∗Fψ

N,h,v
C dx dy , (3.4)

The light exiting the fibre will excite the coherent superposition of cavity modes

which it best matches. The resonator field equations must be applied separately for

each mode, after which the total circulating, transmitted and reflected fields can

be calculated by summation. However, the fibre and cavity will support different

sets of modes. The cavity will support the set of Gaussian modes described in the

previous Chapter, while the radial variation of the refractive index in the fibre means

it will not support the same set of modes.[41] To elucidate this complication, it is

instructive to consider what can happen to an excitation of a given mode leaving

the cavity. If it exits the cavity via the fibre mirror, it will either

1) excite the single propagating fibre mode, or

2) be rejected by the fibre and re-enter the cavity, or

3) enter the fibre cladding.

The amplitude of option 1) is simply given by the mode overlap of the initial mode

and the fibre mode. The repartition of probabilities of options 2) and 3) is not as

straightforward. To fully evaluate them requires the calculation of the form of all

possible modes of the fibre structure including core, cladding and air modes [41],

after which the mode overlap of these with the cavity mode can be calculated. This

is a large numerical calculation which goes beyond the scope of this thesis. The

system can nonetheless be described with some accuracy by considering the two

limits of repartition, i.e.

i) the reflection limit, in which all light which does not overlap with the fibre mode

is reflected back at the fibre interface, and

ii) the transmission limit, in which all light which does not overlap with the fibre

mode is lost into the fibre cladding and from there into free space.

It will become evident that the two limits give good approximations when describing
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certain situations, and are useful by giving bounds in all others. Here, only the

results of the changes to the equations in Chapter 2 for the evaluation of these two

limits are given. The interested reader can explore the details of the amendments

necessary for the calculation of these limits in Appendix A. The reflection limit will

be described first, as it leads to some very simple expressions for the fringe visibility

and finesse when a further set of reasonable approximations is made. The system

will be described by considering the field of a single cavity mode. The total field

can be found by summation as the modes are orthogonal. To further simplify the

discussion, losses in the input mirror are neglected1, and ρ1 and ρ2 are assumed to

be real. The equations in Chapter 2 must now be modified to take into account

the increase in reflection back into the resonator. Given the above, the effective

reflectivity and transmission of the fibre mirror become

ρeff1 (h, v) ≡ ρ1 + (1− ρ1)(1− η2h,v) = 1− η
2
h,v(1− ρ1) , and

T eff1 (h, v) ≡ 1− ρ
eff
1 (h, v). (3.5)

If both the cavity mirrors have high reflectivity and the apposite superposition of

cavity modes matches all but a negligible part of the fibre mode, we can furthermore

assume that the cavity will completely reject light from all non-resonant modes, so

the reflected intensity simplifies to that of the general resonator from Chapter 2,

with ρ1 → ρeff1 . In this approximation, the equations for both finesse and fringe

visibility from Chapter 2 can therefore be used with the substitution ρ1 → ρeff1 .

In the transmission limit the fraction of light exiting the cavity which does not

match the fibre mode is assumed to be lost instead of being reflected back into the

cavity, so the finesse is not expected to change in this limit. Equation 2.16 can

therefore be used without modification. For the fringe contrast however, this loss

needs to be taken into account, together with the rejection of mismatched input

light which is again assumed to be complete. This leads to an expected fringe

contrast of

ϑTLh,v = 1−

(

−reff1 (h, v) + T
eff
1 (h, v)

r2

1−
√
ρ1ρ2

)2
. (3.6)

The crucial parameter for both limits is the mode overlap between the fibre and

cavity modes. Given the astigmatism of the cavity, the overlap integral for the

lowest-order modes is given by

η0,0 =
2wF
√
wXwY√

w2F (w
2
X + w

2
Y + w

2
F ) + (wXwY )

2
. (3.7)

1in our measurements, this is an acceptable approximation as the losses in this type of dielectric

film heave been measured to be on the order of 6 parts per million[11], while our transmission is

larger than 100 p.p.m. in all measurements.
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Figure 3.5: Comparison of experimental data and theoretical predictions for finesse

(a) and fringe contrast (b). The predictions of the reflection limit (green lines)

are, in general, closer to the measured values than those of the transmission limit

(red lines). The parameters used for the theory plots are: σRMS = 9nm giving

ρDW2 = 96.5%, ρ1 = 98.5%, wF = 2.65μm, R(a) = 183μm, R(b) = 172μm.

With the measurements for mirror roughness, and the specifications given by the

manufacturers for the single-mode fibre and the dielectric coating, these limits can

now be compared to the experimental results from Section 3.2. The expected finesse

and fringe contrast are plotted together with the experimental data in Figure 3.5.

For the aperture loss, the geometric mean of the two spot size radii was used as the

spot size, while the aperture itself was taken to be 100 μm, as given by the SEM im-

age. Data at lengths greater than 170 μm cannot be compared with the predictions

as and the mode is no longer paraxial, and the cavity becomes unstable along one

axis beyond 172μm. Until that point however, both contrast and finesse measure-

ments are for the most part encompassed by the two theoretical curves, showing

slightly better agreement with the predictions of the reflection limit especially for

small cavity lengths. In both cases, the measured value deviates strongly from

theory at a cavity length of 92 μm. This can be reconduced to an increase of the

mode overlap because of the transitional degeneracy of the TEM0,0 mode with the

TEM0,4 and the TEM4,0 modes (see Appendix A). The finesse drops more rapidly

than expected towards the edge of the stability region, indicating additional spot-

size-dependent losses of unknown origin, such as a smaller effective mirror aperture.

3.4 High-finesse microcavities

The results from the gold-coated mirrors showed that cavities constructed using

these principles could achieve higher performance values by using higher-reflectivity
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Figure 3.6: (a) Finesse, and (b) fringe contrast measured for different lengths of

the high-finesse cavity. Below these, an example of fringes from the high-finesse

resonator, displaying a finesse of 5200.

coatings. This was done by using dielectric coatings on both surfaces. However,

because of the roughness of the silicon substrate, the reflectivity of the concave

mirror is limited to 99.9%. The higher reflectivity nonetheless led to the achieve-

ment of a finesse exceeding 5000, as shown in Figure 3.6. The contrast in these

measurements was low at only 10% for a cavity length of 30 μm, and decreased

rapidly with cavity length, making a complete analysis as performed for the gold

mirrors impossible. However, the results were useful in showing that to achieve

good contrast, it would be necessary to lower the reflectivity of the input mirror to

99% < ρ1 < 99.9%. This would still give finesse values of over 500. As explained in

Chapter 5, the small mode volume of the cavity should nonetheless make this value

sufficient for the reliable detection of single atoms.
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Atoms and Light

This brief chapter introduces the interaction of atoms with light fields. Throughout

this chapter, the atom will be treated as a quantum-mechanical two-level system,

while the light field is initially treated as a quantum simple harmonic oscillator.[34,

35] In the limit of large excitation number, the treatment can be greatly simplified

by replacing the quantised field with a classical wave picture.

The principles listed herein will then be used to treat the combined atom-cavity

system in the rest of the thesis.

4.1 Quantum atom-light interactions

In the following, the interaction of light with modes of the radiation field is outlined,

which leads to well-known phenomena such as Rabi oscillations and the exponential

decay of the atomic excited state. The system is visualised in Figure 4.1. An atom

which is not coupled to any external fields is described by the Hamiltonian

HA = ~ωeg|e〉〈e|, (4.1)

where the ket | e〉 denotes the excited state of the atom and the energy of the

ground state has been arbitrarily set to zero. The light mode is a simple harmonic

oscillator,

HL = ~ωL(a
†a+

1

2
). (4.2)

The interaction between the atom and the light is

Hfullint = p̂.Â ' d̂.Ê = gAL(a+ a
†)(|e〉〈g|+ |g〉〈e|) , (4.3)

where the approximation is valid for frequencies ωL close to the atomic resonance

ωeg. By switching briefly to the interaction picture at this point, it can be seen that
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Figure 4.1: Schematic diagram of the system described by the Jaynes-Cummings

model. The light field (a) is described as a quantum simple harmonic oscillator,

while the atom (b) is assumed to be a closed two-level system. The two interact

via the electric dipole interaction.

the terms a|g〉〈e| and a†|e〉〈g| oscillate at a frequency ωeg +ωL. Close to resonance,

this will be much greater than that of the two other terms which oscillate at ΔAL =

ωeg − ωL. In this limit, the fast-oscillating terms can therefore be neglected. This

simplifying step is known as the Rotating Wave Approximation, and will be taken

as valid throughout the rest of this thesis. The resulting, simplified interaction

Hamiltonian is then:

Hint = ~gAL(|e〉〈g|a+ a
†|g〉〈e|) (4.4)

This is the famous Jaynes-Cummings Hamiltonian, where the frequency gAL gives

the interaction energy of the coupled atom-light system. It is known as the coupling

rate or vacuum Rabi frequency of the system. The RMS electric field of the vacuum,

Evac, can be found by integrating over the volume of the mode. Thus

~ωeg
2
= 2×

∫
1

2
ε0E

2
vacdV Evac(ωeg) =

√
~ωeg
2ε0V

(4.5)

The initial multiplication by 2 takes into account the equal contributions of electric

and magnetic fields to the energy of the mode. For a transition with matrix element

μeg, the interaction energy of the dipole coupling is given by ~μeg.~E , so assuming the

dipole is aligned with the field, the coupling frequency will result as

gAL =
|~μeg|| ~Evac|

~
=

√
μ2egωL

2~ε0V
. (4.6)
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This gives us the complete Hamiltonian for a two-level atom interacting with a

single radiation mode,

H = HA +HL +Hint . (4.7)

By making the Rotating Wave Approximation in 4.4, only energy-conserving terms

have been retained. Consequently, if we depict the system in a basis |l, N〉, where

l = g, e denotes the atomic level and N denotes the number of excitations in the

radiation mode, the interaction term only couples states |g,N〉 to states |e,N − 1〉

and vice-versa. Each such pair of states can therefore be treated as an independent

2-level system. In algebraic terms, the interaction matrix in this basis can be writ-

ten as

| g, 0〉 | e, 0〉 | g, 1〉 | e, 1〉 | g, 2〉 | e, 2〉 | g, 3〉 ...

〈g, 0 |

〈e, 0 |

〈g, 1 |

〈e, 1 |

〈g, 2 |

〈e, 2 |

〈g, 3 |

...




















1
2
ωL 0 0 0 0 0 0 ...

0 3
2
ωL +Δ g 0 0 0 0 ...

0 gAL
3
2
ωL 0 0 0 0 ...

0 0 0 5
2
ωL +Δ

√
2gAL 0 0 ...

0 0 0
√
2gAL

5
2
ωL 0 0 ...

0 0 0 0 0 7
2
ωL +Δ

√
3gAL ...

0 0 0 0 0
√
3gAL

7
2
ωL ...

... ... ... ... ... ... ... ...




















×~

The Hamiltonian for each pair of states |g,N〉, |e,N − 1〉 can then be given by

HN 6=0 = ~

((
N + 1

2

)
ωL +Δ

√
NgAL

√
NgAL

(
N + 1

2

)
ωL

)

. (4.8)

The eigenfrequencies of the system are then

ω±N 6=0 = ωL

(

N +
1

2

)

+
1

2

(

ΔL ±
√
4Ng2AL +Δ

2
L

)

. (4.9)

In words, the energy levels of the combined system are doublets on a ladder, apart

from the case in which no excitation is present in the system. When N = 0, the

system has only one eigenfrequency, ~ωL/2.

4.2 Many frequencies: Spontaneous emission

When the atom interacts with a single light mode, the excitation goes back and

forth regularly between the field and the particle with an effective Rabi frequency of
√
4Ng2AL +Δ

2
L. If instead there is a multitude of electromagnetic frequencies close

to the atomic resonance, the same mechanism will apply separately for each as the
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polarisation and frequency modes of the electromagnetic field are (by definition)

orthogonal. Here, a brief summary is given of how this situation leads to the decay

of the excited state of an atom. Recalling that the Hamiltonian for the atom

interacting with a single radiation mode is H = HA+HF (ω) +Hint(ω), the system

with a set of modes of wavelengths ω is then described by

H = HA +
∑

ω

HF (ω) +
∑

ω

Hint(ω). (4.10)

For simplicity it is assumed that in the initial state | i〉, the atom is entirely excited

while no excitation is present in any light mode,

| i〉 =| e, 000...000〉 . (4.11)

From the real world, it is known that the system will eventually evolve into a state

in which the atom is entirely in its ground state and the excitation is spread over

the modes of the field. It will therefore evolve into a superposition of final states

| f〉m with frequency ωm,

| f〉m =| g, 000...1m...000〉 . (4.12)

In the interaction picture, the evolution of the system can be described by the state

vector

| Ψ(t)〉 = ci(t)e
iωegt | i〉+

∑

m

cm(t)e
−i(ωeg−ωm)t | f〉m . (4.13)

This gives the equations of motion

ċi = −i
∑

m

gAL(m)e
i(ωeg−ωm)tcm(t) , ċm = −ig

∗
AL(m)e

i(ωeg−ωm)tci(t), (4.14)

so that

ċi = −
∑

m

|gAL(m)|
2

∫ t

0

e−i(ωf−ω)(t−t
′)ci(t

′) . (4.15)

After some reasonable approximations initiated by Wigner and Weisskopf, the evo-

lution of the system is given by the simpler differential equation

ċi = −ci(t)
∑

m

|gm|
2πδ(ωeg − ωm), (4.16)

which has a solution of the form

ci(t) = ci(0)e
−γt, with γ = π

∑

m

|gm|
2δ(ωeg − ωm). (4.17)

This indicates that the amplitude of the state will decrease exponentially with a

decay rate given by the constant γ, which is found as follows. The sum over the
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coupling frequencies is evaluated most easily if the mode volume is assumed to be

large, V� λ3. Then the coupling strength to the vacuum can be found using the

density of states per unit frequency at the atomic resonance,

D(ωeg) =
ω2egV

π2c3
, (4.18)

and finding the squared electric field as previously,

E2vac(ωeg) =
ωeg

2~ε0V
, (4.19)

to evaluate the electric field strength at this frequency. Averaging over 3 coordinates

for a randomly oriented dipole,

γ =
1

3

μ2eg
~
D(ωeg)E

2
vac(ωeg) =

μ2egω
3
eg

6πc3~ε0
. (4.20)

While this quantity is apparently independent of the chosen quantisation vol-

ume, it should be noted that this is due to the approximation of the sum to an

integral justified by the choice of a ‘large’ box. In this limit, in crude terms, the

vacuum field of each mode decreases with volume but the number of modes in its

vicinity, i.e. the density of states, increases giving the independence. In microcavity

experiments however, the modes can be made so sparse that the approximation is

invalidated. It is nonetheless evident that the transition rate will depend on the

strength of the vacuum field at the atomic frequency. The Hamiltonian of an atom

in free space can now be re-written to include its natural decay rate as

HA = ~ωeg | e〉〈e | −i~γ | e〉〈e | . (4.21)

4.3 Many photons: The semiclassical limit

Returning to the picture of a single mode coupled to the atom, if this mode is pop-

ulated with a large number of photons, the system can be treated more succinctly

by approximating the light to a classical, continuous variable. The atom is still

treated as a quantum-mechanical two-level system. The interaction Hamiltonian in

this approximation is given by

HSCint = μegE(t)(|e〉〈g|+ |g〉〈e|). (4.22)

Neglecting the energy change in the light field, the total Hamiltonian is HSC =

HA +H
SC
int , i.e.

