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Abstract

In this dissertation, we will try to give the motivations for the search for the
electric dipole moment of the neutron and particularly for the use of the minimal su-
persymmetric standard model to compute it. In this aim, a review of the calculation
of the electric dipole moment of the neutron in the standard model, and specifically
using quantum chromodynamics, has first been made. Then we will explain two
methods to compute an expression for diagrams contributing to the electric dipole
moments of fermions, using a generic theory containing CP-violating interactions.
Finally, these results will be applied to the case of the minimal supersymmetric

standard model.
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Introduction

Experimentally we discovered symmetries in physics when we identified similarities
in particles that seemed entirely different. For instance we saw that all particles with
a spin will behave similarly, regardless to the value of their spin. Such observations
allow to classify particles in classes. These experimental observations are very important
as it simplifies the construction of theories. Instead of considering all particles with
spin in the theory, we will rather consider a general particle with a general spin and
mass, from what we will be able to explain the behavior of all particles having these
same characterictics. A symmetry cannot be proved, it is postulated as it relies only on
observations. We want to include these symmetries when building the theories. The first
reason is simply to agree with the observation of symmetries. The second reason, is that,
if the symmetry postulated is indeed a true symmetry, the theory will go beyond what
we know from experiments and will have a great predictive power. This is why the search
for symmetries in physics is so intense.

As a correlation to the symmetries, there are the broken symmetries. We first build
beautiful theories with nice symmetries in it, to eventually break them, in order to under-
stand better the theory itself. Is not that paradoxal? In fact, no, because physics is only
a matter of scale. At the begining of the last century, physicists understood that matter
does not look the same at different length scales. At the macroscopic scale, matter is
a continuum, while at the atomic scale, we can roughly think of matter as an electron
rotating around a nucleus. From then, we thought of matter as a Matryoshka doll of
particles, each particle is made of smaller particles. The smaller the particle we want to
observe is, the higher the energy needed to observe it is. Physics is therefore a matter of
energy scale, as well as matter, it does not look the same at different energy scales. This
fact is now explained by broken symmetries. A symmetry is broken at an energy scale
lower than the scale at which the symmetry is still a true symmetry. A famous example of
such broken symmetry, is the broken electroweak symmetry, which gives different masses
to different observed particles.

Discrete symmetry is a crucial kind of symmetry in physics. Discrete symmetries give
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rise to six quark flavours, eight quark colours, one elementary electric charge, etc. The
oldest discrete symmetry to be tested is parity. Newton’s theory is parity invariant, and
this is well observed in every day experiences. Though, parity symmetry is broken by
electroweak interactions [1]. The first test of parity was done by Purcell and Ramsey
in 1949 in the domain of strong interactions [2]. They supposed the Hamiltonian for a
nonrelativistic charged fermion of spin S placed in an electric field E and magnetic field

B, which can be expressed as:

H = —(dE + uB) - (1)

| Uy

where p is its magnetic dipole moment and d its electric dipole moment. They argued
that, as a theory for strong interactions was still unknown, it was not possible to derive
parity violation, thus one must assume parity symmetry. As E-Sisboth P-and T -odd, a
non zero electric dipole moment exists if and only if these two transformations are broken.
Experimental datas show that d is of the order of 107!%¢ - ¢m, which was at that time
far below the observable scale. That agreed with their conclusion that d must be zero.
Experimentally, CP violation or T violation if one assumes CPT invariance of physics,
has been observed via the mixing of Kaons [3]. It provides the first experimental hint
that an EDM can exist. This observation has been explained by the Kobayashi-Maskawa,
mechanism [4], thanks to which the theory went beyond in predicting the existence of
three generations of matter. This existence of the third generation was experimentally
confirmed when the top quark was first observed at the Fermilab in 1995 [5].

This was only when quantum chromodynamics came to life that time reversal non
invariance was first theoretically possible. Indeed, QCD contains the so-called #-term
which is CP-odd. That was the first time that d could theoretically be non zero. The
0 parameter is known to be tuned to 107Y, which is the strong CP problem. It turns
out that, this term has many impressive fundamental implications. Among others, it is
responsible for the non triviality of the vacuum structures of gauge theories [6]. Also, its
mixing to the quark masses in QCD gives a prediction of the EDM. The small value of 6

implies a value for d of the order 10~*"¢-cm. This value is almost ten orders of magnitude



below the experimental datas. The standard model turns out to be insufficient to predict
the right d.

The smallest theory beyond the standard model is the minimal supersymmetric stan-
dard model. It postulates the existence of a superpartner particle to each particle of
the standard model, according to the, yet supposed, supersymmetry. The masses of the
“ordinary” particles and their superpartners are the same under supersymmetry. These
new particles are still experimentally unobserved, which is now understood to be a man-
ifestation of the fact that supersymmetry must be broken at low energies, putting the
masses of the superpartners well above the masses of the SM particles, although the
lowest supersymmetric particle, LSP, is hoped to be seen at the LHC. The MSSM has
more than 100 parameters, among which there are more than 10 CP-odd ones. There
can potentially be more contributions to the EDM than there are in the SM, making
the MSSM greatly hoped to predict the right amount of EDM. The attempt to make
the MSSM agree with the observations put a lot of constraints on these new parameters.
In fact, the CP-violation experiments, through the measurements of the electric dipole
moment of the neutron, are the most sensitive experiments we dispose nowadays. This
is why the research for the EDMs is so intensive.

The fact that supersymmetric particles have masses well above the masses of the SM
particles, i.e. that supersymmetry is broken, implies that the MSSM is a theory living
at a high energy scale and that the SM is a low energy limit of it. In other words, the
SM is an effective theory obtained by integrating out heavy fields in the MSSM action.

In particular, the effective Lagrangian includes the following CP-odd dimension 5 term:

d
ﬁ = thﬂuv /}/V]/Y5¢)F/.w (2)

wich gives the fermion ¢ an electric dipole moment d via its interaction with the electro-
magnetic field F},,. This operator gets contributions from the MSSM through interactions
of the kind of the ones in figure 1.

The first section of my dissertation will expose the basic notions of discrete symme-

tries, from their definitions to their actions on quantum fields. In the second section, we



Figure 1: Diagrams giving contributions to the electric dipole moment d of the external
fermion line in the MSSM. The internal scalar and fermion line are supersymmetric
particles.

will look at the birth of the #-term, in order to turn to the review of its implications on
the electric dipole moment of the neutron in QCD. In the last section, we will give a way
of deriving the electric dipole moment of a fermion in the case of a general model, and
then review how these results are applied to the case of the electric dipole moment of the

neutron in the minimal supersymmetric standard model.

1 Discrete transformations

1.1 P transformation

The P transformation is referred as the parity transformation. It consists in reversing

spacial axis, i.e. it turns 7 into —7. We write the action of P on 7 as: P(7) = —7. Also

dar

o so we have [7]:

U=

P(@) = -7, (3)

from what it follows that P(p) = —p with p’ = m¢. And therefore, the action of the

parity transformation on the Newton’s law is given by:
dp dp _ -
(&) -+ (F) (1)

Where F = dp/dt. In order to find the action of P on the electric and magnetic field, we

can let P act on the Lorentz’s force. Indeed



Fj!orentz = Q(Z_j/\ g + E) (5)

So using equations (3), (4) and (5) we find :

—

P(Ey=—E , P(B)=B (6)

In fact, (6) expresses the fact that E is a vector and that B is a pseudovector. The
angular momentum is given by

J=7FAp, (7)

from what we can deduce that :

P(J)=1J (8)

Moreover, as the spin S is mathematically identical to the angular momentum, we can

assume that :

=,

P(S) =8 9)

Finally, as S is a scalar, we automatically have P(S) = S. So, putting all these elements

together, we will find that :

PE-S\=-E-§ , PB-S=B-5 (10)

Ul Uy

P(H) = (dE — uB) - (11)

In fact, similarly to equations (6), equations (10) express the fact that E - S is a pseu-

doscalar, and that B S is a scalar.



1.2 7T transformation

T transformation is time reversal, i.e. it turns ¢ into —t, if ¢ is the time variable. So
the action of T" on t is: T(t) = —t. In a very straight foward way, we can use the same

techniques as in section 1.1 to find how T acts on quantities. We have:

T(EY=E , T(B)=-B (12)
TE-Sy=—E-§ ., T(B-S)=B-8 (13)
. = 8
T(H)=(dE — pB) - 5 (14)
We see through (11) and (14) that H is PT symmetric:
PT(H)=H=TP(H) (15)

Where PT(H) means first applying the 7" transformation to H and then applying the P

transformation.

1.3 (C transformation

It is important to note that C' transformation implies the existence of antiparticles,
which do not exist within classical mechanics. The notion of antiparticle is intrisic to
quantum field theories. For the present case of a classical particle, it would therefore

make no sense to search a C' transformation as we did for P and 7T transformations.

1.4 P, 7T and C operators

We would like to define operators representing the action of P, T" and C' transfor-
mations on quantum fields. In order for that, we first say that in classical mechanics
parity transformation does not affect the time coordinate, so it should commute with a

translation in time. Then, by virtue of the principle of correspondance between classical



and quantum mechanics, we would require the time translation operator to commute
with the parity operatoy. Since, in quantum mechanics the time translation operator is
represented by U = exp(—iHAt), we would require [P, H] = 0 which implies that P is a
symmetry. However, we know from experiments that weak interactions violate parity. So
this is not a good way to define this operator. The same is true for the C operator since,
following the same arguments, we find that [C, H] = 0, which is in contradiction with C
not being a good symmetry of weak interactions.

Though, we need to define these operators. In order to define them, we note that
electromagnetic interaction are invariant under both P and C' transformations. We will
therefore define the P and C operators so that they are good symmetries of the elec-
tromagnetic interaction. When we will then consider other interactions, e.g. weak and
strong ones, we will still use as P and C operators the ones defined previously. In the
case where the considered interaction is not invariant under the action of either P or C,
will say that this interaction breaks either P or C symmetry.

