Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Correia S, Bridges R, Wegner F, Venturini C, Palser A, Middeldorp JM, Cohen JI, Lorenzetti MA, Bassano I, White RE, Kellam P, Breuer J, Farrell PJet al., 2018,

    Sequence variation of Epstein-Barr virus: viral types, geography, codon usage and diseases

    , Journal of Virology, Vol: 92, ISSN: 1098-5514

    138 new Epstein-Barr virus (EBV) genome sequences have been determined. 125 of these and 116 from previous reports were combined to produce a multiple sequence alignment of 241 EBV genomes, which we have used to analyze variation within the viral genome. The type 1/type2 classification of EBV remains the major form of variation and is defined mostly by EBNA2 and EBNA3, but the type 2 SNPs at the EBNA3 locus extend into the adjacent gp350 and gp42 genes, whose products mediate infection of B cells by EBV. A small insertion within the BART miRNA region of the genome was present in 21 EBV strains. EBV from saliva of USA patients with chronic active EBV infection aligned with the wild type EBV genome, with no evidence of WZhet rearrangements. The V3 polymorphism in the Zp promoter for BZLF1 was found to be frequent in nasopharyngeal carcinoma cases both from Hong Kong and Indonesia. Codon usage was found to differ between latent and lytic cycle EBV genes and the main forms of variation of the EBNA1 protein have been identified.IMPORTANCE Epstein-Barr virus causes most cases of infectious mononucleosis and post-transplant lymphoproliferative disease. It contributes to several types of cancer including Hodgkin's lymphoma, Burkitt's lymphoma, diffuse large B cell lymphoma, nasopharyngeal carcinoma and gastric carcinoma. EBV genome variation is important because some of the diseases associated with EBV have very different incidences in different populations and geographic regions - differences in the EBV genome might contribute to these diseases. Some specific EBV genome alterations that appear to be significant in EBV associated cancers are already known and current efforts to make an EBV vaccine and antiviral drugs should also take account of sequence differences in the proteins used as targets.

  • Journal article
    Bristol J, Djavadian R, Albright E, Coleman C, Ohashi M, Hayes M, Romero-Masters J, Barlow E, Farrell PJ, Rochford R, Kalejta R, Johannsen E, Kenney Set al., 2018,

    A cancer-associated Epstein-Barr virus BZLF1 promoter variant enhances lytic infection

    , PLoS Pathogens, Vol: 14, ISSN: 1553-7366

    Latent Epstein-Barr virus (EBV) infection contributes to both B-cell and epithelial-cell malignancies. However, whether lytic EBV infection also contributes to tumors is unclear, although the association between malaria infection and Burkitt lymphomas (BLs) may involve excessive lytic EBV replication. A particular variant of the viral promoter (Zp) that controls lytic EBV reactivation is over-represented, relative to its frequency in non-malignant tissue, in EBV-positive nasopharyngeal carcinomas and AIDS-related lymphomas. To date, no functional differences between the prototype Zp (Zp-P) and the cancer-associated variant (Zp-V3) have been identified. Here we show that a single nucleotide difference between the Zp-V3 and Zp-P promoters creates a binding site for the cellular transcription factor, NFATc1, in the Zp-V3 (but not Zp-P) variant, and greatly enhances Zp activity and lytic viral reactivation in response to NFATc1-inducing stimuli such as B-cell receptor activation and ionomycin. Furthermore, we demonstrate that restoring this NFATc1-motif to the Zp-P variant in the context of the intact EBV B95.8 strain genome greatly enhances lytic viral reactivation in response to the NFATc1-activating agent, ionomycin, and this effect is blocked by the NFAT inhibitory agent, cyclosporine, as well as NFATc1 siRNA. We also show that the Zp-V3 variant is over-represented in EBV-positive BLs and gastric cancers, and in EBV-transformed B-cell lines derived from EBV-infected breast milk of Kenyan mothers that had malaria during pregnancy. These results demonstrate that the Zp-V3 enhances EBV lytic reactivation to physiologically-relevant stimuli, and suggest that increased lytic infection may contribute to the increased prevalence of this variant in EBV-associated malignancies.