HSC = ~((ωeg −Δ)|e〉〈e| −
Ω

2
|e〉〈g|+

Ω

2
|g〉〈e|)− i~γ | e〉〈e |, (4.23)
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where the Rabi frequency is defined as Ω = μegE0/~ for a wave E(t) = E0cos(ωLt+θ).

Once again, the system displays two eigenfrequencies given by

ω± =
1

2
(Δ±

√
Ω2 +Δ2). (4.24)

The Hamiltonian 4.22 forms the starting point for the semi-classical theory of atom-

light interactions which can treat the vast majority of laboratory systems commonly

found in atomic physics. In the next Chapter, the semi-classical approximation will

be used to calculate the interaction of atoms with strong cavity fields.

49



Chapter 5

Realistic atom-cavity interaction

Coupling an atom to the field of an optical resonator leads to intriguing conse-

quences, described concisely by cavity quantum electrodynamics (CQED). In this

Chapter, this combined system is described using the terminology from Chapter 4.

The coupling of an atom to a lossy resonator is treated using the fully quantum-

mechanical picture from Section 4.1,[3, 34] and in an approximate semi-classical

treatment for the interaction with intense cavity fields.[20] In the last part of this

Chapter, the coupling of atoms to a cavity under our experimental conditions is

discussed in more detail.

5.1 The quantum cavity

In chapter 4, the interaction between an atom and an electromagnetic field was de-

scribed in terms of the coupling of a two-level system to a single quantum harmonic

oscillator. In this experiment, the oscillator is a single mode of the optical cavity.

The size and shape of the cavity determine the properties of the electromagnetic

field of its mode, ψC . In our cavity the relevant mode is a lowest-order Gaussian of

waist wC , as described in Chapter 2, and its mode volume is given by

VC =

∫ L

0

∫ −∞

−∞

∫ −∞

−∞
|ψC |

2dxdydz =
π

4
w2CL. (5.1)

The maximum vacuum Rabi frequency of the cavity is therefore given by

gAC =

√
μ2egωC

2~ε0V
'

√
3cλ2γ

πw2CL
, (5.2)

the latter being acceptable when ωeg/ωC ' 1, as assumed for the rotating-wave

approximation. At any point ~r in the cavity, the vacuum Rabi frequency of the

cavity mode is then given by g(~r) = ψC(~r)gAC .
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In a perfect (lossless) cavity, the supported modes are given by delta-functions in

frequency-space. In the case of a real cavity with transmitting (and lossy) mirrors,

the modes have a finite half-width of κ, as shown in Chapter 2. The Hamiltonian

for the field used in the previous chapter is therefore inadequate for realistic exper-

imental conditions and needs to be modified to include the amplitude decay rate κ

such that

HC = ~ωC

(

a†a+
1

2

)

− i~κa†a , (5.3)

where ωC is the angular frequency of the cavity field.

The atom will therefore interact with a ‘coloured’ vacuum in which modes with

frequencies close to the resonances of the cavity are enhanced in comparison to free

space, while all others are suppressed.

To observe the interaction of an atom with the field, the cavity is driven with a

laser beam so that light impinges on the input mirror at a rate of Jin photons

per second. Comparing the number of photons entering and leaving the cavity

per round-trip leads to a circulating photon number of Ncirc = JinT1η
2τrt/ξ

2 on

resonance. Here η2 is the coupling efficiency between the guided fibre mode and

the lowest-order Gaussian mode of the cavity. The amplitude pump rate ζ is then

given by considering that in a steady state the loading rate will equal the loss rate,

i.e. setting ζ2 = Ncircκ
2, giving an amplitude pump rate of

ζ =

√
JinT1η2

τrt
. (5.4)

The pumping of the cavity field is then described by the Hamiltonian

HP = i~ζ(a
† − a). (5.5)

This realistic model of the cavity can now be used to adapt the ideal model from

the previous chapter to actual experimental conditions.

5.2 Dissipative dynamics

Recalling that the amplitude of the upper-state population of a two-level system in

free space will decay naturally with a rate of γ (Eq. 4.21), the pumped, decaying

atom-cavity system is now governed by the Hamiltonian

HAC = HA +HC +HP +Hint , (5.6)

where Hint is the Jaynes-Cummings Hamiltonian from Chapter 4. By following the

same arguments as in the previous chapter, we can calculate the eigenfrequencies

of the system. These are now modified by the decay rates to
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ω±N = ωC

(

N +
1

2

)

+ ω̃±N , (5.7)

with

ω̃±N = ±
1
2

√
4Ng2 − (γ − κ)2 − i

2
(γ + κ(2N − 1)).

5.2.1 Quantum intra-cavity field

If the pump amplitude is sufficiently low, all states with more than one excitation

can be neglected. This is the case if the atomic excitation probability is low, i.e. if

ζ � gAC , and the decay rates outweigh the pump rate, ζ < (κ+ γ)/2.

In this case, the state vector can be approximated by

| Ψ(t)〉 = ce(t) | e, 0〉+ cg(t) | g, 1〉+ c0(t) | g, 0〉. (5.8)

Given that the pump rate is assumed to be small, the occupation of the unexcited

state can be taken as constant, c0 ≈ 1. The equations of motion of this truncated

system when the cavity is on resonance with the atom are then given by

iċe = −gACcg + (ΔCL − iγ)ce,

iċg = −gACce + (ΔCL − iκ)cg + iζ. (5.9)

Assuming that a steady state has been reached such that ċg = ċe = 0, the value of

cg gives the amplitude of the cavity light field in the limit of weak pumping:

cg = iζ
(ΔCL − iγ)

g2AC − (ΔCL − iκ)(ΔCL − iγ)
=
ζ

κ

κ(γ − iΔCL)
(ΔCL − ω̃

+
1 )(ΔCL − ω̃

−
1 )

(5.10)

leading to an expectation value of the number of circulating photons Ncirc = c
∗
gcg. In

essence, the empty-cavity resonance is split into a doublet whose peaks are shifted

to ω̃±1 . On resonance, the expression reduces to

cresg =
ζ

κ

1

2C + 1
=
ζ

κ

1

P
, (5.11)

where the cooperativity parameter C = g2AC/2κγ, and the Purcell factor P =

2C+1 have been introduced. The significance of the latter will become clear in the

following Section, where the evolution of the system is described assuming that the

atom is in an excited state while no excitation is present in the cavity mode, and

the system is not being driven by an external pump field (ζ = 0).
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5.2.2 Intra-cavity decay rate

For experiments leading to the generation of single photons in the cavity and their

collection at the end of the fibre, we are interested in the rate at which atoms will

emit photons into the cavity mode. Later in this section, the collection efficiency is

deduced from the fibre-cavity coupling mechanism discussed in Chapter 2.

By following the ideas of Section 4.2, the decay rate into the cavity can be found by

relatively straightforward means. For the free-space decay mechanism described in

the previous Chapter, the atom was assumed to couple to a continuum of modes in a

large box. For the cavity mode, no such approximations need to be made as the atom

will in general be coupled to a single cavity mode. The frequency-dependence of

the vacuum field strength in the cavity is quickly found recalling that the lineshape

of the cavity is Lorentzian with a half-width κ, so that the normalised vacuum field

function is given by

E2vac(ΔCL) =
1

πκ

κ2

κ2 +Δ2CL
E2vac(0). (5.12)

With this, as Eq. 4.20, the decay rate for a maximally-coupled atom is given by

γcav = π
μ2eg
~
E2vac(ΔAC) =

μ2egE
2
vac(0)

~κ
κ2

κ2 +Δ2AC
=
g2AC
κ

κ2

κ2 +Δ2AC
. (5.13)

Here the atomic resonance is chosen as the central frequency as a consequence of

the δ−function in Eq. 4.17. This expression is only valid when the cavity field

amplitude decays faster than the time necessary for a re-excitation of the atom,

i.e. κ � gAC , so that the cavity field population can be neglected. Now the total

decay rate of the atom’s excited state can be found. The coupling of the atom to

the modes of free space will be slightly decreased as the cavity ‘obscures’ part of

these modes, replacing them with its own. However, the solid angle of our cavity

is very much smaller than 4π, so the reduction of the free-space decay rate can be

neglected. When the cavity is on resonance with the atomic transition, the total

decay rate can then be written as

γtot = γ + γcav = γ(1 +
g2AC
κγ
) = γP. (5.14)

The same result is found when the evolution of the state vector 5.8 is calculated

for the same set of approximations made herein, but the line of reasoning followed

here was chosen to underline that the same principle governs both the free-space

and the intra-cavity decay process.

Two important facts emerge from this last equation: Firstly, the resonant rate

of emission into the cavity will increase with improving cooperativity, and can be
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enhanced to surpass the atom’s natural decay rate with high finesse and small mode

volume. Secondly, the emission of photons into the cavity can be almost entirely

suppressed by detuning the cavity from resonance, as the vacuum electric field of

the cavity mode can be made to possess negligible amplitude at the atom’s resonant

frequency.

The rate of photon emission into the cavity is the first step in calculating the rate of

photons collected by our cavity fibre. At this point, the reflection- and transmission

limits from Chapter 2 yield two different results prF and p
t
F for the probability of

collecting a photon from the cavity in fibre. In the reflection limit, a photon can only

be transmitted into the fibre or lost via the concave mirror, while in the transmission

limit the light can also be lost to the cladding of the fibre. The probabilities for a

photon in the cavity mode to enter the fibre mode are given in the two limits by

prF =
T h,v1

T h,v1 + (1− ρ2)
=

(

1 +
1− ρ2
1− ρh,v1

)−1

and

ptF =
T h,v1

T1 + (1− ρ2)
=

(
1

η2
+
1− ρ2
1− ρh,v1

)−1
. (5.15)

For a measured contrast and finesse, the reflectivity of each mirror and the mode

overlap must be calculated independently for the two limits with the equations listed

in 2. It is nonetheless evident in both limits that for a high collection efficiency, it

is desirable to create cavities with ρh,v1 < ρ2. This demands good mode overlap and

low reflectivity of the input mirror. Decreasing the reflectivity of the input mirror

however also decreases the cooperativity of the atom-cavity system, and with it

the decay rate into the cavity mode. Therefore if a high collection rate, given by

pfγcav, is desired rather than a high collection efficiency, the ‘bare’ reflectivity of

the input mirror must be chosen to have the optimum value. The collection rate is

plotted for a fixed reflectivity ρ2 = 99% for mode overlaps η
2 = 0.2, 0.5 and 0.9.

In the reflection limit the optimum value for the ‘bare’ input mirror reflectivity is

1− (1− ρ2)/η2, while in the transmission limit it is quite simply ρ2, for all overlap

values. In the reflection limit however, the maximum collection rate is independent

of the mode overlap η and remains constant at g2ACL/c(1− ρ2).

The equations given in this Section enable the calculation of upper and lower limits

for the collection of photons in the cavity fibre if atoms within the cavity mode

are prepared in an excited state, when the cavity pump amplitude is zero. The

following section briefly discusses the opposite regime, namely one in which the

pump amplitude is sufficiently large to justify a semi-classical treatment of the

system.
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Figure 5.1: Collection rate of photons for a cavity tuned to the atomic resonance

with mirror reflectivity ρ2 = 99% as a function of input mirror reflectivity ρ1.

The rate, given in units of the atomic decay rate γ = 2π × 3MHz, is plotted for

mode overlaps η2 = 0.2 (black), 0.5 (orange) and 0.9 (green) in the reflection and

transmission limits (solid and dashed lines, respectively). The atom-cavity coupling

rate is set to g2AC = 2π × 100MHz and the cavity length is chosen as 130 μm.

5.3 The coherent cavity field

As noted in the previous chapter, the cavity field can be approximated by a continu-

ous, classical variable while the atom is still treated as a quantum two-level system.