The definition of the 7 operator is not so simple. Indeed, unlike P or C, 7 is an
antiunitary operator. We can see this fact through the action of the 7T’ transformation on

the fundamental relation of quantum mechanics:

[ri, byl = 10y (16)

where 7; is the i-th cartesian component of the vector position, and p; is the j-th cartesian
component of the momentum. As r; is T-even while p; is T-odd, the only way for (16)

to be always true is to say that ¢ must also be T-odd. That means:

TiT = —i & TT M =-1 (17)

which precisely shows the antiunitarity of 7. The same can be seen through the

Schrodinger equation for a non relativistic particle:

O 1 =
2y = 1
Z@t 2mv v (18)
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Since the classical equations of motion are time-reversal invariant, and since 9/0t is T-odd

while V is T-even, we must impose:

TiT! = —i (19)

which again implies the antiunitarity of 7.
Adopting the metric n* = diag (1,—1,—1,—1), we can define P, C and 7 operators

satisfying the following properties:

Pip=1 , (Cc=1 |, TTH=-1 (20)

P:9,—0" | T:0,— —0" (21)

Their action on a complex scalar, electromagnetic and spinor fields are as follows [8]:

Plo(F )P = npo(—7,t) (22a)
TP, )T = nro(7, —t) (22b)
Clo(7,1)C = ned(r,t)! (22¢)
PIA(FOP = AM—7t) (22d)
TIAFHT = AF, —t) (22¢)
ClA(FHC = —A,(7t) (22f)
PiY(F )P = EpSpip(—7,t) (22g)
TW(FHOT = &rSr(F, —t) (22h)
CHp(FC = YolFit) (221)

Where np, 7, ¢, £p, & and ¢ are pure phases, i.e. they can be written as np = exp(iap)
and £p = exp(ifp), and similarly for the others. The charged conjugated spinor field

Yo (7, t) is defined as Yo (7, t) = SOSOET(F, t). Also the definitions of the matrices S, Sy
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and S¢ are:

St Sy = (23a)
SpitSp = Yy (23b)
SeSgt = —(")" (23¢)

These definition have not been written in any particular representation for the gamma

matrices. For further details on how the P, 7 and C are defined, see [8].

2 Electric dipole moments in the Standard Model

We saw that the Hamiltonian for a classical particle, in an electric and magnetic field

is of the form:

H = —(dE + uB) - (24)

Wn| Uy

We also saw, equations (11) and (14), that the d term, namely E - S/S, is P-odd and
T-odd. As we know, classical Hamiltonians are invariant under space and time inversions.
Therefore, a non-gero parameter d may exist if both P and T are broken. If we assume
CPT invariance of physics, the P non invariance of H would imply a CT non invariance,
and the T non invariance would imply a CP non invariance. This point is going to
be crucial, since it tells us that electric dipole moments get contributions from CP-odd
terms in the Hamiltonian, or Lagrangian, of the particle. So, in our attempt to generalise
the electric dipole moments of classical particles to the relativistic case, we will look for

CP-odd operators. As a first generalisation, we can write down the following Lagrangian

[9):

o
wn| Wy

id—
Heop_gqa = —d — L= —gwa"”%wﬂw (25)

12



-8
(3 e

S = e

(8

Figure 2: fermion-fermion-photon interaction led by (27). This interaction gives the
fermion an electric dipole moment whose value is d

Which can be seen to be a good generalisation through its transformation under P, T
and C transformations. This can also be seen by looking at the non-relativistic limit
[7]. In order to include possible EDMs into the standard model, we need to include this
interaction term in the Lagrangian of standard model, which is as said an effective term.

By doing so, the Lagrangian will be:

ﬁEffective Theory — ESM + ﬁEDM (26>

Where we have defined:

id—
Lepy = —Eﬂ’UWWﬂ’FMV (27)

Here F),, is the electromagnetic field strength, o#” has been defined in section 1.4 and
the matrix 75 is defined as 75 = i7971727y3. This new term in the Lagrangian brings a
new fermion-fermion-photon interaction, whose Feynman rule is on figure 2.

It is interesting to notice that such an interaction already exists inside the standard
model, from the term e@y“w/lu in QED. We may be tempted to say that Lgpy does
not bring any new interaction. But in fact, if we perform a dimensional analysis in d
dimensions, with [¢)] = (d — 1)/2 and [F),,] = d/2, we obtain [d] = 1 — d/2, which
is relevant for d > 3, which makes the theory considered above effective. This is a
hint for the high energy processes contributing to the electric dipole moments of the
fermions. We can consider high energy processes coming from the standard model, but
also coming from theories beyond the standard model, which will taken to be the minimal

supersymmetric standard model. Figure 3 illustrates how the standard model and the
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(SM) (MSSM)

Figure 3: Contributions of the SM and MSSM to the EDM

minimal supersymmetric standard model give contributions the the EDM.

2.1 0O-term

The 6-term is a purely topological term, in the sense that it arises only when we
consider the boundary topology of the gauge group of the theory. It is not an obvious
term, but it turns out that it has deep implications on the vacuum of the theory itself,
and that it contributes to the electric dipole moments. Here we are therefore interested
in the possible vacua of the gauge group of the theory, whatever it is. So we will make

the following assumption:

Z= / DA & Y " eiSinvac (28)

vac

Where > represents the fact that the sum is to be done over all the different vacua of
vac

the theory, and A, is a gauge field. This assumption hides another one, that is that for

(28) to be true, the action has to be finite. Therefore, studying the vacua of the theory

is the same as studying the finiteness of the action. In order to understand the effect of

the finiteness of the action, let us look at the gauge theory [10]:

2

1 a a

where the sum over repeated indices is implicit, and F}} is the field strength, €? is the
totally antisymmetric tensor in euclidean space, i, j, k and [ are the space indices and a
is the gauge group index. We can regard this as the action of a gauge theory either in

a d-dimensional euclidean space, with space indices running from 1 to d, or in a d + 1-
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dimensional spacetime, with spacetime indices running from 0 to d in the temporal gauge
A§ = 0. From now on we will consider the action in a d-dimensional euclidean space. For
this action to be finite we must require at least:

d+1

Fj o~ 7 (30)

g |Z|—o00
where 7 is the vector position in the d-dimensional space. That implies the condition
d—1

A~ |ETT (31)

T
|| —o00

By using the gauge invariance of the theory, written in (32):

HOANE) - dANE) + g @)Dg(@) (32)

the condition (31) is equivalent to say that the gauge field approaches a pure gauge at

infinity. In other words:

AN T —— g {(@)g(@) (33)

|| —o0
Where ¢(Z) is a direction dependent element of the gauge group G, and the gauge coupling
constant has been included into the generators t*. As we can see in (33), at inifnity the
gauge field is unchanged if we multiply ¢(Z) by any fixed element gq of G. We can use
this freedom and replace g(¥) by g(Z) = go * ¢(Z) in such way that g(7,) = 1, for any
one direction #,. In addition, by virtue of group theory, the relation (33) remains the
same if we muliply & by a constant . We can use this other freedom to transform 7 as

Ty = aZ, in such way that |Zo| = 1. The relation (33) can equivalently be written as:
it" A3 (T) [P 9 (T0)2,9(7o) (34)

which clearly shows that, at infinity, the gauge field is a mapping between the unit sphere

Sa—1 = {Z | |Z] = 1} and the gauge group manifold G = {g(Z)}. Group theory tells us

that there are different classes of such mappings, and that equivalent mappings belong

15



to the same class.
As a simple illustration, we can take the mapping S; — U(1), which can be charac-

terised by the integer v called the winding number. For instance we can consider

gy(e) — eizx@ (35)

where the parameter 6 is the polar coordinate on S;. In order to understand the meaning
of the winding number, one can simply make § — 6 + 2z, which obviously transforms
any point on S; into itself. However, at the same time, g,(#) might have to go around
S1 more than once to get back where it originally was. The following relation illustrates

this fact:

g,(0 +27) = g,(0)e™™ (36)

In the case where v = +1, the mapping is an isomorphism. In order for two mappings to
be equivalent, they must have the same winding number. The winding number therefore
characterises the class of the mapping. Actually, the winding number is a general feature
of this kind of mappings which can be more complicated.

Another useful quantity is the Cartan-Maurer integral invariant. It is very useful
to characterise the topology of different manifolds because it is topologically invariant.

Using this quantity, one can show [10]:

/ dwe FiFyy = 64m°y (37)

And:

S[4,] = 87°lv] (33)

We would now like to get a Minkowskian action. In order for that, we recall that in
the Euclidean space x; = (x1, 22, 23, 4) while in Minkowski spacetime with z4 = iz,
z, = (xo, 1, T2, 73). Also, €”%* =1 becomes in Minkowski spacetime €% = —1. And

finally, by the definition of F; we notice that by going to Minkowski spacetime, we must

16



have Fgy = —iFg,. Therefore e/, FiF = ie"” 7P F, FY,, so that (37) becomes:

prt apr

1
v=— / d*ze 7P F [O (39)

6472 prap

We previously saw that different winding numbers can be used to characterise different
field configurations. It might therefore be important to include this parameter into the

path integral formulation of operators. The expectation value of the operator O is

f DOO[Plexp(iSq[P])
Z f ) [, DPexp(iSa[®])

Where we consider field configurations only over a large spacetime volume 2, Sg is the

(O)a =

(40)

integral of the Lagragian over this volume and ® is a generic field of the theory. The
subscript v on the integral means that we are to integrate only over the fields with winding
number v. In order to determine the form of f(v), one uses the following argument.
Suppose, we split the volume 2 into two volumes 2; and €25 such that O is only in €.
Field configurations in €2; have a winding number v, and similarly in Q5. According to
the definition of the winding number in complex analysis, one has v; + v = v. We can

rewrite (40) as

Yoo 1 +12) [, DPO[@lexp(iSa, [®]) [, DPexp(iSq,[®])
Yoo L1+ 12) [, DPeap(iSo,[®]) [, DPexp(iSa,|P])

(O)a = (41)

But in fact, physically this is as if we omitted €25, since the operator @ is not in it.