  • Journal article
    Teo CSH, O'Hare P, 2018,

    A bimodal switch in global protein translation coupled to eIF4H relocalisation during advancing cell-cell transmission of herpes simplex virus

    , PLoS Pathogens, Vol: 14, ISSN: 1553-7366

    We used the bioorthogonal protein precursor, homopropargylglycine (HPG) and chemical ligation to fluorescent capture agents, to define spatiotemporal regulation of global translation during herpes simplex virus (HSV) cell-to-cell spread at single cell resolution. Translational activity was spatially stratified during advancing infection, with distal uninfected cells showing normal levels of translation, surrounding zones at the earliest stages of infection with profound global shutoff. These cells further surround previously infected cells with restored translation close to levels in uninfected cells, reflecting a very early biphasic switch in translational control. While this process was dependent on the virion host shutoff (vhs) function, in certain cell types we also observed temporally altered efficiency of shutoff whereby during early transmission, naïve cells initially exhibited resistance to shutoff but as infection advanced, naïve target cells succumbed to more extensive translational suppression. This may reflect spatiotemporal variation in the balance of oscillating suppression-recovery phases. Our results also strongly indicate that a single particle of HSV-2, can promote pronounced global shutoff. We also demonstrate that the vhs interacting factor, eIF4H, an RNA helicase accessory factor, switches from cytoplasmic to nuclear localisation precisely correlating with the initial shutdown of translation. However translational recovery occurs despite sustained eIF4H nuclear accumulation, indicating a qualitative change in the translational apparatus before and after suppression. Modelling simulations of high multiplicity infection reveal limitations in assessing translational activity due to sampling frequency in population studies and how analysis at the single cell level overcomes such limitations. The work reveals new insight and a revised model of translational manipulation during advancing infection which has important implications both mechan

  • Journal article
    Ortega-Prieto AM, Skelton JK, Wai SN, Large E, Lussignol M, Vizcay-Barrena G, Hughes D, Fleck R, Thursz M, Catanese MT, Dorner Met al., 2018,

    3D microfluidic liver cultures as physiological preclinical tool for hepatitis B virus infection

    , Nature Communications, Vol: 9, ISSN: 2041-1723

    With more than 240 million people infected, hepatitis B virus (HBV) is a major health concern. The inability to mimic the complexity of the liver using cell line and regular primary human hepatocyte (PHH) cultures pose significant limitations for studying host/pathogen interactions. Here, we describe a 3D-microfluidic PHH system permissive to HBV infection, which can be maintained for at least 40 days. This system enables the recapitulation of all steps of the HBV life cycle, including the replication of patient-derived HBV and the maintenance of HBV cccDNA. We show that innate immune and cytokine responses following infection with HBV mimic those observed in HBV-infected patients, thus allowing the dissection of pathways important for immune evasion and validation of biomarkers. Additionally, we demonstrate that the co-culture of PHH with other non-parenchymal cells enables the identification of the cellular origin of immune effectors, thus providing a valuable preclinical platform for HBV research.

  • Journal article
    Reynolds CJ, Suleyman OM, Ortega-Prieto AM, Skelton JK, Bonnesoeur P, Blohm A, Carregaro V, Silva JS, James EA, Maillere B, Dorner M, Boyton RJ, Altmann DMet al., 2018,

    T cell immunity to Zika virus targets immunodominant epitopes that show cross-reactivity with other Flaviviruses

    , Scientific Reports, Vol: 8, ISSN: 2045-2322

    Zika virus (ZIKV) Infection has several outcomes from asymptomatic exposure to rash, conjunctivitis, Guillain-Barré syndrome or congenital Zika syndrome. Analysis of ZIKV immunity is confounded by the fact that several related Flaviviruses infect humans, including Dengue virus 1–4, West Nile virus and Yellow Fever virus. HLA class II restricted T cell cross-reactivity between ZIKV and other Flaviviruses infection(s) or vaccination may contribute to protection or to enhanced immunopathology. We mapped immunodominant, HLA class II restricted, CD4 epitopes from ZIKV Envelope (Env), and Non-structural (NS) NS1, NS3 and NS5 antigens in HLA class II transgenic mice. In several cases, ZIKV primed CD4 cells responded to homologous sequences from other viruses, including DENV1–4, WNV or YFV. However, cross-reactive responses could confer immune deviation - the response to the Env DENV4 p1 epitope in HLA-DR1 resulted in IL-17A immunity, often associated with exacerbated immunopathogenesis. This conservation of recognition across Flaviviruses, may encompass protective and/or pathogenic components and poses challenges to characterization of ZIKV protective immunity.