This allows analytical calculations in the regime where the excitation is large, as

opposed to the purely quantum treatment given above. Including the cavity and

atomic decay rates, the rate of change of the amplitude of the light field is given by

α̇ = (iΔCL − κ)α + gACρge + ζ (5.16)

while the atom’s evolution is described by

ρ̇eg = −(γ + iΔAL)ρeg + gACα∗(ρgg − ρee),

ρ̇ee = −2γρee + gAC(α
∗ρeg + αρge). (5.17)

If a steady state is reached, the cavity light field is then given by

α =
ζ

(κ+ γρee/N)− i(ΔCL −ΔALρee/N)
, (5.18)

where the mean number of photons N = |α|2, and ρee, the excited-state population,

is given by

ρee =
Ng2AC

Δ2AL + γ
2 + 2Ng2AC

, (5.19)
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The two are interdependent, and yet some useful statements can be made about this

system without resorting to numerical evaluations of the above equations. With the

atom, pump laser and cavity all on resonance, the expression for the field amplitude

reduces to

αres =
ζ

κ

1 + 2Ng2AC/γ
2

P + 2Ng2AC/γ
2
. (5.20)

When the field amplitude is sufficiently low, that is when N � γ2/2g2AC , the crit-

ical photon number, the simple expression from Eq. 5.11 re-emerges. In general

however, the amplitude equation needs to be solved by more tedious means. Fortu-

nately in this ”all-resonant” case the field amplitude is always real, i.e. N = α2res,

as can be seen by inspecting equation 5.20, so the allowed values are easily found

analytically by solving the cubic equation

α3res −
ζ

κ
α2res + P

γ2

2g2AC
αres −

ζ

κ

γ2

2g2AC
= 0. (5.21)

The lengthy expressions of the standard solutions to this equation can be found

in mathematics reference books.[42] The properties of cubic equations and their

determinants are however useful in determining if and where the system will have

more than one real solution, i.e. become bi-stable.

The intra-cavity photon number is plotted for a variety of cooperativity values in

Fig. 5.2. It can be shown straightforwardly that the field amplitude will remain

single-valued for all pump values as long as C ≤ 4, and will be given by the first

of the three cubic solutions for αres. For higher cooperativity values, the amplitude

will have three allowed values for pump amplitudes in the regime between

ζ± =
gAC

4

√

1 +
10

C
−
2

C2
±

(

1−
4

C

)2/3
. (5.22)

Now, the first cubic solution ceases to be real at a lower pump value and only the

second cubic solution takes on real values in the regime between ζ1→2 ≤ ζ ≤ ζ−,

with

ζ1→2 = gAC

√
3P

8C2
. (5.23)

For increasing cooperativity values, the system becomes bi-stable at increasing

pump values. The smallest pump value at which the system can become bi-stable

therefore occurs when C = 4 and is

ζmin =
3

4

√
3κγ , (5.24)

where for this cooperativity ζmin = ζ1→2 = ζ±. Limiting values for the bi-stable

range can be found when any two of the three rates (g, κ, γ) are known.
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Figure 5.2: Intra-cavity photon number in the semi-classical approximation. For

all plots, the decay rates are set to γ = 1 and κ = 300. (a) The cavity photon

number for cooperativity values of C = 1 (dashed red), C = 4 (dashed orange) and

C = 6 (solid multi-coloured line), compared to the empty-cavity photon number

(solid black line line). With C = 4, the system is on the verge of bi-stability at

ζmin (see text). With C = 6, the system is visibly bi-stable. This case is shown in

more detail in (b), where the solution boundaries given in the text are indicated.

For ζ → ∞, all functions tend towards the dashed black line in (a) described by

N = (ζ/κ)2 − γ/κ.
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These equations now allow us to predict the resonant response of an atom-cavity

system by entirely analytical means, for any coupling, decay and pump values. For

the purposes of our experiment, we are particularly interested in how this response

will become visible when we observe the light reflected by the resonator.

5.4 Cavity reflection signal

In Chapter 2, it was shown that the total reflected field AR is the sum of an initial

reflection from the input mirror and the light exiting the cavity through this mirror,

i.e.

AR = −Ainr
h,v
1 + Acavr2t

h,v
1 . (5.25)

Since we assume the losses in the input mirror to be negligible, the input mirror

transmission depends on the mode overlap between fibre and cavity with th,v1 =

ηh,v
√
1− ρ1. In the initially reflected amplitude Ainr

h,v
1 , r

h,v
1 =

√
1− (th,v1 )2 =√

ρh,v1 , as defined in Chapter3. Ain =
√
Jin is the time-averaged total field of

the driving beam (in units of
√
photons/s). Although the cavity field Acav =

αcav/
√
τrt is fully described in the coherent limit by solving Equation 5.18, it is less

cumbersome in the low-intensity limit to use the result of Equation 5.10, as the two

are approximately equal in this regime. On resonance, this once again yields far

simpler expressions than in the general case. For cavities of our type, using Eqs.

5.10 and 5.25, the reflected power on resonance becomes

JresR = |AR|
2 = Jin

(

−rh,v1 +
r2T

h,v
1

ξ

1

P

)2

. (5.26)

Here only the use of ρ1 or ρ
h,v
1 within ξ needs to be chosen depending on whether

the reflection or transmission limit is considered. As a simple example, the change

in reflected power caused by the presence of a maximally coupled atom is plotted

in Figure 5.3 (a) for a perfectly mode-matched cavity. The relative reflected power

for the empty cavity is shown by the black line. To calculate the effect of an

atom in the cavity, the coupling frequency is set to gAC = 2π × 100MHz and

γ = 2π×3MHz, while κ is calculated as a function of reflectivity assuming a cavity

length of 130μm. These yield a cooperativity C shown by the dashed orange line.

The modified reflected power resulting from the presence of an atom is shown by

the red line. Equation 5.26 can be simplified further if the visibility ϑ of the empty

cavity is known. Then, given that rh,v1 ≈ 1 and ϑ = 1 − J
res
R /Jin, the value of the
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Figure 5.3: Effect of a maximally-coupled atom on the reflected power in the weak-

pumping limit. The fibre-cavity coupling is assumed to be perfect. (a) The reflec-

tivity of the input mirror ρ1 is varied, while ρ2 is fixed at 99%. The relative reflected

power for the empty cavity is shown by the black line. To calculate the effect of an

atom in the cavity in this case, the coupling frequency is set to gAC = 2π×100MHz

and γ = 2π × 3MHz, while κ is calculated as a function of reflectivity assuming a

cavity length of 130 μm. These yield a cooperativity C shown by the dashed orange

line. The modified reflected power resulting from the presence of an atom is shown

by the red line. In (b) the reflected power is plotted as a function of cooperativity

for empty-cavity relative reflected power values of 1−ϑ =0.8 (red), 0.5 (green) and

0.2 (blue). The solid (dashed) lines are plots for v− (v+).
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fraction in Eq. 5.26 is given by

v ≡
r2T

h,v
1

ξ
' 1±

√
1− ϑ ≡ v± (5.27)

The minus-sign is therefore taken when the cavity is under-coupled, i.e. rh,v1 > v,

and the plus-sign for the over-coupled case rh,v1 < v.1 The simplified expression for

the reflected light is then

JresR = Jin

(

−1 +
v±

P

)2
. (5.28)

The dependence of this function on cooperativity is shown in Figure 5.3 (b), where

the relative reflected power is plotted for both over- and under-coupling, with initial

values for 1−ϑ of 0.2, 0.5 and 0.8. It is already clear that the presence of an atom in

the cavity will, for increasing cooperativity, eventually extinguish the interference

effect of the cavity, thereby bringing the reflected signal towards Jinρ1. However,

if the reflectivity of the input mirror is lower than that of the opposing mirror, the

reflected intensity will decrease to zero before it increases towards Jinρ1.

The difference between the empty-cavity signal and the signal with an atom in the

cavity mode is one of the factors which determine how confidently the passage of

an atom can be detected. A further important consideration is the pump rate, as

this determines the shot noise of the measurement. The reflection signal for large

pump rates can be calculated using the results from Section 5.3 with Eq. 5.25.

The dependence on pump rate is shown in Figure 5.4, for cooperativity values of

C = 1 (a) and C = 6 (b), for both under-coupled (solid line) and over-coupled

(dashed line) resonators. In both graphs, it is clearly visible that saturation of the

atom-cavity system due to the saturation of the atomic transition occurs earlier for

over-coupled cavities. This is because the pump rate ζ increases with input-mirror

transmission. Figure 5.4 also shows that increasing the pump power has a similar

effect to decreasing the cooperativity of the atom-cavity system, once again because

of the atomic saturation. For the detection of atoms, this means that the pump

power must be chosen carefully so as to minimise the fractional shot noise of the

measurement (high pump powers) while maintaining a large ratio between signal of

the empty cavity and that caused by the presence of an atom in the resonator mode.

Some considerations towards optimising the detection confidence are delineated in

the following Section.

1For the sake of completeness it is noted that the initially reflected field −Ainr
h,v
1 → −Ainr1

for high cooperativity close to resonance.
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Figure 5.4: Relative reflected power in the semiclassical limit. In both graphs, the

chosen cavity length is 130 μm and the coupling frequency gAC = 2π × 100MHz

and the mode overlap between fibre and cavity is chosen to be perfect, i.e. ηh,v = 1.

(a) Log-linear plots of the relative reflected power for a cooperativity C ' 1. Solid

line: under-coupled case, ρ1 = 99.7% and ρ2 = 98.4%. Dashed line: over-coupled

case, ρ1 = 98.4% and ρ2 = 99.7%. Both lines converge towards 1 − ϑ = 0.5 for

high pumping rates as the losses caused by the atom become negligible. In the

weak-pumping regime, the values tend towards those of the green lines in Fig. 5.3

(a) at a cooperativity of C = 1. (b) C = 6. Here the reflectivities are 99.77% and

99.93%.
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5.5 Detection confidence

The results from the previous sections can now be used to get an idea of the certainty

with which an atom can be detected. The light reflected from the cavity (with or

without an atom) will here be assumed to be Poissonian. Then the probability of

detecting a number of photons N during the integration time τint is

pp(N, τint, J) =
e−Jτint(Jτint)

N

N !
, (5.29)

where J is the mean number of photons detected per second. For large Jτint (30),

this is approximately equal to a normal distribution with

pn(N, τint, J) =
1

√
2πJτint

Exp

[

−

(
N − Jτint√
2Jτint

)2]

. (5.30)

A number of different approaches can be taken to quantify the confidence of the

detection of an atom in the cavity, with varying degrees of accuracy and computa-

tional simplicity. As both the empty-cavity and the atomic signals are Poissonian,

the widths of both distributions should be taken into account as well as their sepa-

ration. Any calculation involving the discrete Poissonian distribution will be cum-

bersome, and only leads to significantly different results when the mean number of

photons is small, which is never the case for our measurements. So one could simply

mke the normal-distribution approximation and ask how likely it is that an atom

will cause a signal which is more than some number of standard deviations away

from the empty-cavity mean. This is still computationally intense, as it involves

the evaluation of error functions. It is not readily generalised, as it already implies

a choice of confidence in the number of standard deviations. Another commonly

used value is the signal-to-noise ratio, SNR = |
√
τint(J0 − JA)/

√
JA|. This value

however neglects the variance of the empty-cavity signal. This could however be

taken into account by using a pooled standard deviation in the denominator. Then

a modified ratio can be defined as

SNR′ =
√
τint
|J0 − JA|√
J0 + JA

. (5.31)

This is equal to the t-value from a “Student’s t-test”, used in significance testing

in standard statistics, for a sample size of 1. An intuitive, generally applicable and

easily calculable measure of confidence can be defined by calculating the normalised

overlap integral of the two normal distributions. This calculation reveals instantly

how different the empty-cavity output distribution is from that expected for the

combined atom-cavity system:
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confidence(J0, JA, τint) = 1−
√
2πτint(J0 + JA)

∫ +∞
−∞ pn(N, J0, τint)pn(N, JA, τint)dN

= 1− Exp[−SNR′2/2]. (5.32)

The normalisation is chosen to yield a confidence equal to zero for complete overlap

of the two signals for equal likelihood, i.e. both probability functions in the convo-

lution are normalised to have an integral of 1, but it can be modified to allow for

unequal likelihood by an apposite modification of the normalisation. This measure

of confidence is convenient as it is easy to calculate, is related in a simple way

to the result of a t-test and gives an intuitively clear result. It ranges from 0 for

identical distributions to 1 for vanishing overlap of the distributions. The detection

confidence is shown for a variety of parameters in Fig. 5.5, following the results of

the previous Sections of this Chapter. In 5.5 (a) and (b), the weak-pumping limit

is considered for the same parameters as in Fig. 5.3 (a) and (b), with Jinτint = 30.

Figure 5.5 (c) shows the value for increasing power for the same parameters as in

5.4 (a). All in all, the plots confirm what could be expected from the previous

Sections. It can be noted that there is no correspondence between (c) and the

green lines in (a) because with the cavity parameters chosen for (c), the system is

not weakly pumped at a rate of 30 photons/10μs. In (b), it is visible that for a

given concave-mirror reflectivity, there are two ranges of input-mirror reflectivity in

which the detection confidence is high, one where ρ1 ' ρ2 and one in which ρ1 � ρ2.

However, if both atom detection and a high photon collection rate are desired, then

the former range is clearly preferable.