Therefore (O) should also be written as:

_ 2, f(n) [, DROReap(iSo, [€])
>, f() [, Dexp(iSq, [2])

In order for (41) and (42) to be always true, we must have the following relations for

fw):

(O)a (42)

frit+w)=fn)flr) < [flv)= e’ (43)

Combining (39), (40) and (43), one obtains that we must include in the lagrangian the
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term:

4 vop e e 4 a Trauy
£9 = —@EM pFw/Fcrp = —%FNVF # (44)

Fomw — %e“’”’Jng is the dual field of Fj,. This term is the so-called #-term. In fact,
another form for this term is possible, depending on what the definition of the gauge field
is. Here, we have chosen to include the coupling constant into the generators, but if we

choose not to do so we get:

2
g%0 ~
— Fe pounv 4

3272 (45)

Lo =
This term has been of particular interests for many reasons. Firstly, as we have just
seen, the A-term is purely topological and contains a lot of informations about the vacua
of quantum fields theories where it appears. In QCD for instance, it is a the center of
the studies of the instantons and the tunneling phenomena. This is a very interesting
aspect of physics, but 1 will not give more details on the subject, further reading can be
found at [11]. This term has another particularity, which is that it can be written as a
total derivative. If we write G, = G7,,t%, where {* are the generators of the gauge group
satisfying the normalisation condition tr(t*®) = §% /2, we have:

g°0
T 32 e

Ly = tr|G Gyl (46)

with G, = 0,4, — OuA, + [A,, A,]. Then we can write:

, %0
Lo=0, (—%J“) (47)

Where we have defined the current:

Tt = e"Ptr[A,(9,A, + %[Am A))] (48)

This current is called the Chern-Simons current. The non triviality of the vacuum is such

that this term does not vanish as we integrate it over the spacetime. It therefore has

18



non trivial contributions to the theory. Finally, we notice that it is a CP violating term.

Indeed, according to (22) we can show that:

PICTL,CP = —Ly (49)

As the EDMs get contributions from CP violating terms, the equation (49) tells that the
f-term might have something to do with the electric dipole moment. This term has to

be taken into account in our study of the electric dipole moments.

2.2 Chiral transformation

At first, we want to understand the effect of the 6-term on the Lagrangian for fermions.

Let us look at the chiral transformation:

bx) — @ Y(x) (50)

We can show [10] that a transformation of the form:

() —  Ulx)d(z) (bla)
U(x) = e o@t (51b)

With ¢ a general Hermitian matrix and a(z) is a general real parameter, implies a change

in the fermion measure as follows:

DYDY —  exp (i/d%a(az)A(az)) DYDY (52a)
Alz) = —#e““"ngy(m)ng(:t)tr{t“tbt] (52b)

Where the trace is done over all fermion species and t, and #;, are the generators of the

gauge group. In the case of (50), we have t = 1. Therefore the transformation (50)
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implies:

A i Vo, a a "
DYDY —  exp (—Wa‘ p / d'zF},FL 6 ba(g:)> DYDY (53)
By choosing the generators to satisfy the normalisation condition tr(t*t*) = §%/2, which

is relevant for the analysis of quarks as the gauge group is SU(3). The transformation

(50) therefore brings in the Lagrangian a new term:
1 Vo, aQ aQ
L — L- WEM PF(2)F) (v)a(x) (54)

It is now obvious that if we turn to the case of QCD, writing explicitly the strong coupling

constant and making the phase a(x) = k x 0/2 gobal, we obtain:

2
’ g 0 vo a a =
ﬁ — £ = £ - k@ﬁﬂ pFMV(Qf)FO.p(ZC) (053)
— L kL, (55b)

k is nothing but a constant of proportionality. Here we have illustrated one of the effects
of the chiral transformations (50), that is that the #-term is equivalent to a given chiral
transformation. Now, we will illustrate another implication of chiral transformations.

Consider the Lagrangian for massless fermions:

L = iy Db (56a)

= WY — gy A, (56b)

Whith possibly indices on fermions labelling different fermion species. This Lagrangian

has the following symmetry leading to the corresponding conserved Noether’s current:

20



P(r) —  eMleh(x) (57a)

Ja(x) = (@)Y "t () (57b)

Where 7, are real constant parameters, the currents j#(z) are called the vector currents.

In fact, the Lagrangian (56) also has the following symmetry:

b(z) —  ea(a) (58)

And more specifically:

Pla) — € y() (59)

Here « is a real constant parameter. This is a symmetry according to the following

properties of 7°:

v = iyt (60a)
() = (60b)
¥} = 0 (60c)

This symmetry leads to the Noether’s current:

oL _ oL
L = 6—wéw+5(auw)()(dﬂw) (61a)
— —ad, (™) (61b)
=0 (61c)
3= VY (61d)
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The conserved current j° is called the axial current. The symmetry (58) is called a chiral
symmetry because it is a true symmetry only if the fermions are massless. Indeed, we
may want to include massive fermions to the Lagrangian (56) and see the implications of
(58):

L = iy Db — mapp (62)

The equation for the dynamical fields 1) and 1) are respectively:

A" = gy A, +imy (63a)

YO = —igy'YA, —imy (63b)

Thanks to these equations, we can compute the derivative of the axial current:

oL

i
= ad, (") (64b)
= 2imagyy (6c)

We clearly see that the axial currents j°* are conserved when the fermions are massless,
i.e. when the fermions are chiral fermions. Hence the transformation (58) is a chiral
symmetry, it is an approximate symmetry. Also, the last relation shows that the trans-
formation (59) brings in the Lagrangian (62) an additional term. Thus, under (59) we

have:

L — L' = L£+iL (65a)
= L+ i)y My (65b)
M = kxmal (65¢)
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Where k is a real constant of proportionality. In the most general case of (58), we have
M = kmé&,t,. We have here illustrated another implication of the chiral symmetry. Now
we can join the two implications explained above, and say that, the #-term is equivalent
to a chiral transformation which is itself equivalent to adding a term proportional to
1¥°1 in the Lagrangian. We can therefore remove the 6-term (44) from the Lagrangian

and introduce an equivalent dependance on the # parameter in the term (65).

2.3 EDM of the neutron in QCD

In this section we will review the calculation of the electric dipole moment of the

neutron in QCD, mainly following [12]. The Lagrangian of QCD with the #-term is:

1o cu  — 9°0 vopra
L = _ZGW/G g wz’(Z’YMDM — mi)wi — m‘fu prngp (66)
Which can be equivalently written as:
1 _ —
L=—-G%GM +,(in"D,, — mi); + ith;y° Map; (67)

4
G, 1s the gluon field strength with @ = 1,...,8 and ¢ = 1,...,6 labels the quark flavors
up, down, charm, strange, top, bottom. Also, as this redefinition is due to the chiral
symmetry, we must suppose that m is small. That is why we only consider the three
lightest quark flavors up, down and strange. We can show [12] that, to first order in 0,
the matrix M is:
My Mg

M = —if 1 (68)

My Mg + MMy + Mg

Thus, the mass Lagrangian is of the form:

. '—‘ N M Mgy o APl
Ln = ;S(mmwz) e ngswzs v)  (6%)
= ) (mihy) — AL (69b)

i=u,d,s
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As mg > mg, m,, one can make the approximation:

oMMy — &
AL = jg—1"0 b APYs
Lt 2 B (70)

Using (22) we see that this is a CP violating operator, it therefore has implications in
the electric dipole moment. But that is not surprising since this operator is equivalent
to the f-term which was already known to have implications in the EDM. We know that
the interaction leading to the EDM is an interaction between a hadron, the neutron, and
the electromagnetic field, as in figure 2. Also, we must include CP violating operators.
In the model described above, the only term in the Lagrangian containing CP-violating
operators is AL, which can be treated as an interaction term due to the fact that the
value of 6 is small. The following relations are respectively the amplitude of the EDM
interaction from the point of view of the hadronic electromagnetic interaction and the

amplitude from the point of view of the interaction the first must contribute to.

A = (T, 0 exp (i [ e AL ) InGo) (T1a)

AfDM = _dnaouto-m/'yskvain (71b)

n(Pin) = Nin, "(Pout) = Nout, Gin and ay,; are respectively the in- and out-states, and
the in- and out-amplitudes of the neutron, and 7" is the time ordering operator, and

kY = (pin — Powr)”- Both above relations must agree, so:

(Nout|TJ,(0) exp ( /d :cAﬁ) i) = —dnﬁoutaw/f)k”am (72)

So, to first order in #, one has:

My + My

f——m—— T ”outlJ /d4 Z ’757-% )) l”z’n) = dnaoutauv’yg)kuam (73)

i=u,d,s
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The left hand side term can be calculated by inserting a complete set of states {|X)},

between the two operators J, and >,_ ds%vf’@bi, we will have:

My My
ACP: Y N /d4

X i=ud,s (74)
(out (S (O)1X) (X | Ba(@)yi(2) + i)y (@) X)X [ Ju(0) ) i)

The set of complete states {|X)} contains multiparticle states of stable hadrons entering
the one-loop diagrams, {|X)} = |N), |N7),|Nn7),... Where N is a nucleon and 7 is
a pion. One can argue that, in the soft-pion limit where m, — 0, the most singular
contribution, of order O(mZin(m?2)), to the electric dipole moment comes from the term

with |X) = |N7). So the above relation reduces to:

T, My
ASP — _p witd d4 E
mu + mgqg

i=u,d,s

(2t O N Y Nt Bl @) ) ()

+ <nout|Ei($)75¢i(x>[Nﬂsoft> <N7Tsoft[ Ju(()) Inm>)