  • Journal article
    Stockum A, Snijders AP, Maertens GN, 2018,

    USP11 deubiquitinates RAE1 and plays a key role in bipolar spindle formation.

    , PLoS ONE, Vol: 13, ISSN: 1932-6203

    Correct segregation of the mitotic chromosomes into daughter cells is a highly regulated process critical to safeguard genome stability. During M phase the spindle assembly checkpoint (SAC) ensures that all kinetochores are correctly attached before its inactivation allows progression into anaphase. Upon SAC inactivation, the anaphase promoting complex/cyclosome (APC/C) E3 ligase ubiquitinates and targets cyclin B and securin for proteasomal degradation. Here, we describe the identification of Ribonucleic Acid Export protein 1 (RAE1), a protein previously shown to be involved in SAC regulation and bipolar spindle formation, as a novel substrate of the deubiquitinating enzyme (DUB) Ubiquitin Specific Protease 11 (USP11). Lentiviral knock-down of USP11 or RAE1 in U2OS cells drastically reduces cell proliferation and increases multipolar spindle formation. We show that USP11 is associated with the mitotic spindle, does not regulate SAC inactivation, but controls ubiquitination of RAE1 at the mitotic spindle, hereby functionally modulating its interaction with Nuclear Mitotic Apparatus protein (NuMA).

  • Journal article
    Sekine E, Schmidt N, Gaboriau D, O'Hare Pet al., 2017,

    Spatiotemporal dynamics of HSV genome nuclear entry and compaction state transitions using bioorthogonal chemistry and super-resolution microscopy.

    , PLoS Pathogens, Vol: 13, Pages: 1-36, ISSN: 1553-7366

    We investigated the spatiotemporal dynamics of HSV genome transport during the initiation of infection using viruses containing bioorthogonal traceable precursors incorporated into their genomes (HSVEdC). In vitro assays revealed a structural alteration in the capsid induced upon HSVEdC binding to solid supports that allowed coupling to external capture agents and demonstrated that the vast majority of individual virions contained bioorthogonally-tagged genomes. Using HSVEdC in vivo we reveal novel aspects of the kinetics, localisation, mechanistic entry requirements and morphological transitions of infecting genomes. Uncoating and nuclear import was observed within 30 min, with genomes in a defined compaction state (ca. 3-fold volume increase from capsids). Free cytosolic uncoated genomes were infrequent (7-10% of the total uncoated genomes), likely a consequence of subpopulations of cells receiving high particle numbers. Uncoated nuclear genomes underwent temporal transitions in condensation state and while ICP4 efficiently associated with condensed foci of initial infecting genomes, this relationship switched away from residual longer lived condensed foci to increasingly decondensed genomes as infection progressed. Inhibition of transcription had no effect on nuclear entry but in the absence of transcription, genomes persisted as tightly condensed foci. Ongoing transcription, in the absence of protein synthesis, revealed a distinct spatial clustering of genomes, which we have termed genome congregation, not seen with non-transcribing genomes. Genomes expanded to more decondensed forms in the absence of DNA replication indicating additional transitional steps. During full progression of infection, genomes decondensed further, with a diffuse low intensity signal dissipated within replication compartments, but frequently with tight foci remaining peripherally, representing unreplicated genomes or condensed parental strands of replicated DNA. Uncoating and nuclear en

  • Journal article
    Correia S, Palser A, Elgueta Karstegl C, Middeldorp JM, Ramayanti O, Cohen JI, Hildesheim A, Fellner MD, Wiels J, White RE, Kellam P, Farrell PJet al., 2017,