With the calculations in this chapter it is now possible to predict how the light

collected from an atom-cavity system will behave for a large portion of the pa-

rameter space. Conversely, they also provide most of the tools necessary for the

interpretation of the data gathered in our experiment, as will be done in Chapter

7. There, a number of further considerations such as the spatial variation of the

cavity mode, the fibre-cavity coupling efficiency and the properties of the atomic

cloud traversing the cavity will be included to refine and generalise the equations

listed above. For a correct understanding of the experimental results it is there-

fore necessary to take into account the peculiarities of the microcavity used in the

experiment, and the surrounding experimental setup. These are described in the

following Chapter.
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Figure 5.5: Atom-detection confidence for a variety of parameters. (a) and (b) show

the behaviour for the same parameters as in Figure 5.3 (a) and (b), but assuming

an rate of incident photons of Jinτint = 30. In (a), The plots of cooperativity and

empty-cavity visibility are repeated from from Figure 5.3 (a), while the red line

now shows detection confidence rather than the modified reflection signal. In (b),

each line shows the detection confidence for the line of the same colour as in Figure

5.3 (b). In (c), the detection confidence is plotted versus incident power for the

parameters used in Figure 5.4 (a).
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Experimental Setup

The construction of the setup is outlined, as well as its peculiarities. The design

of the current setup was geared towards ascertaining simply whether these micro-

cavities could be implemented as as atom detectors. The setup does however allow

for more advanced quantum optics experiments such as the generation of single

photons by enhanced spontaneous emission.

6.1 Overview

The guiding principle behind the design is to release atoms into a microcavity from

a MOT. Although the main aim of the setup is the detection of atoms, a further

desired outcome was to detect photons generated by cavity-enhanced spontaneous

emission. The magnitude of both signals increases with the density of atoms in

the resonator. The intra-cavity density of a cloud of atoms released into free fall

from a MOT decreases rapidly with dropping height, so that this height should be

minimised. In a later stage, we intend to create a moving standing-wave dipole trap

with an opposing beam. This will enable us to transport atoms from the MOT into

the microcavity in a controlled manner.

The core of the setup is shown schematically in Figure 6.1 (a). The atoms are ini-

tially trapped in a reflection MOT on a gold-coated glass plate of thickness 1.5mm.

The magnetic field is provided by two coils with 60 turns each of 1-mm diame-

ter wire. The four necessary beams are provided by a commercial fibre-coupled

setup. From one linearly-polarised input beam, this delivers four beams of 2 cm

(1/e2-intensity) diameter, each with the required circular polarisation. The MOT

is formed above a 1-mm diameter hole in the glass plate, through which the atoms

fall to reach the microcavity. The glass plate is glued to a block of low-thermal-

expansion quartz, to which all other components are also attached. The block itself
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Figure 6.1: (a) The core of the setup consists of two microcavities into which a

magneto-optically trapped and cooled cloud of Rubidium atoms is released under

gravity. (b) Photograph of the core of the setup showing the Macor slab with v-

grooves, and the etched, coated silicon chip. (c) Infrared photograph from a similar

perspective showing the position of the MOT. The two fibres are also visible.
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is glued into an aluminium support structure. The latter is screwed onto a flange

of the vacuum chamber. The same flange also hosts the feed-throughs for fibres

and wires. The fibre feed-through consists of a teflon cylinder with two 300 μm-

diameter holes through which the fibres enter the vacuum chamber. This diameter

is sufficient to accommodate fibres covered with a protective acrylate coating, which

have a diameter of 250 μm. The cylinder is tapered at one end so as to fit into a

Swagelokr feed-through. The latter is welded into the chamber flange and can be

tightened to compress the teflon cylinder until it seals the holes around the fibres.

This method is sufficiently airtight for pressure levels below 10−9 mBar. The entire

setup was designed to fit through one 4.5”-flange opening (2.9”=73.7mm bore) of

the vacuum chamber (Kimball 8 Multi-CF Spherical Square, model #:MCF800-

SS2040400-A). The assembly of the setup is described in the following Section.

6.2 Setup properties and assembly

The experiment is built around the type of microcavity described in Chapter 3.

As shown in Figure 6.1, there are two microcavities of the same type in the setup.

The second microcavity can be used to tune the primary cavity as they are solidly

connected. The fibres with the transferred dielectric tip-coating are glued into two

v-grooves on a piece of Macor. The latter is attached to a block of low-thermal-

expansion quartz. The silicon wafer into which the concave mirror forms are etched

is the same one used to form the high-finesse microcavities mentioned in Chap-

ter 3. This was the only chip available at the time as the fabrication facility at

Southampton University was not operational. Although finesse values of over 6000

had been achieved with this type of microcavity, it was decided to lower this value

to the order of 500 in order to improve the fringe visibility and relax the require-

ments on alignment and stabilisation. As illustrated in Chapter 3, the finesse and

fringe visibility of the previous microcavity, built using the same chip, decreased

with increasing cavity length. In the previous chapter it was however shown that

to achieve both high photon-collection rates and atom-detection confidence, it is

desirable to construct a cavity with high visibility and similar reflectivity for both

mirrors. Furthermore, increasing the cavity length would also allow more atoms

to interact with the cavity field, increasing the cooperativity and therefore the de-

tection signal. The single-atom cooperativity increases with cavity length for a

fixed waist size due to a decrease in the cavity decay rate κ ∝ 1/L. Additionally,

the waist of our cavities decreases with length when the cavity length is larger than
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R/2, which further increases the cooperativity for longer cavities. Considering these

points, a cavity length of R/2 < L < R was chosen. For these reasons, a variety

of fibre transfer-coatings with different reflectivity values were tested with this chip

to create a resonator with high fringe visibility and acceptable finesse at a length

of approximately 130 μm. Once the most suitable coating had been selected, the

apparatus was constructed as follows.

1. Cleaning: All items except the cavity and fibres were cleaned using a stan-

dard ultrasound de-greasing procedure to ensure their vacuum compatibility.

The silicon chip was de-greased manually on the backside and the edges, while

the coated surface was left untouched to avoid damage.

2. Gluing of substructures: Most components of the setup were glued to

form subunits at this stage. Bylapox (Byla 8725, no longer in production)

two-component UHV-epoxy was used to join the parts, which were left to set

in custom-made alignment holders for 24 hours. The piezo wires (Goodfel-

low, 0.5mm diameter, polyimide-insulated) were glued to the piezo contact

strips using UHV-compatible two-component conducting epoxy (EPO-TEKr

H21D). The subunits and main construction steps are shown in Fig. 6.2.

3. Screw-mounted parts: As mentioned, the chip used herein was at the time

the last remaining sample. To ensure that it could be removed in case of

failure of other components or other undesirable eventualities, it was glued to

a Macor carrier which was in turn screwed to another Macor carrier glued to

the top of the shear piezo. It was understood that this type of construction

would be more susceptible to misalignment and more sensitive to temperature

fluctuations than a solidly-glued arrangement. In that original design, each

pair of Macor parts joined by screws would have been replaced by a single

low-thermal-expansion-glass block. However it was unavoidable at the time of

construction to use a non-permanent attachment of the parts given that the

lead time for a new batch of chips had been estimated at 6 months. Macor was

chosen for its rigidity and low thermal expansion coefficient, but is a highly

brittle material, so teflon washers were used to avoid cracking the carriers

during mounting, as indicated in Fig. 6.2 (c). At this stage, the upper coil

ring was also screwed to the chassis.

4. Alignment setup: The cavity-piezo subunit was mounted on two joined 2-

axis angular alignment stages to allow for tilt, yaw and roll. The chassis sub-

unit was mounted on an XYZ-alignment stage. Two further XYZ-alignment

68



Chapter 6. Experimental Setup

Figure 6.2: Principal components of the cavity setup, viewed from the top of the

assembled setup (see text for details). In (a), all white parts are Macor slabs. Dark

slots indicate holes for screws. In (b), the components glued together with Bylapox

are shown joined. (c) shows the two fully assembled subunits, together with a

simplified side view (from the left of this top view) of the full mount. Once the

fibres had been prepared and the correct alignment found, the two subunits were

glued at the surfaces indicated by the green arrow, and the MOT mirror glued onto

the glass block. The red, green and blue dots are used to indicate the same corners

in top- and side-views for the purpose of orientation. (d) shows the chamber flange

with the electrical and fibre feedthroughs. A photograph of the setup from a similar

perspective as in (c) is shown in (e).
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stages with attached 2-axis angular alignment stages were set up to accom-

modate each fibre after coating.

5. Fibre preparation: Once the sub-components had been assembled, the two

fibres (Fibrecore SM-750 ruggedised, with FC-APC connectors) from which

70 cm of rubber tubing and Kevlar strands had been removed to leave only the

acrylate coating, were de-greased by wiping with acetone, passed through the

Teflon-Swagelok-feedthroughs, cleaved and coated one after the other using

the transfer-coating procedure described in Chapter 3.

6. Cavities: Both fibres were brought into position in the v-grooves on the

macor support slab, and tested for suitability by scanning the piezo to ob-

serve fringes. This required a considerable amount of alignment in all 15

degrees of freedom of the chassis-subunit, both fibres and the piezo-chip sub-

unit to ensure that both cavities had high-visibility fringes. Once a suitable

pair of concave mirrors was found, the first fibre was glued into position us-

ing UV-curing glue. The fibre for the second cavity was glued into position

subsequently after minimal re-alignment of all parts. Once the second fibre

had been glued into place, the two subunits were glued together at the sur-

faces indicated by the green arrow in Fig. 6.2 (c) using UV-curing glue once

again. The only purpose of this bond was to provide additional firmness to the

alignment during the curing process of the Bylapox glue which was applied

immediately afterwards. Small amounts of Bylapox were also distributed over

the fibres to strengthen their adhesion to the Macor support slab. The upper

microcavity was measured at this point to have a finesse of F = 555± 47 and

a visibility ϑ = (87± 2)%, and the lower cavity displayed similar quality.

7. Final assembly: The second coil was screwed to the chassis; The gold-

coated glass plate (MOT mirror) was glued to the Zerodur block; The now-

complete chassis was attached to the flange via an aluminium post, bringing

the design-position of the MOT at 3mm above the hole in the MOT mirror

to coincide with the centre of the vacuum chamber; All electrical connections

(coils, dispenser and piezo) inside the chamber were made. The last addition

to the setup was the Rubidium dispenser. These devices are highly sensitive to

air exposure so it was mounted last to keep the exposure time to a minimum.

The complete setup was then inserted into the vacuum chamber and bolted

in.

At this stage, the cavities were checked to ascertain whether the remaining
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steps of the construction had caused a change in performance. This was indeed

so, and the fringes were barely visible. Gentle manual re-alignment made the

fringes reappear, but the re-alignment was kept to a minimum in order to

avoid damaging the setup before even performing any measurements. The

cavity was then measured to have F = 280 ± 30, ϑ = (44.8 ± 2.7 )%, but it

is reasonable to believe that further re-alignment will bring it closer it to its

original quality.

8. Pumping: Following standard procedure, the chamber was then pumped

down using a turbo-pump until the pressure reached 10−6mBar. Then the

ion pump (Varian: Vacion 20 Diode, with Minima controller) was switched

on, and the chamber sealed off from the turbo pump using a gate valve. The

chamber was left to evacuate until a pressure of 10−8mBar was reached. The

coils were then out-gassed as usual by running increasing amounts of current

for increasing durations, until the pressure showed no significant change over

30 minutes when the coils were run with their operating current of 1.6A. The

chamber has since then reached and maintained a pressure of < 10−9mBar,

which is the lower readout limit of the controller.

6.3 Microcavity properties

The cavity length and radius of curvature were determined using two lasers, one

stabilised at λ0 = 779.95 nm (locked to the
85Rb re-pump transition) and one which

was tuned to a variety of values. Using the equations from Chapter 2 is possible

to determine the approximate cavity length from the dependence of the separation

between the lowest-order fringes on the wavelength of the two lasers, by using the

relation

ΔLi,0,0 =
λi
2

[
qi +

1
π
arccos

(√
G2
)]
− λ0
2

[
q0 +

1
π
arccos

(√
G2
)]

≈
λiqi − λ0q0

2
, (6.1)

where it is assumed that q0,i � 1 and λ0 ≈ λi. Given that L ' λ0q0/2 is constant

for all qi,the cavity length is

L ≈
λiqi

2
−ΔLi,0,0 (6.2)

If only one fringe of the tunable laser lies between the first and second fringes of

the fixed wavelength, i.e. q0λ0 < qiλi < (q0 + 1)λ0, then qi = dq0λ0/λie. Then

the approximate cavity length can be found by a least-squares fit, which for all
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three fringe sets in the recorded traces indicates that q0 = 341. This remains true

even when the entire possible range of values of the arccos-term is explored, so

Lest = 133μm. This ‘estimated’ value is sufficiently accurate to determine the cav-

ity waist and decay rate as needed for our purposes, but of course it is possible to

solve Equation 6.1 more accurately by including low-order terms of the neglected

parts, or by using numerical methods.

The concave-mirror radius is then determined by measuring the fractional separa-

tion of the radial fringes from the fundamental fringes for each wavelength. This

yields a radius of R = (185± 3)μm. Re-inserting this value together with the esti-

mated length and the calculated longitudinal mode index q0 = 341 into the original

equation from Chapter 2 gives a cavity length of L = (133.1071 ± 0.0016)μm. A

numerical solution using only R and q0 gives a length greater by 0.1 nm. While this

level of accuracy is not required, given that the cavity expands over 5-10 fringes

when the MOT-coils heat up, the method will be useful in cavity generations to

come, and at least gives one fixed cornerstone for the less accurately determined

quantities in this experiment. Furthermore, the finesse of the cavity can also be

determined more accurately by this method.

As no astigmatism was observed on this mirror, the cavity waist is wC = (4.54 ±

0.06)μm, which together with the length gives a mode volume V=πw20L/4 =

2.15 × 10−15m3. This gives a maximum atom-cavity coupling frequency of gAC =

2π × (100.0 ± 1.3)MHz. The finesse of the cavity was measured at F = 280 ± 30,

giving a cavity decay rate of κ = 2π × (2.01± 0.11)GHz. The expected maximum

single-atom cooperativity is then Cmax = 0.8.