The term (n|J,(0)| N7y ), where [n) means either |n;,) or |ng,), can be calculated
using current algebra [13]. The computation shows that the terms where the photon
couples to the nucleon only give a contribution of order O(m?). Also, at low energy
the photon does not couple to 7°, because at low energy this pion is seen neutral by
the photon, while at high energies the pion will be seen as a set of quarks, which have
an electromagnetic charge. The nucleon being composed of neutrons and protons and
given the fact that the photon does not couple to the neutron at low energies, for the
same reasons as for the neutral pion, the calculation of this term therefore reduces to
the calculation of (n|J,|pr®). Finally, by charge conservation, the state [pr™) must be
ruled out. Therefore, only the term (n|J,|pr~) gives the contribution to the electric
dipole moment to order O(m2in(m?2)). That is the reason why the interactions giving

the EDMs are as in figure 4.
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Figure 4: Diagrams giving contribution to order O(m?2In(m?)) to the EDM of the neutron
in QCD. The black dot vertex represents the CP violating interaction.
On the other hand, the term (N7gz|t0;(2)7?9(x)|n) is computed via the following

Lagrangian:

Lann = OEUNT (igann’ + Genn ) UN (76)

The three pions are described by the scalar fields ¢2, the nucleon is described by the
fermion field ¢, and 7% are the Pauli matrices. It truns out [12] that the CP violating

coupling g, between a pion and two nucleons, is given by:

mymgq

g = — aNou v’ iNin 77
9rNN ? My + My z <7T tId’fY d’l > ( )

i=u,d,s
By invoking the same arguments as in the case of (n|.J,(0)|N7sp), we realise that the

contribution from g, to order O(m2in(m?2)) comes from:

mqymgy

[ = 0———
TN My + 1My |

> (7 pldin diln) (78)

=u,d,s
In addition, the CP non-violating interaction between two nucleons and a pion, is given by

grnn in (76). And again, can be precisely reduced to the proton-nucleon-pion interaction.
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Finally, the interaction between two identical scalars and a photon is given by the

Feynamn rule:

(7 (p+ B)[Julm™(p)) = —(2p + k)u (79)

So, the computation of d,, reduces to the simple calculation of the one-loop diagrams of
figure 4, with the CP-violating and CP-non violating vertices respectively given by g _nn

and ¢,nyny and the photon interaction with the pion given by (79). The result is:

dn § NNGrNN ]\4]\7
On _ Ir 1
e 472 My t My (80)
A numerical application, with the experimental value of gnn, |[G.nn| = 0.038|6] from
(77) and of In(My/m,) = 1.9, leads to:
dn
— =52 10710 - m (81)

The value of € is known to be very small, # ~ 1077, so the value of the EDM of the neutron
is predicted to be d,, ~ 107%7e - m, which is well below the value the experimentalists

measure.

3 Electric dipole moments in the MSSM

3.1 General case
3.1.1 Set up

The diagrams [14] entering the MSSM part in figure 3 are displayed on figure 5. One
reason why the mass insertions are needed, is because the interaction of figure 2 changes
the chirality of fermions. Indeed, if we write the Dirac fermion into right- and left-handed

components:

Y =vYr+ YL (82)
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v, v v, _ Y

Figure 5: One loop diagrams leading to the electric dipole moment of a fermion in the
MSSM. The cross symbol represents a mass insertion. The field ¢ is the fermion field,
the field ¢ is the sfermion field. In the diagram a) the field ¥ can either be a gaugino
g, a neutralino x° or a chargino x*, while in the diagram b) the field ¥ can only be a
chargino.

with g = —y5¢r and ¢, = 59y, then:

@Juv%wpw = %aijLFm/ - IZ’*LO-“VIZJRFHV (83)

Which is an interaction changing an incoming right-handed fermion into a outgo-
ing left-handed fermion, and changing an incoming left-handed fermion into an outgoing
right-handed fermion. The simplest terms in the Lagrangian which mixes both chiral-
ities are the mass terms coming from the superpotential and the soft SUSY breaking
terms, hence the mass insertions. Another reason why the mass insertions are needed
is due to the fact that the supersymmetric particles are experimentally not observed.
To explain this “unobservation” of supersymmetric particles, we suppose that supersym-
metric particle masses are much higher than the masses of ordinary particles. This fact
is mathematically implemented by taking the supersymmetric particle momenta to be
large. Thus, the ordinary particle masses can be treated as interaction terms.

We will here concentrate on the calculation of the EDM via the diagram a) in figure
5. We still have to keep in mind that this calculation is not complete as many other
diagrams contribute, e.g. the diagram b) on the same figure. As explained above, the
diagrams in figure 5 have high energy internal particles, so they contribute to the effective
operator (27). In order to obtain an expression for d, we will compute the Feynman rule

led by the diagram a) of figure 5, then by comparison with the Feynman rule of figure 2,
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we will be able to identify what goes into d.

We want the computation to be as general as possible, so that the EDM of an actual
particle will be a particular case of this computation. In order for that, we take the general
case of a light external fermion labelled ¢, a heavy scalar ¢, and a heavy fermion ;. In
the case of the MSSM, the heavy fermion can be a gaugino, neutralino or a chargino. The
light fermion is the particle of which we want to compute the EDM and the heavy scalar
will be its associated sfermion. Thus the subscript f, k& and ¢ on the fields label different
particles. The part of the MSSM Lagrangian expressing the interactions between these

three fields has the general form [14]:

—f  1- 1+
—Lips = Z Uy < ik 275 + Ly, 275) idy + H.c (84)
ik

Where H.c stands for Hermitian conjugated. The heavy fermion and scalar have charges
respectively @); and (), and masses m; and my. The Feynman rules associated with the
Lagrangian (84) are shown in a) and b) of figure 6, the Feynman rule c) on the same
figure is the one of the interaction between a scalar and the photon. A complete set of
Feynman rules for the MSSM can be found at [15].

Before starting the computation, we must make a little precision. We did not draw
the arrows on the internal scalar and fermion lines on figure 5 for simplicity, but as these
fields are complex, we should have drawn them. We can ask the question of how many
configurations of the vertices in figure 6 lead to the same form of diagram as the left
diagram in figure 5. The first obvious configuration is figure 7. Actually, we can think
of another one, which is the same with the two vertices on the fermion line exchanged.
However, as we must keep the heavy fermion 1); as an internal line, we realise that this
other configuration is exactly the same as the previous one. There is therefore only one
possible configuration, shown in figure 8. Now we can compute compute (D), ?, in the

notation explained in 8. We have:

d'q (2(p —q) — k)", "
2m)* (? —=m?)((p — ) —m)*((p — ¢ — k)? —mf)

("), " = —eQunan, [ (85)
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a> >< = ! (K'lkl_% + Lik%)a ’

k . e 1 1—
) T = —i (K325 + L 52),, 7

¢) >,\/\/ — —eQ(p+ k)

or(p)

Figure 6: Feynman rules entering the diagrams of figure 5. The Feynman rules a) and
b) are the ones associated with the interaction Lagrangian (84), while the Feynman rule
c) is the one between a scalar and a photon. In principle, the diagram c) can change the
type of particle, change of flavour for example. So there can be an extra Kronecker’s 6%
to take this change into account. But we will stay in the simpler case where we omit
these possible changes.

Also, we should really have summed over all indices ¢ and k because they label different
particles and therefore the diagrams involving these particles should be added up. But
this sum will be omitted now and we keep it in mind until the last step, where we will

put it back. We have defined:

1-9° 1+9°] , At 19
I' = |K; 5 + Ly, 5 (V7 qo +mi)(v*q, + my) KikT + LikT( 6a)
= I'{qq, + 2m;T5q, +miTs (86b)
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Figure 7: Configuration of vertices giving a diagram of the same form as the left one in

D.
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Figure 8: When we put arrows on fermion and scalar lines, it turns out that there is only
one configuration of the vertices that give the same form of diagram. The diagram on
the left hand side is called D*, and the one on the right hand side is D’*. In this diagram
and in figure 7, the mass insertions are understood.

With, {vs,7*} = 0 and 72 = 1 we can write:

ap
I

s

Where we have defined As = |Ky,|* + | Li|* + v5(| Kin|* — | Lir|?) and

(87a)
(87D)
(87c)
(87d)

(87e)

(87f)

Zs = Re(Lip K ) +ivsIm( Ly [, ) and we have suppressed the spinors indices « and 3, but
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are trivial to put back in. We can simplify further by using the relation {7,~*} = 2n°?,

so that ¥79°¢,q, = ¢*. Therefore:

U = (¢* +m}) Zs + migs7" As (88)

As we want to apply this model to the case where the internal particles are MSSM
particles, we can assume that the internal lines carry momenta much higher than the
ones carried by external momenta. But at the same time, we want to see how the photon
momentum enters in the calculation. We can therefore make the assumption ¢ > p?, so

that:

Q
=)
V)
~~
09}
)
~—

r—0)’=0@-9"(r— 9.