    Natural variation of Epstein-Barr virus genes, proteins and pri-microRNA

    , Journal of Virology, Vol: 91, ISSN: 1098-5514

    Viral gene sequences from an enlarged set of about 200 Epstein-Barr virus (EBV) strains including many primary isolates have been used to investigate variation in key viral genetic regions, particularly LMP1, Zp, gp350, EBNA1 and the BART miRNA cluster 2. Determination of type 1 and type 2 EBV in saliva samples from people from a wide range of geographic and ethnic backgrounds demonstrates a small percentage of healthy white Caucasian British people carrying predominantly type 2 EBV. Linkage of Zp and gp350 variants to type 2 EBV is likely to be due to their genes being adjacent to the EBNA3 locus, which is one of the major determinants of the type 1/type 2 distinction. A novel classification of EBNA1 DNA binding domains named QCIGP results from phylogeny analysis of their protein sequences but is not linked to the type 1/type 2 classification. The BART cluster 2 miRNA region is classified into three major variants through SNPs in the pri-miRNA outside of the mature miRNA sequences. These SNPs can result in altered levels of expression of some miRNAs from the BART variant frequently present in Chinese and Indonesian nasopharyngeal carcinoma (NPC) samples. The EBV genetic variants identified here provide a basis for future more directed analysis of association of specific EBV variation with EBV biology and EBV associated diseases.IMPORTANCE Incidence of diseases associated with EBV varies greatly in different parts of the world. Relationships between EBV genome sequence variation and health, disease, geography and ethnicity of the host may thus be important for understanding the role of EBV in diseases and for development of an effective EBV vaccine. This paper provides the most comprehensive analysis so far of variation in specific EBV genes relevant to these diseases and proposed EBV vaccines. By focussing on variation in LMP1, Zp, gp350, EBNA1 and the BART miRNA cluster 2, new relationships to the known type 1/type 2 strains are demonstrated and novel classificati

  • Journal article
    Brady G, Haas DA, Farrell PJ, Pichlmair A, Bowie AGet al., 2017,

    Molluscum Contagiosum Virus Protein MC005 Inhibits NF-kappa B Activation by Targeting NEMO-Regulated I kappa B Kinase Activation

    , Journal of Virology, Vol: 91, ISSN: 1098-5514

    Molluscum contagiosum virus (MCV), the only known extant human-adapted poxvirus, causes a long-duration infection characterized by skin lesions that typically display an absence of inflammation despite containing high titers of live virus. Despite this curious presentation, MCV is very poorly characterized in terms of host-pathogen interactions. The absence of inflammation around MCV lesions suggests the presence of potent inhibitors of human antiviral immunity and inflammation. However, only a small number of MCV immunomodulatory genes have been characterized in detail. It is likely that many more remain to be discovered, given the density of such sequences in other poxvirus genomes. NF-κB activation occurs in response to both virus-induced pattern recognition receptor (PRR) signaling and cellular activation by virus-induced proinflammatory cytokines like tumor necrosis factor and interleukin-1. Activated NF-κB drives cytokine and interferon gene expression, leading to inflammation and virus clearance. We report that MC005, which has no orthologs in other poxvirus genomes, is a novel inhibitor of PRR- and cytokine-stimulated NF-κB activation. MC005 inhibited NF-κB proximal to the IκB kinase (IKK) complex, and unbiased affinity purification revealed that MC005 interacts with the IKK subunit NEMO (NF-κB essential modulator). MC005 binding to NEMO prevents the conformational priming of the IKK complex that occurs when NEMO binds to ubiquitin chains during pathway activation. These data reveal a novel mechanism of poxvirus inhibition of human innate immunity, validate current dynamic models of NEMO-dependent IKK complex activation, and further clarify how the human-adapted poxvirus MCV can so effectively evade antiviral immunity and suppress inflammation to persist in human skin lesions.

  • Journal article
    Koutsoudakis G, Paris de Leon A, Herrera C, Dorner M, Perez-Vilaro G, Lyonnais S, Grijalvo S, Eritja R, Meyerhans A, Mirambeau G, Diez Jet al., 2017,

    Oligonucleotide-Lipid Conjugates Forming G-Quadruplex Structures Are Potent and Pangenotypic Hepatitis C Virus Entry Inhibitors In Vitro and Ex Vivo

    , ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, Vol: 61, ISSN: 0066-4804

    A hepatitis C virus (HCV) epidemic affecting HIV-infected men who have sex with men (MSM) is expanding worldwide. In spite of the improved cure rates obtained with the new direct-acting antiviral drug (DAA) combinations, the high rate of reinfection within this population calls urgently for novel preventive interventions. In this study, we determined in cell culture and ex vivo experiments with human colorectal tissue that lipoquads, G-quadruplex DNA structures fused to cholesterol, are efficient HCV pangenotypic entry and cell-to-cell transmission inhibitors. Thus, lipoquads may be promising candidates for the development of rectally applied gels to prevent HCV transmission.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wwwtest.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=810&limit=10&respub-action=search.html Current Millis: 1759570531348 Current Time: Sat Oct 04 10:35:31 BST 2025