The cavity length, together with the finesse and visibility before and after misalign-

ment, allow an estimate of the two mirror reflectivities. It is herein assumed that

the cavity length did not change by a significant fraction of R in the course of the

misalignment. This assumption is consistent with the (less precise) measurement

of the original cavity length based on the radial fringe positions. Then, assuming

that the alignment was originally close to perfect, the values for ρ1 and ρ2 before

misalignment can be found by using the relations from Chapter 2. The ‘bare’ reflec-

tivity of the input mirror should not be affected by the misalignment, so the change

in finesse and visibility allows the calculation of the transverse misalignment of the

fibre mode with respect to the cavity mode, as well as the decrease in reflectivity of

the concave mirror due to increased aperture- and roughness losses. It is therefore

possible to calculate the range for the reflectivities ρ1, ρ2 and the coupling η
2 before

and after the misalignment. These values are tabulated below for reference.
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parameter before after

F 555±47 280±30

ϑ (82±1)% (44.8±2.7)%

reflection limit

ρ1 (99.57±0.05)% same

ρeff1 (99.67±0.04)% (99.71±0.04)%

η2 75.8% (68±7)%

ρ2 (99.19±0.08)% (98.05±0.21)%

transmission limit

ρ1 (99.57±0.05)% same

ρeff1 (99.67±0.04)% (99.71±0.04)%

η2 75.8% (68±7)%

ρ2 (99.31±0.05)% (98.2±0.3)%

These values indicate that the most damaging effect of the misalignment was to lead

to a reduction of the concave-mirror reflectivity, ρ2. This may be due to aperture

losses, if the spot of the cavity mode was shifted towards the edge of the mirror, or

to an increase of the scattering loss if the spot was shifted to a rougher part of the

concave mirror.

6.4 The MOT

The MOT for this experiment was designed to achieve the highest possible density

of atoms in the cavity mode in the shortest possible time. While the inclusion of

more elaborate loading schemes, using dipole-force and magnetic guides or atomic

beams were foreseen for the future of the setup, gravity was chosen as the transport

mechanism for these preliminary experiments as it is readily available. The MOT

was therefore placed above the optical cavities. A mirror-MOT configuration was

chosen as it involves the smallest amount of glass machining, and a vast amount of

experience with this configuration had been accrued on other experiments within

CCM. Furthermore, it allows the MOT to be closer to the cavity mode than a

six-beam MOT with the same beam diameters. The required optical setup is less

simple than that of a pyramid MOT, for which only one, circularly polarised beam

is necessary, but simpler than the six beams needed for a traditional MOT setup.

To avoid this complication, a commercial setup (Fiber Port Cluster 1 to 4 for 780

nm, Schäfter+Kirchhoff GmbH) was purchased which requires only one linearly po-

larised input beam to produce all necessary trapping beams. This beam is coupled

73



Chapter 6. Experimental Setup

into a polarisation-maintaining single-mode fibre feeding into an enclosed, modu-

lar set of λ/2−waveplates and polarising beamsplitters, where it is split into four

equal beams. Each beam is then coupled into a further single-mode, polarisation-

maintaining fibre which leads to a beam expander. Each expander contains a λ/2-

waveplate and a telescope setup to create a circularly polarised Gaussian beam

with a 1/e2-intensity diameter of 2 cm. For an input power of 50mW measured

before the first fibre, the maximum power achieved at the output of each expander

was 4.5mW. This relatively low throughput-efficiency of 36% can possibly be im-

proved by better input mode-matching, but is in any event a small price to pay

for the ease of implementation of the device. The device is furthermore extremely

compact compared to most self-built MOT-beam setups. The fibre-coupled beam

expanders are also practical as it is possible to mount them on the same carrier

structure as the pump and chamber. It is therefore undoubtedly recommendable

to consider this option for future experiments. The trapping light for the MOT

was provided by a high-power multimode diode laser locked to the (52S1/2, F=3 -

52P3/2, F=4)-transition by a DAVLL scheme. This light was referenced to a master

laser (locked to polarisation spectroscopy) by monitoring a beat note between the

lasers on a photodiode with a frequency counter. The re-pump light was provided

by a single-mode diode laser locked to the (52S1/2, F=2 - 5
2P3/2, F=3)-transition

using polarisation spectroscopy. The re-pump light was brought to the trap via a

separate fibre.

The MOT achieved after two days of optimisation is shown in Fig. 6.3 (a). The

cloud shown in the image consists of 2.2 × 107 85Rb-atoms. In the region close to

the maximum density of atoms, the spatial density profile is well-approximated by

a Gaussian with radius σ ' 860μm.

Once the number of trapped atoms has reached its steady-state value, the atoms

are cooled further in a molasses stage with a duration of 10ms. Here, the magnetic

field is switched off and the trapping beams are red-detuned further to −40MHz.

After this stage, the expansion of the cloud with time was measured to estimate

the temperature of the atoms falling into the cavity. This was done by releasing the

atoms for 10 ms in the dark and then measuring the size of the expanded cloud.

This was found to be σ ' 1.27mm, signifying a temperature of T < 90μK. The

temperature value is however only an estimate of the upper limit of this value,

since the profile of the cloud before cooling is only approximately Gaussian, and

the expansion during the molasses stage is considered negligible.
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Figure 6.3: Images of the magneto-optically trapped atom cloud. (a) shows the

unexpanded cloud, while (b) shows the cloud after a 10-ms molasses stage followed

by 10 ms of expansion. The background has been subtracted from this brightened

image. The oval shape near the bottom of each image is the circular hole in the

MOT-mirror through which the cloud passes to reach the microcavity. Summation

over the horizontal lines reveals an approximately Gaussian density profile for the

unexpanded cloud (after background subtraction), shown in (c), and a near-perfect

Gaussian profile for the cooled, expanded cloud in (d). The solid lines indicate

Gaussian fits. The summation in (c) begins with the horizontal line at y = 1mm,

while in (d) only lines above y = 2.1mm are summed to avoid the image of the

cloud reflected in the MOT mirror.
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6.5 Expected number of atoms in the cavity

From the measured atom number, cloud radius and cloud temperature it is possi-

ble to estimate the maximum atom density which can be expected when the cloud

reaches the cavity. A MOT with a Gaussian energy distribution with mean tem-

perature T , and a Gaussian density profile with an initial radius σ0, will expand

during its fall through a height h to a radius of

σ(h) =

√

σ20 +
kBT

m
× t2fall =

√

σ20 +
2kBT

mg
× h . (6.3)

Here g = 9.81m/s2 is the gravitational constant, m = 1.41×10−25 kg is the mass of a
85Rb atom and tfall =

√
2h/g is the duration of the fall. Two assumptions can now

be made to find a simple relationship, namely that the expansion is slow compared

to the time it takes the cloud to traverse the cavity, and that the initial cloud

volume is much smaller than the expanded size so that it can be neglected. These

approximations lead to inaccuracies of opposite effect and similar magnitude in our

regime. The peak density for a cloud with NA atoms is then given approximately

by

Dmax ≈ NA

(
2

πσ2(h)

)3/2
≈ NA

(
mg

πkBTh

)3/2
. (6.4)

For the values given above, and assuming a MOT height of 7mm from the cavity,

this results in a maximum density of Dmax ≈ 2.5 × 1014/m3. While this number

may sound large, the number of atoms in the minute cavity mode volume V =

2.15× 10−15m3 is only DmaxV ≈ 0.54. Given the approximations made here and in

the MOT-temperature measurement, this must also be considered a lower bound.

The total cooperativity of the system C(NA) =
∑NA
n=1 g

2
AC(~rn)/κγ depends on the

position ~rn of each atom in the cavity mode, and on the alignment of its magnetic

dipole with respect to the polarisation of the pump light. Both these factors lead in

general to a total cooperativity C(NA) < NA×Cmax. These points will be discussed

further in Appendix C.

6.6 The Detector

The choice of detector was based on the desire to measure both a change in the

reflection signal of the cavity during the passage of atoms and the collection of pho-

tons from the cavity-enhanced spontaneous emission process. The detector selected

for this purpose is a Perkin-Elmer SPCM-AQR-15 avalanche photodiode (APD).

The photodiode sends out a 5V TTL signal each time a photon is detected. These
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pulses are then collected by the National Instruments I/O computer interface. The

photodiode is stated to have a dark-count rate of < 100 counts/s, a typical dead

time of τD = 50 ns and a quantum efficiency of ηQ = 60% at λ = 780 nm. The

dead time is an important parameter for our reflection measurements as it gives the

saturation curve of the photodiode in the range used for our measurements. It was

therefore measured by observing the ratio of the variance σ2Det to the mean number

of detected photons NDet per integration time τint, for a range of count rates, as

shown in Fig. 6.4. For detectors of our type this gives a dependence

σ2Det
NDet

=

(

1 +
NDetτD

τint −NDetτD

)−2
or τD = τint

1 + σDet/
√
NDet

NDet
. (6.5)

From the variation of the variance-to-mean ratio, a dead time of τD = 44 ns was

calculated. For count rates greater than 5 × 106/s, this dead time is expected

to increase due to self-heating, according to the manufacturer, but no significant

deviation from the original trend is visible in our measurements even at higher

count rates (see Fig. 6.4 (a)). The dark time and quantum efficiency lead to a

dependence of the detected counts on the true number Ntrue of incoming photons

per integration time which, as stated in the photodiode manual, is given by

NDet =
ηQNtrue

1 +NtrueτD/τint
(6.6)

This dependence is shown as a red line in Fig. 6.4 (b). The photodiode counts

are evaluated by the computer control unit both to measure the absorption and

fluorescence of atoms in the cavity, and for the stabilisation of the cavity length by

an iterative algorithm. This stabilisation method is able to counteract slow drift

and to correct slowly for short disruptions such as those caused by shutter noise.

However the iteration steps have a duration of 100 ms, so that enduring acoustic

noise cannot be handled by this method. A more elaborate stabilisation scheme

will be implemented to counteract vibrations at these higher frequencies.

6.7 Setup summary

Now that the relevant features of the main components have been listed, an overview

of these components is given in the context of the full experiment in Figure 6.5,

where a highly simplified diagram of the setup is shown. The output beams of the

MOT and reference lasers can be blocked by shutters 1 and 2. These are home-

made shutters made from tweeter speakers to which a plastic lip is attached, and

can be opened and shut with a 5V signal from the computer control. The reference
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Figure 6.4: (a) Measurement of the APD dead time by the dependence of the

variance -to-mean ratio on the mean number of detected photons. The red line

shows the least-squares fit indicating a dead time of 44 ns. (b) shows the detected

photon rate as a function of the rate of photons exiting the cavity fibre. Perfect

detection (1photon = 1 click) is shown as a black line. The green line takes into

account 10% losses at the APD beamsplitter and the quantum efficiency of 60%.

The red line includes the measured dead time of the detector.

laser and re-pump laser are combined at a beamsplitter and focussed into a fibre

to drive the atoms in the cavity from the side. This combined beam is controlled

with a commercial shutter (Newport Oriel 76992 200 Hz, 6 mm Aperture Shutter,

0.5ms rise-time, with 76995 Shutter Controller). All fibre couplers shown in green

are Thorlabs F240APC-B couplers with a specified output 1/e2−beam waist of

0.74mm.
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Figure 6.5: Principal components of the full setup. LP: linear polariser; ND: neutral-

density filter; λ/4: quarter-wave-plate.
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Results

The cavities built for this work have been used to detect the presence of atoms in

their field as well as to collect photons from enhanced spontaneous emission into

the cavity. The measurements show that the cavity is suitable for the detection of

single atoms, and that it is possible to collect photons from the atoms in the cavity

directly via the cavity fibre. In this Chapter, the experimental procedure for both

types of measurement are described, and results from these early measurements are

presented.

7.1 Reflection signal

Data has been collected to ascertain how the atoms affect the reflection signal of

the cavity. The variation in the reflection signal caused by the presence of atoms

was tested for a range of values for pump detuning and intensity. A variation of the

number of atoms was given naturally by the passage of the Gaussian MOT cloud.

These explorations of the parameter space have shown that the cavity is suitable

for single-atom detection.

7.1.1 Experimental procedure

The cloud of atoms is trapped, cooled further and then dropped into the cavity mode

as described in the previous chapter. This is repeated as often as deemed necessary

to confidently measure the average response of the resonator. The sequence of

the events which take place during a full measurement run is shown in Figure 7.1

(a). The Figure shows the raw photodiode counts for the first 32 seconds of a

measurement run, and the main steps of the procedure are indicated along the

trace. The passage of atoms is clearly visible even before averaging the atomic
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Figure 7.1: (a) A typical signal trace from one of our experiments. The graph

shows the number of counts recorded on the avalanche photodiode, and along it the

sequence of events which take place during one experimental run is indicated. The

photodiode is left to warm up for 3 s. After that, the cavity is tuned manually, by

varying the piezo voltage, to find a resonance. Once a resonance is found, the cavity

is tuned slowly towards it to allow the locking mechanism to react. This brings the

cavity reflection signal towards its minimum. A MOT is loaded and released every

3 s. Once the cavity is locked, the passage of the atoms is evident at these intervals,

even in the raw (not averaged) data shown here. (b) average signal of all traces

recorded during a measurement run. At t =27 milliseconds, after 10ms of molasses

cooling, the MOT is released when the trap laser is switched off by shutter 1 (see

Figure 6.5). The vibrations caused by the shutter are clearly visible in the cavity

reflection signal at this time.
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signals. The average of 34 measurements (taken from a different run) is shown in

Figure 7.1 (b). At t = 20ms the magnetic field is switched off, and at t = 23ms

the detuning is shifted to −40MHz for the molasses stage. The atoms are finally

released by blocking the MOT beam with shutter 1 (see Fig. 6.5) at t = 27ms.