(p—qg—k?’=@—qg—k'p-—qg—k, = (¢+k)? (90)

So, the expression for D" becomes:

d4q (q2+m2)(2q+k)” d4q q (QQWLk)”
D’H: m; 2 Z [) i/UA o
6kamk[ 5/(2%)4 Y(q, k;my, my,) " 5/(27T)42<q,k§mivmk)
(91)

For convenience of writing, %(q, k;m;, mg) = (¢> — m?)*(¢* — m3)*((q¢ + k)*> — m3) has

been defined. If we look at the last term, we find that it is not of interest to us. Indeed:

d'q  q.(2q + k)" d'q 409"
i 7A =2 i A 2
s / (27T)4 E(% k;my, 7nk) S / (27T>4 2(9’» ks my, mk) (9 )

Because of Lorentz invariance we impose the condition:

d'q o
/ (27T)4 Z(Q7k;miamk> =0 (93)

And the remaining term can be expressed in two different ways:
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d4 " n I d4 2
2m;y7 As / ( q il = mify"Ag,n—" a a (94a)

21)4 S(q, k; g, mi) 2 (2m)* XAq, k; my, my)
ko kH d*q q>
— 2mA°A 4b
MY BT /(QW)4E(Q7k§miymk) (94b)

But in both cases, this term does not have the tensor structure we want to have. So the

expression for D" will become:

d'q (¢* + m7)(2q + k)"

o o 22/ N.IT
eQrmym; Zs (2m)t (g, k;mg, my,) + (95a)
d4q (q2+7n-2)
) i kﬂ/ i N.IT 95b
eQm myzs (27r)4 Z(q, k;;mi,mk) + ( )

Where N.I.T stands for “Non Important Terms”. The second line has been derived with
the use of (93) as we can always define X'(q, k; m;, my) = X(q, k; m;, my) /(¢*+m?). Here
again we can say that we are looking for a term proportional to 75, so we can simply keep

the term iysIm (L K3,) in Z5. We therefore end up with:

dq  (¢*+m3)

DV = ieQrmimiIm( Ly K )5 k" N.I.T
teQrmimzyIm( Ly K} )5 / (20 )3 (g, ke, ) + (96)
Now, using figure 8 we end up with:
dq (¢ +m?)
D" = ieQrmimiIm( Ly K )5 k" L N.I.T 7

From now on, we will drop the N.I.T term. Having a closer look at (27) in momentum
space, i.e. 0,4, — —ik,A,, and using the relation [y*,~"|k, = 2(k” — +*+"k,) which is

easy to show using the Dirac algebra, we realise that:

Lppy = —idpk v A, + idpy" vk, s A, (98)

And so we obtain the Feynman rule of figure 9.
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AV

Figure 9: Other way of writing the Feynman rule associated with this diagram

The analogy between (97) and figure 9 tells that:

dq ¢+ m}
(2m)* (q2 — m?)2(¢* — mP)*((q + k)? — my)

d = ieQpm;miIm( Ly, fk)/ (99)

Now that we have seen how does k* enters the calculation, we can assume ¢* > k",

so that:

d'q ¢ +m
(2m)* (¢ = m)*(¢* — m§)?

d = ieQpm;miIm( Ly, ;‘k)/ (100)

In order to compute the integral in (100), we will use the dimensional regularisation
scheme, i.e. we will promote the 4-dimensional integration to a d-dimensional integration.

We will introduce the mass dimension 1 parameter p and the parameter ¢ = 4 — d:

Also, in order not to be confused with the value of d in 4 dimensions and in d dimensions,
we introduce the notation d¥ for the electric dipole moment d in d dimensions. So,
according to this notation, (100) is in fact the expression for d¥) and according to the

dimensional regularisation scheme we have:

. ddq q2—§—m2
dW dD = jeQuumimiIm(Ly, K / i 102
- A reQutmae Il | it e -y 1)

The two following subsections will expose two different methods to compute d® and d(@.
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3.1.2 First method: Feynman parameters

The first method to compute the integral in (102) makes use of the Feynman param-

eters. The general formula for the Feynman parameters is [16]:

1 ! T T o)
= ... dz, i—1 i '
ASTAS2 . Ao /0 dadiy - 5(;1” ){zi%Ai}Zf&f I1; T(as)

(103)

Applying this formula to (102) and using the property of Gamma functions for integers

I'(n + 1) = n!, we obtain:

d*q (¢* +m?)
27m)7 (g2 — A)S

1
0

Where we have defined A = m? — y(m7 —m}). The usual techniques of integration in a
d-dimensional Minkowski spacetime allow us to compute the integral in (104). We have

[16]:

dlq ¢ idlE-3) 4 )
/(QW)d(qz—A)f’ N 2(471’)gf(5)A (105a)
dlg 1 —iTG-h) g
/(277)(1((]2—A)5 N (471')%P(5)A (105b)

Putting these expressions back into (104), we have:

2miT (5 — %) d
P S SN
dl(4 — %)

‘eQrmymzd d,~ o [ -
J@ — _F‘@»—Ap@ _ _)Jm(LikKik)/ dy (1 —y)y* ’
0

Azt
4(4m)e 2 2

(106)
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In order to compute it, we define:

! om2T(5—9%) .
I = [ dy(1—y)y? Azt =4 2/ A55 107
d /0 y(1—y)y ( T 1) (107a)
om2I(5—4)
= - 2/ 11 107b
With:
d ! w %_4
fo= w0t oo (v 1) (108a)
; -
1 1 w %_5
= -0 o (v ) (1080)
; -

We have introduced the very convenient parameter w = m;/mj;. We first compute this

without worrying about the value of d. In this way we find:

Amd=3(1 — w)~2 4 24w ! 24 1-—w?

I k — 1

“ = d—6)(d—4) i—2 1w ' [d—2)d(1—w) (1092)
43101 — w) 2 4 24 wi? 24 1—ws!

poo Ame Uo7 Twr “ ) (109b)
(d—8)(d—6) d—4 1-w (d—DHd-2)1-w)?

We therefore obtain:

7 4mz_8

“T(d=6)(d—8)(1 —w)?

x[l—QF(E)_g)w <2+w2 1—2al_2r5_g(2+w%_2)w>
ar4—-9%) (@-2)(1-w) d(d—4)I4-3)

(110)
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We can use the property of Gamma functions I'(z + 1) = 2I'(z), which leads to:

4md=8
I;= K
A= 6)(d—8) (1 —w)
(d— 8w 1 f -8 .,
ol R _(d—z)ﬂ—w)(ﬂw T >w> (111)

24 a d—38 4
Taa— 2w (1—““@(1““ )wﬂ

And therefore, inserting this back into (106) we get:

d(d):_M L LPd#P(zl_g)jm(L. K:)
(dn)imz \mi)  (d—6)(d—8) g/
1 (d—8)w
X (= wp 1+ P

(d—2)(d—8) (112

T A== (““T =)

24 a d—38 4
+d(d—2)(1—w)2 (l—uﬂ +m(1—w2 )w)}

@+t o)

At this point, we have to remember that we computed this for only one specie of heavy
fermion and heavy scalar, and according to the remark made immediately after (85), we

simply sum (112) over all possible values for i and k. So:

D= e (L) h #PM - (—Z)ﬁm(K. L)
ik (47()%771% mg (d — 6)<d — 8) 9 ikl
1 (d—8)w

(113)
(d—2)(d-8)

4 -1 BT AR 0 wg_2w
‘<d—2><1—w>(““ LT VT R ))

24 a d—38 4y
Taa— 2w (1 mwr e )wﬂ

We have used the fact that Im(K, L5, ) = —Im (L K,). The expression (113) seems to
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be finite only in d # 2,4, 6,8. But in fact, this is an example that the dimensional regu-
larisation scheme may be misleading. Indeed, we must take this expression for d =4 — €
and look at the divergent pieces as ¢ — 0. And despite its apparences of being divergent
in d = 4, it is likely that some divergent pieces cancel each other, so that only well behave
term remain.

We now compute d¥, we go back to the formula (111) and substitute d = 4 — €, we

get:

[ 4mp (1 — elnmy) 1—4+€w 442w —welnw

T R4+ ol —w)? 4—¢ 2461 —w)

2—2w't+ew'lnw+ (1 +ewhw
(4—€)(2—€)(1 —w)?

(4 + e)w? hw+ 44+ 6w 24 €

(4—¢€)(1—w) (4—€e)(1 —w)(2—¢)e

+12

(114)

We have used the fact that a° = exp(elna) =1+ elna + 0(e?). A divergent piece in 1/e

appears as expected. So the dipole moment in 4 — ¢ dimensions is:

eQrmimy, e (1+elnpu)(l—elogmg)(4—e)

e B ERLL LS LGl Yy s gy ey o s

4+4+¢€ 2
1 - 44 2w — wel
X 4_€w+(2+€)<1_w)( + 2w — welnw)

12
2 — 2w + ew’1 1 ’1
+(4_6)(2_6)(1_w)2( w? + ew’Inw+ (14 €)w’nw)

N (4 + €)w? w4 44+ew 2+ €

(4—¢€)(1 —w) (4—e)(1 —w)(2—¢)e

(115)

By expanding this to the first order in €, and taking the limit e — 0, we get:
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; 1
lim d#9 = ¥ = M’j Ky Li)————
P ZZ(47T)277L2 m{ K L) (1—w)?

’

x{1_w+3(1+”)+ ! <1+2(3—w2w))1nw (116)

l1—w 1l—w 1-—

1 A 2
+—<ln L +—w>}
1—w my €

Where we have restored the sum over all possible ¢ and k£ according to the remark done

after (85). The last term in 1/e was expected from (113). Despite its apparences, this
term is not worrying. We did not consider all the diagrams having contributions to d®.
If we did so, it is very likely that other diagrams would bring similar divergent pieces
that would cancel that one. Thus, the final result would naturally be finite. But this
term was also expected for another reason. We did consider the bare parameters of the
Lagrangian, which are not physical. The physical parameters are the renormalised ones.
So, if we want to remove this divergences from (116), we could use a renormalisation
scheme. According to the the form of the divergent piece, we may use the M.S scheme.
Thus, we may add couterterms in the Lagrangian in such way that they cancel this term.
At the same time, the M S scheme would also help in removing the abritray parameter
L.