In this trace, the counts are corrected for a dark time of 44 ns. The shutter takes

approximately 3ms to close, and the maximum atom density in the cavity is reached

at t ∼ 69ms. This corresponds to a fall-time of tfall = 39ms, in agreement with

a height of 7.3 mm. The values for these switching times were found by iterative

maximisation of the atomic signal.

7.1.2 Weak pumping on resonance

When the atoms fall through the cavity, the reflection signal increases as expected.

The trace in Figure 7.1 (b) shows an average of 34 measurements for an integration

time of 250μs. The increase in reflected light allows us to measure the cooperativity

of the system from the fractional decrease in visibility from

JR(δκ) = Jin

(

−1 +
v−

P

)2
. (7.1)

Here we use v− = 1−
√
JminR /JmaxR , as given earlier in Chapter 5, since our cavity

is under-coupled. From this equation we expect the contrast of the reflected light

to decrease for increasing cooperativity. This is indeed the case, and a reasonable

agreement with the data is found by fitting the expected response of the cavity to

the passage of a Gaussian cloud with a temperature of approximately 40 μK. This is

shown as a red line in Figure 7.1 (b). No assumption is made about the atom number

for this fit, but it is assumed that the average cooperativity is linearly dependent

on atom number. The peak of the trace corresponds to an average cooperativity of

Ctot = 0.60± 0.05. The floor of the trace is calculated from the lowest points in the

reflection signal, giving a visibility of 42%, in agreement with the measurements

from the previous Chapter. However it is also visible that the cavity is rarely

tuned exactly to the resonance with the pump light, indicated by the red line in

the absence of atoms, because of audio-frequency noise. This is caused in part by

the MOT-beam shutter, and by other as of yet unknown sources. These vibrations

modulate the cavity length, and are not compensated for by the locking mechanism,

which is not active during the passage of the atoms. Therefore the atoms interact in

general with a slightly off-resonant system. This effect is straightforwardly included

using the relations from Chapter 5, and leads to a modification of the expression
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for the fraction of reflected light given by

JR(δκ) = Jin

∣
∣
∣
∣−1 +

v−

P

1

1− iδκ/P

∣
∣
∣
∣

2

, (7.2)

where δκ = ΔCL/κ. The measurements indicate that on average, the visibility just

before and just after the passage of the atoms is 96.8% of the maximum visibility

in this measurement sequence, so that δκ = 0.18, corresponding to an excursion of

only 125 pm from the resonant length. Including this shift leads to a better fit to

the data, shown in Figure 7.2 (a) as a green line. The cooperativity deduced from

this fit, Ctot = 0.597 ± 0.046, is very close to that calculated neglecting the shift.

Conversely, this similarity indicates that at this cooperativity, the reflected intensity

at the peak of the atom signal will vary weakly with shifts of the cavity length of

this magnitude. In other words, light intensity fluctuations caused by length jitter

are compressed. This amounts to a suppression of intensity noise of this origin, as

detailed in Appendix B. From this cooperativity we can now estimate a number of

atoms effectively coupled to the cavity, as shown in Figure 7.2 (b).1

7.1.3 Weak pumping with off-resonant light

Using the expressions from Chapter 5, the response of the cavity to weak pump

light can be found. Here the laser is detuned from the atomic resonance by a

fraction δγ = δAL/γ of the atomic linewidth. In addition, the cavity is also shifted

from its resonance, on average by a fraction of the half-width δκ, as before. This

situation is illustrated in Figure 7.3 (a) and (b), where an exaggerated example of

the effect of the detuning from both the atom and the cavity is given. The expected

dependence of the reflected power is calculated from equations 5.18 and 5.19 in the

weak-pumping limit, giving

JR(δγ , δκ) = Jin

∣
∣
∣
∣−1 +

v−

P

(1 + iδγ)

1 + δγδκ/P + i(δγ + δκ)/P

∣
∣
∣
∣

2

. (7.3)

1This is only an estimate, and is always an over-estimate, because asymmetries around the mean

intensity value are neglected. The only rigorous method to extract the true value is to analyse the

distribution of counts at the peak of the cloud signal, and iteratively extract the underlying set of

Poissonian count distributions using an expectation-maximisation algorithm.[43] This underlying

set then gives a direct mapping to the distribution of cooperativity values present, which would

allow the extraction of both the number of atoms and the peak single-atom cooperativity of the

system. For the data available here it is however more difficult to extract a precise value, because of

the small sample size and because of the presence of non-negligible technical noise, which modifies

the distribution in a manner that has not yet been fully quantified.
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Figure 7.2: (a) A better fit for the drop data is found when the offset of the cavity

length from the resonance with the pump laser is included (see text). (b) The

cooperativity corresponding to the peak intensity level can be used to estimate

a number of atoms in the cavity using the considerations from Appendix B. The

lines shown are for : maximum finesse and transition dipole moment (blue); central

finesse value and maximum transition dipole moment (green); central finesse value

and minimum transition dipole moment (orange), and minimum finesse and dipole

moment (red line).
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Figure 7.3: Effect of the detuning of the pump light from the atomic and cavity

resonances. (a) This plot shows the spectrum along both detunings. The lines

traced by the red, blue and green dots are repeated in (b) in the same colours,

and are calculated for a large δκ =-0.3, +0.3 and 0, respectively. (c) shows the

experimental data, together with calculated lines for the measured δκ = ±0.18

(blue and red), and the resonant spectrum (green) for a cooperativity of C =0.25.
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Figure 7.4: reflection signal versus intensity. The green line shows the closest

agreement with the data allowed by the measured cavity parameters (see text).

The blue points are the result of measurements without a neutral-density filter,

while the black and red points were measured using filters with reduction factors

1:4 and 1:25, respectively. The value above which bi-stablilty can occur, ζmin, is

shown as a blue line.

The cavity offset for these measurements was found as previously, and for these

traces a value of δκ = 0.18 was measured. The laser detuning was varied between

−8.6MHz and +3.4MHz, limited by the scan range of the reference laser. The

points in Figure 7.3 (c) are calculated by averaging the ten points closest to the

peak in the average trace for each detuning value. The figure shows that the data

is encompassed by curves calculated for the measured ±δκ, shown in blue and

red, respectively. The green line shows the expected curve for a stably resonant

cavity. All three curves are plotted for a cooperativity of C = 0.25, and the central

value for the cavity half-width κ = 2π × 2GHz is assumed. This experiment is a

direct confirmation of the Purcell effect. The measurements show a broadening of

the linewidth of the combined atom-cavity system, compared to the bare atomic

spectrum, consistent with the inferred cooperativity which gives 2γtot = 1.5× 2γ.

7.1.4 Strong pumping on resonance

The last parameter to be varied in this set of reflection measurements was the pump

power, ζ. Once again simplifying the expressions from Chapter 5, the reflected

intensity on resonance will depend on the pump rate with

JR(ζ) = Jin

∣
∣
∣
∣−1 + v

−κ

ζ
αres(1)

∣
∣
∣
∣

2

, (7.4)
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where αres(1) is the first cubic solution to the full-resonance equation given in

Chapter 5, and for our cavities, ζ =
√
JinT1η

2
h,v/τrt. At the higher intensities used

to achieve saturation of the atom-cavity system, the APD had to be shielded with

neutral-density filters. From Section 5.4, we expect the effect of the atoms on the

cavity signal to decrease for increasing intensities because of the saturation of the

atoms. This is clearly visible in Fig. 7.4, where the data taken without ND-filter

is shown as blue dots, while points measured with ND-filters of reductions 1 : 4

and 1 : 25 are shown in black and red, respectively. Since the round-trip time

of the cavity is well-known, and this is in essence a measurement of the quantity

teff1 =
√
T1η

2
h,v. The closest agreement is found with the limiting value, 63 × 10

−3.

This limit is given by the maximum mode overlap and minimum reflectivity, indicat-

ing that the true values of these quantities lie towards that end of their previously

measured range. The agreement cannot be expected to be perfect, as the small

cavity-length offset has not been taken into account. At high intensities, radial

heating of the atoms leading to decreased interaction times may also have occured.

This may explain the observation of lower-than-expected signals close to saturation.

Furthermore, with the quantities of atoms involved, bi-stability may have occurred

for pump values greater than ζmin, indicated by a vertical line in Fig. 7.4, for the

high-cooperativity tail of the distribution of cooperativity sums. This would lead to

a departure from the expected average signal. This effect, if present, is hidden by

the single value of the cooperativity assumed, but is expected to be small given the

average cooperativity inferred from the measurements. To determine whether it is

present will require a complete analysis of the distribution of the reflected intensity

at each pump value. The possibility of losses in the optical path additional to those

of the beamsplitter and the quantum efficiency of the APD will also need to be

eliminated to extract precise quantities from this measurement.

Nonetheless, once the experiment will have matured with improved stability and

more precise characterisation of its properties, this measurement offers the intrigu-

ing opportunity to almost reverse the aim of the project, namely to measure the

characteristics of the cavity using atoms.

7.2 Enhanced spontaneous emission

The last set of results obtained is perhaps the most explicit demonstration of the

atom-cavity interaction, namely the modification of the emission rate of the atoms

by the cavity mode.
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Figure 7.5: Reflected-power counts during a fluorescence measurement run. As in

the previous sections, the APD is left to warm up for a few seconds before a fringe

is found. A MOT is released every three seconds. Alternatingly, the passage of

the MOT is observed by measuring the reflected cavity-pump light or by collecting

flourescence photons. To do the latter, the cavity pump light is switched off as

indicated by the blue arrows. In both cases, the atoms in the cavity are driven

from the side with a resonant beam and a re-pump beam. This allows us to observe

the dynamics of the cloud as well as the light emitted into the cavity (see following

Figure).

7.2.1 Experimental procedure

The cloud of atoms is trapped, cooled further and then released into the cavity

mode as in the previous Section. However, once the atoms reach the resonator, a

beam transverse to the cavity axis is applied which excites the atoms. The sequence

of the events which take place during a full measurement run is shown in Figure 7.5.

A MOT is released every three seconds as before, but now we alternatingly observe

the fluoresced photons and the reflected power. Driving the atoms from the side of

the cavity leads to an abrupt decrease of the cavity reflection signal, as visible in

Figure 7.6 (a). This is due to the heating of the atom cloud during the scattering of

pump photons. In the process, the atoms emit photons in all directions. The small

mode volume and high finesse of the resonator however lead to the cavity mode

being the strongest decay channel for atoms in the intense regions of its mode. The
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reflected power just before the arrival of the excitation beam allows an estimate of

the cooperativity, which for this run of measurements was C = 0.25. This indicates

that the atoms are expected to radiate photons into the cavity mode at a rate of

0.5 γ. The excitation light is released through a shutter with an opening time of

0.5ms for an opening distance of 6mm. The 1/e2-diameter of the excitation beam

is 1.48mm. The power was 150 μW of resonant light and 70 μW of the re-pump

light. The intensity of the resonant light was therefore 123W/cm2 on average. This

is far greater than the saturation intensity of Rubidium even for isotropically po-

larised light, indicating that the atoms would saturate almost immediately after the

shutter was opened. We observe a significant burst in collected photons at precisely

the time the atoms are driven with the side beam. This is shown in Figure 7.6 (b),

where the photon count rate was measured in bins of 100 μs. On average, almost

1 photon is collected for each drop, and the signal is clearly distigusihable from

the background level before the event. After the fluorescence spike, the number

of collected photons is slighlty increased, probably because of scattered excitation

light, but still far below the level of the collected fluorescence photons. Efforts are

currently underway to quantify the collection efficiency and the enhancement factor

given by the cavity.

These early results already demonstrate that the devices are indeed suitable for the

detection of atoms and the collection of photons from enhanced emission. With

small improvements in the stability and some effort towards a more precise char-

acterisation of the setup, it will be possible to determine the quantities measured

herein with higher accuracy. In the near future, this experiment will however be re-

placed by an improved cavity setup which will open up possibilities for more exotic

measurements, as described in the next and final chapter.
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Figure 7.6: Fluorescence collection. (a) When a cloud of atoms passing through

the cavity is observed via the reflected pump light, it can be seen that the reflected

intensity drops back to the minimum when the shutter is opened, indicating that

the atoms are rapidly heated out of the cavity mode. (b) When the cavity pump

light is off, the only photons detected are dark counts and from atoms fluorescing

in the cavity. The latter appear as an evident burst when the shutter is opened.
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Summary and outlook

8.1 Summary

The microcavities developed for this work have been characterised optically, and

their properties are now well-understood. They have furthermore been used suc-

cessfully to detect small clouds of atoms, with a number of atoms effectively coupled

to the cavity of less than 1. Even though the device was not operating at its op-

timum, it was possible to characterise the response of the atom-cavity system for

detuning and pump power, and even to detect vacuum-stimulated photons collected

via the cavity fibre. These results indicate that the cavities are ideally suited as atom

detectors for atom chips and that future versions of the devices will have sufficiently

high quality to produce single photons on demand for applications such as quantum

cryptography and quantum information processes. The scalability and integrability

of these cavities with existing atom-chip technology is of great importance for these

applications. Here the scalabity is given by the fact that the cavity mirrors can

be fabricated in large arrays, using process steps that are straightforward to in-

clude in the fabrication procedure of an atom chip. The direct fibre-coupling of the

cavities is also of importance for these application, as many quantum-information

protocols rely on high-efficiency readout of the quantum state of the atom-cavity

system. As shown in Chapter 2, the coupling efficiency can be made near-perfect

by tuning the cavity length to match the cavity and fibre mode waists. This feature

makes the cavities ideal candidates for nodes in a quantum network. Currently the

performance of the cavities is limited by the roughness of the etched silicon sur-

face. However, in collaboration with the team in Southampton, we have developed

a procedure to improve the surface quality significantly, as shown in the following

Section. The rest of this Chapter is an outlook on the promising future of these

devices.