For comparison, we can compare this result, (116), to the one found by Tarek Ibrahim
and Pran Nath in [14] shown in (117). We see that, although the actual expressions are
not the same, they have very similar structures. This again can be justified. In [14],
Tarek Ibrahim and Pran Nath displayed the the full expression for d, (118), taking into
account the two kind of diagrams of figure 5. Here the same remark can again be made,
that the other diagram may have terms such that, when added to this diagram, (117) are

the terms that remain.

eQrm;
drp = E ————TJm(K; L
TP 2(471')27”/]% Jm( k Zk‘)

1 2

The full expression for d that Tarek Ibrahim and Pran Nath found is:
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em; . 1 2 2w
(118)

3.1.3 Second method: partial fraction expansion

The second method to compute (102) uses the partial fraction expansion. The partial
fraction expansion consists in reducing uniquely a rational function into a sum of fractions

as follows. Consider a function f(z) of the form:

h(x)
(x —a))M(z —az) - (x — a,)

f(z) = (119)

Where h(zx) is any function of x. f(z) has a pole of order ay at © = a4, a pole of order

Qs at T = ag, etc. We can actually write f(z) as:

o All A12 Aloq AQl Anan
f(z) _A0+:c—a1 + CETNE ++ ) + p— 4o+ e (120)

The integral we must compute is the one in (102). In order for that, we will first look for

an expansion in fractions of a function of the form:

x+c Ay A B, By B3

f(m):(x—a)Q(a:—b)3:A0+x—a+(x—a)2+a:—b+(x—b)2+(x—b)3 (121)

In the case we want to apply this to, we have z = ¢*, a = m7, b= m and ¢ = a = m?.

We can use the following techniques to find the constants A’s and B’s:

(z— a)zf(m)lx:a = A= m (122a)
3 . . b+e¢
(x—a)fz)] _, = Bs= CEE (122b)
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And:

lim f(z) =0=4 = Ay=0 (123a)
lim(z—a)f(2)=0=4A4+8B, = A =-B (123b)
S0:
r+c 4 1 B 1 n B n a+c n b+c
(z—aP@—bp “\z—a z-0b (x =02 (a—=bP(x—a)? (a—0b2(x—0b)3

(124)
We can now simply put everything on the same denominator, and identify the coefficients

3. 2%, x and the remaining constants on the right and left hand side.

of the terms in z
Thus, identifying the coefficients of the terms in 2% and 2% leads to the following system

of equations:

0 = Al(a—b)+32+ﬁ (125a)
0 — Ay(a—b)(a+2)+ Bo(2a+b)— LEAa=b =3blate) o0,

(a —b)?

Note that any other identification would have led to the same result as the expansion is
unique. Also, we could have written 4 different equations, but as we are looking for only
two unknown constants there would have been 2 redundant equations. The solutions of

this system are:

2a +b+ 3¢
A = =TT 12
! (a— b (1262)
a+b+2c
B, = ——— 12
? (a —b)? (126b)

The function f(z) can therefore be written equivalently as:
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- T4e C2a+b43c/ 1 1
0= G et ()

12
N 1 a+c +a+b+20 n b+c 1 (127)
(a—b)* \ (z — a)? (x —b)? (a —b)? (z —b)?
If we define:
d'q ¢ +m;
T, = / 2 (128
= | oA @ = iR =y )

The application of the formula (127) to (128) gives:

I 1 /[ dq | Sw+1 1 1
4= mi(w—1)2) 2m)d|mi(w—1)2 \¢—mi ¢>—m?

P (( wtl 2“’2)2) (129)

mi(w—1) \(¢> —=mi)* (¢ —m;
w+1
(g* —mi)?
Here again, we can use the formula [16]:
d? 1 ~1)%iT(n— 4
[t = ST D e (130)
@m)?(¢® = A (4r):  T(n)

And we obtain:

(fw+ 1)I(1 — %)
mip(w — 1)?

re -9

N 27
mi(w — 1)

rE3-—4¢
_IB-3) 5 2)(w +1)m¢ S

Lo =

: (mi=> — m)

(4m)rmi(w — 1)?

(2wm?™* + (3w + )m{ ™) (131)
By factorising by powers of my, we can make w appear in such way that:
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imi® d. (5w + 1) (w1t —1)

ST Tl L iy e .
(2 — g)l +°"(jff“’§_ ) _ %r(g - g)(w 1)

Going back to (102) and summing over 7 and k gives another expression for d in d

dimensions:

@ N Qe (T 1
R B e () Imatio gy
{F(l - g) (5w +(i)<_wi); —, (133)
re-HIEECERE ) trg - G+ 1>}

We now turn to the special case of 4 dimensions, d = 4. As we did in 3.1.2, we set in

(133) d = 4 — € and make € go to 0. Setting d = 4 — €, we get:

a—ey  eQemy . 1 €. 4mu?

(4m)>m3 2 mi

X {F (% — 1) (icjjll — 2?5j11)25111w> (134)
+T (%) (i)tulj - wci 1elnw) - %F (1 + %) (w+ 1)}

We can use the formula for the Gamma functions:

. Ry
r(—z+§):(ul)

2 1
(g + Z; -+ 0(6)) (135)

Where v ~ 0.577216 is the Fuler-Mascheroni constant and { > 0. If [ = 0 then the sum
over p in (135) reduces to 1. So by expanding the Gamma functions, and keeping only

the terms to the first order and taking the limit ¢ — 0, we find:
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~ 1
lim d0-9 = ¢ = S EOM e L)
P ZQ(ZM)?mZ m{ K L) (w—1)?

’

22w+ 6 2 w—4
11— - 1+ 205" ) In
{ wt——- w—l( + ww_l) nw (136)
1 /2 A p?
+43w+ 2 _w(5+w)1n 7r,c24
1-w (w—=1)2 " mg

Here again, the formula is quite similar to (116) and (117). Particularly, we clearly
notice the same pole at € = 0, which as we discussed in section 3.1.2 can be naturally

removed.

3.1.4 Comments on the results

In the above section, we have computed the electric dipole moment in d and 4 dimen-
sions, using a general model of a fermion, interacting with two heavy fields, one fermion
and one scalar. These results can, in principle, be applied to any model as no restric-
tions, other than CP-violating, have been put on the interactions. In fact, we could also
perform the same study in the case even more general, where fields are considered neither
light nor heavy. This assumption has been made during the calculation, but we could
have found a result without it. We have used two methods to compute the electric dipole
moment, one using the techniques of the Feynman parameters and the other using partial

function expansions. The method with Feynman parameters led to:

; 1
PONER S LIS Ky L) ———
2 s(a R T

(1+w) 1 3w?
1 - 1 1
x{ w+31_w +1_w +2< ) nw (137)

1 A 2
+ (m L +—w>}
1—w my €

And the partial function expansion techniques led to:

44



22 6 2 —4
{—l—w%— wro <1+2w5—_1)1nw (138)

3w+1 /(2 wbh+w), 4rp?
— 1
PSR

The first thing that we notice is that they seem different while they are the same quantity
d™®. In spite of the fact that this seems worrying, what is more important is the behavior
of these according to the dimensionful parameters. Indeed, the parameters w is given by
m?/m?, and so is a dimensionless parameters, thus non measurable. What is in fact more
worth is the prefactors.

The first important parameters are the masses m; and my, which are characteristic
energy scales. In terms of the masses, the prefactor goes as 1/Monaracteristic- Lhis is a
very important observation, because it does tell a lot about the theory itself. d@ is
experimentally measurable and measured, thus the order of magnitude of it gives a range
of order of magnitudes for the characteristic energy scale of the theory.

The second important parameter in the prefactor, is the imaginary part of the coupling
matrices L and K. We see that if the product of the matrices is real valued, then the
electric dipole moment vanishes. So, similarly to the masses, this parameter is measurable
through d®. But, unlike the case of the masses, this imaginary part will give more precise
informations on the theory, e.g. which couplings are complex, which ones are not, etc.

The minimal supersymmetric standard model is a direct and very important example
of such models. Indeed, the MSSM contains interactions as the one that has just been
described, the MSSM therefore predicts EDMs of particles. The MSSM is our best hope
for an extension of the standard model, but it is not yet complete in the sense that there
are still many free parameters, more than one hundred. One of the most sensitive electric
dipole moment is the one of the neutron. The prediction of the MSSM to it involves
many parameters, many phases, many couplings which are not precisely known. The

experiments, hopefully, will help us in determining the value, or at least the range, of
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Figure 10: Full diagrams giving the EDM of the external fermion. The indices ¢ and
k represent the type of particle, in the same notation as section 3.1. Here again, the
convention for the particles “¢ and “k” are the same as stated in figure 5.

each of these so that the theory will be complete, as is the SM.

3.2 EDM of the neutron

Here we will review the results of the literature, we will mainly use [14] and [18]. The
SU(6) quark model is a model of nonrelativistic quarks in 4 dimensions. It states that in
this limit, the electric dipole moment of the neutron d can simply be related to the ones

of the up and down quarks, respectively noted d, and d; with charges ¢, and ¢4, by:

1

The calculation of d becomes the calculation of d,, and d;. We can use this model as we
are not interested in the dynamics of the particles. Considering the general Lagrangian of

(84) and the diagrams of figure 10, Tarek Ibrahim and Pran Nath [14] have the following

results:
d= Z _O 3m(KikL”-‘k); Qil3—w+ 2 hw|+Qr|14+w+ 2w Inw
— (4m)*mj; 21— w)? 1—w 1—w

(140)

The part proportional to ); comes from the diagrams where the photon line is con-
nected to the fermion line labeled 7, and the part proportional to )y comes from the other
diagram in figure 10. The computation of d will consist in computing the contributions to
d, and dy from the chargino, neutralino and gluino by applying the formula (10). Since

the gluino and neutralino are neutral particles, when the quark interacts with these fields
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we can use a generic field g. However, we will have to explicitly deal with two different
fields v and d when they interact with the chargino.