91



Chapter 8. Summary and outlook

Figure 8.1: (a) Radius of curvature versus etch duration for isotropically ICP-etched

silicon. (b) Short-scale roughness as a function of etch duration, measured on line

segments of 1.2 microns length.

8.2 Towards strong coupling

Recently we discovered that by a process known as “inductively-coupled plasma

etching” (ICP) it is possible to reach sub-nanometer roughness values in our silicon

mirror-substrates.[36] This is an improvement by an order of magnitude on our

current devices. Our collaborators in Southampton have already used this procedure

to fabricate surfaces with a roughness of 0.9± 0.1 nm, but it appears possible that

this fabrication method may allow us to reach 0.2 nm in future. The latest etch

profiles have been analysed with an optical profilometer to measure their shape

and roughness as shown in Figure 8.1. It was seen that the roughness decreases

with etching time reaching sub-nanometer values after approximately 24 minutes of

exposure to the plasma etcher. For longer exposures, the roughness does not show

a strong dependence on etching time, but it is thought that these values are close to

the resolution limit of the instrument. From the Debye-Waller loss factor (Chapter

3) we can calculate that the current value already allows us, in principle, to reach

a reflectivity of 99.97% on the silicon mirrors, giving a finesse of F > 12000 for a

cavity in which both mirrors have this reflectivity. This means that with cavities

of our dimensions we can enter the strong-coupling regime with g/κ > 1, as shown

in Figure 8.2. By further reducing the roughness, even higher performance can of

course be achieved. Some examples are shown in Figure 8.3.

Furthermore, this procedure makes it possible to create mirrors with smaller

radii of curvature than our current mirrors, while achieving both lower roughness

and a more accurately spherical profile. This will allow us to achieve better mode-

matching values while keeping the cavity length further within the stability range of

the resonator than with our present mirrors. As stated earlier, good mode-matching
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Figure 8.2: (a) Maximum single-atom cooperativity for the best fabricated silicon

mirror substrates, with a radius of curvature of 135 μm. The plots assume that

the reflectivity is limited by an RMS roughness of 1 nm, and that it decreases

due to an aperture of diameter 20 (red), 30 (orange), 40 (green) or 60 μm (blue).

The mirror diameter for this etch was > 100μm, but the roughness has currently

only been measured for a diameter of ∼ 20μm. The finesse is calculated using

the (unfavourable) transmission limit. (b) Coupling measure g/κ for the same

parameters.

is important for the collection of cavity-stimulated photons. Another important

factor in this application is the transmission of the fibre mirror. With improved

reflectivity on the silicon mirror it will be possible, by increasing the transmission

of the input mirror, to create cavities where this transmission becomes the dominant

decay channel for photons, while maintaining large Purcell factors. This brings us

into another interesting regime, namely that of over-coupled resonators. In this

regime, the effect of a small cooperativity on the reflected power is greater than

for under- or critically-coupled resonators at the same cooperativity, if we confine

ourselves to the weak-pumping regime. The effect is even larger than if we looked

at the transmitted signal as is commonly done. This is shown in Figure 8.4 (a).

Furthermore, it is not monotonic as in the other cases. The two regimes before and

after the minimum are entirely distinguishable because the phase of the reflected

light flips at the transition. This is interesting because with the right parameters,

it means that larger numbers of atoms can be counted than with the other types

of resonator.[33] This is made evident by Figure 8.4 (b). There the derivative of

the normalised detected power is plotted, showing that the change in the reflected

signal is larger for the under-coupled resonator everywhere except close to where

the reflected power reaches a minimum.
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Chapter 8. Summary and outlook

Figure 8.3: Maximum possible finesse (left scale), cooperativity and coupling value

(right scale) for a given concave-mirror roughness. The radius of curvature is 135 μm

as above. No aperture effect is considered. The resonator length is fixed at 128.8μm,

where the fibre-cavity coupling is perfect. The blue line shows the values for a

critically-coupled resonator. The red line is for an over-coupled cavity for which the

collection efficiency for photons generated in the cavity is fixed at 95%. For the

green line, the cavity is under-coupled to a visibility of ϑ = 0.1 to achieve higher

finesse.

The reflectivities required (top scale) are within reach of currently available coating

techniques.
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Figure 8.4: (a) Red line: detected power for an over-coupled resonator with a

visibility of ϑ = 0.9, normalised to the reflected power of the empty cavity. Black

line: normalised detected power when measuring in transmission. (b) derivative of

the normalised detected power for the same parameters.

8.3 Design evolution

The next experiment, which is in the final design stages, will consist of at least

four, independently tunable cavities, two of which will be critically-coupled and

two of which will be under-coupled as described above. Depending on the timing

of events in the coming months, some more time may be devoted to including a

pair of under-coupled cavities in which some fraction of the visibility is sacrificed to

achieve a larger ratio of g/κ. The design is modular so that in principle, the number

of cavities is limited only by the chip size. In this incarnation, the fibres will be

moved by piezos unlike at present where the chip position is adjusted. One of the

current ICP-treated chips will be coated and used in this experiment. This will allow

us to perform the same experiments as described in this thesis, but with better-

performing cavities. In parallel, efforts will be made to further improve the etching

technique. Over the last months, much work has been done to create a better laser

system, which will without doubt improve the measurements. Furthermore, the new

cavity setup will include better vibration isolation and improved active stabilisation.

Optical dipole-force guides will be included in the system once these preliminary

improvements have been made. The design also allows for the inclusion of an

external magnetic guide, which will eventually be replaced by a wire microfabricated

on the mirror-chip.
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8.4 Integration

At present, the first chips to include both wires and cavities are being manufactured

in Southampton. These can be fitted into the new design, and will be included as

soon as available. Other integration opportunities are provided by the micropyra-

mids which are being developed at CCM [44]. Using these, each cavity could be

supplied with atoms by its own pyramid MOT.

A further microcavity design which is being developed in collaboration with Southamp-

ton is a fully planar device which is tuned by an integrated electrostatic actuator.

This can be used to form cavities with concave-tip fibres [31]. An even more scalable

setup could be constructed out of these actuated mirrors and a set of microfabri-

cated optical waveguides, provided that either the waveguide tips or the actuated

mirrors can be made concave by etching or ablation. A waveguide chip has already

been developed at CCM for other projects, and the experience from that project

will certainly be of use in this endeavour. Microfabricated waveguides could also

be used with the current concave mirrors. This imposes stringent requirements on

the accuracy of the fabrication, because of the detrimental effects of lateral mis-

alignment on the fibre-cavity coupling, and thereby on both the contrast and the

photon collection efficiency of the devices. It should be possible to test this with

the current waveguide chip, as the separation of the waveguides at the edge of the

chip was chosen to be 250 μm, half the present micromirror pitch, for this purpose.

Should this work, the challenge will be to fabricate a setup in which each cavity

mirror can be tuned independently.

In conclusion, the devices first developed and tested in this thesis stand at the

very beginning of a highly promising career. Their scalability, the open access

to the entire cavity field and their projected performance all indicate that these

microcavities have a bright future, in atomic physics and in endeavours towards

quantum computation.

96



Bibliography

[1] P. A. M. Dirac, ”The Quantum Theory of the Emission and Absorption of

Radiation” , Proc. Roy. Soc. A, 114, 767 (1927).

[2] V. Weisskopf and E. Wigner, Z. Phys. A (Hadrons and Nuclei), Springer

Berlin/Heidelberg 63, 1-2 (1930).

[3] M. Fox, ”Quantum Optics: an Introduction” , Oxford University Press (2006).

[4] E.T. Jaynes, F.W. Cummings, ”Comparison of quantum and semiclassical ra-

diation theories with application to the beam maser,” Proc. IEEE 51, 1 (1963).

[5] K. J. Vahala, Nature 424, 839 (2003).

[6] Wallraff, A.; Schuster, D. I.; Blais, A.; Frunzio, L.; Huang, R.-S.; Majer, J.;

Kumar, S.; Girvin, S. M.; Schoelkopf, R. J.,”Strong coupling of a single photon

to a superconducting qubit using circuit quantum electrodynamics”, Nature

431, 7005 (2004).

[7] S. Kuhr, S. Gleyzes, C. Guerlin, J. Bernu, U. B. Hoff, S. Deleglise, S. Osnaghi,

M. Brune, J.-M. Raimond, S. Haroche, E. Jacques, P. Bosland, and B. Visentin,
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Appendix A

Fibre-cavity coupling

In this appendix, the results presented in Chapter 3 will be discussed in more detail.

One novel feature of these microcavities is that they are directly coupled to a single-

mode fibre. What makes this arrangement interesting is that the single propagating

fibre mode couples to a reservoir of a well-defined set of stable cavity modes. The

coupled power will depend on the overlap integral of the fibre and cavity modes,

ηN,h,v =

∫ ∞

−∞

∫ ∞

−∞
ψ∗Fψ

N,h,v
C dx dy . (A.1)

As an example, the overlap integral of two lowest-order, circular Gaussian beams

with waists wF and wC is

η0,0 =
2wCwF
w2C + w

2
F

, (A.2)

and the coupled power is proportional to η20,0. The coupled power and resulting

intensity for this case are shown in the Figure below. The fibre is however not

fully described by the single mode propagating in the core, there are also prop-

agation modes in the cladding, and decaying ”air” modes which couple out into

the surrounding medium. These modes require intense numerical methods for their

calculation, which are beyond the scope of this thesis. It is nonetheless clear that

for light to exit the cavity via these modes, there must be an overlap between the

cavity mode and the latter. The treatment here is confined to the limiting cases,

where the fraction of light in the cavity mode which does not match the core mode

will either couple fully or not at all to these modes. It will therefore be fully trans-

mitted and lost to cladding and air modes (transmission limit), or reflected back

into the cavity (reflection limit). The table below shows the entering, circulating

and reflected fields for a single cavity mode. We are particularly interested in the

fundamental cavity mode, and in being able to compare the measurable quantities,
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Figure A.1: Coupled power (a) and resulting peak intensity (b) for the overlap of a

Gaussian input beam of waist size wF and a receiving mode of waist size wC . The

power is plotted again in (c) with the x-axis in a logarithmic scale. The indicated

crossing values for 25, 50, 64 and 80% are exact. Here, φ is the golden ratio.

i.e. contrast and finesse, in the two limits. Simple expressions for the behaviour of a

single mode can be found if all other modes are considered to be far from resonance.

It is realistic to assume that the cavity modes can, in a suitable superposition, fully

describe the fibre mode. In this case, the cavity can be treated as having only two

modes ψh,v and ψb, such that η
2
h,v + η

2
b = 1, and ψb is perfectly and perennially out

of phase. This simplification leads to the expressions in the second part of the table.

By furthermore assuming that the reflectivity of both mirrors is high, the cavity

can be treated as completely rejecting light in the out-of-phase modes at the input

in both reflection and transmission limits. This final approximation leads to the

expressions which are used in Chapter 3, given at the end of the table. Again, both

mirrors are lossless and have real reflectance coefficients r1 =
√
ρ1 and r2 =

√
ρ2. In

the following table, the total electric field A and power P are listed for a standard

cavity and for a fibre cavity in the reflection and transmission limits. The last line

gives the peak circulating intensity for circular Gaussian fibre and cavity modes.

To properly calculate the overlap integral of each mode, the precise knowledge
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of the cavity length and mirror radius of curvature is necessary, which were found

by measuring the distance between the radial and lowest-order fringes. To extract

this value, the time-voltage traces were converted by taking into account the mean

acceleration measured from the fringe widths. To limit the number of approxima-

tions made, all quantities were calculated as fractions of the lowest-order fringe

separation at each length, ΔrelL = Lq+1,0,0 − Lq,0,0. For astigmatic resonators, the

round-trip phase shift needs to be calculated separately for each axis. This results

in the resonance condition

Lq,h,v =
λ

2



q +

(

h+
1

2

) arccos
(√

Ga2(Lq,h,v)
)

π
+

(

v +
1

2

) arccos
(√

Gb2(Lq,h,v)
)

π



 ,

(A.3)

where Ga2 and G
b
2 are calculated the two radii of curvature of the mirror R(a) and

R(b). The main complication of this quantity, i.e. the length dependence of Ga2 and

Gb2, can be neglected if the measurement is not taken close to the limits of stability

so that these quantities vary negligibly between adjacent modes. To calculate R(a),

for example, the measured quantity reduces to

Lq,h,0 − Lq,0,0
ΔrelL

=
h

π
arccos

(√
Ga2(Lq,h,0)

)

(A.4)

A plot showing all detected radial fringes is shown in Figure A.2. Here, all fringes

were treated as possible doublets, the minima of which are shown in blue and red.