The Lagrangian encoding the quark-squark-gluino interaction is:

— V5. . — 149 .
Loz =Y V29 Z Z (qﬁ —5 Gl — @ ﬁTSgaqﬁ) +He (141)

g=u,d 3,k=1 a=1

Where g, is the strong interaction coupling. The index a labels the eight gluino colours,
the indices j, k label the three quark and squark colours and ¢ is either the up or down
quark. Usually, one prefers dealing with mass eigenstates of fields instead of left-right
handed “basis”. This operation is done in the annexe. The generators T are the Gell-
Mann matrices A%, so taking this into acccount and inserting the mass eigenstate fields

in the Lagrangian, via the formula (172), we have:

3 8 2
— V5 . a T+, .
Logg = Z Z ZZ (qj \/_gs ngq21> 5 Jali — ¢ (ﬁgsAjquu) 5 gaQZk)

g=u,d j,k=1 a=1 [=1
+ H.c
(142)

Finally, as the Gell-Mann matrices are essentially A = +1, £, we see that the Lagrangian

(142) is of the same form as (84). The result is then:

: _eg 2Q; mg 2w
dotuine — 75 <4 —2Im(DgD}yy) | 1 1 143
q 67T2 ; 7nq, m( q2l qll) +w+ 1—w nw ( )

With, w = mZ/mZ and e > 0 is the electric charge. Using the equations from (169) to

(176), one gets:
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(_1)l+1

Im(DyuDly) = 5 sin ¢, sin 6, (144a)
— ﬁ(movlu] sin oy, + || siné,, cot 3) (144b)

(—1)-!
m(DyyDyy) = 5 sin ¢4 sin 6, (144c)
= ﬁ(molAd! sin g + |p]sind, tan ) (144d)

The Lagrangian encoding the chargino-quark-squark interaction is:

ﬁqtp\ = —gﬁ;x

1 L1 - -
275d—gdp0 ;%u—gﬂLd - gdim— 22X (145)

By changing these states to the mass eigenstates, i.e. diagonalising the mass matrix, one

finds the contributions from the chargino to the up- and down-type quark EDMs as:

dehargi em’” Vi Dang (U7, D U% Do)
chargino _ i 5 Y ¥ L * .
u Z;I 1672 sin2 gwm& mi KuVio ik ( aake — BaViplldok
' (146)
2w 2
X | Qg 1+w+1_wlnw +(Qu — Q) 3—w—|—1_wlnw
Where w = mil+ /m?% . And, similarly:
chargino eJmX T *
dy = 16 . (Hd‘/;QDUUC(Uleulk “uUiQDu2k*))
= w2 sin? Oy 7}’L~k
(147)

1+w+

2w lnw)—i—(@d—Qa)(B—er 2 lnw)}
—w l—-w

I—I
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Where, according to (166) and (167), we have defined:

py = (148a)

\/5]\{;1/ sin/B - g
my &

S 148b
V2My cosfB g ( )

The Lagrangian of the neutralino-quark-squark interaction is [18]:

11 .- g3 + %’XO g —iXa) | 145
— (uT d
Ly 5

1=
[’q@\A = \/5 _ — — —
g(>\1 + Z)\Q) —g)\g + %)\0

2

+g'5un¢j§%Xo qr +H.C

d
(149)

The parameter §, such that ¢, = —2 and §; = 1 has been introduced and @, = 2/3 is

the charge of the up-quark. One has:

2 4 3

‘ € qu -0 o
dneutralmo _ ’ % - ) 1
' kz:; ; 1672 sin? Qng_k (Mqit) +w+ —

In w) (150)

Where 73,4 = 1/2,—1/2. Also:

Ngire =(V2 tan 0w Qy X1 Dyor, — KX Dgar)
(151)
|: - \/ﬁ(tan ew<Qq — TSq)Xli + T3qX2i>D;1k + '%quiDZQk

The matrix X is the matrix diagonalising the neutralino mass matrix, as in the annexe.
In the case of the up-quark b = 4 and b = 3 in the case of the down-quark.
The full quark EDM is then given by:

dq — dgluino + d;hargino + d;zeutralino (152)

And finally, in order to obtain the full neutron EDM from the contributions of the gluino,

the chargino and the neutralino, one has to insert (152) into (139).
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Conclusion

In this dissertation, we have first reviewed the calculation of the electric dipole moment
of the neutron in QQCD. The #-parameter enters the calculation and gives a contribution
to the EDM. However, due to the fact that this parameter is known to be very small,
the electric dipole moment of the neutron computed in QCD is too small compared to
what the experiments measure. The minimal supersymmetric standard model, smallest
theory beyond the SM, is greatly hoped to resolve this and to predict the right amount
of EDM, because it contains many new CP-violating phases that are likely to contribute
to this observable.

We then derived expressions for the electric dipole moment of a fermion in a generic
theory containing CP-violating interactions. The calculation showed that the EDM goes
as 1/ M paracteristic, Which is the inverse of the characteristic energy scale in the theory. In
addition, it turned out that the phases of the CP-violating terms of the Lagrangian also
enter the calculation. The experiments of the electric dipole moments can therefore be
used as a probe of the theory. Not only, the experimental value would allow to estimate
M haracteristic, but it would put constraints on the possible values of parameters that enter
the calculation in the theory.

As a concrete application, we reviewed the calculation of the EDM of the neutron using
the MSSM. The parameters that come in are the masses of the gluinos, the squarks, the
gauginos and the higgsinos, and the phases of the Higgs mass term and of the Yukawa
couplings. So, as expected, we can estimate important quantities of the theory. In fact,
as the electric dipole moment seems to be small, of the order of 107'%¢ - em, Mgy gy is
expected to be large. Actually, the lightest supersymmetric particle is expected to be
seen at the LHC, which reach energies in the range of 10 TeV. So, if we can set the
MSSM parameters so that they agree with experiments, that would be a strong hint and

probe for physics beyond the standard model.
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Appendix A: Brief review of the MSSM

The aim of the annexes A and B is not to give a detailed review of the MSSM,
but simply to set the notations. For a comprehensive review of SUSY and the MSSM
phenomenology refer to [18], [17] and for a full set of Feynman rules in the MSSM go to
[15].

The gauge group of the MSSM is the same as the one of the SM, i.e.

SU(3) x SU(2) x U(1)y. The standard model matter fields are promoted to supermutli-
plets. The SM fermion fields become chiral scalar superfields. In the case of the quarks

fields, we have:

Uir, A U
- Q=] (153a)

diL dz
wrg — U (153b)

Where ¢ = 1,2, 3 labels the three generations, from now on we will refer to the quark

fields u; and d; simply under the name ¢;. Each field ¢;, QZ is in fact a supermultiplet:

G = dip +iV20q;;, +i00F,, (154a)
Gir = G5+ iV20qp+i00F, (154b)

The 8’s are the Grassmann variables, coordinates in superspace. The fields ¢; are scalar
fields, named sfermions for scalar-fermions. These are the scalar superpartners of the
fermion fields ¢; and have the same gauge group charges as their partner fields of the SM.
The subscript L, R on scalar fields refer to the chirality of their superpartner fields. The
term F is the so-called auxiliary F field. This auxiliary field does not have any dynamics,

i.e. no kinetic terms, it is needed in order to have as many degrees of freedom on-shell
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as off-shell.
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The gauge boson fields are promoted to gauge superfields as follows:

BM - E = ()‘07 BM? D]) (1553)
Wi, — W=\, Wi, Dwj) (155b)
Gk~ Gk = (Gk> Grps D) (155¢)

With 7 = 1,2,3 labels the three SU(2) gauge fields and £ = 1,...,8 labels the eight
SU(3) gauge fields. The field Xg is the bino, superpartner of the U(1)y gauge field B,,.
The A; are the winos, superpartners of the SU(2) gauge fields W;,. The fields g are the
gluino fields, superpartner of of the gluon fields Gy,. The fields D are the so-called D
auxiliary fields, auxiliary fields of the gauge fields, as F, they do not have any dynamics.
The Lagrangian of a SUSY theory is entirely specified by the superpotential W. Indeed,

one can show that the full Lagrangian for chiral superfields can be written as:

2

N~ ow
Lsusy = _(0,60)'(0"6)) + % R e laT%-

o= (156)

1—15
——zj U0+ Hee
-~ a«m% iy 2

Where the indices 7, j span all the particles of the theory, ¢; are the scalar fields of the
theory and ; are the fermion fields. The equality gzg = ¢ means equating the superfield
to its scalar component in the end. In terms of the superfields, the superpotential of the

MSSM is:

2 3 2
V=p HH, z:2:(hwaW{U+UwM2HMD+@%¢%%E)(wﬂ
a=1 : b:

The superfields L; and E; are the superfields of the electron left-handed doublet and

right-handed singlet under SU(2) respectively, they are built in a similar way to those of
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the quarks. The indices a, b are the SU(2) indices and i, j are the generation indices, and
€qp 1s the totally antisymmetric tensor defined by €;5 = 1. The two superfields I:Iu and I:Id
are the two Higgs superfields of the MSSM. As shown in (158), the usual Higgs field of
the SM is promoted to the superfield H,, while the other Higgs superfield is introduced
in order to give masses to the down-type quarks, which cannot be done with only the
up-type Higgs superfield. Actually, it turns out that the latter field is very convenient
to cancel anomalies which are otherwise present. Finally, the matrices f,, f; and f, are

Yukawa-like matrices. The term proportional to p is the so-called p term of the MSSM.

ot A bt

¢ = » — H,= i:; (158a)
. hy

Hy=1| (158b)
hq

We could also write down additional terms in the superpotential that violate lepton
number conservation. Although these are not allowed in the standard model because of
gauge invariance, these are perfectly correct in the MSSM. As we are not here interested
in lepton number violating processes, we will assume the R-parity symmetry, so that
such terms are forbidden. As we know that supersymmetry is broken, we also introduce
soft SUSY breaking terms. These are called soft breaking terms because they do not
introduce ultraviolet divergences. These terms consist in the scalar masses, the gaugino
masses, and linear, bilinear and trilinear scalar self-interactions. A general soft SUSY

breaking Lagangian is written as follows:

Lsost = (Z Cii + Z Bijpijdip; + Z Aijk fijr0ididr + H-C)
; o ik

(159)
1 _ P
- E qblfm?j% 3 E (MAG/\AG/\AQ - §MAQ/\Aaq/5/\AQ)

.Z',j

A,

The last term is CP-violating, its form is similar to the additional term in the QCD
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Lagrangian after a chiral transformation of the #-term in (67). And in a similar way, we
can remove it from the Lagrangian by a chiral transformation of the gaugino fields. Thus,

a CP-violating phase enters the gaugino mass matrix. In terms of the fields, (159) gives:

Esoft = - (Q‘Tm%@ + qvj%"n?jRQR

+ Lim3L + éymipen + Y mi, |Hq|2)

q=u,d

_ %(MJOAO M, ZXAAA + M Z§A§A)
_ (M Nosho + M, Z N5 + MszgmsgA) (160)

i
2
( €aanH uR + (ad)Q?a];Idaaff + (ae)LaHdaeR + H. C)
- ((eewQ il + ()@ il + () E iy + )

+ (bH'ZHda + HC)

The sum over a, b indices is implicit in the above equation. The next to last line is allowed
only in theories with no singlet gauge bosons, which is the case of the MSSM. Combining
(156) and (160) leads to the full MSSM Lagrangian. The term proportional to b in the
Higgs sector can be moved to the y term by a redefinition of the Higgs field. By a field
redefinition we can also remove the terms proportional to the ¢ matrices. In the end, the
MSSM has 124 free parameters, for comparison the SM has 19 free parameters.