The points are on top of each other when no splitting is detected. The figure shows

good qualitative agreement in all modes with the radii of curvature calculated from

the (q, 2, 0) and (q, 0, 0) modes which cross the centre of the plot. The dashed lines

are the antisymmetric modes of the cavity. These do not couple to the fibre mode

when the core of the fibre is well-centred, and are therefore rare occurrences in the

figure.
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Quantity standard reflection limit transmission limit

Ain A0t1 A0t1ηh,v A0t1ηh,v

Acirc A0t1

∞∑

n=0

(r1r2)
neiφ

= A0
t1

1−r1r2eiφ
A0

t1ηh,v

1−rh,v1 r2e
iφ(h,v)

A0
t1ηh,v

1−r1r2eiφ(h,v)

AR −A0r1+

A0t1
r2t1e

iφ

1−r1r2eiφ
−r1A0+ −r1A0+

= −r1A0+ A0
T
h,v
1 r2

e−iφ(h,v)−rh,v1 r2
A0

T
h,v
1 r2

e−iφ(h,v)−r1r2

A0
T1r2

e−iφ−r1r2

AtotalR AR −r1A0+ −r1A0+

A0

∞∑

h,v=0

T h,v1 r2

e−iφ(h,v) − rh,v1 r2
A0

∞∑

h,v=0

T h,v1 r2

e−iφ(h,v) − r1r2

two-mode approximations

AtotalR ≈ −r1A0+ −r1A0+

A0
T
h,v
1 r2

e−iφ(h,v)−rh,v1 r2
+ A0

T
h,v
1 r2

e−iφ(h,v)−r1r2
+

A0
T b1 r2

−1−rb1r2
A0

T b1 r2
−1−r1r2

high reflectivity

AtotalR ≈ −rh,v1 A0+ −rh,v1 A0+

A0
T
h,v
1 r2

e−iφ(h,v)−rh,v1 r2
A0

T
h,v
1 r2

e−iφ(h,v)−r1r2

quantities of interest

Finesse
π 4
√
ρ1ρ2

1−
√
ρ1ρ2

π
4
√
ρ
h,v
1 ρ2

1−
√
ρ
h,v
1 ρ2

π 4
√
ρ1ρ2

1−
√
ρ1ρ2

1− ϑ
(√
ρ1−
√
ρ2

1−
√
ρ1ρ2

)2 (√
ρ
h,v
1 −

√
ρ2

1−
√
ρ
h,v
1 ρ2

)2 (
−rh,v1 + T

h,v
1

√
ρ2

1−
√
ρ1ρ2

)2

P resonantcirc
P0T1

(1−
√
ρ1ρ2)2

P0T
h,v
1

(1−
√
ρ
h,v
1 ρ2)

2

P0T
h,v
1

(1−
√
ρ1ρ2)2

Iresonantcirc
I0T1

(1−
√
ρ1ρ2)2

w2C
w2F

I0T
h,v
1

(1−
√
ρ
h,v
1 ρ2)

2

w2C
w2F

I0T
h,v
1

(1−
√
ρ1ρ2)2
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Figure A.2: Plot of relative fringe position versus cavity length for all detected

fringes, together with the expected fringe separation for the three lowest-order odd

(dashed lines) and even modes (solid lines) for the radii calculated in Chapter 3.

The cavity astigmatism leads to a splitting of the curves, shown in gold for the

smaller and green for the larger radius of curvature.
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Damping of technical noise

As seen in Chapter 7, the cavity was not fully stabilised during the measurements

performed for this work. This results in an effective offset from the cavity reso-

nance, but the cavity length fluctuates because of acoustic noise causing noise in

the reflected intensity. It was noticed that the presence of the atoms coincides with

a decrease of this noise. A simple explanation to at least a part of this smoothing

is given by the additional damping of the cavity by the atoms. While no aimed

study has been performed to quantify this effect, it was noticed during the course

of many experimental runs. This subsection is intended to provide a simple, qual-

itative description of this mechanism. To give a picture of the effect of the atoms

on the intensity fluctuations, the simplifying assumption is made that the cavity

moves at random about the mean position given by δκ in such a way that it leads to

intensity fluctuations with Gaussian statistics. Then the amplitude of its excursion

can be calculated from the standard deviation of the light intensity when the cavity

is empty, with

σ2light

Ntrue
=

(√
Ntrue + slightNtrue

)2

Ntrue
. (B.1)

In other words, it is hereby assumed that the cavity fluctuates asymmetrically in

length on only one side of the fringe in such a way as to create Gaussian noise.

This is a close approximation to the case of symmetric oscillations about the

resonant length. It is also assumed that all super-Poissonian noise is caused by this

effect. Here the true number of photons absorbed by the detector is found using the

detector correction as detailed in Section 6.6, but Ntrue must also be corrected for

detector efficiency and other losses, while the variance-to-mean ratio is corrected

for the beamsplitter transmission ηBS and the quantum efficiency of the APD ηQE
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Figure B.1: The corrected variance-to-mean ratio as a function of power broadly

follows the behaviour expected from Eq. B (red line).

with
σ2light

Ntrue
= 1 +

(
σ2measured
Ntrue

− 1

)

/(ηBSηQE). (B.2)

Figure B.2 (a) shows the average signal of 22 atom clouds, and the green line shows

a fit including a mean length-offset of δκ = 0.3.

Then the additional shifts of the cavity from its mean offset δκ can therefore be

calculated from the normalised variance of the empty cavity from the Lorentzian

of the empty resonator. From the power spectrum of the fluctuations of the empty

cavity (B.2 (c)) it can be seen that the noise is acoustic. The cavity is therefore

assumed to travel on average in the range spanned by δ+κ and δ
−
κ , given by

δ±κ =

√
ϑδκ ± slight(1− ϑ+ δκ)

ϑ∓ slight(1− ϑ+ δκ)
. (B.3)

The inferred flucuations of the cavity length lead to an expected range of intensity

fluctuations around the mean offset as indicated by the two black lines in Figure

B.2 (b). The normalised variance in the presence of atoms depends on the Purcell

factor. The distribution of counts in the presence of atoms is taken to be sufficiently

symmetric to be approximated by

σ2light(P )

JR(δκ)τint
=
(JR(δ

+
κ )− JR(δ

−
κ ))

2

4JR(δκ)
τint . (B.4)

Comparing this to the variance of the empty cavity shows the decrease in noise,

as visible in B.2 (d). The semi-classical mechanism described here cannot account

for sub-Poissonian statistics, as it only reduces the fraction of super-Poissonian

noise caused by cavity-length fluctuations. It is thought that a fully-quantised

description, including anti-bunching of the photons scattered by cavity atoms, may

provide an adequate explanation for such an event. This will require a more targeted

107



Appendix B: Fibre-cavity coupling

Figure B.2: (a) The averaged signal of 22 runs fluctuates around a mean value given

by the green line. From the empty cavity signal the amplitude of the fluctuations

can be estimated, as shown in (b). The power spectrum (c) indicates that the noise

is acoustic in nature, as it is largely featureless for frequencies above 500 Hz. The

passage of the atoms reduces the intensity fluctuations, as visible in the plot of the

variance-to-mean ratio shown in (d). This agrees qualitatively with the mechanism

outlined in this Appendix, as shown by the blue line.

study, for which it is estimated that the cavity stabilisation will need to be improved

to reach sub-picometer accuracy.
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Appendix C

Cooperativity distribution

This appendix looks in some detail at the cooperativity distribution of atoms falling

through the cavity.

As shown in the previous chapters, the cavity signal will depend on the cavity pa-

rameters and on the coupling of the atomic cloud to the light in the resonator. This

in turn will depend on the state of the atoms and the alignment of their dipoles,

on the polarisation of the light and on the position of the atoms in the mode. As

no magnetic fields are applied during the measurements, the atoms are assumed to

be Zeeman-degenerate. While efforts were made to pump the cavity with circularly

polarised light, this could not be guaranteed in general as the optical fibre is of un-

known and varying birefringence. This has not been quantified by measurement, so

no assumption is made regarding the light polarisation in the following discussion,

other than that it remains constant over the course of a measurement. It is further-

more assumed that the coupling of any atom to the cavity mode depends only on

its position therein. This is justified if either: i) The equilibrium Zeeman-sub-level

population distribution is reached quickly for all atoms compared to their interac-

tion time with the cavity mode; (ii) all atoms start in the same sub-level population

distribution and this changes negligibly over the duration of the interaction with

the cavity light. The first case can be excluded a priori because many atoms will

enter the cavity mode in a region of low field strength and scatter few or no pho-

tons. The second case is certainly more likely, as all atoms have undergone molasses

cooling. Given these assumptions, the maximum and minimum single-atom coop-

erativity can be evaluated from the measured cavity characteristics, wherein the

finesse constitutes the largest uncertainty, and the strongest and weakest transition

dipole moments. It is thereby confined to the range

0.45 < Cmax < 0.88. (C.1)
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The position-dependence of the cooperativity is affected by the fact that the atoms

can move by a considerable distance during one integration period τint, both com-

pared to the cavity waist, due to their fall velocity transverse to the mode, and

compared to the light wavelength due to heating caused by the scattering process.

Distribution of the cooperativity

Given the above, it is necessary to calculate the distribution of atoms coupling with

a given strength to the cavity light mode to correctly interpret the reflection signal

of the cavity. The atoms are assumed to fall into all regions of the cavity with equal

probability, so that the coupling distribution is equal to the field distribution in

space. While the electric field in a given volume is readily evaluated, the inverse of

this quantity, i.e. the volume per electric field strength, is not as straightforward

to calculate without making harsh approximations such as replacing the radially

Gaussian profile of each mode lobe by a cos2 or vice-versa. The distribution can

however be found easily by numerical means. To this end, a million points were

sampled at random in a fictitious cavity field within a rectangular ”cavity box”

spanning the cavity length in the z-direction, and with a width of 6wC in the x− and

y−directions, using the length and beam waist of our resonator. This distribution is

shown as a blue line in Fig. C.1 (a). This box is much smaller than the MOT cloud

in all dimensions, so that in our experiment, homogeneous likelihood for the passage

of atoms within this volume can be assumed. However it is large in the x− and

y−directions compared to the cavity waist so that the total electric field outside the

box is < 10−3 of the total field and of vanishing density, so it can be neglected. To

evaluate the coupling distribution for finite integration time, the cooperativity was

integrated for the path of atoms falling for a chosen integration time. The green line

in Fig. C.1 (a) shows the distribution for an integration time of 10 μs. Even at this

short integration time, the distribution is visibly truncated in the high-cooperativity

region, since the average cooperativity of the path is always smaller than the peak.

As an approximation to the effects of heating, the sinusoidal variation of the cavity

field along its axis is replaced by a factor 1/2. Furthermore, coherent scattering

processes even heat an atom along this axis at a node of the cavity mode.[20] This

is shown by the dashed green line in Fig. C.1 (a), and more dramatic truncation

is visible for this line. This will in general be larger than the radial heating, i.e.

transversely to the cavity axis, as the transition rate for scattering only along this

axis becomes comparable to the free-space scattering rate into all directions when

the atom enters this cavity. Given the large sampling volume, most atoms in the
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Figure C.1: (a) The distribution of electric field strength within the ’cavity box’

(as defined in the text) leads to a probability distribution for the cooperativity of a

single atom shown as a blue line. Integrating over 10 μs leads to a decrease in the

probability for high cooperativity, as shown by the green line. When heating along

the cavity axis is included (dashed green line), the distribution is pushed further

downwards still. In (b), the distributions for integration times of 25 μs (orange) and

250μs (red) are shown, without (solid lines) and with heating (dashed lines).

box will couple weakly to the cavity mode. The average fractional cooperativity

for all distributions is equal to the average peak-normalised field intensity, so for

these box parameters C/Cmax = 2.18%. The total cooperativity of an atom-cavity

system with NA atoms at positions ~ri, i = 1...NA, is given by

Ctot(NA) =

NA∑

i=1

g2AC(~ri)

2κγ
∝
NA∑

i=1

E2(~ri). (C.2)

The distribution of these sums was also computed numerically by re-sampling

groups of NA atoms from the distributions above. An example is shown in Fig.

C.2, where the peak-normalised distribution of the sums for NA = 46 atoms (for

C̄×NA ' 1) is shown without heating in (a) and with heating in (b) for various in-

tegration times. From these distributions, it is possible to calculate the distribution

of the reflected intensity for a chosen number of atoms in the cavity box. To do this,

the distribution of coupling values and the distribution of pumping values due to

the Poissonian pump light must be taken into account. For analytical distributions

this would be the convolution of the two distributions, while here it is the weighted

sum of Poissonians. In other words, if the probability of a cooperativity for a given

number of atoms in the cavity box is pC(NA, τint) then the expected reflected-signal

distribution on resonance in the weak-pumping limit is

p(N) =

NACmax∑

Ci=0

pC(NA, τint)pn(N, τint, J
res
R (Ci)) (C.3)
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Figure C.2: (a) Cooperativity distribution for 46 atoms in the cavity mode, for

integration times of 0 (blue), 10 (green), 25 (orange) and 250 μs (red). In (b), the

distributions for the same integration times are shown under the assumption of

heating along the cavity axis.

for which pn and J
res
R were given in the previous chapter. Accurate results can of

course still be achieved if the cooperativity sum-range is truncated to span most of

the distribution. The main feature of this relationship is that for different coupling

strengths and atom numbers, radically different count distributions can emerge. To

illustrate these effects, a number of contour plots are shown in Figure C.3. In (a)

and (b), the probability of detecting a given count rate is shown as a function of

the number of atoms in a cavity with the upper and lower limits of our cooper-

ativity range, respectively. In (c), the average atom number in the cavity box is

held constant at 1, while the cooperativity is varied. In (d), the average total co-

operativity is kept constant at NA×C = 0.88, so the cooperativity decreases while

the atom number increases. This last figure is intended to show that in principle,

the distribution of reflected counts can reveal both the atom number and the max-

imum cooperativity. However, when the atom number is significantly larger than

1, the distributions become effectively indistinguishable. The mean of the distri-

butions also rises rapidly to the level expected for that cooperativity. In all plots,

the integration time is neglected and no heating is assumed. Both would lead to

a narrowing of the coupling distributions, until only the Poissonian distribution of

the light becomes relevant, as made evident by Fig. C.2.
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Figure C.3: Distribution of expected counts when varying the following parameters:

(a) atom number for Cmax = 0.88; (b) atom number for Cmax = 0.45; (c) Cmax for

NA = 1; atom number for constant Cmax ×NA = 0.88.

113