As in the SM, in order to give mass to the particles, the ordinary ones and the
superpartners, one must break the electroweak symmetry. The mechanism responsible
for this is more complicated than the breaking of the EW symmetry in the SM due to the
introduction of the second Higgs field. This mechanism is referred as the double Higgs
mechanism. In order to break the electroweak symmetry, we use the following scalar

potential:

Vissm = Vi + Vb + Vo (161)
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With:

2

o
0

Ve = Y

i

(162a)

=0

2
Vb = %ZA: (Z @b;(QAtAQbi) (162b)

Vot = Zm;iiqﬁf — Bu(HyH, + H.c) + (a — terms) (162¢)

The t4 are the generators of the gauge group the scalar fields ¢; belong to and g4 are the
associated coupling constants. Before turning to the search for the particle masses, one
has to minimize the scalar potential (161) considering only neutral fields. So we have to

minimize the Lagrangian:

V= (o, 4 )P+ (o, + L) B — Bia(hhy+ He) + (6 + o) (A — 3P

(163)
Where, as pointed out after (162), g and ¢’ are respectively the SU(2) and U(1)y coupling
constants, as in the SM. The minimalisation of this scalar potential involves the following

quantities:

tanff = u (164a)
Vd
m? +m3 + 2p*)sin2
By = (i, Hd2 i) sin 25 (164Db)
2 2 2 2
) my, —my tan® 3 M3
= e L (161c)

With (h) = v, (hY) = v, and v* = 02 + v2.
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Annexe B: Particle masses in the MSSM

With the same techniques as in the SM, we can get the gauge bosons masses:

2
M2 o= L2 (165a)
2
2 2
Mz =9 ;g v? (165b)
MW = MZcOSHW (1650)

And we recover the weak mixing angle tan 6y, = ¢’/g. The masses of the fermions which
couple to Hy, e.g. the down quark and the electron, in the superpotential will have

masses:

_ \/iMsz COSﬁ (166)

m;

And for the ones coupling to H,, as the up-quark, we will have:

2Mw fi .
m; = M sin 3 (167)
g

The gluino does not couple to any fermion field in such way to give contributions to its

mass term. As a consequence, the field g is already a mass eigenstate and its mass is:

mg = | Ms| (168)
The mass matrices of the up- and down-types squaks are:
2 mgL +m?2 + M3 (% — @, sin? HW) cos 23 my(Almg — pcot 3)

my(Aymg — p* cot 3) mZ. +m2 + MZQ,sin® Oy cos 23
(169)
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Similarly:

e mZ, +mg+ M7 (—3 — Qqsin® Oy ) cos 20 ma(A%mo — ptan 3)
(i el
ma(Agmo — p* tan 3) m2~R +m3+ M2Qq sin® Oy cos 23

d
(170)
In order to explain the notations here, we have to go back to (160). To reduce the
number of parameters, we can assume that the matrices a, 4 are proportional to the
Yukawa matrices f, 4 of the SM, i.e. a, = A, f, and a; = A;fs. Thus, the matrices a,, 4

can be parametrized as:

gmging
Q@ = —— 171a
a V2My cos B ¢ ( )
a, = _ MM 4 (171b)

- \/§MW sin 3 b

The MSSM with two Higgs doublets, has the nice feature that at the Grand Unified The-
ory energy scale Mqyr, the coupling constants of the gauge group SU(3) x SU(2) x U(1)y
are all equal. The mass parameter mg is the universal scalar mass, i.e. the mass of the
scalars at the GUT scale. Using the renormalisation group flows we can relate the pa-
rameters at the GUT scale to the parameters at the electroweak scale. A comprehensive
derivation of the renormalisation group flows in the MSSM can be found at [19].

The mass matrices (169) and (170) are diagonalised with a matrix D, such that:

= D, (172a)

(172b)
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Where:

0 By
coszt  —sinte i$q
D, = (173)
sin % gita cos 2
2 2

In the above ¢ = u,d. The phase ¢, is defined to be the phase of the off-diagonal terms

in the mass matrices (169) and (170). Also for convenience of writing, we will write the

M2 . M2

mass matrices as Mg = ( P ) It is now straight forward to find that:
G21 Moo

[

2

2M7, = ]\/jgn + M§22 + ((]\/[c?u - ]V[§22)2 + 41]\/[@‘2112> (174a)

q

2]\/[52 = Mc?QH + qu?22 - ((]\/[q?n - M<7222)2 + 4]MQQ1]2) ’ (174b)

We chose that M3, > Mz, when MZ, > MZ,,. The angles ¢, and 6, are defined as:

2| M2, | 2my, | Aymg — p* cot 3]
tan 6, well  _— — vt (175a)
Mgy — M, My — M,
. 2muIAumO B ,u* cot 6\
sinf, = =+ 2, — A3, (175b)
2|M? 2mg|Agmy — p* tan 3
tanfy; = e _42}\142 = d ]\;2 0_ J\l/;z | (175¢)
di1 d22 d11 d22
. 2mgy| Agme — p* tan |
sinf; = =+ YEYEY (175d)
d1 a2
The + sign is attributed when Mg, > MZ,. And:
_ mo| Ayl sinay, + || siné,, cot 3
. 176
e [moAy — p* cot (1768)
in d mo|Ag| sin aq + || sin @, tan 4 (176D)

[moAy — p* tan 3|

The angles a4 are the phases of A, ¢ and the angle 8, is the phase of the y parameter.
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The neutralino mass matrix is:

/Iﬁhg
Lyeutratino masses = —%@hgvEhgax;%axo)Mgeutmzmo Qih(d)' (177a)
3
e
(0w mof)
Mot = | o % v (177b)
S IR R

The fields whg , are the up- and down-type neutral Higgsinos. The neutralino mass matrix

is diagonalised by an unitary matrix X as follows:

(me 0 0 0)

0 mo 0 0
XTM;feutraZinoX = - (178)
0 0 my O
\ 0 0 0 my

The diagonalisation of the neutralino quark matrix, hence the computation of its eingen-
values, is usually done numerically, we will not go into more details.

The chargino mass matrix is:

<= 5 1+ L=y A
LchaTgino masses _()‘7 X) (M;zargifon + (MCQhargmo>T 9 - _ (1793“)
X
My, —gv
Mthargmo = i ‘ (179b)
—GUy —H
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The fields A and x are not the mass eigenstates yet. In this case here, the fields A and

X are:

A 2
A = ALt A2 (180a)
V2
- 1 1-—
Xo= By -y, (180b)

The full matrix can be diagonalised using two unitary matrices conventionally called U

and V. These matrices are such that:

1 //\ 1 W,
% _ gt |t (181a)
2 ~ 2 -
\X X2
1— /A L—vs [ X
- - v—=21" (181b)
X X2
Then:
£cha7’gmo masses — _(Xla XQ) (VTMCth“ginoU 275 + UT(MCQhaTginO)TV 2 5) _
X2
(182)

In order to write this, we must not forget that the hermitian conjugated of a left-handed
field is a right handed, and vice versa. Surely we can define the matrices U and V in

such way that:

(m~ 0
VTMCQhargmoU = . (1838'>
\ 0 mg
b T (mil 0
U (Mclzargi1zo) Vo= (183b)
\ 0  mg,
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It is now obvious that:

2
mi 0
tar2 2 Ty,s _ 75t 2 Tar2 _ X1
V Mchargmo(Mcharghw) V=U (Mchargino) MchargmoU —
0 m3,

It is straight forward to find the eigenvalues mg, , of M3, . ino(Margine) ' :

1 1
m?ﬁ = 5([,11{2 + M5 + 2M§/)+§ (|ul* — M3)? + 4M3 (M7, cos® 28 + |pl?

b=

+ M3 — 2| | My cos 8, sin 23)

And similarly:

(lpaf* = MZ)? + AM, (M cos® 26 + |l

NO|

1
m3, = (Il + M+ 2My,)—

[V

+ M3 — 2|u| M, cos 8, sin 23)

Actually, from equation (184), one can also get the expression for U and V:

v cosd  —sin@eion
sin L cos &
With:
tan 0 2v/2 My (M2 cos? B + |u|?sin? 3 + |u| My sin 23 cos Gu)%
anf); = ‘ ‘
! M3 — |p]? — 2ME, cos 28
ban g, — ] sin @, sin 3 .
My cos B + |p] cos B, sin 3
And
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(184)

(185)

(186)

(187)

(188a)

(188h)



cos 2  —sin Le2
U= (189)
sin %26“1’2 cos %2

With:

tanf, — 2v/2 My (M2 sin? 8 + |u|? cos? 52+ || My sin 28 cos 0),)2 (190)
My — |p)? + 2MG, cos 23

—|p]sin ), cos 3
t = 190b
atl g My sin 8 + |pu] cos 6, cos 3 (190b)
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